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Abstract: Doubly resolving sets (DRSs) provide a promising approach for source detection. They
consist of minimal subsets of nodes with the smallest cardinality, referred to as the double metric
dimension (DMD), that can uniquely identify the location of any other node within the network.
Utilizing DRSs can improve the accuracy and efficiency of the identification of the origin of a diffusion
process. This ability is crucial for early intervention and control in scenarios such as epidemic
outbreaks, misinformation spreading in social media, and fault detection in communication networks.
In this study, we computed the DMD of flower snarks Jm and quasi-flower snarks Gm by describing
their minimal doubly resolving sets (MDRSs). We deduce that the DMD for the flower snarks Jm is
finite and depends on the network’s order, and the DMD for the quasi-flower snarks Gm is finite and
independent of the network’s order. Furthermore, our findings offer valuable insights into the structural
features of complex networks. This knowledge can offer direction for future studies in network theory
and its practical implementations.

Keywords: optimization; complex networks; metric dimension; doubly resolving sets; flower snarks;
quasi-flower snarks
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1. Introduction and preliminaries

Combinatorics is the study of how items are arranged by predetermined principles. Combinatorial
approaches are required to count, enumerate, or describe potential solutions. Many difficult real-world
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situations require finding an optimal solution in a finite solution space. The literature contains a large
number of issues that could be solved in polynomial time, even though some practical problems, such
as determining the shortest or cheapest roundtrips, internet data packet routing, planning, scheduling,
and timetabling, appear to be NP-complete. Several combinatorial strategies can be used to achieve
this, including metric dimension (MD), fault-tolerant MD, and DMD. The networks considered in this
study are simple (no multiple loops permitted), finite (both edge and vertex sets are finite), linked (a
path exists between any two pairs of vertices), and undirected (the edges are not oriented). Consider a
network G of order n with the edge set EG and vertex set VG. For a vertex ν ∈ VG, the representation
(l-tuple) r(ν) = (dτ|1 ≤ τ ≤ l), where dτ = dτ(ν, ντ), is said to be the distance vector of the vertex ν. The
distance vector between two vertices ν , u could be the same. In this case, the question of determining
which vertices have unique distance vectors arises. This difficulty led to the definition of the resolving
sets, introduced by Slater [1] in 1975 and Harary and Melter [2] in 1976.

Definition 1.1. 1) The vertex x ∈ VG determines (resolves) the vertices v,w ∈ VG if d(v, x) , d(w, x).
2) Let WG ⊆ VG, where WG = {yτ|1 ≤ τ ≤ l}; (l ≤ n) is an ordered set and z ∈ VG, then the notation

r(z|WG) is the distance vector of the vertex z in association with WG is the l-tuple
(
d(z, yτ)

)l

τ=1
, also

called the vector of metric coordinates.

3) The set WG is said to be a resolving set for network G, if the l-tuple
(
d(z, yτ)

)l

τ=1
is unique with

respect to z.
4) A metric basis of network G is a resolving set with minimal number of entries. The number of

entries in a metric basis is denoted by dim(G) and is called the MD of G.

The MD has a wide range of potential applications in science, sociology, and engineering. In
this context, we will explore the diverse applications of the MD within different scientific fields.
Several disciplines, such as telecommunications [3], establishing routing protocols geographically [4],
combinatorial optimization [5], and robotics [6] have benefited from the rise and diversity of MD
applications. Another area where the MD has significant implications is network discovery and
verification [3]. Many applications in chemistry are derived from the vertex-edge relation in networks
and its equivalence to the atom and bond relation [7]. Many strategies for the Mastermind [8] games
are built using the resolving sets, and the MD of hamming networks is linked to various coin-weighing
difficulties explained in [9, 10]. It is natural to investigate the mathematical features of this parameter
due to its significance in other scientific fields. And after that, we look at some studies on the
mathematical importance of this graph-theoretic parameter.

Several network families of mathematical importance have been studied from the perspective of
MD. The field of MD has seen significant advancements, which we will discuss below. The chorded
cycle, kayak paddle networks [11], and Mobius ladders [12] are examples of families for which MD
has been estimated. Bailey and others have examined the MD of specific families of distance-regular
networks, such as Grassmann networks [13], Kneser networks, and Johnson networks [14].

Cayley networks and Cayley digraphs, which are examples of networks generated by finite groups
with group-theoretic importance, have been studied from the MD perspective [15, 16]. There has also
been research into the MD and resolving sets of product networks, such as the categorical product of
networks [17] and the cartesian product of graphs [18]. Kratica et al. [19] (and, respectively, Imran
et al. [20]) investigated the MD of rotationally symmetric convex polytopes (and, respectively, convex
polytopes created by wheel-related networks). Siddiqui et al. [21] investigated certain infinite families
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derived from wheel networks for the MD problem.
Burdett et al. [22] determined various domination numbers for flower snarks, including independent

domination, 2-domination, total domination, connected domination, upper domination, secure
domination, and weak Roman domination numbers. In [23], the exact results of the mixed MD on
two special classes of networks, namely flower snarks and wheel-related networks, were presented.
Another study by Girisha et al. [24] characterized the MD and distance matrix of flower snark and
sunflower networks. Additionally, due to computational complexity in finding exact values, Liu et al.
provided bounds for the partition dimension of certain convex polytope structures in their work [25].
Lastly, Nawaz et al. [26] discussed the edge MD of various structures of benzodiazepines, which are
types of drugs used for the treatment of depression.

Caceres et al. [27] responded to the question of whether the MD is a finite number. They
demonstrated this by constructing infinite families of networks having infinite MDs. The computational
difficulty of the MD problem was addressed by Garey and Johnson [28], just like many other graph-
theoretic characteristics. The bounds of the MD have been examined for generalized Petersen networks
by Shao et al. (refer to [29]). All connected networks possessing MDs n − 1, n − 2, and 1 were
determined by Chartrand et al. [7]. Raza et al. [30] examined the fault-tolerant MD of infinite sets
of regular networks, categorizing them accordingly. Baca et al. [31] and Tomescu et al. [32] studied
the concept of resolving sets for the regular bipartite networks and the family of necklace networks,
respectively. For more details, see [33, 34].

MD and its associated parameters are widely used among researchers today because of the relevance
of MD in the identification of nodes in networks. The concept of the DRS and DMD of the network,
which is a generalization of the MD of the network, is a distinctive and significant parameter. The term
“DRS” was defined by Caceres et al. [18] as follows:

Definition 1.2. 1) The vertices e1, e2 ∈ G (where |G| ≥ 2) are said to doubly resolve the vertices
f1, f2 of network G if d(e1, f1) − d(e1, f2) , d(e2, f1) − d(e2, f2).

2) An ordered set DG = {eτ|1 ≤ τ ≤ l} of G is a DRS of G if there does not exist a pair of vertices in
G that has the same difference in their associated metric coordinates with respect to DG.

3) In other words, all coordinates of the vector r( f1|DG) − r( f2|DG) cannot be the same for any pair
of distinct vertices f1, f2 ∈ VG. i.e. r( f1|DG) − r( f2|DG) , γI, where I is the unit vector (1,1,. . . ,1)
and γ is an integer.

A DRS having a minimal cardinal number is called a MDRS. The cardinal number of an MDRS is
the DMD of G, denoted by ψ(G). Moreover, a DRS is a resolving set as well, and ψ(G) ≤ dim(G). It
was shown in [35] (and, respectively, in [6]) that finding ψ(G) (and, respectively, dim(G)) is an NP-
hard task. The task of identifying MDRSs for necklace networks and certain convex polytopes was
first addressed in [36] and [19]. Furthermore, authors in [37, 38] demonstrated that the DMD remains
constant for certain convex polytope structures. For various families of Harary networks, Ahmad et al.
calculated the MDRSs (see [39] for more information).

In [40], it was shown that the dim(G) and ψ(G) of some families of circulant networks were the
same in all cases. The problem of determining the MDRS is discussed for many network families;
for example, the MDRSs of prisms and Hamming networks were investigated in [41] and [42],
respectively. Chen and Wang [43] conducted a study to identify the MDRSs for trees, cycles, wheels,
and k-edge-augmented trees. In another study [44], Chen et al. were the first to present explicit
approximations of upper and lower bounds for the MDRS problem.
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An investigation into the MDRSs and MD of certain network families was conducted by Liu
et al. [45]. In a recent study, Ahmad et al. [46] investigated the MDRSs for the chordal ring networks.
Moreover, in [47], the MDRSs of layer-sun networks and their line networks have been explored in
detail. The DMD and MDRSs for certain classes of convex polytopes were found by Pan et al. [48].
Jannesari [49] characterized all networks G having the DMD 2 by using 2-connected subgraphs of
network G. Recently, the generalized solutions for the DRS problem of several families of networks
were found by Ahmad et al. [50].

The reason for studying doubly resolving sets (DRSs) is their potential to improve the accuracy and
efficiency of source detection in different network scenarios. Our study aimed to explore the theoretical
principles of certain network properties using the flower snark network as a model due to its distinct and
well-defined structural characteristics. The results of the study are significant as they present calculated
double metric dimensions (DMDs) for complex network models such as flower snarks and quasi-flower
snarks. These findings not only demonstrate the real-world application of DRSs in intricate networks
but also provide valuable insights into their structural traits. This comprehension can guide future work
in the theory of networks and its practical implementations, leading to more effective source detection
techniques in various real-world networks.

MDRSs play a crucial role in identifying diffusion sources in intricate networks. Locating the
origins of an outbreak in such networks is an exciting yet challenging task. For instance, consider the
scenario where the only available information about the epidemic is from a subset of nodes referred to
as sensors. These sensors can indicate if and when they have been infected with the virus. The question
then arises: What is the minimum number of sensors required to identify the source of the outbreak
accurately? Fortunately, a well-known network feature called DMD offers a solution to this problem
(for details, see [51, 52]).

Let us look at a few real-world instances. The DMD in an n-node star network is n − 1. DRSs
cannot be formed from sets that do not include all of the external nodes. On the other hand, the DMD
for a path network is 2. The two nodes, one at each end of the path, are sensors always sufficient to
identify the source. Using these instances, it is clear that the DMD and the difficulty in finding the
source largely depend on the network topology. A path-like network makes it far easier to find the
source of an outbreak than a star-like network [52].

The results on minimal resolving sets for the flower snark Jm and quasi-flower snarks Gm were
determined by Imran et al. [53] and Naeem et al. [54] and are given in the following theorems:

Theorem 1.3. [53] Let Jm be the flower snark. Then, for every odd positive integer m ≥ 5, we have
dim(Jm) = 3.

Theorem 1.4. [54] Let Gm be the quasi-flower snark. Then, for every positive integer m ≥ 4, we have

dim(Gm) =


3, if m is odd;

≤ 4, otherwise.

The results presented above determine the lower bound on the DMD of flower snarks Jm and quasi-
flower snarks Gm. Following is how the main contribution of the article is structured:

• We compute the DMD for flower snarks Jm and quasi-flower snarks Gm in Sections 2 and 3.
• The utilization of the research in the context of the source of diffusion in a complex network is

presented in Section 4.
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• Finally, in Section 5, we demonstrate that the DMD for flower snarks depends on the order of the
network, and the DMD for quasi-flower snarks is independent of the order of the network.

2. Double metric dimension for the flower snarks Jm

In this section, we will concentrate on determining the DMD of flower snarks Jm.
The flower snark Jm, depicted in Figure 1, is a cubic network comprising 4m vertices and 6m

edges. The vertex set for the flower snarks Jm is VJm={cτ, fτ, gτ, hτ: ∀ 0 ≤ τ ≤ m −
1}, and the edge set is EJm={cτcτ+1, cτ fτ, fτgτ, fτhτ, gτgτ+1, hτhτ+1: ∀ 0 ≤ τ ≤ m − 2}

⋃
{cm−1c0, cm−1 fm−1, fm−1gm−1, fm−1hm−1, gm−1g0, hm−1h0, g0hm−1, gm−1h0}.

Figure 1. Flower snark J5.

As shown in Figure 1, the inner cycle vertices are labeled as {cτ : ∀ 0 ≤ τ ≤ m − 1}, the set of
central vertices are labeled as { fτ : ∀ 0 ≤ τ ≤ m − 1}, and the outer cycle vertices are labeled as {gτ : ∀
0 ≤ τ ≤ m − 1}

⋃
{hτ : ∀ 0 ≤ τ ≤ m − 1}.

MDRSs for Jm are to be found in this section. It follows from Theorem 1.3 that ψ(Jm) ≥ 3, for all
m ≥ 6. We shall also show, for all m ≥ 6:

ψ(Jm) =


4, if m is odd;

5, if m is even.

Define the vertex subset S τ( f0) = {g ∈ VJm : d( f0, g) = τ} ⊆ VJm having distance τ from f0. The
Table 1 is a simple formulation for S τ( f0) and will be used to compute the distances between each pair
of vertices in VJm .
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Table 1. S τ( f0) for Jm.

m τ S τ( f0)
1 {c0, g0, h0}

2 {c1, cm−1, g1, gm−1, h1, hm−1}

3 ≤ τ ≤ bm
2 c {cτ−1, cm−τ+1, fτ−2, fm−τ+2, gτ−1, gm−τ+1, hτ−1, hm−τ+1}

even m+2
2 {c m

2
, f m−2

2
, f m+2

2
, g m

2
, h m

2
}

m+4
2 { f m

2
}

odd m+1
2 {c m−1

2
, c m+1

2
, f m−3

2
, f m+3

2
, g m−1

2
, g m+1

2
, h m−1

2
, h m+1

2
}

m+3
2 { f m−1

2
, f m+1

2
}

The following facts can be demonstrated as a result of the symmetry of Jm, where m ≥ 6:
d( fτ, fυ) = d( f0, f|τ−υ|) if 0 ≤ |τ − υ| ≤ m − 1; d(cτ, cυ) = d( f0, c|τ−υ|) − 1 if 0 ≤ |τ − υ| ≤ m − 1;
d(cτ, fυ) = d( f0, c|τ−υ|) if 0 ≤ |τ − υ| ≤ m − 1;
d(cτ, gυ) = d(cτ, hυ) = d( f0, c|τ−υ|) + 1 if 0 ≤ |τ − υ| ≤ m − 1;
d( fτ, gυ) = d( fτ, hυ) = d( f0, g|τ−υ|) if 0 ≤ |τ − υ| ≤ m − 1.

If m is an odd integer, then

d(gτ, hυ) =

{
d( f0, c|τ−υ|) + 1, if 0 ≤ |τ − υ| ≤ m−1

2 ;
d( f0, c|τ−υ|) − 1, if m+1

2 ≤ |τ − υ| ≤ m − 1.

d(gτ, gυ) = d(hτ, hυ) =

{
d( f0, g|τ−υ|) − 1, if 0 ≤ |τ − υ| ≤ m−1

2 ;
d( f0, g|τ−υ|) + 1, if m+1

2 ≤ |τ − υ| ≤ m − 1.

If m is an even integer, then

d(gτ, hυ) =

{
d( f0, c|τ−υ|) + 1, if 0 ≤ |τ − υ| ≤ m−2

2 ;
d( f0, c|τ−υ|) − 1, if m

2 ≤ |τ − υ| ≤ m − 1.

d(gτ, gυ) = d(hτ, hυ) =

{
d( f0, g|τ−υ|) − 1, if 0 ≤ |τ − υ| ≤ m

2 ;
d( f0, g|τ−υ|) + 1, if m+2

2 ≤ |τ − υ| ≤ m − 1.

Therefore, we can recalculate the distances between each pair of vertices in VJm if d( f0, g) is known for
each g ∈ VJm .

Lemma 2.1. For any even positive integer m ≥ 6, ψ
(
Jm

)
> 4.

Proof. To prove the DMD ψ
(
Jm

)
> 4, we must show that every subset DJm ⊆ VJm of cardinality 4

is not a DRS for Jm. Table 2 demonstrates the non-doubly resolved pairs of vertices from the set
VJm as well as all possible forms of subset DJm . Let us compute that any two vertices of the set
{cτ, cυ, cω, f0; 0 ≤ τ < υ < ω ≤ m − 1} do not doubly resolve the vertices f0, g0. For example, it is clear
that d( f0, f0) = 0, d( f0, g0) = 1. Now, for 0 ≤ τ ≤ m−2

2 , 1 ≤ υ ≤ m−2
2 , 2 ≤ ω ≤ m−2

2 , we have

• d(cτ, f0) = d( f0, cτ) = τ + 1,
• d(cτ, g0) = d( f0, cτ) + 1 = τ + 2,
• d(cυ, f0) = d( f0, cυ) = υ + 1,
• d(cυ, g0) = d( f0, cυ) + 1 = υ + 2,
• d(cω, f0) = d( f0, cω) = ω + 1,
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• d(cω, g0) = d( f0, cω) + 1 = ω + 2.

Also, for m
2 ≤ τ ≤ m − 3, m

2 ≤ υ ≤ m − 2, m
2 ≤ ω ≤ m − 1, we have

• d(cτ, f0) = d( f0, cτ) = m − τ + 1,
• d(cτ, g0) = d( f0, cτ) + 1 = m − τ + 2,
• d(cυ, f0) = d( f0, cυ) = m − υ + 1,
• d(cυ, g0) = d( f0, cυ) + 1 = m − υ + 2,
• d(cω, f0) = d( f0, cω) = m − ω + 1,
• d(cω, g0) = d( f0, cω) + 1 = m − ω + 2.

So, d(cτ, f0) − d(cτ, g0) = d(cυ, f0) − d(cυ, g0) = d(cω, f0) − d(cω, g0) = d( f0, f0) − d( f0, g0) = −1, that
is, the set {cτ, cυ, cω, f0; 0 ≤ τ < υ < ω ≤ m − 1} is not a DRS of Jm. Accordingly, we can investigate
all the possible types of subset DJm shown in Table 2 and verify their associated non-doubly resolved
pairs of vertices.

Table 2. Non-doubly resolving pairs of vertices for Jm, ∀ even positive integer m ≥ 6.

DJm Non-doubly
resolved pairs

{cτ, cυ, cω, f0}, 0 ≤ τ < υ < ω ≤ m − 1 { f0, g0}

{cτ, cυ, f0, fω}, 0 ≤ τ < υ ≤ m − 1, 1 ≤ ω ≤ m − 1 {g0, h0}

{cτ, f0, fυ, fω}, 0 ≤ τ ≤ m − 1, 1 ≤ υ < ω ≤ m − 1 {g0, h0}

{cτ, f0, fυ, gω}
⋃
{cτ, f0, fυ, hω}, 0 ≤ τ ≤ m − 1, 1 ≤ υ ≤ m − 1, 0 ≤ ω ≤ m−2

2 {g m+2ω
2
, h m+2ω

2
}

{cτ, f0, fυ, gω}
⋃
{cτ, f0, fυ, hω}, 0 ≤ τ ≤ m − 1, 1 ≤ υ ≤ m − 1, m

2 ≤ ω ≤ m − 2 {g 2ω−m
2
, h 2ω−m

2
}

{cτ, f0, fυ, gω}
⋃
{cτ, f0, fυ, hω}, 0 ≤ τ ≤ m − 1, 1 ≤ υ ≤ m − 1, ω = m − 1 {g m−2

2
, h m−2

2
}

{cτ, cυ, f0, gω}, 0 ≤ τ < υ ≤ m − 1, 0 ≤ ω ≤ m−2
2 { f0, h0}

{cτ, cυ, f0, gω}, 0 ≤ τ < υ ≤ m − 1, m
2 ≤ ω ≤ m − 2 {g 2ω−m

2
, h 2ω−m

2
}

{cτ, cυ, f0, gω}, 0 ≤ τ < υ ≤ m − 1, ω = m − 1 { f0, g0}

{cτ, cυ, f0, hω}, 0 ≤ τ < υ ≤ m − 1, 0 ≤ ω ≤ m−2
2 { f0, g0}

{cτ, cυ, f0, hω}, 0 ≤ τ < υ ≤ m − 1, m
2 ≤ ω ≤ m − 2 {g 2ω−m

2
, h 2ω−m

2
}

{cτ, cυ, f0, hω}, 0 ≤ τ < υ ≤ m − 1, ω = m − 1 { f0, h0}

{ f0, fτ, fυ, fω}, 1 ≤ τ < υ < ω ≤ m − 1 {c0, g0}

{ f0, gτ, gυ, hω}, 0 ≤ τ < υ ≤ m − 1, 0 ≤ ω ≤ m − 1 {c0, f0}

{ f0, fτ, fυ, gω}, 1 ≤ τ < υ ≤ m − 1, 0 ≤ ω ≤ m−2
2 {c0, h0}

{ f0, fτ, fυ, gω}, 1 ≤ τ < υ ≤ m − 1, ω = m
2 {g0, h0}

{ f0, fτ, fυ, gω}, 1 ≤ τ < υ ≤ m − 1, m+2
2 ≤ ω ≤ m − 1 {c0, g0}

{ f0, fτ, fυ, hω}, 1 ≤ τ < υ ≤ m − 1, 0 ≤ ω ≤ m−2
2 {c0, g0}

{ f0, fτ, fυ, hω}, 1 ≤ τ < υ ≤ m − 1, ω = m
2 {g0, h0}

{ f0, fτ, fυ, hω}, 1 ≤ τ < υ ≤ m − 1, m+2
2 ≤ ω ≤ m − 1 {c0, h0}

{ f0, gτ, gυ, gω}
⋃
{ f0, hτ, hυ, hω}, 0 ≤ τ < υ < ω ≤ m − 1 {c0, f0}

{ f0, gτ, hυ, hω}, 0 ≤ τ ≤ m − 1, 0 ≤ υ < ω ≤ m − 1 {c0, f0}

�

Lemma 2.2. For any odd positive integer m ≥ 6, ψ
(
Jm

)
> 3.
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Proof. To prove the DMD ψ
(
Jm

)
> 3, we must show that every subset DJm ⊆ VJm of cardinality 3

is not a DRS for Jm. Table 3 demonstrates the non-doubly resolved pairs of vertices from the set
VJm as well as all possible forms of subset DJm . Let us compute that any two vertices of the set
{ f0, gτ, hυ; 0 ≤ τ, υ ≤ m − 1} do not doubly resolve the vertices c0, f0. For example, it is clear that
d(c0, f0) = 1, d( f0, f0) = 0. Now, for 0 ≤ τ, υ ≤ m−1

2 , we have

• d(c0, gτ) = d( f0, cτ) + 1 = τ + 2,
• d( f0, gτ) = d( f0, gτ) = τ + 1,
• d(c0, hυ) = d( f0, cυ) + 1 = υ + 2,
• d( f0, hυ) = d( f0, gυ) = υ + 1.

Also, for m+1
2 ≤ τ, υ ≤ m − 1, we have

• d(c0, gτ) = d( f0, cτ) + 1 = m − τ + 2,
• d( f0, gτ) = d( f0, gτ) = m − τ + 1,
• d(c0, hυ) = d( f0, cυ) + 1 = m − υ + 2,
• d( f0, hυ) = d( f0, gυ) = m − υ + 1.

So, d(c0, gτ) − d( f0, gτ) = d(c0, hυ) − d( f0, hυ) = d(c0, f0) − d( f0, f0) = 1, that is, the set { f0, gτ, hυ; 0 ≤
τ, υ ≤ m − 1} is not a DRS of Jm. Accordingly, we can investigate all the possible types of subset DJm

shown in Table 3 and verify their associated non-doubly resolved pairs of vertices.

Table 3. Non-doubly resolving pairs of vertices for Jm, ∀ odd positive integer m ≥ 6.

DJm Non-doubly
resolved pairs

{cτ, cυ, f0}, 0 ≤ τ < υ ≤ m − 1 { f0, g0}

{cτ, f0, fυ}, 0 ≤ τ ≤ m − 1, 1 ≤ υ ≤ m − 1 {g0, h0}

{ f0, fτ, fυ}, 1 ≤ τ < υ ≤ m − 1 {c0, g0}

{ f0, fτ, gυ}, 1 ≤ τ ≤ m − 1, 0 ≤ υ ≤ m−3
2 {c0, h0}

{ f0, fτ, gυ}, 1 ≤ τ ≤ m − 1, m−1
2 ≤ υ ≤ m − 1 {cυ−1, hυ−1}

{ f0, fτ, hυ}, 1 ≤ τ ≤ m − 1, 0 ≤ υ ≤ m−3
2 {c0, g0}

{ f0, fτ, hυ}, 1 ≤ τ ≤ m − 1, m−1
2 ≤ υ ≤ m − 1 {cυ−1, gυ−1}

{ f0, gτ, gυ}
⋃
{ f0, hτ, hυ}, 0 ≤ τ < υ ≤ m − 1 {c0, f0}

{ f0, gτ, hυ}, 0 ≤ τ, υ ≤ m − 1 {c0, f0}

�

Lemma 2.3. ψ
(
Jm

)
= 5,∀ even integers m ≥ 6.

Proof. It suffices to identify a DRS having order 5 to demonstrate that ψ
(
Jm

)
= 5, if m ≥ 6 is an even

integer. Now, by using the sets S τ( f0) from Table 1, the metric coordinate vectors are demonstrated in
Table 4 for each vertex of Jm with respect to the set DJm = {c0, c1, c m

2
, g0, gm−1}.
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Table 4. Metric coordinate vectors for Jm if m ≥ 6 is even.

τ S τ( f0) DJm = {c0, c1, c m
2
, g0, gm−1}

0 f0 (1, 2, m+2
2 , 1, 2)

1 c0 (0, 1, m
2 , 2, 3)

g0 (2, 3, m+4
2 , 0, 3)

h0 (2, 3, m+4
2 , 2, 1)

2 c1 (1, 0, m−2
2 , 3, 4)

cm−1 (1, 2, m−2
2 , 3, 2)

g1 (3, 2, m+2
2 , 1, 4)

gm−1 (3, 4, m+2
2 , 3, 0)

h1 (3, 2, m+2
2 , 3, 2)

hm−1 (3, 4, m+2
2 , 1, 2)

3 ≤ τ ≤ m
2 cτ−1 (τ − 1, τ − 2, m−2τ+2

2 , τ + 1, τ + 2)
cm−τ+1 (τ − 1, τ, m−2τ+2

2 , τ + 1, τ)
fτ−2 (τ − 1, τ − 2, m−2τ+6

2 , τ − 1, τ)
fm−τ+2 (τ − 1, τ, m−2τ+6

2 , τ − 1, τ − 2)

gτ−1 =


(τ + 1, τ, m−2τ+6

2 , τ − 1, τ + 2), if τ < m
2 ;

(m+2
2 , m

2 , 3,
m−2

2 , m
2 ), if τ = m

2 .

gm−τ+1 (τ + 1, τ + 2, m−2τ+6
2 , τ + 1, τ − 2)

hτ−1 (τ + 1, τ, m−2τ+6
2 , τ + 1, τ)

hm−τ+1 (τ + 1, τ + 2, m−2τ+6
2 , τ − 1, τ)

m+2
2 c m

2
(m

2 ,
m−2

2 , 0, m+4
2 , m+2

2 )
f m−2

2
(m

2 ,
m−2

2 , 2, m
2 ,

m+2
2 )

f m+2
2

(m
2 ,

m+2
2 , 2, m

2 ,
m−2

2 )
g m

2
(m+4

2 , m+2
2 , 2, m

2 ,
m−2

2 )
h m

2
(m+4

2 , m+2
2 , 2, m

2 ,
m+2

2 )
m+4

2 f m
2

(m+2
2 , m

2 , 1,
m+2

2 , m
2 )

Now, consider Table 4, where the vector of f0 ∈ S τ( f0) has its first metric coordinate equal to 1. We
may also check that no two vertices a1, a2 ∈ S τ( f0) exist such as r(a1,DJm) − r(a2,DJm) = 0I, where
I is the unit vector and τ ∈ {1, 2, . . . , m+4

2 }. Furthermore, no two vertices a1 ∈ S τ( f0) and a2 ∈ S υ( f0)
exist such as r(a1,DJm) − r(a2,DJm) = τ − υ, for some τ, υ ∈ {1, 2, . . . , m+4

2 } and τ , υ. Finally, the set
DJm = {c0, c1, c m

2
, g0, gm−1} is the MDRS. As a result, Lemma 2.3 holds true. �

Lemma 2.4. ψ
(
Jm

)
= 4,∀ odd integers m ≥ 6.

Proof. To demonstrate that ψ
(
Jm

)
= 4, where m ≥ 6 is an odd integer, it is enough to find a DRS of

order 4. Now, by using the sets S τ( f0) from Table 1, the metric coordinate vectors are demonstrated in
Table 5 for each vertex of Jm with respect to the set DJm = {c0, c m−3

2
, f m−1

2
, g0}.
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Table 5. Metric coordinate vectors for Jm if m ≥ 6 is odd.

τ S τ( f0) DJm = {c0, c m−3
2
, f m−1

2
, g0}

0 f0 (1, m−1
2 , m+3

2 , 1)
1 c0 (0, m−3

2 , m+1
2 , 2)

g0 (2, m+1
2 , m+1

2 , 0)
h0 (2, m+1

2 , m+1
2 , 2)

2 c1 (1, m−5
2 , m−1

2 , 3)
cm−1 (1, m−1

2 , m+1
2 , 3)

g1 (3, m−1
2 , m−1

2 , 1)
gm−1 (3, m+3

2 , m+1
2 , 3)

h1 (3, m−1
2 , m−1

2 , 3)
hm−1 (3, m+3

2 , m+1
2 , 1)

3 ≤ τ ≤ m−1
2 cτ−1 (τ − 1, m−2τ−1

2 , m−2τ+3
2 , τ + 1)

cm−τ+1 (τ − 1, m−2τ+5
2 , m−2τ+5

2 , τ + 1)
fτ−2 (τ − 1, m−2τ+3

2 , m−2τ+7
2 , τ − 1)

fm−τ+2 =


(2, m+1

2 , m+3
2 , 2), if τ = 3;

(τ − 1, m−2τ+9
2 , m−2τ+9

2 , τ − 1), if τ > 3.

gτ−1 (τ + 1, m−2τ+3
2 , m−2τ+3

2 , τ − 1)
gm−τ+1 (τ + 1, m−2τ+9

2 , m−2τ+5
2 , τ + 1)

hτ−1 (τ + 1, m−2τ+3
2 , m−2τ+3

2 , τ + 1)
hm−τ+1 (τ + 1, m−2τ+9

2 , m−2τ+5
2 , τ − 1)

m+1
2 c m−1

2
(m−1

2 , 1, 1, m+3
2 )

c m+1
2

(m−1
2 , 2, 2, m+3

2 )
f m−3

2
(m−1

2 , 1, 3, m−1
2 )

f m+3
2

(m−1
2 , 4, 4, m−1

2 )
g m−1

2
(m+3

2 , 3, 1, m−1
2 )

g m+1
2

(m+3
2 , 4, 2, m+1

2 )
h m−1

2
(m+3

2 , 3, 1, m+1
2 )

h m+1
2

(m+3
2 , 4, 2, m−1

2 )
m+3

2 f m−1
2

(m+1
2 , 2, 0, m+1

2 )
f m+1

2
(m+1

2 , 3, 3, m+1
2 )

Now, consider Table 5, where the vector of f0 ∈ S τ( f0) has its first metric coordinate equal to 1. We
may also check that no two vertices a1, a2 ∈ S τ( f0) exist such as r(a1,DJm) − r(a2,DJm) = 0I, where
I is the unit vector and τ ∈ {1, 2, . . . , m+3

2 }. Furthermore, no two vertices a1 ∈ S τ( f0) and a2 ∈ S υ( f0)
exist such as r(a1,DJm) − r(a2,DJm) = τ − υ, for some τ, υ ∈ {1, 2, . . . , m+3

2 } and τ , υ. Finally, the set
DJm = {c0, c m−3

2
, f m−1

2
, g0} is the MDRS. As a result, Lemma 2.4 holds true. �

The combination of Lemmas 2.3 and 2.4 yields the following main theorem:
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Theorem 2.5. Let Jm be the flower snark, then for m ≥ 6,

ψ(Jm) =

{
4, if m is odd;
5, if m is even.

3. Double metric dimension for the quasi-flower snarks Gm

In this section, we will concentrate on determining the DMD of quasi-flower snarks Gm.
Figure 2 demonstrates the network of quasi-flower snark Gm, which has 4m vertices and 6m

edges. The vertex set for the quasi-flower snarks is VGm={cτ, fτ, gτ, hτ: ∀ 0 ≤ τ ≤ m −
1}, and the edge set is EGm={cτcτ+1, cτ fτ, fτgτ, fτhτ, gτgτ+1, hτhτ+1: ∀ 0 ≤ τ ≤ m − 2}

⋃
{cm−1c0, cm−1 fm−1, fm−1gm−1, fm−1hm−1, gm−1g0, hm−1h0}.

Figure 2. Quasi-flower snark G9.

As shown in Figure 2, the inner cycle vertices are labeled as {cτ : ∀ 0 ≤ τ ≤ m − 1}, the set of
central vertices are labeled as { fτ : ∀ 0 ≤ τ ≤ m − 1}, and the outer cycle vertices are labeled as {gτ : ∀
0 ≤ τ ≤ m − 1}

⋃
{hτ : ∀ 0 ≤ τ ≤ m − 1}.

MDRSs for Gm are to be found in this section. It follows from Theorem 1.4 that

ψ(Gm) ≥
{

3, if m is odd;
≤ 4, otherwise,

for all m ≥ 6. We shall also show that ψ(Gm) = 4, for all m ≥ 6.
Define the vertex subset S τ( f0) = {g ∈ VGm : d( f0, g) = τ} ⊆ VGm having distance τ from f0. The

Table 6 is a simple formulation for S τ( f0) and will be used to compute the distances between each pair
of vertices in VGm .
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Table 6. S τ( f0) for Gm.

m τ S τ( f0)
1 {c0, g0, h0}

2 {c1, cm−1, g1, gm−1, h1, hm−1}

3 ≤ τ ≤ bm
2 c {cτ−1, cm−τ+1, fτ−2, fm−τ+2, gτ−1, gm−τ+1, hτ−1, hm−τ+1}

even m+2
2 {c m

2
, f m−2

2
, f m+2

2
, g m

2
, h m

2
}

m+4
2 { f m

2
}

odd m+1
2 {c m−1

2
, c m+1

2
, f m−3

2
, f m+3

2
, g m−1

2
, g m+1

2
, h m−1

2
, h m+1

2
}

m+3
2 { f m−1

2
, f m+1

2
}

The following facts can be demonstrated as a result of the symmetry of Gm, where m ≥ 6:
d( fτ, gυ) = d( fτ, hυ) = d( f0, g|τ−υ|) if 0 ≤ |τ − υ| ≤ m − 1;
d(cτ, cυ) = d( f0, c|τ−υ|) − 1 if 0 ≤ |τ − υ| ≤ m − 1;
d(cτ, fυ) = d( f0, c|τ−υ|) if 0 ≤ |τ − υ| ≤ m − 1;
d(cτ, gυ) = d(cτ, hυ) = d( f0, c|τ−υ|) + 1 if 0 ≤ |τ − υ| ≤ m − 1;
d(gτ, hυ) = d( f0, c|τ−υ|) + 1 if 0 ≤ |τ − υ| ≤ m − 1;
d( fτ, fυ) = d( f0, f|τ−υ|) if 0 ≤ |τ − υ| ≤ m − 1;
d(gτ, gυ) = d(hτ, hυ) = d( f0, g|τ−υ|) − 1 if 0 ≤ |τ − υ| ≤ m − 1.
Therefore, we can recalculate the distances between each pair of vertices in VGm if d( f0, g) is known
for each g ∈ VGm .

Lemma 3.1. For any positive integer m ≥ 6, ψ
(
Gm

)
> 3.

Proof. To prove the DMD ψ
(
Gm

)
> 3, we must show that every subset DGm ⊆ VGm of cardinality 3

is not a DRS for Gm. Table 7 demonstrates the non-doubly resolved pairs of vertices from the set
VGm as well as all possible forms of subset DGm . Let us compute that any two vertices of the set
{cτ, cυ, f0; 0 ≤ τ < υ ≤ m − 1} do not doubly resolve the vertices f0, g0. For example, it is clear that
d( f0, f0) = 0, d( f0, g0) = 1. Now, for 0 ≤ τ ≤ m

2 , 1 ≤ υ ≤
m
2 , we have

• d(cτ, f0) = d( f0, cτ) = τ + 1;
• d(cτ, g0) = d( f0, cτ) + 1 = τ + 2;
• d(cυ, f0) = d( f0, cυ) = υ + 1;
• d(cυ, g0) = d( f0, cυ) + 1 = υ + 2.

Also, for m+2
2 ≤ τ ≤ m − 2, m+2

2 ≤ υ ≤ m − 1, we have

• d(cτ, f0) = d( f0, cτ) = m − τ + 1;
• d(cτ, g0) = d( f0, cτ) + 1 = m − τ + 2;
• d(cυ, f0) = d( f0, cυ) = m − υ + 1;
• d(cυ, g0) = d( f0, cυ) + 1 = m − υ + 2.

So, d(cτ, f0) − d(cτ, g0) = d(cυ, f0) − d(cυ, g0) = d( f0, f0) − d( f0, g0) = −1, that is, the set {cτ, cυ, f0; 0 ≤
τ < υ ≤ m − 1} is not a DRS of Gm. Accordingly, we can investigate all the possible types of subset
DGm shown in Table 7 and verify their associated non-doubly resolved pairs of vertices.
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Table 7. Non-doubly resolving pairs of vertices for Gm, where m ≥ 6.

DGm Non-doubly
resolved pairs

{cτ, cυ, f0}, 0 ≤ τ < υ ≤ m − 1 { f0, g0}

{cτ, f0, gυ}, 0 ≤ τ, υ ≤ m − 1 { f0, h0}

{cτ, f0, fυ}, 0 ≤ τ ≤ m − 1, 1 ≤ υ ≤ m − 1 {g0, h0}

{cτ, f0, hυ}, 0 ≤ τ, υ ≤ m − 1 { f0, g0}

{ f0, fτ, gυ}, 1 ≤ τ ≤ m − 1, 0 ≤ υ ≤ m − 1 {c0, h0}

{ f0, fτ, fυ}, 1 ≤ τ < υ ≤ m − 1 {c0, g0}

{ f0, gτ, hυ}, 0 ≤ τ, υ ≤ m − 1 {c0, f0}

{ f0, fτ, hυ}, 1 ≤ τ ≤ m − 1, 0 ≤ υ ≤ m − 1 {c0, g0}

{ f0, hτ, hυ}, 0 ≤ τ < υ ≤ m − 1 { f0, g0}

{ f0, gτ, gυ}, 0 ≤ τ < υ ≤ m − 1 =


{c0, h0}, if m is even;

{c0, f0}, if m is odd.

�

Lemma 3.2. ψ
(
Gm

)
= 4,∀ even integers m ≥ 6.

Proof. To demonstrate that ψ
(
Gm

)
= 4, where m ≥ 6 is an even integer, it is enough to find a DRS of

order 4. Now, by using the sets S τ( f0) from Table 6, the metric coordinate vectors are demonstrated in
Table 8 for every vertex of Gm with respect to the set DGm = {c0, c m

2
, f1, g m+2

2
}.

Now, consider Table 8, where the vector of f0 ∈ S τ( f0) has its first metric coordinate equal to 1. We
may also check that no two vertices b1, b2 ∈ S τ( f0) exist such as r(b1,DGm) − r(b2,DGm) = 0I, where
I is the unit vector and τ ∈ {1, 2, . . . , m+4

2 }. Furthermore, no two vertices b1 ∈ S τ( f0) and b2 ∈ S υ( f0)
exist such as r(b1,DGm) − r(b2,DGm) = τ − υ, for some τ, υ ∈ {1, 2, . . . , m+4

2 } and τ , υ. Finally, the set
DGm = {c0, c m

2
, f1, g m+2

2
} is the MDRS. As a result, Lemma 3.2 holds true. �

Lemma 3.3. ψ
(
Gm

)
= 4,∀ odd integers m ≥ 6.

Proof. To demonstrate that ψ
(
Gm

)
= 4, where m ≥ 6 is an odd integer, it is enough to find a DRS of

order 4. Now, by using the sets S τ( f0) from Table 6, the metric coordinate vectors are demonstrated in
Table 9 for every vertex of Gm with respect to the set DGm = {c0, c m−3

2
, f m−1

2
, g0}.

Now, consider Table 9, where the vector of f0 ∈ S τ( f0) has its first metric coordinate equal to 1.
We may also check that no two vertices b1, b2 ∈ S τ( f0) exist such as r(b1,DGm) − r(b2,DGm) = 0I,
where I denotes the unit vector and τ ∈ {1, 2, . . . , m+3

2 }. Furthermore, no two vertices b1 ∈ S τ( f0) and
b2 ∈ S υ( f0) exist such as r(b1,DGm) − r(b2,DGm) = τ − υ, for some τ, υ ∈ {1, 2, . . . , m+3

2 } and τ , υ.
Finally, the set DGm = {c0, c m−3

2
, f m−1

2
, g0} is the MDRS. As a result, Lemma 3.3 holds true. �
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Table 8. Metric coordinate vectors for Gm if m ≥ 6 is even.

τ S τ( f0) DGm = {c0, c m
2
, f1, g m+2

2
}

0 f0 (1, m+2
2 , 3, m

2 )
1 c0 (0, m

2 , 2,
m+2

2 )
g0 (2, m+4

2 , 2, m−2
2 )

h0 (2, m+4
2 , 2, m+2

2 )
2 c1 (1, m−2

2 , 1, m+4
2 )

cm−1 (1, m−2
2 , 3, m

2 )
g1 (3, m+2

2 , 1, m
2 )

gm−1 (3, m+2
2 , 3, m−4

2 )
h1 (3, m+2

2 , 1, m+4
2 )

hm−1 (3, m+2
2 , 3, m

2 )
3 ≤ τ ≤ m

2 cτ−1 (τ − 1, m−2τ+2
2 , τ − 1, m−2τ+8

2 )
cm−τ+1 (τ − 1, m−2τ+2

2 , τ + 1, m−2τ+4
2 )

fτ−2 =


(2, m

2 , 0,
m+2

2 ), if τ = 3;

(τ − 1, m−2τ+6
2 , τ − 1, m−2τ+8

2 ), if τ > 3.

fm−τ+2 (τ − 1, m−2τ+6
2 , τ + 1, m−2τ+4

2 )
gτ−1 (τ + 1, m−2τ+6

2 , τ − 1, m−2τ+4
2 )

gm−τ+1 (τ + 1, m−2τ+6
2 , τ + 1, m−2τ

2 )
hτ−1 (τ + 1, m−2τ+6

2 , τ − 1, m−2τ+8
2 )

hm−τ+1 (τ + 1, m−2τ+6
2 , τ + 1, m−2τ+4

2 )
m+2

2 c m
2

(m
2 , 0,

m
2 , 3)

f m−2
2

(m
2 , 2,

m
2 , 3)

f m+2
2

(m
2 , 2,

m+4
2 , 1)

g m
2

(m+4
2 , 2, m

2 , 1)
h m

2
(m+4

2 , 2, m
2 , 3)

m+4
2 f m

2
(m+2

2 , 1, m+2
2 , 2)
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Table 9. Metric coordinate vectors for Gm if m ≥ 6 is odd.

τ S τ( f0) DGm = {c0, c m−3
2
, f m−1

2
, g0}

0 f0 (1, m−1
2 , m+3

2 , 1)
1 c0 (0, m−3

2 , m+1
2 , 2)

g0 (2, m+1
2 , m+1

2 , 0)
h0 (2, m+1

2 , m+1
2 , 2)

2 c1 (1, m−5
2 , m−1

2 , 3)
cm−1 (1, m−1

2 , m+1
2 , 3)

g1 (3, m−1
2 , m−1

2 , 1)
gm−1 (3, m+3

2 , m+1
2 , 1)

h1 (3, m−1
2 , m−1

2 , 3)
hm−1 (3, m+3

2 , m+1
2 , 3)

3 ≤ τ ≤ m−1
2 cτ−1 (τ − 1, m−2τ−1

2 , m−2τ+3
2 , τ + 1)

cm−τ+1 (τ − 1, m−2τ+5
2 , m−2τ+5

2 , τ + 1)
fτ−2 (τ − 1, m−2τ+3

2 , m−2τ+7
2 , τ − 1)

fm−τ+2 =


(2, m+1

2 , m+3
2 , 2), if τ = 3;

(τ − 1, m−2τ+9
2 , m−2τ+9

2 , τ − 1), if τ > 3.

gτ−1 (τ + 1, m−2τ+3
2 , m−2τ+3

2 , τ − 1)
gm−τ+1 (τ + 1, m−2τ+9

2 , m−2τ+5
2 , τ − 1)

hτ−1 (τ + 1, m−2τ+3
2 , m−2τ+3

2 , τ + 1)
hm−τ+1 (τ + 1, m−2τ+9

2 , m−2τ+5
2 , τ + 1)

m+1
2 c m−1

2
(m−1

2 , 1, 1, m+3
2 )

c m+1
2

(m−1
2 , 2, 2, m+3

2 )
f m−3

2
(m−1

2 , 1, 3, m−1
2 )

f m+3
2

(m−1
2 , 4, 4, m−1

2 )
g m−1

2
(m+3

2 , 3, 1, m−1
2 )

g m+1
2

(m+3
2 , 4, 2, m−1

2 )
h m−1

2
(m+3

2 , 3, 1, m+3
2 )

h m+1
2

(m+3
2 , 4, 2, m+3

2 )
m+3

2 f m−1
2

(m+1
2 , 2, 0, m+1

2 )
f m+1

2
(m+1

2 , 3, 3, m+1
2 )

The combination of Lemmas 3.2 and 3.3 yields the following main theorem:

Theorem 3.4. Let Gm be the quasi-flower snark for m ≥ 6. Then, ψ(Gm) = 4.

4. Application

DRSs have recently been employed to find the origin of epidemics in several complex networks,
including social networks, human epidemics, the cause of a disease outbreak, etc. (see [51, 52]). To
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get the best possible detection of an epidemic source, we specifically take into account a network that
uses DRSs to lower the number of observers.

Assume a social network set up as a flower snark network J5, where the node set
VJ5={cτ, fτ, gτ, hτ: ∀ 0 ≤ τ ≤ 4} stands in for the individuals and the edge set
EJ5={cτcτ+1, cτ fτ, fτgτ, fτhτ, gτgτ+1, hτhτ+1, g0hn−1, gn−1h0: ∀ 0 ≤ τ ≤ 4} between the nodes stands in
for the connections between the individuals. An immediate solution can be found when observers are
placed throughout the network, and the inter-node distances are reliable and well-known. However,
the entire process would be very costly and time-consuming.

Then, what number of observers is necessary to account for epidemic sources with an unknown
starting time and node-to-node transmission delays? Each node has a unique representation depending
upon the minimum distance from the observer nodes. We employed the MDRS DJ5 = {c0, c1, f2, g0} of
the flower snark network J5 to reduce the number of observers.

We only placed the observers on the nodes c0, c1, f2, g0 by applying Lemma 2.4 and Theorem 2.5.
It is clear from Table 5 and Figure 3 that each node has a unique representation and the epidemic
propagation will be optimal by placing observers at the nodes c0, c1, f2, g0. This hypothetical situation
clarifies how MDRSs can be used to solve source localization issues.

Figure 3. Source detection in social network.

Moreover, the DRSs are valuable for identifying faults in communication networks, assisting
administrators in promptly locating and repairing issues for reliable operations. Additionally, they are
beneficial in cybersecurity to detect and localize cyberattacks, allowing for quick responses to breaches.
In environmental monitoring, DRSs aid in identifying sources of pollution, facilitating swift actions to
address environmental hazards. The findings of this study provide a fundamental understanding of
DRSs and their potential to enhance source detection in various real-world scenarios.

5. Conclusions

In this article, the DMD for the flower snarks Jm and quasi-flower snarks Gm is computed by
describing their MDRSs. We conclude that the DMD for the flower snarks Jm is finite and depends
upon the order of the network. Also, the DMD for the quasi-flower snarks Gm is finite and free from
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the order of the network. An algorithm is created to calculate the MDRSs and DMD of a network
with the help of Matlab or any other simulation tool. Further, an application of the work done in the
context of source localization is also provided. It is also clearly observed that computing MDRSs for a
network is an NP-hard problem (see [35]), which explains the limitations of computing this parameter
and the importance of the obtained results. Exploring future directions for DRSs in various families
of networks can help in the development of combinatorial designs, error-correcting codes, network
analysis, and optimization problems, among other fields. Following are a few points that address the
limitations of the study:

• Constructing DRSs with desirable properties can be a challenging task.
• The problem of finding MDRSs is known to be NP-hard, which means that there is no known

efficient algorithm to solve it for all cases.
• As a result, finding optimal DRSs can require significant computational effort.

In conclusion, DRSs have limitations in terms of size, optimality, ambiguity, construction
difficulty, practical implementation, and generalization to various problem domains. These restrictions
emphasize the importance of carefully taking into account the particular problem requirements and
limits and illustrate the difficulties and complexities involved with using DRSs in different scenarios.

Open Problem 5.1. Investigate the DRSs for the power paths Pr
n for all integers r, and n, where r < n

2 .
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