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Abstract: In this paper, an active set recognition technique is suggested, and then a modified
nonmonotonic line search rule is presented to enhance the efficiency of the nonmonotonic line search
rule, in which we introduce a new parameter formula to attempt to control the nonmonotonic degree of
the line search, and thus improve the chance of discovering the global minimum. By using a modified
linear search and an active set recognition technique, a global convergence gradient solution for
nonnegative matrix factorization (NMF) based on an alternating nonnegative least squares framework
is proposed. We used a Barzilai-Borwein step size and greater step-size tactics to speed up the
convergence. Finally, a large number of numerical experiments were carried out on synthetic and
image datasets, and the results showed that our presented method was effective in calculating the speed
and solution quality.
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1. Introduction

Nonnegative matrix factorization (NMF) [13, 25, 26, 31, 32] is a representative method of linear
dimensionality reduction for nonnegative data, and has been widely used as a significant tool.
Generally speaking, the basic NMF issue can be expressed as: given an m×n dimensional nonnegative
matrix V = (Vi j) with Vi j ≥ 0, and a pre-assigned positive integer r < min(m, n), NMF wants to find
two nonnegative matrices W ∈ Rm×r

+ and H ∈ Rr×n
+ such that

V ≈ WH. (1.1)
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A common way to solve NMF (1.1) is

min
W,H

f (W,H) ≡
1
2
∥V −WH∥2F

s.t. W ≥ 0,H ≥ 0
(1.2)

where ∥ · ∥F is the Frobenius norm.
The projected Barzilai-Borwein gradient (PBB) method is a prevailing and forceful means for

solving (1.2). This method was proposed by Barzilai and Borwein [3]. Recently, the literature
[8, 33, 34, 42, 43] has shown that the PBB method is very effective in solving the optimization
issue [17–22]. Because of its simplicity and numercal efficiency, the PBB approach has attracted
much attention in different fields. To date, the PBB approach has been triumphantly applied to NMF
(see [16, 23, 24, 27, 28]). On account of W and H being completely symmetric, this thesis primarily
ponders updating matrix W using the PBB method. Let Hk denote the approximate value of H after
their kth update, and let

f (W,Hk) =
1
2
∥V −WHk∥2F ∀k. (1.3)

At each step for solving (1.3), there are three different updates:

Wk+1 = min
W≥0

f (W,Hk); (1.4a)

Wk+1 = min
W≥0

f (W,Hk) + ⟨∇ f (W),W −Wk⟩ +
Lk

W

2
∥W −Wk∥2F; (1.4b)

Wk+1 = min
W≥0
⟨∇ f (Wk),W −Wk⟩ +

Lk
W

2
∥W −Wk∥2F , (1.4c)

where Lk
W > 0, ∇ f (W) = ∇W f (W,Hk).

The original cost function (1.4a) is the most frequently used form in the PBB method for NMF and
has been widely and deeply researched [4,16,27,28,46]. But the major disadvantage of (1.4a) is that it
is not strongly convex, and we can merely hope that the algorithms seek out a stationary point instead
of the global or even local minimizer. To overcome this drawback, a proximal modification of the cost
function (1.4a) is presented in [23, 24], namely, the proximal cost function (1.4b).

At present, the proximal cost function (1.4b) has been used with the PBB method for NMF in [23,
24]. As the cost function (1.4b) is a strongly convex quadratic programming with a lower bound
of zero, the subproblem (1.4b) has a unique minimizer. In [23], the authors proposed a quadratic
regularization nonmonotone PBB method to solve (1.4b), and established a global convergence result
under mild conditions. Recently, this method was revisited in [24], indicating that the monotone PBB
method converges globally to the stationary point of (1.3), and the numerical experiments indicated
that the monotone PBB method was better than the nonmonotone one under some circumstances.
Nevertheless, most of the existing PBB gradient methods for (1.4a) and (1.4b) tend to converge slowly
on account of the nonnegative constraints. This prompted us to exploit new and faster NMF algorithms.

In this article, first, we enhance the active set recognition technique in [6] so that it can reasonably
identify the active constraints for NMF. Then, we present a modified nonmonotonic line search
technique for the sake of enhancing the efficiency of the nonmonotonic line search. By using the
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active set identification technology and the improved nonmonotonic line search, a globally convergent
gradient-based method to solve (1.4c) on the basis of the alternating nonnegative least squares
framework is proposed. To accelerate the algorithm, we use the Barzilai-Borwein step size and the
greater step-size tactics. Ultimately, numerical experiments are carried out on synthetic and image
datasets to verify the effectiveness of the proposed method.

This article is organized as shown below. In Section 2, we put forward an effective NMF algorithm
and present its global convergence. The experimental results are shown in Section 4. Ultimately,
Section 5 summarizes the work.

2. An active set nonmonotone PBB algorithm

2.1. Main algorithm

In this section, we put forward an efficient algorithm for solving the NMF (1.3) and establish the
global convergence of our suggested algorithm. To set up the primary consequence of this section, let
us first present some known properties about the objective function f (W,Hk).

Lemma 1. [15] The two statements given below are effective.

(i) The objective function f (W,Hk) of (1.3) is convex.
(ii) The gradient

∇W f (W,Hk) = (WHk − V)(Hk)T

is Lipschitz continuous with the constant LW = ∥Hk(Hk)T ∥2.
For the sake of argument, we will be centered on (1.4c) and rewrite it as

min
W≥0
φ(U,W) := ⟨∇ f (U),W − U⟩ +

LW

2
∥W − U∥2F , (2.1)

where the fixed matrix U ≥ 0.
Distinctly, it can be seen from (ii) of Lemma 1 that φ(U,W) is strictly convex in W for each fixed

U. In each iteration, first, we will solve the following strongly convex quadratic minimization problem
to compute point Zt:

min
W≥0
φ(Wt,W). (2.2)

Since the objective function of problem (2.2) has a strong convex property, this issue has a unique
closed-form solution:

Zt = P[Wt −
1

LW
∇W f (Wt,Hk)], (2.3)

where the operator P[X] projects all of the negative entries of X to zero.
Let Wt+1 = Zt +Dt, and here Dt stands for the direction. We discover that the convergence of {Wt+1}

can not be ensured. Therefore, researchers have come up with a tactic for globalization based on the
modified Armiji line search [45], namely, we will seek out a step size λt that makes

f (Zt + λtDt) ≤ max
0≤ j≤min{t,M−1}

f (Zt− j) + γλt⟨∇ f (Zt),Dt⟩, (2.4)
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where M > 0. Because of the maximum function, in any iteration, it is possible to discard the generated
good function values, meanwhile, numerical performances depend heavily on the choice of M under
some circumstances (see [7]).

To overcome these shortcomings in each procedure, we present a modified nonmonotonic line
search rule. Our line search is represented like this: for a given iterative point Zt and a search direction
Dt at Zt, we select ηt ∈ [ηmin, ηmax], here 0 < ηmin < ηmax < 1, γt ∈ [γmin, γmax(1 − ηmax)], where
0 < γmax < 1, and 0 < γmin < (1 − ηmax)γmax, to get a λt satisfying the inequality shown below:

S t+1 ≤ S t −
γtλt

αt
∥Dt∥

2, (2.5)

where S t is defined as

S t =

{
f (W0), if t = 0,
f (Wt) + ηt−1(S t−1 − f (Wt)), if t ≥ 1.

(2.6)

As similar with M in (2.4), the selection of ηt in (2.6) plays a key role in controlling the degree
of nonmonotonicity (see [14]). So, for the sake of enhancing the efficiency of the nonmonotonic line
search, Ahookhosh et al. [1] selected a varying value for the parameter ηt by using a simple formula.
Later, Nosratipour et al. [30] thought that ηt should be related to an appropriate criterion for measuring
the distance to the optimal solution. Hence, they defined ηt by

ηt = 1 − e−∥∇ f (Zt)∥. (2.7)

However, we found that if the sequence of iteration {Zt} is trapped in a confined crooked valley,
then that can lead to ∇ f (Zt) = 0, from which we can get ηt = 0, so the nonmonotonic line search is
decreased to the normative Armijo line search, which is inefficient by producing very short or tortuous
steps. For the sake of overcoming this shortcoming, we suggest the following ηt:

ηt =
2
π

arctan(| f (Zt) − f (Zt−1)|). (2.8)

It is obvious that | f (Zt) − f (Zt−1)| is large when the function value decreases rapidly, and then ηt will
also be large, hence the nonmonotonic tactics will be stronger. However, as f (Zt) is close to the optimal
solution, we can obtain | f (Zt) − f (Zt−1)| tending to zero, and after that ηt also tends to zero, hence, the
nonmonotonic rule will weaken and tend to the monotonic rule.

Finally, let

Wt+1 = Zt + λtDt, (2.9)

where λt is the step size you get by employing nonmonotonic line search (2.5).
As everyone knows from [12] that the larger step size technology can significantly accelerate the

convergence rate of the algorithm, by adding a relaxation factor s to the renewal rule of Wt+1 (2.9), we
modify the update rule (2.9) as

Wt+1 = Zt + sλtDt (2.10)

for relaxation factor s > 1. We show that the optimal parameter s in (2.10) is s = 1.7 by number
experiments in Section 4.4.
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As was observed in [6,43], the active set method can enhance the efficiency of the local convergence
algorithm and reduce the computing cost. Therefore, we will recommend an active set recognition
technology to approximate the right sustain of the solution points. In our context, the active set is
considered as the subset of zero components of Z∗. Now, similar to the idea proposed in [6], we define
the active set Ā as the index set corresponding to the zero component, meanwhile, the inactive set F̄
will be the support of Z∗.

Definition 1. Let Ω = {i j : Zi j ≥ 0 and Z ∈ Rm×r} and Z∗ be a stationary point of (1.3). We define the
active set as follows:

Ā = {i j : Z∗i j = 0}. (2.11)

We further define an inactive set F̄ which is a complementary set of Ā,

F̄ = I\Ā, (2.12)

where I = {11, 12, · · · , 1r, 21, 22, · · · , 2r, · · · ,m1,m2, · · · ,mr}.
Then, for any Z ∈ Ω, we give approximations as shown below for A(Zt) and F(Zt) as Ā and F̄,

respectively,

A(Zt) = {i j : (Zt)i j ≤ αt∇ f (Zt)i j}, (2.13)
F(Zt) = I\A(Zt), (2.14)

where αt is the BB step size. Similar to Proposition 3.1 in [6], we have that if the strict complementarity
is satisfied at Zt, then A(Zt) overlaps with the active set if Zt is close enough to Z∗, namely A(Zt) =
Ā, F(Zt) = Ā.

In order to get a good estimate of the active set, the active set is further subdivided into two sets

A1(Zt) = {i j ∈ A(Zt) : (Dt)i j ≥ c}, (2.15)

and

A2(Zt) = {i j ∈ A(Zt) : (Dt)i j < c}, (2.16)

where c > 0 is a very small constant. It is clear that A2(Zt) is a variable index set that approximately
meets the first-order necessary conditions. Thus, it is reasonable for us to use the scaled projected
gradient as the descent direction in the corresponding subspace. Furthermore, realizing that A1(Zt) is a
variable index set that goes against the first-order necessary conditions, to define a reasonable search
direction, we further subdivided A1(Zt) into two subsets

Ā1(Zt) = {i j : i j ∈ A1(Zt) and (Zt)i j = 0}, (2.17)

and

Ã1(Zt) = {i j : i j ∈ A1(Zt) and (Zt)i j , 0}. (2.18)

AIMS Mathematics Volume 9, Issue 8, 22067–22090.



22072

We consider the direction of the form 0 for variables with indexes in Ā1(Zt) and −Zt for variables
with indexes Ã1(Zt) to increase the corresponding components. Thus, we define the previously stated
direction as a compact form as shown below:

(Dt)i j =


0, if i j ∈ Ā1(Zt),
−(Zt)i j, if i j ∈ Ã1(Zt),
(P[Zt − αt∇ f (Zt)] − Zt)i j, if i j ∈ A2(Zt) ∪ F(Zt),

(2.19)

where αt is the BB step size.
Based on the above discussion, we present an active set strategy-based nonmonotonic projection

Barzilai-Borwein gradient method and outline the proposed algorithm in Algorithm 1. We can follow
a similar procedure for updating H.

Algorithm 1 Active set nonmonotone projected Barzilai-Borwein algorithm (ANMPBB).

1. Initialize α0 = 1, ηt ∈ (0, 1), choose parameters ηt ∈ [ηmin, ηmax], γt ∈ [γmin, γmax(1 − ηmax)],
αmax > αmin > 0, c > 0, ρ ∈ (0, 1), s > 1, LW = ∥Hk(Hk)T ∥2 and W0 = Wk. Set t = 0.

2. If ∥P[Wt − ∇ f (Wt)] −Wt∥ = 0, stop.

3. Compute Zt = P[Wt −
1

LW
∇ f (Wt,Hk)].

4. Compute S t by (2.6) and compute Dt by (2.19).

5. Perform the nonmonotonic line search. Provide an integer mt that is a minimum nonnegative and
satisfies

S t+1 ≤ S t −
γtρ

m

αt
∥Dt∥

2, (2.20)

where Dt = P[Zt − αt∇ f (Zt)] − Zt. Set λt = ρ
mt , calculate Wt+1 = Zt + sλtDt.

6. Calculate Xt = Wt+1 − Zt and Yt = ∇ f (Wt+1) − ∇ f (Zt). If ⟨Xt, Xt⟩/⟨Xt,Yt⟩ ≤ 0, set αt+1 = αmax;
otherwise, set αt+1 = min{αmax,max{αmin, ⟨Xt, Xt⟩/⟨Xt,Yt⟩}}.

7. Press t = t + 1 to proceed to step 2.

To keep things simple, define the direction of the scaling projection gradient as

Dα(W) = P[W − α∇ f (W)] −W (2.21)

for each α > 0 and W ≥ 0. The next Lemma 2 is very important in our proof.

Lemma 2. [2] For each α ∈ (0, αmax], W ≥ 0,

(i) ⟨∇ f (W),Dα(W)⟩ ≤ − 1
α
∥Dα(W)∥2 ≤ − 1

αmax
∥Dα(W)∥2,

(ii) The stationary point of (1.3) is at W if and only if Dα(W) = 0.
The lemma that follows states that Dt = 0 is true if and only if the stationary point of problem (1.3)

is the iteration point {Zt}.
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Lemma 3. Let Dt be calculated by (2.19), then Dt = 0 if and only if Zt is a stationary point of problem
(1.3).

Proof. Let (Dt)i j = 0. Clearly, (Zt)i j is a stationary point of problem (1.3) when i j ∈ Ā1(Zt). If
i j ∈ Ã1(Zt), we have

0 = (Dt)i j = −(Zt)i j ≥ −αt(∇ f (Zt))i j.

The above inequality implies that (∇ f (Zt))i j ≥ 0. By the Karush-Kuhn-Tucker (KKT) condition, we
can get that (Zt)i j is a stationary point of problem (1.3). In the case of (Dt)i j = 0, i j ∈ A2(Zt) ∪ F(Zt),
by (ii) of Lemma 2, we know that (Zt)i j is a stationary point of problem (1.3).

Suppose that Zt is a stationary point of (1.3). From the KKT condition, (2.13), and (2.14), we have

Ā = {i j : (Zt)i j = 0}, F̄ = {i j : (Zt)i j > 0}.

By the definition of (Dt)i j, we have (Dt)i j = 0 for all i j ∈ A1(Zt). Then from (ii) of Lemma 2, we
have (Dt)i j = 0 for all i j ∈ A2(Zt). Therefore, we have (Dt)i j = 0 for all i j ∈ Ā(Zt). For another case,
since ∇ f (Zt)i j = 0, for i j ∈ F̄t, and {Zt}i j is a feasible point, from the definition of (Dt)i j, we have
(Dt)i j = 0,∀i j ∈ F̄t. □

The lemma shown below states that when Zt is not a stationary point of problem (1.3), Dt is the
descent direction of f at Zt.

Lemma 4. Given sequence {Zt} produced by Algorithm 1, we have

⟨∇ f (Zt),Dt(Zt)⟩ ≤ −
1
αt
∥Dt(Zt)∥2. (2.22)

Proof. By (2.19), we know

Di j =


0, if i j ∈ Ā1(Zt),
−(Zt)i j, if i j ∈ Ã1(Zt),
(P[Zt − αt∇ f (Zt)] − Zt)i j, if i j ∈ A2(Zt) ∪ F(Zt).

If i j ∈ Ā1(Zt), it is obvious that

⟨∇ f (Zt)i j, (Dt(Zt))i j⟩ ≤ −
1
αt
∥(Dt(Zt))i j∥

2 (2.23)

holds.
If i j ∈ A2(Zt) ∪ F(Zt), from (i) of Lemma 2, we have

⟨∇ f (Zt)i j, (Dt(Zt))i j⟩ ≤ −
1
αt
∥(Dt(Zt))i j∥

2. (2.24)

Thus, we now only need to prove that

⟨∇ f (Zt)i j, (Dt(Zt))i j⟩ ≤ −
1
αt
∥(Dt(Zt))i j∥

2, ∀i j ∈ Ã1(Zt). (2.25)
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If (Dt(Zt))i j = 0, the inequality (2.25) holds. If (Dt(Zt))i j , 0, for all i j ∈ Ã1(Zt), from (2.17), we have

(Dt(Zt))i j = −(Zt)i j and (Zt)i j ≤ αt∇ f (Zt)i j,

which leads to

⟨∇ f (Zt)i j, (Dt(Zt))i j⟩ ≤ −
1
αt
∥(Dt(Zt))i j∥

2, ∀i j ∈ Ã1(Zt). (2.26)

The above deduction implies that the inequality (2.22) holds for i j ∈ Ā1(Zt). Combining (2.23), (2.24),
and (2.26), we obtain that (2.22) holds. □

The lemma shown below is borrowed from Lemma 3 [23].

Lemma 5. [23] Suppose Algorithm 1 generates {Zt} and {Wt}, then there is

f (Zt) ≤ f (Wt) −
LW

2
∥Zt −Wt∥

2. (2.27)

Now, we are going to show the nice property of our line search.

Lemma 6. Suppose Algorithm 1 generates sequences {Zt} and {Wt}, then there is

f (Wt) ≤ S t. (2.28)

Proof. Based on the definition of S t and (2.20), we have

S t − S t−1 = f (Wt) + ηt−1(S t−1 − f (Wt)) − S t−1

= (1 − ηt−1)( f (Wt) − S t−1) ≤ 0.
(2.29)

From 1 − ηt−1 > 0, it concludes that f (Wt) − S t−1 ≤ 0, i.e., f (Wt) ≤ S t−1.
Therefore, if ηt−1 , 0, from (2.6), we have

S t − f (Wt) = f (Wt) + ηt−1(S t−1 − f (Wt)) − f (Wt)
= ηt−1(S t−1 − f (Wt))
≥ 0

(2.30)

where the last inequality follows from (2.29). Thus, (2.30) indicates

f (Wt) ≤ S t. (2.31)

In addition, if ηt−1 = 0, we have f (Wt) = S t. □

It follows from Lemma 6 that

f (Wt) ≤ S t ≤ S 0 = f (W0).

In addition, for any initial iterate W0 ≥ 0, Algorithm 1 generates sequences {Zt} and {Wt} that are both
included in the level set.

L(W0) = {W | f (W) ≤ f (W0),W ≥ 0}.

Again, from Lemma 6, the theorem shown below can be easily obtained.

AIMS Mathematics Volume 9, Issue 8, 22067–22090.



22075

Theorem 1. Assume that the level set L(W0) is bounded, so the sequence {S t} is convergent.

Proof. See Corollary 2.2 in [1]. □

Next, we will exhibit that the line search (2.5) is well-defined.

Theorem 2. Assume Algorithm 1 generates sequences {Zt} and {Wt}, so step 5 of the Algorithm 1 is
well-defined.

Proof. For this purpose, we prove that the line search stops at a limited value of steps. To establish a
contradiction, we suppose that λt such as in (2.20) does not exist, then for all adequately large positive
integers m, according to Lemmas 5 and 6, we have

f (Zt + sρmDt) > f (Zt) −
γtρ

m

αt(1 − ηt)
∥Dt∥

2.

From Lemma 4, we have,

f (Zt + sρmDt) − f (Zt) >
1

(1 − ηt)
γtρ

m⟨∇ f (Zt),Dt⟩.

According to the mean-theorem, there is a θt ∈ (0, 1) such that

sρm⟨∇ f (Zt + θtsρmDt),Dt⟩ >
1

(1 − ηt)
γtρ

m⟨∇ f (Zt),Dt⟩,

namely,

⟨∇ f (Zt + θtρ
mDt) − ∇ f (Zt),Dt⟩ > (

γt

s(1 − ηt)
− 1)⟨∇ f (Zt),Dt⟩.

When m→ ∞, we get that

(
γt

s(1 − ηt)
− 1)⟨∇ f (Zt),Dt⟩ ≤ 0.

Since 0 < γt
1−ηt
< 1 < s, ⟨∇ f (Zt),Dt⟩ ≥ 0 is correct. This is not consistent with the fact that

⟨∇ f (Zt),Dt⟩ ≤ 0. Therefore, step 5 of Algorithm 1 is well-defined. □

2.2. Convergence analysis

In this part, we prove the global convergence of ANMPBB. The following result implies that there
exists a minimum step size λt that must be satisfied, and this lower bound is indispensable to ensure
the global convergence of the suggested algorithm.

Lemma 7. Suppose that Algorithm 1 generates a step size λt, if the stationary point of (1.3) is not
Wt+1, such that there is a constant λ̃ that will cause λt ≥ λ̃.

Proof. For the resulting step size λt, if λt does not satisfy (2.20), namely,

f (Zt + sλtDt) > S t −
1

αt(1 − ηt)
γtλt∥Dt∥

2

AIMS Mathematics Volume 9, Issue 8, 22067–22090.



22076

≥ S t +
1

1 − ηt
γtλt⟨∇ f (Zt),Dt⟩

≥ f (Zt) +
1

1 − ηt
γtλt⟨∇ f (Zt),Dt⟩,

where Lemma 4 leads to the second inequality, and similarly, Lemmas 5 and 6 lead to the final
inequality. Thus,

f (Zt + sλtDt) − f (Zt) ≥
1

1 − ηt
γtλt⟨∇ f (Zt),Dt⟩. (2.32)

By the mean-value theorem, we can find an θ ∈ (0, 1) that makes

f (Zt + sλtDt) − f (Zt) = sλt⟨∇ f (Zt + θsλtDt),Dt⟩

= sλt⟨∇ f (Zt),Dt⟩ + sλt⟨∇ f (Zt + θtsλtDt)
− ∇ f (Zt),Dt⟩

≤ sλt⟨∇ f (Zt),Dt⟩ + s2LWλ
2
t ∥Dt∥

2.

(2.33)

Substitute the last inequality we obtained from (2.33) into (2.32), and we get

λt ≥
s(1 − ηt) − γt

LW s2αmax(1 − ηt)
. (2.34)

From ηt−1 ∈ [ηmin, ηmax] and γt ∈ [γmin, γmax(1 − ηmax)], we have

λt ≥
s(1 − ηmax) − γmax

LW s2αmax(1 − ηmin)
:= λ̃. (2.35)

So, there is going to be a λ̃ that makes λt ≥ λ̃. □

Lemma 8. Assume that Algorithm 1 generates the sequence {Wt}, for the given level set L(W0), if it is
considered bounded, so there is

(i)

lim
t→∞

S t = lim
t→∞

f (Wt). (2.36)

(ii) there is a positive constant δ that makes

S t − f (Wt+1) ≥ δ∥Dt+1∥
2. (2.37)

Proof. (i) By the definition of S t+1, for t ≥ 1, we have

S t+1 − S t = (1 − ηt)( f (Wt+1) − S t).

Since ηmax ∈ [0, 1], and ηt ∈ [ηmin, ηmax] for all t,

1 − ηmin ≥ 1 − ηt ≥ 1 − ηmax > 0.
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According to Theorem 1, as t → ∞,

lim
t→∞

1
1 − ηmax

(S t+1 − S t) = lim
t→∞

1
1 − ηmin

(S t+1 − S t) = 0. (2.38)

which implies that

lim
t→∞

( f (Wt+1) − S t) = 0. (2.39)

(ii) From (2.5), we have

S t − f (Wt+1) ≥
1

αt(1 − ηt)
γtλt∥Dt∥

2

≥
γminλ̃

(1 − ηmin)αmax
∥Dt∥

2

= δ∥Dt∥
2,

(2.40)

where δ = γminλ̃

(1−ηmin)αmax
. □

The global convergence of Algorithm 1 is proved by the theorem shown below.

Theorem 3. Suppose that Algorithm 1 generates sequences {Zt} and {Wt}, so we get

lim
t→∞
∥Dt∥ = 0. (2.41)

Proof. According to (ii) of Lemma 8, we have

S t − f (Wt+1) ≥ δ∥Dt∥
2 ≥ 0, ∀t ∈ N.

Based on (i) of Lemma 8, as t → ∞, we can obtain

lim
t→∞
∥Dt∥ = 0. □

According to Theorem 3, Lemma 3, and (2.10), we will exhibit the main convergence results we
get as follows.

Theorem 4. For a given level set L(W0), assume that it is bounded, hence Algorithm 1 computes the
generated sequence {Wt}, and any accumulation point obtained is a stationary point of (1.3).

2.3. Complexity analysis

It is obvious that, at each iteration, the major cost of ANMPBB is to check the condition (2.20) and
calculate the gradient. Therefore, the time complexity of it is O(mnr)+ #sub-iterations ×O(tmr2+ tnr2)
in one iteration, where t is the number of trials of the nonmonotone line search procedure.
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3. Numerical experiments

In the following content, by using synthetic datasets and real-world datasets (ORL image dataset
and Yale image dataset *), we exhibit main numerical experiments to compare the performance of
ANMPBB with that of five other efficient methods including the NeNMF [15], the projected BB
method (APBB2 [16]), QRPBB [23], hierarchical alternating least squares (HALS) [5], and block
coordinate descent (BCD) method [44]. All of the reported numerical results are performed using
MATLAB v8.1 (R2013a) on a Lenovo laptop.

3.1. Stopping criterion

According to the Karush-Kuhn-Tucker (KKT) conditions optimized by the existing constraints, we
know that (Wk,Hk) is a stationary point of NMF (1.2) if and only if∇P

W f (W,H) = 0, and∇P
H f (W,H) = 0

are simultaneously satisfied. Here

[∇P
W f (W,H)]i j =

{
[∇W f (W,H)]i j, if Wi j > 0,
min{0, [∇W f (W,H)]i j}, if Wi j = 0,

and ∇P
H f (W (k),H(k)) is also written as shown above. Hence, we employ the stopping criteria shown

below, which is also used in [29] in numerical experiments:

∥[∇P
W f (W (k),H(k)),∇P

H f (W (k),H(k))T ]∥ (3.1)
≤ ϵ∥[∇P

W f (W (1),H(1)),∇P
H f (W (1),H(1))T ]∥, (3.2)

where ϵ > 0 is a tolerance. When employing the stop criterion (3.1), we need to pay attention to the
scale degrees of freedom of the NMF solution, as discussed in [11].

3.2. Synthetic data

In this section, first, the ANMPBB method and the other three ANLS-based methods are tested on
synthetic datasets. Since the matrix V in this test happens to be a low-rank matrix, it will be rewritten
as V = LR, and we generate the L and R by using the MATLAB commands max(0, randn(m, r)) and
max(0, randn(r, n)), respectively.

For ANMPBB, in a later experiment, we adopt the parameters shown below:

αmax = 1020, αmin = 10−20, ρ = 0.25, γ = 10−8, c = 10−3.

The settings are identical with those of APBB2 and QRPBB. Take s = 1.7 for ANMPBB, and
the reason for selecting the relaxation factor s = 1.7 is given in Section 4.4. Take tol = 10−8 for
all comparison algorithms. In addition, for ANMPBB, update ηt by the formula (2.8). We unify the
maximum number of iterations of all algorithms to 50,000. All of the other parameters of APBB2,
NeNMF, and QRPBB are unified as default values.

*Both ORL and Yale image datasets in MATLAB format are available at http://www.cad.zju.edu.cn/home/dengcai/Data/TextData.html
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Table 1. Experimental results on the synthetic datasets.

(m n r) Alg Iter Niter Pgn Time Residual

(200 100 10)
NeNMF 153.3 6073.7 3.44E-5 0.25 0.4596
APBB2 171.9 2442.8 2.76E-5 0.26 0.4596
QRPBB 158.0 1476.4 2.66E-5 0.19 0.4596
ANMPBB 57.2 567.0 3.05E-5 0.10 0.4596

(100 500 20)
NeNMF 1946.7 83561.7 1.62E-4 14.46 0.4257
APBB2 2798.7 48444.2 1.31E-4 15.77 0.4257
QRPBB 2365.7 26052.7 1.32E-4 8.49 0.4258
ANMPBB 526.0 5794.0 1.34E-4 1.94 0.4257

(400 200 20)
NeNMF 370.7 13579.9 1.80E-4 2.28 0.4481
APBB2 320.5 5743.2 1.40E-4 1.83 0.4481
QRPBB 355.3 4059.7 1.55E-4 1.52 0.4481
ANMPBB 130.3 1573.2 1.55E-4 0.55 0.4481

(700 700 30)
NeNMF 183.4 6638.0 1.04E-3 3.45 0.4588
APBB2 161.5 3438.7 8.83E-4 4.56 0.4588
QRPBB 153.0 2191.9 9.11E-4 2.78 0.4588
ANMPBB 60.8 953.9 8.44E-4 1.10 0.4588

(1000 500 30)
NeNMF 221.0 7685.5 1.05E-3 4.22 0.4578
APBB2 180.4 3513.8 8.62E-4 4.52 0.4578
QRPBB 162.8 2195.5 9.41E-4 2.63 0.4578
ANMPBB 62.7 995.1 8.87E-4 1.19 0.4578

(1000 600 40)
NeNMF 644.5 25379.5 1.68E-3 20.00 0.4518
APBB2 723.3 12948.1 1.41E-3 26.16 0.4518
QRPBB 536.5 7686.2 1.31E-3 12.55 0.4518
ANMPBB 141.4 2419.7 1.30E-3 3.93 0.4518

(1000 2000 50)
NeNMF 330.8 12081.3 4.98E-3 25.35 0.4574
APBB2 240.3 4783.6 4.29E-3 23.41 0.4574
QRPBB 252.8 4264.2 3.84E-3 18.29 0.4574
ANMPBB 76.5 1511.0 4.63E-3 6.63 0.4574

(2000 2000 50)
NeNMF 172.3 6796.9 8.25E-3 18.96 0.4629
APBB2 147.6 3734.1 7.30E-3 24.92 0.4629
QRPBB 149.0 2524.7 5.83E-3 16.43 0.4629
ANMPBB 56.1 1044.5 6.62E-3 6.90 0.4629

(3000 1000 60)
NeNMF 485.7 17642.4 8.79E-3 63.10 0.4555
APBB2 396.3 7386.3 7.29E-3 64.50 0.4555
QRPBB 380.3 6049.4 6.77E-3 48.12 0.4555
ANMPBB 156.3 2929.9 7.78E-3 24.19 0.4555
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For all of the problems we are considering, we casually generated 10 diverse starting value, and
the average outcomes obtained from using these starting points are presented in Table 1. The item iter
represents the number of iterations required to satisfy the termination condition (3.1) is met. The item
niter represents the total number of sub-iterations for solving W and H. ∥V −WkHk∥F/∥V∥F is relative
error, ∥[∇P

H f (Wk,Hk),∇P
W f (Wk,Hk)]∥F is the final value of the projected gradient norm, and CPU time

(in seconds) measures performance.
Table 1 clearly indicates that all methods met the condition of convergence within a reasonable

number of iterations. Table 1 also clearly indicates that our ANMPBB needs the least execution
time and the least number of sub-iterations among all methods, particularly in the case of large-scale
problems.

The ANMPBB method is closely related to the QRPBB method, and we all know that the
hierarchical ALS (HALS) algorithm for NMF is the most effective upon most occasions, which uses the
coordinate descent method to solve subproblems in NMF. We further examine algorithms of ANMPBB,
QRPBB, HALS, and BCD. We show how these four methods compare on eight randomly generated
independent Gaussian noises measured when the signal-to-noise ratio is 30dB in Figures 1–3. All of
the methods are terminated when the stopping criterion said by the inequality in (3.1) satisfies ϵ = 10−8

or the maximum number of iterations is more than 30. Figure 1 shows the value of the objective
function compared to the number of iterations. From Figure 1, for most of the test problems, we
will draw a conclusion that ANMPBB decreases the objective function much quicker than the other
three methods in 30 iterations. This may be because our ANMPBB exploits an efficient modified
nonmonotone line search, uses a well active set prediction strategy of solution, and adds a relaxing
factor s to the update rules of Wt+1 and Ht+1. Hence our ANMPBB significantly outperformed the other
three methods. Figure 2 shows the relationship between the relative residual errors and the number of
iterations. Figure 3 exhibits the relative residual errors versus CPU time. The results shown in Figures
2 and 3 are consistent with those shown in Figure 1.
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Figure 1. The relationship between the objective value and the iteration of random problem
minW,H≥0

1
2∥V −WH∥2F .
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Figure 2. The relationship between the residual value and the iteration of random problem
minW,H≥0

1
2∥V −WH∥2F .
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Figure 3. The relationship between the residual value and CPU time of random problem
minW,H≥0

1
2∥V −WH∥2F .
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3.3. Image data

The ORL image dataset is a collection of 400 images of people’s faces belonging to 40 individuals,
10 each. The dataset includes variations in lighting conditions, facial expressions (including whether
they open their eyes and whether they smile), and facial details including whether they wear glasses.
Some subjects have multiple photos taken at different times. The images were captured with the subject
positioned upright and facing forward (allowing for slight movement to the sides). The background
used was uniformly dark and even. All of the images were taken against a dark homogeneous
background with the subjects in an upright, frontal position (with tolerance for some side movement).
The pictures used are represented by the columns of the matrix V , and V has 400 rows and 1024
columns.

The Yale face dataset was created at the Yale Center for Computational Vision and Control. It
consists of 165 gray-scale images, with each person in the dataset having 11 images associated with
them. In total, there are 15 people. The facial images in question were captured under different
lighting conditions (left-light, center-light, right-light), with various facial expressions (calm, cheerful,
sorrowful, amazed, and blinking), and with or without glasses. The pictures used are represented by
the rows of the matrix V , and V has 165 rows and 1024 columns.

For all of the datasets we used, in (3.1), we performed diverse casually generated starting iterations
with ϵ = 10−8, the maximum number of iterations (maxit) for all algorithms was set to 50,000, and
the average results are presented in Table 2. From Table 2, we can conclude that the QRPBB method
converged in fewer iterations and CPU times than APBB2 and NeNMF, and in contrast to QRPBB, our
ANMPBB method required 1/3 the CPU time to satisfy the set tolerance. Although the residuals by
ANMPBB were not the smallest among all of the algorithms that appeared for all of the databases we
used, the results of pgn showed that solutions by ANMPBB were closer to the stationary point.

Table 2. Experimental results on Yale and ORL datasets.

(m n r) Alg Iter Niter Pgn Time Residual

(165 1,024 25)
NeNMF 3735.1 178254.1 4.41E-1 65.78 0.1930
APBB2 3079.6 97375.7 6.42E-2 78.75 0.1930
QRPBB 2711.1 54215.7 6.16E-2 42.25 0.1931
ANMPBB 1284.8 30464.0 2.61E-2 18.78 0.1931

(400 1,024 25)
NeNMF 13613.4 836034.3 7.71E-2 349.62 0.1117
APBB2 9430.6 446361.6 6.88E-2 474.26 0.1117
QRPBB 7593.5 213178.5 7.05E-2 205.26 0.1117
ANMPBB 3292.8 80530.4 6.55E-2 60.86 0.1117

3.4. The importance of relaxation factor s

In the following content, the clear experimental results indicate that relaxation factor s is used
for updating the rules of Wt+1 and Ht+1. We implement ANMPBB using diverse s given: s =
0.1, 0.3, 0.7, 1.0, 1.3, 1.7, 1.9 on synthetic datas which are the same as those in Section 4.2.
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Figure 4. The relationship between the residual value and CPU time of random problem
minW,H≥0

1
2∥V −WH∥2F .

We set the required maximum number of iterations to 30, and the other parameters required in the
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experiment will have the same values as those in Section 4.2. Figure 4 shows the relationship between
the relative residuals error and the run-time results. In Figure 4, we can see that the relaxation factor s
fails to accelerate the convergence when s < 1 and increasing constant s significantly accelerates the
convergence when 1 < s < 2. As for ANMPBB, it is seem that s = 1.7 is the best compared with other
experimental values in terms of the speed of convergence, hence, s = 1.7 was used as our ANMPBB in
all experiments.

4. Conclusions

In this paper, an active set recognition technology was suggested, and then an improved non-
monotonic line search rule was proposed to enhance the efficiency of the nonmonotonic line rule,
in which we introduce a new parameter formula to attempt to command the nonmonotonic degree of
the line search, and thus increase the likelihood of looking for the global minimum. On the basis of the
alternating nonnegative least squares framework, a global convergence gradient-based NMF method
was proposed by using the modified line search and the active set recognition technology. In addition,
the Barzilai-Borwein step-size and greater step size technique was utilized to make convergence faster.
In the end, numerical results showed that our algorithm is an NMF tool with great promise.

NMF is an important linear dimensionality reduction technique for nonnegative data, which has
found numerous applications in data analysis such as various clustering tasks [9,10,35–37]. Therefore,
in future work, we plan to extend the application of our algorithm to multi-class clustering problems.
In addition, another direction for future research would be to extend the proposed algorithm to solve
real-world problems [38–41].
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2. E. G. Birgin, J. M. MartÍnez, M. Raydan, Nonmonotone spectral projected
gradient methods on convex sets, SIAM J. Optimiz., 10 (2000), 1196–1211.
https://doi.org/10.1137/S1052623497330963

3. J. Barzilai, J. M. Borwein, Two-point step size gradient methods, IMA J. Numer. Anal., 8 (1988),
141–148. https://doi.org/10.1093/imanum/8.1.141

4. S. Bonettini, Inexact block coordinate descent methods with application to non-negative matrix
factorization, IMA J. Numer. Anal., 31 (2011), 1431–1452. https://doi.org/10.1093/imanum/drq024

5. A. Cichocki, R. Zdunek, S. Amari, Hierarchical ALS algorithms for nonnegative matrix and 3D
tensor factorization, In: Independent Component Analysis and Signal Separation, Heidelberg:
Springer, 2007, 169–176. https://doi.org/10.1007/978-3-540-74494-8 22

6. A. Cristofari, M. D. Santis, S. Lucidi, F. Rinaldi, A two-stage active-set algorithm
for bound-constrained optimization, J. Optim. Theory Appl., 172 (2017), 369–401.
https://doi.org/10.1007/s10957-016-1024-9

7. Y. H. Dai, On the nonmonotone line search, J. Optim. Theory Appl., 112 (2002), 315–330.
https://doi.org/10.1023/A:1013653923062

8. Y. H. Dai, L. Z. Liao, R-Linear convergence of the Barzilai-Borwein gradient method, IMA J.
Numer. Anal., 22 (2002), 1–10. https://doi.org/10.1093/imanum/22.1.1

9. P. Deng, T. R. Li, H. J. Wang, D. X. Wang, S. J. Horng, R. Liu, Graph regularized sparse non-
negative matrix factorization for clustering, IEEE Transactions on Computational Social Systems,
10 (2023), 910–921. https://doi.org/10.1109/TCSS.2022.3154030

10. P. Deng, F. Zhang, T. R. Li, H. J. Wang, S. J. Horng, Biased unconstrained non-
negative matrix factorization for clustering, Knowl.-Based Syst., 239 (2022), 108040.
https://doi.org/10.1016/j.knosys.2021.108040

11. N. Gillis, The why and how of nonnegative matrix factorization, 2014, arXiv:1401.5226.
https://doi.org/10.48550/arXiv.1401.5226

12. R. Glowinski, Numerical methods for nonlinear variational problems, Heidelberg: Springer, 1984.
https://doi.org/10.1007/978-3-662-12613-4

13. P. H. Gong, C. S. Zhang, Efficient nonnegative matrix factorization via projected Newton method,
Pattern Recogn., 45 (2012), 3557–3565. https://doi.org/10.1016/j.patcog.2012.02.037

14. N. Z. Gu, J. T. Mo Incorporating nonmonotone strategies into the trust region
method for unconstrained optimization, Comput. Math. Appl., 55 (2008), 2158–2172.
https://doi.org/10.1016/j.camwa.2007.08.038

15. N. Y. Guan, D. C. Tao, Z. G. Luo, B. Yuan NeNMF: An optimal gradient method
for nonnegative matrix factorization, IEEE T. Signal Proces., 60 (2012), 2882–2898.
https://doi.org/10.1109/TSP.2012.2190406

AIMS Mathematics Volume 9, Issue 8, 22067–22090.

http://dx.doi.org/https://doi.org/10.1080/02331934.2011.641126
http://dx.doi.org/https://doi.org/10.1137/S1052623497330963
http://dx.doi.org/https://doi.org/10.1093/imanum/8.1.141
http://dx.doi.org/https://doi.org/10.1093/imanum/drq024
http://dx.doi.org/https://doi.org/10.1007/978-3-540-74494-8_22
http://dx.doi.org/https://doi.org/10.1007/s10957-016-1024-9
http://dx.doi.org/https://doi.org/10.1023/A:1013653923062
http://dx.doi.org/https://doi.org/10.1093/imanum/22.1.1
http://dx.doi.org/https://doi.org/10.1109/TCSS.2022.3154030
http://dx.doi.org/https://doi.org/10.1016/j.knosys.2021.108040
http://dx.doi.org/https://doi.org/10.48550/arXiv.1401.5226
http://dx.doi.org/https://doi.org/10.1007/978-3-662-12613-4
http://dx.doi.org/https://doi.org/10.1016/j.patcog.2012.02.037
http://dx.doi.org/https://doi.org/10.1016/j.camwa.2007.08.038
http://dx.doi.org/https://doi.org/10.1109/TSP.2012.2190406


22088

16. L. X. Han, M. Neumann, U. Prasad, Alternating projected Barzilai-Borwein methods for
nonnegative matrix factorization, Electronic Transactions on Numerical Analysis, 36 (2009), 54–
82. https://doi.org/10.1007/978-0-8176-4751-3 16

17. G. Hu, B. Du, X. F. Wang, G. Wei, An enhanced black widow optimization algorithm for feature
selection, Knowl.-Based Syst., 235 (2022), 107638. https://doi.org/10.1016/j.knosys.2021.107638

18. G. Hu, J. Y. Zhong, G. Wei, SaCHBA PDN: Modified honey badger algorithm
with multi-strategy for UAV path planning, Expert Syst. Appl., 223 (2023), 119941.
https://doi.org/10.1016/j.eswa.2023.119941

19. G. Hu, J. Y. Zhong, G. Wei, C. T. Chang, DTCSMO: An efficient hybrid starling murmuration
optimizer for engineering applications, Comput. Method. Appl. M., 405 (2023), 115878.
https://doi.org/10.1016/j.cma.2023.115878

20. G. Hu, J. Wang, M. Li, A. G. Hussien, M. Abbas, EJS: Multi-strategy enhanced
jellyfish search algorithm for engineering applications, Mathematics, 11 (2023), 851.
https://doi.org/10.3390/math11040851

21. G. Hu, R. Yang, X. Q. Qin, G. Wei, MCSA: Multi-strategy boosted chameleon-inspired
optimization algorithm for engineering applications, Comput. Method. Appl. M., 403 (2022),
115676. https://doi.org/10.1016/j.cma.2022.115676

22. G. Hu, X. N. Zhu, G. Wei, C. Chang, An marine predators algorithm for shape
optimization of developable Ball surfaces, Eng. Appl. Artif. Intel., 105 (2021), 104417.
https://doi.org/10.1016/j.engappai.2021.104417

23. Y. K. Huang, H. W. Liu, S. S. Zhou, Quadratic regularization projected alternating Barzilai-
Borwein method for nonnegative matrix factorization, Data Min. Knowl. Disc., 29 (2015), 1665–
1684. https://doi.org/10.1007/s10618-014-0390-x

24. Y. K. Huang, H. W. Liu, S. Zhou, An efficint monotone projected Barzilai-Borwein
method for nonnegative matrix factorization, Appl. Math. Lett., 45 (2015), 12–17.
https://doi.org/10.1016/j.aml.2015.01.003

25. D. D. Lee, H. S. Seung, Learning the parts of objects by non-negative matrix factorization, Nature,
401 (1999), 788–791. https://doi.org/10.1038/44565

26. D. D. Lee, H. S. Seung, Algorithms for non-negative matrix factorization, Advances in Neural
Processing Information Systems, 13 (2001), 556–562.

27. X. L. Li, H. W. Liu, X. Y. Zheng, Non-monotone projection gradient method for
non-negative matrix factorization, Comput. Optim. Appl., 51 (2012), 1163–1171.
https://doi.org/10.1007/s10589-010-9387-6

28. H. W. Liu, X. L. Li, Modified subspace Barzilai-Borwein gradient method for non-negative matrix
factorization, Comput. Optim. Appl., 55 (2013), 173–196. https://doi.org/10.1007/s10589-012-
9507-6

29. C. J. Lin, Projected gradient methods for non-negative matrix factorization, Neural Comput., 19
(2007), 2756–2779. https://doi.org/10.1162/neco.2007.19.10.2756

30. H. Nosratipour, A. H. Borzabadi, O. S. Fard, On the nonmonotonicity degree of nonmonotone line
searches, Calcolo, 54 (2017), 1217–1242. https://doi.org/10.1007/s10092-017-0226-3

AIMS Mathematics Volume 9, Issue 8, 22067–22090.

http://dx.doi.org/https://doi.org/10.1007/978-0-8176-4751-3_16
http://dx.doi.org/https://doi.org/10.1016/j.knosys.2021.107638
http://dx.doi.org/https://doi.org/10.1016/j.eswa.2023.119941
http://dx.doi.org/https://doi.org/10.1016/j.cma.2023.115878
http://dx.doi.org/https://doi.org/10.3390/math11040851
http://dx.doi.org/https://doi.org/10.1016/j.cma.2022.115676
http://dx.doi.org/https://doi.org/10.1016/j.engappai.2021.104417
http://dx.doi.org/https://doi.org/10.1007/s10618-014-0390-x
http://dx.doi.org/https://doi.org/10.1016/j.aml.2015.01.003
http://dx.doi.org/https://doi.org/10.1038/44565
http://dx.doi.org/https://doi.org/10.1007/s10589-010-9387-6
http://dx.doi.org/https://doi.org/10.1007/s10589-012-9507-6
http://dx.doi.org/https://doi.org/10.1007/s10589-012-9507-6
http://dx.doi.org/https://doi.org/10.1162/neco.2007.19.10.2756
http://dx.doi.org/https://doi.org/10.1007/s10092-017-0226-3


22089

31. D. Kim, S. Sra, I. S. Dhillon, Fast Newton-type methods for the least squares nonnegative matrix
approximation problem, SIAM International Conference on Data Mining, 1 (2007), 343–354.
https://doi.org/10.1137/1.9781611972771.31

32. P. Paatero, U. Tapper, Positive matrix factorization: A non-negative factor model with
optimal utilization of error estimates of data values, Environmetrics, 5 (1994), 111–126.
https://doi.org/10.1002/env.3170050203

33. M. Raydan, On the Barzilai-Borwein choice of steplength for the gradient method, IMA J. Numer.
Anal., 13 (1993), 321–326. https://doi.org/10.1093/imanum/13.3.321

34. M. Raydan, The Barzilai and Borwein gradient method for the large-scale
unconstrained minimization problem, SIAM J. Optimiz., 7 (1997), 26–33.
https://doi.org/10.1137/S1052623494266365

35. D. X. Wang, T. R. Li, P. Deng, J. Liu, W. Huang, F. Zhang, A generalized deep learning
algorithm based on NMF for multi-view clustering, IEEE T. Big Data, 9 (2023), 328–340.
https://doi.org/10.1109/TBDATA.2022.3163584

36. D. X. Wang, T. R. Li, P. Deng, F. Zhang, W. Huang, P. F. Zhang, et al., A generalized deep learning
clustering algorithm based on non-negative matrix factorization, ACM T. Knowl. Discov. D., 17
(2023), 1–20. https://doi.org/10.1145/3584862

37. D. X. Wang, T. R. Li, W. Huang, Z. P. Luo, P. Deng, P. F. Zhang, et al., A multi-
view clustering algorithm based on deep semi-NMF, Inform. Fusion, 99 (2023), 101884.
https://doi.org/10.1016/j.inffus.2023.101884

38. Z. J. Wang, Z. S. Chen, L. Xiao, Q. Su, K. Govindan, M. J. Skibniewski, Blockchain adoption
in sustainable supply chains for Industry 5.0: A multistakeholder perspective, J. Innov. Knowl., 8
(2023), 100425. https://doi.org/10.1016/j.jik.2023.100425

39. Z. J. Wang, Z. S. Chen, S. Qin, K. S. Chin, P. Witold, M. J. Skibniewski, Enhancing
the sustainability and robustness of critical material supply in electrical vehicle market:
An AI-powered supplier selection approach, Ann. Oper. Res., 2023 (2023), 102690.
https://doi.org/10.1007/s10479-023-05698-4

40. Z. J. Wang, Y. Y. Sun, Z. S. Chen, G. Z. Feng, Q. Su, Optimal versioning strategy of enterprise
software considering the customer cost-acceptance level, Kybernetes, 52 (2023), 997–1026.
https://doi.org/10.1108/K-04-2021-0339

41. Z. J. Wang, Y. Y. Sun, Q. Su, M. Deveci, K. Govindan, M. J. Skibniewski, et
al., Smart contract application in resisting extreme weather risks for the prefabricated
construction supply chain: prototype exploration and assessment, Group Decis. Negot., (2024).
https://doi.org/10.1007/s10726-024-09877-x

42. Y. H. Xiao, Q. J. Hu, Subspace Barzilai-Borwein gradient method for large-scale bound constrained
optimization, Appl. Math. Optim., 58 (2008), 275–290. https://doi.org/10.1007/s00245-008-9038-
9

43. Y. H. Xiao, Q. J. Hu, Z. X. Wei, Modified active set projected spectral gradient
method for bound constrained optimization, Appl. Math. Model., 35 (2011), 3117–3127.
https://doi.org/10.1016/j.apm.2010.09.011

AIMS Mathematics Volume 9, Issue 8, 22067–22090.

http://dx.doi.org/https://doi.org/10.1137/1.9781611972771.31
http://dx.doi.org/https://doi.org/10.1002/env.3170050203
http://dx.doi.org/https://doi.org/10.1093/imanum/13.3.321
http://dx.doi.org/https://doi.org/10.1137/S1052623494266365
http://dx.doi.org/https://doi.org/10.1109/TBDATA.2022.3163584
http://dx.doi.org/https://doi.org/10.1145/3584862
http://dx.doi.org/https://doi.org/10.1016/j.inffus.2023.101884
http://dx.doi.org/https://doi.org/10.1016/j.jik.2023.100425
http://dx.doi.org/https://doi.org/10.1007/s10479-023-05698-4
http://dx.doi.org/https://doi.org/10.1108/K-04-2021-0339
http://dx.doi.org/https://doi.org/10.1007/s10726-024-09877-x
http://dx.doi.org/https://doi.org/10.1007/s00245-008-9038-9
http://dx.doi.org/https://doi.org/10.1007/s00245-008-9038-9
http://dx.doi.org/https://doi.org/10.1016/j.apm.2010.09.011


22090

44. Y. Y. Xu, W. T. Yin, A block coordinate descent method for regularized multi-convex optimization
with applications to nonnegative tensor factorization and completion, SIAM J. Imaging Sci., 6
(2013), 1758–1789. https://doi.org/10.1137/120887795

45. H. C. Zhang, W. W. Hager, A nonmonotone line search technique and its
application to unconstrained optimization, SIAM J. Optimiz., 14 (2004), 1043–1056.
https://doi.org/10.1137/S1052623403428208

46. R. Zdunek, A. Cichocki, Fast nonnegative matrix factorization algorithms using projected
gradient approaches for large-scale problems, Comput. Intel. Neurosc., 2008 (2008), 939567.
https://doi.org/10.1155/2008/939567

© 2024 the Author(s), licensee AIMS Press. This
is an open access article distributed under the
terms of the Creative Commons Attribution License
(http://creativecommons.org/licenses/by/4.0)

AIMS Mathematics Volume 9, Issue 8, 22067–22090.

http://dx.doi.org/https://doi.org/10.1137/120887795
http://dx.doi.org/https://doi.org/10.1137/S1052623403428208
http://dx.doi.org/https://doi.org/10.1155/2008/939567
http://creativecommons.org/licenses/by/4.0

	Introduction
	An active set nonmonotone PBB algorithm
	Main algorithm
	Convergence analysis
	Complexity analysis

	Numerical experiments
	Stopping criterion
	Synthetic data
	Image data
	The importance of relaxation factor s

	Conclusions

