Mathematics
Mathematics

Research article

On concomitants of generalized order statistics arising from bivariate generalized Weibull distribution and its application in estimation

Areej M. AL-Zaydi*
Department of Mathematics and Statistics, Faculty of Science, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
* Correspondence: Email: areej.f@tu.edu.sa.

Abstract

In this research, we studied the concomitants of generalized order statistics from the bivariate generalized Weibull distribution. We derived probability density functions and moments of concomitants of generalized order statistics from the bivariate generalized Weibull distribution. Moreover, utilizing the ranked set sample obtained from this distribution, we computed the best linear unbiased (BLU) estimator of the parameter connected with the study variable (variable of primary interest). Also, a real data application was presented.

Keywords: BLU estimator; bivariate generalized Weibull distribution; concomitants of generalized order statistics; ranked set sampling
Mathematics Subject Classification: 62G30, 62E15, 62H12

1. Introduction

In 1995, Kamps presented the notion of generalized order statistics (GOS), which is the unification of different models of ascendingly ordered random variables (RVs). The GOS incorporates significant and well-known concepts that have been discussed individually in the statistical literature. Many models of ascendingly ordered RVs, such as sequential order statistics, progressive Type-II (PT-II) censored order statistics, ordinary order statistics (OOS), record values, and Pfeifer's record model, are theoretically contained in the GOS model.

Assume $F($.) to be an arbitrary continuous cumulative distribution function (CDF) with probability density function (PDF) $f\left(\right.$.). Assume also $k>0, n \in N$, and $\tilde{m}=\left(m_{1}, m_{2}, \cdots, m_{n-1}\right) \in \mathfrak{R}^{n-1}$ to be the parameters such that $\gamma_{n}=k$ and $\gamma_{i}=k+n-i+M_{i}$, for $i=1, \cdots, n-1$, where $M_{i}=\sum_{l=i}^{n-1} m_{l}$. Then, the RVs $X_{i: n, \tilde{m}, k}, i=1, \cdots, n$, are said to be GOS, if their joint PDF is given by

$$
\begin{equation*}
f_{1,2, \cdots, n: n, \tilde{m}, k}\left(x_{1}, x_{2}, \cdots, x_{n}\right)=k\left(\prod_{v=1}^{n-1} \gamma_{v}\right)\left(\prod_{v=1}^{n-1}\left[\bar{F}\left(x_{v}\right)\right]^{m_{v}} f\left(x_{v}\right)\right)\left[\bar{F}\left(x_{n}\right)\right]^{k-1} f\left(x_{n}\right), \tag{1.1}
\end{equation*}
$$

where $\bar{F}()=.1-F($.$) and F^{-1}(0)<x_{1} \leq \cdots \leq x_{n}<F^{-1}(1)$.
Several models of arranged RVs can be considered special instances of GOS. $m_{1}=m_{2}=\cdots=$ $m_{n-1}=m ; \gamma_{i}=k+(n-i)(m+1), i=1, \cdots, n$ corresponds to m-generalized order statistics (m-GOS), $\gamma_{i}=n-i+1\left(m_{i}=0, k=1\right)$ corresponds to OOS, and $m_{i}=-1 ; \gamma_{i}=k, i=1, \cdots, n, k \in N$ corresponds to k-recored values. Also, for $m_{i}=R_{i}, n=m_{0}+\sum_{v=1}^{m_{0}} R_{v}, R_{v} \in N$, and $\gamma_{i}=n-\sum_{v=1}^{i-1} R_{v}-i+1$, $1 \leq i \leq m_{0}$, where m_{0} denotes the fixed number of failure of units to be observed, the model reduces to PT-II censored order statistics.

Under the condition $\gamma_{i} \neq \gamma_{j}, i, j=1, \cdots, n-1, i \neq j$, Kamps and Cramer [23] derived the PDF of $X_{r: n, \tilde{m}, k}, 1 \leq r \leq n$ as

$$
\begin{equation*}
f_{r: n, \tilde{m}, k}(x)=C_{r-1} f(x) \sum_{i=1}^{r} a_{i, r}[\bar{F}(x)]^{\gamma_{i}-1} \tag{1.2}
\end{equation*}
$$

and the joint PDF of $X_{r: n, \tilde{m}, k}$ and $X_{s: n, \tilde{m}, k}, r, s=1, \cdots, n, r<s$ as

$$
\begin{align*}
f_{r, s: n, \tilde{m}, k}(x, y)= & C_{s-1}\left[\sum_{i=1}^{r} a_{i, r}[\bar{F}(x)]^{\gamma_{i}}\right]\left[\sum_{j=r+1}^{s} a_{j, s}^{(r)}\left[\frac{\bar{F}(y)}{\bar{F}(x)}\right]^{\gamma_{j}}\right] \\
& \times \frac{f(x)}{\bar{F}(x)} \frac{f(y)}{\bar{F}(y)}, x<y, \tag{1.3}
\end{align*}
$$

where $C_{r-1}=\prod_{i=1}^{r} \gamma_{i}, a_{i, r}=\prod_{\substack{i=1 \\ l \neq i}}^{r} \frac{1}{\gamma_{1}-\gamma_{i}}, 1 \leq i \leq r \leq n$, and $a_{j, s}^{(r)}=\prod_{\substack{j=r+1 \\ j \neq j}}^{s} \frac{1}{\gamma_{j}-\gamma_{j}}, r+1 \leq j \leq s \leq n$.
It can be shown that for $m_{1}=m_{2}=\cdots=m_{n-1}=m \neq-1$ (Khan and Khan [24]),

$$
a_{i, r}=\frac{(-1)^{r-i}}{(m+1)^{r-1}(r-1)!}\binom{r-1}{r-i},
$$

and

$$
a_{j, s}^{(r)}=\frac{(-1)^{s-j}}{(m+1)^{s-r-1}(s-r-1)!}\binom{s-r-1}{s-j} .
$$

Therefore, the PDF of $X_{r: n, \tilde{m}, k}$ given in (1.2) reduces to

$$
\begin{equation*}
f_{r: n, m, k}(x)=\frac{C_{r-1}}{(r-1)!}[\bar{F}(x)]^{\gamma_{r}-1} f(x) g_{m}^{r-1}(F(x)) \tag{1.4}
\end{equation*}
$$

and the joint PDF of $X_{r: n, \tilde{m}, k}$ and $X_{s: n, \tilde{m}, k}$ given in (1.3) reduces to

$$
\begin{align*}
f_{r, s: n, m, k}(x, y)= & \frac{C_{s-1}}{(r-1)!(s-r-1)!}[\bar{F}(x)]^{m} g_{m}^{r-1}(F(x))\left[h_{m}(F(y))-h_{m}(F(x))\right]^{s-r-1} \\
& \times[\bar{F}(y)]^{\gamma_{s}-1} f(x) f(y), x<y, \tag{1.5}
\end{align*}
$$

where $C_{r-1}=\prod_{i=1}^{r} \gamma_{i}, \gamma_{i}=k+(n-i)(m+1), h_{m}(x)=\left\{\begin{array}{ll}-\frac{1}{m+1}(1-x)^{m+1}, & m \neq-1, \\ -\ln (1-x), & m=-1,\end{array}\right.$ and $g_{m}(x)=$ $h_{m}(x)-h_{m}(0), x \in[0,1)$ (see Kamps [22]).

David [8] introduced the concept of concomitants of order statistics (COS), but Yang [47] described the general theory of COS. Concomitants are important in selection and prediction issues, ranked set sampling, parameter estimation, and the characterization of parent bivariate distributions. For a brief overview of the uses of the concomitants of ordered RVs, see Veena and Thomas [46] and the references therein. For a review of fundamental findings on COS, see Daivd and Nagaraja [9]. Furthermore, for some of the recent works on COS, we refer to Philip and Thomas [36-38], Kumar et al. [29], Barakat et al. [3], and Koshti and Kamalja [28].

Several authors have investigated the concomitants of GOS (CGOS), including Ahsanullah and Nevzorov [1], Beg and Ahsanullah [4], El-Din et al. [13], Domma and Giordano [11], Hanif and Shahbaz [15], Shahbaz and Shahbaz [40], Tahmasebi et al. [44], Alawady et al. [2], and Kamal et al. [20]. Let $\left(X_{i}, Y_{i}\right), i=1, \cdots, n$ be a random sample from a bivariate distribution function $F_{X, Y}(x, y)$. When the X-variates are ordered in ascending order as $X_{1: n, \tilde{m}, k} \leq X_{2: n, \tilde{m}, k} \leq X_{3: n, \tilde{m}, k} \leq \cdots \leq X_{n: n, \tilde{m}, k}$, then Y-variates paired (not necessarily in ascending order) with these GOS are called the CGOS and are indicated by $Y_{[r: n, \tilde{m}, k]}, r=1, \cdots, n$. The PDF of $Y_{[r: n, \tilde{m}, k]}$ is given by (Ahsanullah and Nevzorov, [1])

$$
\begin{equation*}
h_{[r: n, \tilde{m}, k]}(y)=\int_{-\infty}^{\infty} f(y \mid x) f_{r: n, \tilde{m}, k}(x) d x, \tag{1.6}
\end{equation*}
$$

where $f(y \mid x)$ is the conditional PDF of Y given X and $f_{r: n, \tilde{m}, k}(x)$ is defined in (1.2).
Moreover, the joint PDF of $Y_{[r: n, \tilde{m}, k]}$ and $Y_{[s: n, \tilde{m}, k]}, r, s=1, \cdots, n, r<s$ is given by

$$
\begin{equation*}
h_{[r, s: n, \tilde{m}, k]}\left(y_{1}, y_{2}\right)=\int_{-\infty}^{\infty} \int_{x_{1}}^{\infty} f\left(y_{1} \mid x_{1}\right) f\left(y_{2} \mid x_{2}\right) f_{r, s: n, \tilde{m}, k}\left(x_{1}, x_{2}\right) d x_{2} d x_{1} \tag{1.7}
\end{equation*}
$$

where $f_{r, s: n, \tilde{m}, k}\left(x_{1}, x_{2}\right)$ is given in (1.3).
One of the most notable applications of COS is in ranked set sampling (RSS). RSS is considered a beneficial sampling strategy for improving estimation efficiency and precision if the variable under study is expensive to measure or difficult to get, yet inexpensive and simple to rank. RSS was proposed by McIntyre [31] and then supported by Takahasi and Wakimoto [45] through mathematical theory. The procedure for RSS is described as follows:

1) Randomly choose n^{2} units from the population under study, then divide them into n sets of n units.
2) Order the elements of each set without making actual measurements.
3) Choose and quantify the $i^{\text {th }}$ minimum from the $i^{\text {th }}$ set, $i=1, \cdots, n$, to create a new set of size n, known as the RSS.
4) If a large sample size is required, repeat the above three steps d times (cycles) until a sample of size $n d$ is obtained.

For a comprehensive review of the theory and applications of RSS, see Chen et al. [7]. In some practical applications, the study variable, say, Y, is more difficult to measure, whereas an auxiliary variable X associated with Y is easily quantifiable and may be precisely arranged. In this situation, Stokes [42] created another RSS technique, which is as follows:

1) At random, choose n independent bivariate sets of size n.
2) Take note of the value of the auxiliary variable on each of these units.
3) From the $i^{\text {th }}$ set of size n, choose the variable Y associated with the $i^{\text {th }}$ smallest $X, i=1, \cdots, n$.

The resulting set of n units is known as the RSS. Consider $\left(X_{(i: n)_{i}}, Y_{[i: n]}\right), i=1, \cdots, n$ to be the pair chosen from the $i^{\text {th }}$ set, where $X_{(i: n)_{i}}$ is the $i^{\text {th }}$ order statistics of the auxiliary variate in the $i^{\text {th }}$ set and $Y_{[i: n]_{i}}$ is the measurement made on the Y variate associated with $X_{(i: n)_{i}}$. $Y_{[i: n]_{i}}$ is obviously the concomitant of the $i^{t h}$ order statistics resulting from the $i^{t h}$ sample. Numerous authors in the literature have considered the estimation of parameters of the various bivariate distributions using RSS and its modifications. Some work in this area is by Chacko and Thomas [5], Philip and Thomas [36, 37], Koshti and Kamalja [26], Irshad et al. [16, 17], and Dong et al. [12].

COS and higher moments of multivariate distributions have received a lot of attention in recent years. Most of the literature on concomitants is concentrated on symmetric distributions such as multivariate normal (Sheikhi et al., [41]; Chaumette and Vincent, [6]) or multivariate elliptical (Jamalizadeh and Balakrishnan, [18]). Skewed distributions have gained a lot of interest recently in the literature since many datasets encountered in reality have some degree of skewness. In this regard, the distribution theory of COS from skew distributions has been investigated by several authors, including Hanif and Shahbaz [15], Shahbaz and Shahbaz [40], Tahmasebi et al. [44], Shahbaz et al. [39], and Kamal et al. [20]. In this article, we consider the bivariate generalized Weibull (BGW) distribution and the CGOS arising from it. There are numerous reasons for considering this particular bivariate distribution. Due to the presence of four parameters, the joint PDF of the BGW distribution is quite flexible and can take on various shapes depending on the shape parameter. The joint PDF, joint CDF, and conditional PDF for the BGW distribution are all in closed forms, making them appropriate for usage in practice. The univariate marginals of this distribution are able to analyze various types of hazard rates. In addition, it can be utilized for modeling bivariate lifetime data in a variety of scenarios. So far, no results on CGOS arising from the BGW distribution have been found in the literature. Thus, the current study aims to develop the distribution theory of CGOS originating from the BGW distribution and apply it to associated inference problems.

The article is structured as follows: In Section 2, we provide a brief overview of the BGW distribution and some of its properties. In Section 3, we present the marginal PDF as well as the explicit expressions for the single moments of CGOS from the BGW distribution. The joint PDF of CGOS from the BGW distribution is also obtained in Section 3. Furthermore, the explicit expressions for the product moments of CGOS are derived. Section 4 presents the best linear unbiased (BLU) estimator of the parameter of the study variable contained in the BGW distribution using Stokes's RSS and some of the other modified RSS schemes. In Section 5, we apply the results to a real dataset. In Section 6, conclusions are provided.

2. BGW distribution

A bivariate $\mathrm{RV}(X, Y)$ is said to follow a BGW distribution if its PDF is given by (Pathak et al. [34])

$$
\begin{equation*}
f(x, y)=\theta \alpha^{2}\left(\beta_{1} \beta_{2}\right)^{-1} x^{\alpha-1} y^{\alpha-1} e^{-\omega(x, y ; ; \phi)}\left(1-e^{-\omega(x, y ; ; \phi)}\right)^{\theta-2}\left(1-\theta e^{-\omega(x, y ; \phi)}\right), \tag{2.1}
\end{equation*}
$$

where $x, y \geq 0, \alpha, \beta_{1}, \beta_{2}>0,0<\theta \leq 1, \omega(x, y ; \phi)=\frac{x^{\alpha}}{\beta_{1}}+\frac{y^{\alpha}}{\beta_{2}}$, and $\phi=\left(\alpha, \beta_{1}, \beta_{2}\right)$. The BGW distribution includes the bivariate generalized exponential distribution (refer to Mirhosseini et al. [32]) and the
bivariate generalized Rayleigh distribution (refer to Pathak and Vellaisamy [35]) as sub-models. The conditional PDF of Y given $X=x$ is (Pathak et al. [34])

$$
\begin{equation*}
f(y \mid x)=\alpha\left(\beta_{2}\right)^{-1} y^{\alpha-1} e^{-\frac{y^{\alpha}}{\beta_{2}}}\left(1-e^{-\omega(x, y ; \phi)}\right)^{\theta-2}\left(1-\theta e^{-\omega(x, y ; ; \phi)}\right)\left(1-e^{-\frac{\alpha^{\alpha}}{\beta_{1}}}\right)^{1-\theta} . \tag{2.2}
\end{equation*}
$$

The $\operatorname{RV} X \sim E W\left(\alpha, \beta_{1}, \theta\right)$ is a member of the exponentiated Weibull (EW) distribution with PDF

$$
\begin{equation*}
f(x)=\theta \alpha\left(\beta_{1}\right)^{-1} x^{\alpha-1} e^{-\frac{\alpha^{\alpha}}{\beta_{1}}}\left(1-e^{-\frac{\alpha^{\alpha}}{\beta_{1}}}\right)^{\theta-1}, x \geq 0, \tag{2.3}
\end{equation*}
$$

and CDF

$$
\begin{equation*}
F(x)=\left(1-e^{-\frac{x^{\alpha}}{\beta_{1}}}\right)^{\theta}, x \geq 0 \tag{2.4}
\end{equation*}
$$

Similarly, $Y \sim E W\left(\alpha, \beta_{2}, \theta\right)$. A series expansion of the PDF of the BGW distribution is given by

$$
\begin{equation*}
f(x, y)=\alpha^{2}\left(\beta_{1} \beta_{2}\right)^{-1} x^{\alpha-1} y^{\alpha-1} \sum_{j=1}^{\infty}\binom{\theta}{j}(-1)^{j+1} j^{2} e^{-j \omega(x, y ; \phi)} . \tag{2.5}
\end{equation*}
$$

Pathak et al. [34] showed that the product moments of the BGW distribution are

$$
\begin{equation*}
E\left(x^{p} y^{q}\right)=\Gamma\left(1+\frac{p}{\alpha}\right) \Gamma\left(1+\frac{q}{\alpha}\right) \beta_{1}^{\frac{p}{\alpha}} \beta_{2}^{\frac{q}{\alpha}} \sum_{j=1}^{\infty}\binom{\theta}{j}(-1)^{j+1} \frac{1}{j^{(p+q) / \alpha}} . \tag{2.6}
\end{equation*}
$$

If we make the transformation, $U=\frac{X}{\beta_{1}^{\star}}$ and $V=\frac{Y}{\beta_{2}^{\star}}, \beta_{i}^{\star}=\beta_{i}^{1 / \alpha}, i=1,2$, the standard BGW distribution has the joint PDF as

$$
\begin{equation*}
f^{\star}(u, v)=\alpha^{2} u^{\alpha-1} v^{\alpha-1} \sum_{j=1}^{\infty}\binom{\theta}{j}(-1)^{j+1} j^{2} e^{-j\left(u^{\alpha}+v^{\alpha}\right)} . \tag{2.7}
\end{equation*}
$$

It is clear that the variables U and V have the standard EW distribution as marginal functions with PDFs are, respectively, given by

$$
\begin{align*}
f^{\star}(u) & =\theta \alpha u^{\alpha-1} e^{-u^{\alpha}}\left(1-e^{-u^{\alpha}}\right)^{\theta-1}, u \geq 0, \tag{2.8}\\
f^{\star}(v) & =\theta \alpha v^{\alpha-1} e^{-\nu^{\alpha}}\left(1-e^{-v^{\alpha}}\right)^{\theta-1}, v \geq 0 . \tag{2.9}
\end{align*}
$$

3. Distribution theory of CGOS from BGW distribution

In this part, we obtain the distributions and moments of CGOS arising from the BGW distribution.

3.1. Marginal PDF and single moments of CGOS

Suppose $\left(X_{i}, Y_{i}\right)$ and (U_{i}, V_{i}) are random samples of size n each originating from the BGW distribution and the standard BGW distribution, with PDFs provided by (2.1) and (2.7), respectively. Let $V_{[r: n, \tilde{m}, k]}$ be the concomitant of the $r^{t h}$ GOS $U_{r: n, \tilde{m}, k}$. Then, the PDF and the $p^{t h}$ moments of $V_{[r: n, \tilde{m}, k]}$, $r=1, \cdots, n$ are given by the following two theorems:

Theorem 1. If $V_{[r: n, \tilde{m}, k]}$ is the concomitant of the $r^{\text {th }}$ GOS from the standard $B G W$ distribution, then the PDF of $V_{[r: n, \tilde{m}, k]}$, for $r=1, \cdots, n$, is given by

$$
\begin{equation*}
h_{[r \cdot n, \tilde{m}, k]}(v)=\alpha C_{r-1} \sum_{i=1}^{r} \sum_{j=1}^{\infty} a_{i, r} j^{2} \delta_{\theta}\left(j, \gamma_{i}\right) v^{\alpha-1} e^{-j v^{\alpha}}, v \geq 0, \tag{3.1}
\end{equation*}
$$

where $\delta_{\theta}\left(j, \gamma_{i}\right)=\binom{\theta}{j} \sum_{\tau=0}^{\gamma_{i}-1}(-1)^{j+\tau+1}\binom{\gamma_{i}-1}{\tau} B(j, \theta \tau+1)$ and $B(.,$.$) is the complete beta function.$ Proof. Using the PDF of $U_{r: n, \tilde{m}, k}(1.2)$ in (1.6), the PDF of the $r^{t h} \operatorname{CGOS} V_{[r: n, \tilde{m}, k]}$ is given as

$$
\begin{equation*}
h_{[r: n, \tilde{m}, k]}(v)=C_{r-1} \sum_{i=1}^{r} a_{i, r} \int_{0}^{\infty} f(v \mid u)[\bar{F}(u)]^{\gamma_{i}-1} f(u) d u . \tag{3.2}
\end{equation*}
$$

In view of (2.7) and (2.8), we get

$$
\begin{align*}
h_{[r: n, \tilde{m}, k]}(v)= & \alpha C_{r-1} \sum_{i=1}^{r} \sum_{j=1}^{\infty} \sum_{\tau=0}^{\gamma_{i}-1} a_{i, r}(-1)^{j+\tau+1} j^{2}\binom{\theta}{j} \\
& \times\binom{\gamma_{i}-1}{\tau} v^{\alpha-1} e^{-j v^{\alpha}} \int_{0}^{\infty} e^{-j z}\left(1-e^{-z}\right)^{\theta \tau} d z \tag{3.3}
\end{align*}
$$

[provided that γ_{i} is an integer],
where $z=u^{\alpha}$. Now, by using Eq (3.3121) in Gradshteyn and Ryzhik [14] to compute the integral in (3.3), we obtain the result given in (3.1).

Corollary 1. Taking $m_{1}=m_{2}=\cdots=m_{n-1}=m \neq-1$ in (3.1), the PDF of the $r^{\text {th }}$ concomitant of m-GOS from the standard BGW distribution is given by

$$
\begin{equation*}
h_{[r, n, m, k]}(v)=\frac{\alpha C_{r-1}}{(r-1)!} \sum_{i=1}^{r} \sum_{j=1}^{\infty}(-1)^{r-i} \frac{j^{2}}{(m+1)^{r-1}}\binom{r-1}{r-i} \delta_{\theta}\left(j, \gamma_{i}\right) v^{\alpha-1} e^{-j v^{\alpha}}, v \geq 0, \tag{3.4}
\end{equation*}
$$

where $\gamma_{i}=k+(n-i)(m+1)$.
Remark 1. When $m=0$ and $k=1$ in (3.4), we get the PDF of the $r^{\text {th }}$ COS from the standard $B G W$ distribution as

$$
\begin{equation*}
h_{[r: n]}(v)=\alpha C_{r: n} \sum_{i=1}^{r} \sum_{j=1}^{\infty}(-1)^{r-i} j^{2}\binom{r-1}{r-i} \delta_{\theta}(j, n-i+1) v^{\alpha-1} e^{-j v^{\alpha}}, \tag{3.5}
\end{equation*}
$$

where $C_{r: n}=\frac{n!}{(r-1)!(n-r)!}$.
Theorem 2. Under the conditions of Theorem 1, the $p^{\text {th }}$ moment of $V_{[r: n, \tilde{m}, k]}$ is

$$
\begin{equation*}
\mu_{[r: n, \tilde{m}, k]}^{(p)}=C_{r-1} \sum_{i=1}^{r} \sum_{j=1}^{\infty} a_{i, r} \delta_{\theta}\left(j, \gamma_{i}\right) \frac{\left.\Gamma \frac{p}{\alpha}+1\right)}{j^{\frac{p}{\alpha}-1}} . \tag{3.6}
\end{equation*}
$$

Proof. Using (3.1), the $p^{\text {th }}$ moment of $V_{[r: n, \tilde{m}, k]}$ is given as

$$
\begin{align*}
\mu_{[r: n, \tilde{m}, k]}^{(p)}= & E\left[V_{[r: n, \tilde{m}, k]}^{p}\right]=\int_{0}^{\infty} v^{p} h_{[r: n, \tilde{m}, k]}(v) d v \\
& =C_{r-1} \sum_{i=1}^{r} \sum_{j=1}^{\infty} a_{i, r} j^{2} \delta_{\theta}\left(j, \gamma_{i}\right) \int_{0}^{\infty} z^{\frac{p}{\alpha}} e^{-j z} d z \tag{3.7}
\end{align*}
$$

where $z=v^{\alpha}$. Then, after integration, we get (3.6).
Corollary 2. Taking $m_{1}=m_{2}=\cdots=m_{n-1}=m \neq-1$ in (3.6), the $p^{\text {th }}$ moment of the concomitant of m-GOS is given by

$$
\begin{equation*}
\mu_{[r \cdot n, m, k]}^{(p)}=\frac{C_{r-1}}{(r-1)!} \sum_{i=1}^{r} \sum_{j=1}^{\infty} \frac{(-1)^{r-i}}{(m+1)^{r-1}}\binom{r-1}{r-i} \delta_{\theta}\left(j, \gamma_{i}\right) \frac{\Gamma\left(\frac{p}{\alpha}+1\right)}{j^{\frac{p}{\alpha}-1}} . \tag{3.8}
\end{equation*}
$$

Remark 2. Let $m=0$ and $k=1$ in (3.8), then the $p^{\text {th }}$ moment of COS is

$$
\begin{align*}
\mu_{[r: n]}^{(p)}= & E\left[V_{[r: n]}^{p}\right] \\
& =C_{r: n} \sum_{i=1}^{r} \sum_{j=1}^{\infty}(-1)^{r-i}\binom{r-1}{r-i} \delta_{\theta}(j, n-i+1) \frac{\Gamma\left(\frac{p}{\alpha}+1\right)}{j^{\frac{p}{\alpha}-1}} . \tag{3.9}
\end{align*}
$$

3.2. Joint PDF and product moments of CGOS

Let $V_{[r: n, \tilde{m}, k]}$ and $V_{[s: n, \tilde{m}, k]}, r, s=1, \cdots, n, r<s$ be the concomitants of the $r^{\text {th }}$ and $s^{\text {th }}$ GOS from the standard BGW distribution. Then, the joint PDF and the product moments of $V_{[r: n, \tilde{m}, k]}$ and $V_{[s: n, \tilde{m}, k]}$ are given by the following two theorems:

Theorem 3. The joint PDF of concomitants $V_{[r: n, \tilde{m}, k]}$ and $V_{[s: n, \tilde{m}, k]}, r, s=1, \cdots, n, r<s$ is given by

$$
\begin{align*}
h_{[r, s: n, \tilde{m}, k]}\left(v_{1}, v_{2}\right)= & \alpha^{2} C_{s-1} \sum_{i=1}^{r} \sum_{j=r+1}^{s} \sum_{\kappa_{1}=1}^{\infty} \sum_{\kappa_{2}=1}^{\infty} a_{i, r} a_{j, s}^{(r)} \kappa_{1}^{2} \kappa_{2} \delta_{\theta}\left(\kappa_{1}, \kappa_{2}, \gamma_{i}, \gamma_{j}\right) \\
& \times v_{1}^{\alpha-1} v_{2}^{\alpha-1} e^{-\left(\kappa_{1} v_{1}^{\left.\alpha_{1}^{+}+k_{2} v_{2}\right)}, v_{1}, v_{2}>0,\right.} \tag{3.10}
\end{align*}
$$

where

$$
\begin{aligned}
& \delta_{\theta}\left(\kappa_{1}, \kappa_{2}, \gamma_{i}, \gamma_{j}\right)=\binom{\theta}{\kappa_{1}}\binom{\theta}{\kappa_{2}} \sum_{\tau_{1}=0}^{\gamma_{j}-1} \sum_{\tau_{2}=0}^{\gamma_{i}-\gamma_{j}-1}(-1)^{\kappa_{1}+\kappa_{2}+\tau_{1}+\tau_{2}+2}\binom{\gamma_{j}-1}{\tau_{1}}\binom{\gamma_{i}-\gamma_{j}-1}{\tau_{2}} \\
& \times B\left(\kappa_{1}+\kappa_{2}, \theta \tau_{2}+1\right)_{3} F_{2}\left(\kappa_{2},-\theta \tau_{1}, \kappa_{1}+\kappa_{2} ; \kappa_{2}+1, \kappa_{1}+\kappa_{2}+\theta \tau_{2}+1 ; 1\right),
\end{aligned}
$$

where ${ }_{3} F_{2}\left(a_{1}, a_{2}, a_{3} ; b_{1}, b_{2} ; x\right)$ denotes the hypergeometric function defined by

$$
{ }_{3} F_{2}\left(a_{1}, a_{2}, a_{3} ; b_{1}, b_{2} ; x\right)=\sum_{\ell=0}^{\infty} \frac{\left(a_{1}\right)_{\ell}\left(a_{2}\right)_{\ell}\left(a_{3}\right)_{\ell}}{\left(b_{1}\right)_{\ell}\left(b_{2}\right)_{\ell}} \frac{x^{\ell}}{\ell!},
$$

and $(c)_{\ell}=c(c+1) \cdots(c+\ell-1)$ is the ascending factorial.

Proof. Using (1.3) in (1.7), the joint PDF of the $r^{t h}$ and $s^{t h} \operatorname{CGOS} V_{[r: n, \tilde{m}, k]}$ and $V_{[s: n, \tilde{m}, k]}$ is given as

$$
\begin{align*}
h_{[r, s, n, \tilde{m}, k]}\left(v_{1}, v_{2}\right)= & C_{s-1} \sum_{i=1}^{r} \sum_{j=r+1}^{s} a_{i, r} a_{j, s}^{(r)} \int_{0}^{\infty} \int_{u_{1}}^{\infty} f\left(v_{1} \mid u_{1}\right) f\left(v_{2} \mid u_{2}\right) \\
& \times\left[\bar{F}\left(u_{1}\right)\right]^{\gamma_{i}-\gamma_{j}-1}\left[\bar{F}\left(u_{2}\right)\right]^{\gamma_{j}-1} f\left(u_{1}\right) f\left(u_{2}\right) d u_{2} d u_{1} . \tag{3.11}
\end{align*}
$$

In view of (2.7) and (2.8), we get

$$
\begin{align*}
h_{[r, s: n, \tilde{m}, k]}\left(v_{1}, v_{2}\right)= & \alpha^{4} C_{s-1} \sum_{i=1}^{r} \sum_{j=r+1}^{s} \sum_{\kappa_{1}=1}^{\infty} \sum_{\kappa_{2}=1}^{\infty} a_{i, r} a_{j, s}^{(r)}(-1)^{\kappa_{1}+\kappa_{2}+2} \\
& \times \kappa_{1}^{2} \kappa_{2}^{2}\left(\begin{array}{c}
\theta \\
\kappa_{1}
\end{array}\binom{\theta}{\kappa_{2}} v_{1}^{\alpha-1} v_{2}^{\alpha-1} e^{-\kappa_{1} v_{1}^{\alpha}} e^{-\kappa_{2} v_{2}^{\alpha}}\right. \\
& \times \int_{0}^{\infty} u_{1}^{\alpha-1} e^{-\kappa_{1} u_{1}^{\alpha}}\left[1-\left(1-e^{-u_{1}^{\alpha}}\right)^{\theta}\right]^{\gamma_{i}-\gamma_{j}-1} I\left(u_{1}\right) d u_{1}, \tag{3.12}
\end{align*}
$$

where

$$
\begin{gather*}
I\left(u_{1}\right)=\sum_{\tau_{1}=0}^{\gamma_{j}-1}(-1)^{\tau_{1}}\binom{\gamma_{j}-1}{\tau_{1}} \int_{u_{1}}^{\infty} u_{2}^{\alpha-1} e^{-\kappa_{2} u_{2}^{\alpha}}\left(1-e^{-u_{2}^{\alpha}}\right)^{\tau_{1} \theta} d u_{2} \\
=\alpha^{-1} \sum_{\tau_{1}=0}^{\gamma_{j}-1}(-1)^{\tau_{1}}\binom{\gamma_{j}-1}{\tau_{1}} B_{w}\left(\kappa_{2}, \tau_{1} \theta+1\right), \tag{3.13}
\end{gather*}
$$

where $w=e^{-u_{1}^{\alpha}}$ and $B_{w}(.,$.$) denotes the incomplete beta function defined by B_{w}\left(a_{1}, a_{2}\right)=\int_{0}^{w} x^{a_{1}-1}(1-$ $x)^{a_{2}-1} d x$.

Now, putting the value of $I\left(u_{1}\right)$ in (3.12), we get

$$
\begin{align*}
h_{[r, s, n, \tilde{m}, k]}\left(v_{1}, v_{2}\right)= & \alpha^{2} C_{s-1} \sum_{i=1}^{r} \sum_{j=r+1}^{s} \sum_{\kappa_{1}=1}^{\infty} \sum_{\kappa_{2}=1}^{\infty} \sum_{\tau_{1}=0}^{\gamma_{j}-1} \sum_{\tau_{2}=0}^{\gamma_{i}-\gamma_{j}-1} a_{i, r} a_{j, s}^{(r)}(-1)^{\kappa_{1}+\kappa_{2}+\tau_{1}+\tau_{2}+2} \\
& \times \kappa_{1}^{2} \kappa_{2}^{2}\left(\begin{array}{c}
\theta \\
\kappa_{1}
\end{array}\binom{\theta}{\kappa_{2}}\binom{\gamma_{j}-1}{\tau_{1}}\binom{\gamma_{i}-\gamma_{j}-1}{\tau_{2}} v_{1}^{\alpha-1} v_{2}^{\alpha-1} e^{-\kappa_{1} v_{1}^{\alpha}} e^{-\kappa_{2} v_{2}^{\alpha}}\right. \\
& \times \int_{0}^{\infty} e^{-\kappa_{1} z}\left(1-e^{-z}\right)^{\tau_{2} \theta} B_{e^{-z}\left(\kappa_{2}, \tau_{1} \theta+1\right) d z} \\
& {\left[\text { [provided that } \gamma_{i}-\gamma_{j} \text { is an integer] },\right.} \tag{3.14}
\end{align*}
$$

where $z=u_{1}^{\alpha}$. We know that $B_{w}\left(a_{1}, a_{2}\right)=\frac{w^{a_{1}}}{a_{1}}{ }_{2} F_{1}\left(a_{1}, 1-a_{2} ; a_{1}+1 ; w\right)$ (see Mathai and Saxena, [30]), and

$$
\begin{equation*}
\int_{0}^{1} x^{a-1}(1-x)^{b-1}{ }_{2} F_{1}(c, d ; e ; x) d x=B(a, b)_{3} F_{2}(c, d, a ; e, a+b ; 1) . \tag{3.15}
\end{equation*}
$$

Therefore,

$$
\begin{aligned}
h_{[r, s: n, \tilde{m}, k]}\left(v_{1}, v_{2}\right)= & \alpha^{2} C_{s-1} \sum_{i=1}^{r} \sum_{j=r+1}^{s} \sum_{\kappa_{1}=1}^{\infty} \sum_{\kappa_{2}=1}^{\infty} \sum_{\tau_{1}=0}^{\gamma_{j}-1} \sum_{\tau_{2}=0}^{\gamma_{i}-\gamma_{j}-1} a_{i, r} a_{j, s}^{(r)}(-1)^{\kappa_{1}+\kappa_{2}+\tau_{1}+\tau_{2}+2} \\
& \times \kappa_{1}^{2} \kappa_{2}\binom{\theta}{\kappa_{1}}\binom{\theta}{\kappa_{2}}\binom{\gamma_{j}-1}{\tau_{1}}\binom{\gamma_{i}-\gamma_{j}-1}{\tau_{2}} v_{1}^{\alpha-1} v_{2}^{\alpha-1} e^{-\kappa_{1} v_{1}^{\alpha}} e^{-\kappa_{2} v_{2}^{\alpha}} \\
& \times \int_{0}^{1} t^{\kappa_{1}+\kappa_{2}-1}(1-t)^{\tau_{2} \theta}{ }_{2} F_{1}\left(\kappa_{2},-\tau_{1} \theta ; \kappa_{2}+1 ; t\right) d t
\end{aligned}
$$

where $t=e^{-z}$. Now, using (3.15), we get the result of (3.10).
Corollary 3. At $m_{1}=m_{2}=\cdots=m_{n-1}=m \neq-1$ in (3.10), the joint PDF of concomitants $V_{[r: n, m, k]}$ and $V_{[s: n, m, k]}$ of the $r^{\text {th }}$ and $s^{\text {th }} m$-GOS for the standard $B G W$ distribution is given by

$$
\begin{align*}
h_{[r, s: n, m, k]}\left(v_{1}, v_{2}\right)= & \frac{\alpha^{2} C_{s-1}}{(r-1)!(s-r-1)!} \sum_{i=1}^{r} \sum_{j=r+1}^{s} \sum_{\kappa_{1}=1}^{\infty} \sum_{\kappa_{2}=1}^{\infty} \frac{(-1)^{r-i+s-j}}{(m+1)^{s-2}}\binom{r-1}{r-i}\binom{s-r-1}{s-j} \kappa_{1}^{2} \kappa_{2} \\
& \times \delta_{\theta}\left(\kappa_{1}, \kappa_{2}, \gamma_{i}, \gamma_{j}\right) v_{1}^{\alpha-1} v_{2}^{\alpha-1} e^{-\left(\kappa_{1} v_{1}^{\alpha}+\kappa_{2} v_{2}^{\alpha}\right)}, v_{1}, v_{2}>0 \tag{3.16}
\end{align*}
$$

where $\gamma_{i}=k+(n-i)(m+1)$.
Remark 3. For $m=0$ and $k=1$ in (3.16), we obtain the joint PDF of the $r^{\text {th }}$ and $s^{\text {th }}$ COS from the standard BGW distribution as

$$
\begin{align*}
h_{[r, s: n]}\left(v_{1}, v_{2}\right)= & \alpha^{2} C_{r, s: n} \sum_{i=1}^{r} \sum_{j=r+1}^{s} \sum_{\kappa_{1}=1}^{\infty} \sum_{\kappa_{2}=1}^{\infty}(-1)^{r-i+s-j}\binom{r-1}{r-i}\binom{s-r-1}{s-j} \kappa_{1}^{2} \kappa_{2} \\
& \times \delta_{\theta}\left(\kappa_{1}, \kappa_{2}, n-i+1, n-j+1\right) v_{1}^{\alpha-1} v_{2}^{\alpha-1} e^{-\left(\kappa_{1} v_{1}^{\alpha}+\kappa_{2} v_{2}^{\alpha}\right)}, v_{1}, v_{2}>0 \tag{3.17}
\end{align*}
$$

where $C_{r, s: n}=\frac{n!}{(r-1)!(s-r-1)!(n-s)!}$.
Theorem 4. The product moments of two concomitants $V_{[r: n, \tilde{m}, k]}$ and $V_{[s: n, \tilde{m}, k]}$ are given by

$$
\begin{align*}
\mu_{[r, s: n, \tilde{m}, k]}^{(p, q)}= & C_{s-1} \sum_{i=1}^{r} \sum_{j=r+1}^{s} \sum_{\kappa_{1}=1}^{\infty} \sum_{\kappa_{2}=1}^{\infty} a_{i, r} a_{j, s}^{(r)} \delta_{\theta}\left(\kappa_{1}, \kappa_{2}, \gamma_{i}, \gamma_{j}\right) \\
& \times \frac{\Gamma\left(\frac{p}{\alpha}+1\right)}{\kappa_{1}^{\frac{p}{\alpha}-1}} \frac{\Gamma\left(\frac{q}{\alpha}+1\right)}{\kappa_{2}^{\frac{q}{\alpha}}} . \tag{3.18}
\end{align*}
$$

Proof. Using (3.10), the $p^{t h}$ and $q^{t h}$ moments of $V_{[r: n, \tilde{m}, k]}$ and $V_{[s: n, \tilde{m}, k]}$ are given as

$$
\begin{align*}
\mu_{[r, s: n, \tilde{m}, k]}^{(p, q)}= & E\left[V_{[r: n, \tilde{m}, k]}^{p} V_{[s: n, \tilde{m}, k]}^{q}\right]=\int_{0}^{\infty} \int_{0}^{\infty} v_{1}^{p} v_{2}^{q} h_{[r, s: n, \tilde{m}, k]}\left(v_{1}, v_{2}\right) d v_{1} d v_{2} \\
= & C_{s-1} \sum_{i=1}^{r} \sum_{j=r+1}^{s} \sum_{\kappa_{1}=1}^{\infty} \sum_{\kappa_{2}=1}^{\infty} a_{i, r} a_{j, s}^{(r)} \kappa_{1}^{2} \kappa_{2} \delta_{\theta}\left(\kappa_{1}, \kappa_{2}, \gamma_{i}, \gamma_{j}\right) \\
& \times \int_{0}^{\infty} \int_{0}^{\infty} z_{1}^{\frac{p}{\alpha}} z_{2}^{\frac{q}{\alpha}} e^{-\left(\kappa_{1} z_{1}+\kappa_{2} z_{2}\right)} d z_{1} d z_{2}, \tag{3.19}
\end{align*}
$$

where $z_{i}=v_{i}^{\alpha}, i=1,2$. Then, after integration, we get (3.18).

Corollary 4. Setting $m_{1}=m_{2}=\cdots=m_{n-1}=m \neq-1$ in (3.18), we can get the product moments of two concomitants of m-GOS of the standard $B G W$ distribution.

Remark 4. When $m=0$ and $k=1$ in (3.18), we get the product moments of COS as

$$
\begin{align*}
\mu_{[r, s: n]}^{(p, q)}= & E\left[V_{[r: n]}^{p} V_{[s: n]}^{q}\right] \\
& =C_{r, s: n} \sum_{i=1}^{r} \sum_{j=r+1}^{s} \sum_{\kappa_{1}=1}^{\infty} \sum_{k_{2}=1}^{\infty}(-1)^{r-i+s-j}\binom{r-1}{r-i}\binom{s-r-1}{s-j} \\
& \times \delta_{\theta}\left(\kappa_{1}, \kappa_{2}, n-i+1, n-j+1\right) \frac{\Gamma\left(\frac{p}{\alpha}+1\right)}{\kappa_{1}^{\frac{p}{\alpha}-1}} \frac{\Gamma\left(\frac{q}{\alpha}+1\right)}{\kappa_{2}^{\frac{q}{\alpha}}} . \tag{3.20}
\end{align*}
$$

Remark 5. At $m_{i}=R_{i}, n=m_{0}+\sum_{i=1}^{m_{0}} R_{i}$, and $\gamma_{i}=n-\sum_{v=1}^{i-1} R_{v}-i+1,1 \leq i \leq m_{0}$ in Theorems $1-4$, the results for PT-II censored order statistics can be obtained.

Remark 6. From (3.9), the expressions of means and variances of the $\operatorname{COS} Y_{[i: n]}, i=1, \cdots, n$, arising from the BGW distribution, are obtained as follows:

$$
\begin{gathered}
E\left[Y_{[i: n]}\right]=\beta_{2}^{\star} E\left[V_{[i: n]}\right] \\
=\beta_{2}^{\star} \mu_{[i: n]}, \\
\operatorname{Var}\left[Y_{[i: n]}\right]=\beta_{2}^{\star^{2}} \operatorname{Var}\left[V_{[i: n]}\right] \\
=\beta_{2}^{\star^{2}} \delta_{i, i: n},
\end{gathered}
$$

where $\operatorname{Var}\left[V_{[i: n]}\right]=\mu_{[i: n]}^{(2)}-\left(\mu_{[i: n}\right)^{2}$. The expression of the covariances between $Y_{[i: n]}$ and $Y_{[j: n]}$ is given, using (3.9) and (3.20), by

$$
\begin{aligned}
\operatorname{Cov}\left[Y_{[i: n]}, Y_{[j: n]}\right] & =\beta_{2}^{\star 2} \operatorname{Cov}\left[V_{[i: n]}, V_{[j: n]}\right] \\
& =\beta_{2}^{\star^{2}} \delta_{i, j: n},
\end{aligned}
$$

where $\operatorname{Cov}\left(V_{[i: n]}, V_{[j: n]}\right)=\mu_{[i, j: n]}-\mu_{[i: n]} \mu_{[j: n]}, 1 \leq i<j \leq n$.
The means and variances of the COS of the standard BGW distribution for $n=1, \cdots, 5$ and different values of the parameters α and θ are calculated in Tables 1 and 2. It can be noted that the condition $\sum_{r=1}^{n} \mu_{[r: n]}^{j}=n \mu_{1: 1}^{j}, j=1,2$ is satisfied (see David and Nagaraja, [10]). In Tables 3-6, we have computed the means and variances of the concomitants of PT-II censored order statistics. From Tables 1-6, one can observe that the variances are decreasing with respect to α.

Table 1. Means and variances of the COS for the standard BGW distribution with $\theta=0.50$.

	Mean		Variance		
n	r	$\alpha=1$	$\alpha=2$	$\alpha=1$	$\alpha=2$
1	1	0.613519	0.626050	0.710359	0.221580
2	1	0.454473	0.503844	0.546719	0.200615
	2	0.772564	0.748256	0.823408	0.212676
3	1	0.363977	0.427653	0.445089	0.181090
	2	0.635465	0.656226	0.700844	0.204833
	3	0.841114	0.794272	0.870593	0.210246
4	1	0.304634	0.374043	0.375757	0.164726
	2	0.542006	0.588481	0.610825	0.195696
	3	0.728923	0.723970	0.773394	0.204791
	4	0.878510	0.817706	0.897399	0.209868
5	1	0.262399	0.333637	0.325339	0.151085
	2	0.473577	0.535668	0.541753	0.186636
	3	0.644650	0.667700	0.696872	0.198827
	4	0.785106	0.761484	0.816517	0.205248
	5	0.901861	0.831761	0.914894	0.210035

Table 2. Means and variances of the COS for the standard BGW distribution with $\theta=0.90$.

	Mean		Variance		
n	r	$\alpha=1$	$\alpha=2$	$\alpha=1$	$\alpha=2$
1	1	0.933392	0.846157	0.956977	0.217410
2	1	0.898058	0.823580	0.935961	0.219775
	2	0.968725	0.868735	0.975495	0.214025
3	1	0.873819	0.807493	0.922204	0.221774
	2	0.946537	0.855752	0.959950	0.214226
	3	0.979820	0.875226	0.982898	0.213799
4	1	0.855345	0.794891	0.912004	0.223493
	2	0.929241	0.845300	0.948711	0.214709
	3	0.963834	0.866204	0.970591	0.213524
	4	0.985148	0.878234	0.986887	0.213854
5	1	0.840423	0.784489	0.903900	0.224999
	2	0.915036	0.836498	0.939966	0.215307
	3	0.950548	0.858502	0.961071	0.213522
	4	0.972691	0.871339	0.976741	0.213459
	5	0.988263	0.879957	0.989375	0.213938

Table 3. Means of the concomitants of PT-II censored order statistics for the standard BGW distribution with $\theta=0.50$.

α	m_{0}, n	Scheme	Mean				
1	2,10	8,0	0.155927	0.664362			
1	2,10	0,8	0.155927	0.292953			
1	3,10	$7,0,0$	0.155927	0.52911	0.799614		
1	3,10	$0,0,7$	0.155927	0.292953	0.412797		
1	4,10	$6,0,0,0$	0.155927	0.453142	0.681045	0.858899	
1	4,10	$0,0,0,6$	0.155927	0.292953	0.412797	0.51814	
1	5,10	$5,0,0,0,0$	0.155927	0.403773	0.601249	0.760842	0.891585
1	5,10	$0,0,0,0,5$	0.155927	0.292953	0.412797	0.51814	0.61135
2	2,10	8,0	0.220176	0.671147			
2	2,10	0,8	0.220176	0.377969			
2	3,10	$7,0,0$	0.220176	0.574761	0.767534		
2	3,10	$0,0,7$	0.220176	0.377969	0.492427		
2	4,10	$6,0,0,0$	0.220176	0.516571	0.691139	0.805731	
2	4,10	$0,0,0,6$	0.220176	0.377969	0.492427	0.579475	
2	5,10	$5,0,0,0,0$	0.220176	0.476621	0.636421	0.745858	0.825689
2	5,10	$0,0,0,0,5$	0.220176	0.377969	0.492427	0.579475	0.648751

Table 4. Means of the concomitants of PT-II censored order statistics for the standard BGW distribution with $\theta=0.90$.

α	m_{0}, n	Scheme		Mean			
1	2,10	8,0	0.791751	0.94913			
1	2,10	0,8	0.791751	0.867371			
1	3,10	$7,0,0$	0.791751	0.924635	0.973624		
1	3,10	$0,0,7$	0.791751	0.867371	0.905027		
1	4,10	$6,0,0,0$	0.791751	0.908991	0.955924	0.982475	
1	4,10	$0,0,0,6$	0.791751	0.867371	0.905027	0.929301	
1	5,10	$5,0,0,0,0$	0.791751	0.897741	0.94274	0.969107	0.986931
1	5,10	$0,0,0,0,5$	0.791751	0.867371	0.905027	0.929301	0.946824
2	2,10	8,0	0.749137	0.856937			
2	2,10	0,8	0.749137	0.805526			
2	3,10	$7,0,0$	0.749137	0.84219	0.871684		
2	3,10	$0,0,7$	0.749137	0.805526	0.830734		
2	4,10	$6,0,0,0$	0.749137	0.832503	0.861564	0.876744	
2	4,10	$0,0,0,6$	0.749137	0.805526	0.830734	0.846014	
2	5,10	$5,0,0,0,0$	0.749137	0.825394	0.853831	0.869298	0.879226
2	5,10	$0,0,0,0,5$	0.749137	0.805526	0.830734	0.846014	0.85658

Table 5. Variances of the concomitants of PT-II censored order statistics for the standard BGW distribution with $\theta=0.50$.

α	m_{0}, n	Scheme		Variance			
1	2,10	8,0	0.195285	0.741739			
1	2,10	0,8	0.195285	0.347562			
1	3,10	$7,0,0$	0.195285	0.606725	0.840167		
1	3,10	$0,0,7$	0.195285	0.347562	0.469548		
1	4,10	$6,0,0,0$	0.195285	0.525646	0.734255	0.882579	
1	4,10	$0,0,0,6$	0.195285	0.347562	0.469548	0.570046	
1	5,10	$5,0,0,0,0$	0.195285	0.47150	0.658836	0.796939	0.906852
1	5,10	$0,0,0,0,5$	0.195285	0.347562	0.469548	0.570046	0.654972
2	2,10	8,0	0.107449	0.213924			
2	2,10	0,8	0.107449	0.150092			
2	3,10	$7,0,0$	0.107449	0.19876	0.210507		
2	3,10	$0,0,7$	0.107449	0.150092	0.170312		
2	4,10	$6,0,0,0$	0.107449	0.186296	0.203372	0.209697	
2	4,10	$0,0,0,6$	0.107449	0.150092	0.170312	0.182349	
2	5,10	$5,0,0,0,0$	0.107449	0.176605	0.196217	0.204539	0.209823
2	5,10	$0,0,0,0,5$	0.107449	0.150092	0.170312	0.182349	0.190473

Table 6. Variances of the concomitants of PT-II censored order statistics for the standard BGW distribution with $\theta=0.90$.

α	m_{0}, n	Scheme		Variance			
1	2,10	8,0	0.877894	0.963287			
1	2,10	0,8	0.877894	0.913014			
1	3,10	$7,0,0$	0.877894	0.946946	0.978427		
1	3,10	$0,0,7$	0.877894	0.913014	0.932212		
1	4,10	$6,0,0,0$	0.877894	0.937071	0.965229	0.984791	
1	4,10	$0,0,0,6$	0.877894	0.913014	0.932212	0.946122	
1	5,10	$5,0,0,0,0$	0.877894	0.93025	0.956015	0.974096	0.988277
1	5,10	$0,0,0,0,5$	0.877894	0.913014	0.932212	0.946122	0.957275
2	2,10	8,0	0.230545	0.214788			
2	2,10	0,8	0.230545	0.218499			
2	3,10	$7,0,0$	0.230545	, 0.215351	0.213791		
2	3,10	$0,0,7$	0.230545	0.218499	0.214908		
2	4,10	$6,0,0,0$	0.230545	0.21593	0.213631	0.213794	
2	4,10	$0,0,0,6$	0.230545	0.218499	0.214908	0.213561	
2	5,10	$5,0,0,0,0$	0.230545	0.216466	0.213713	0.213429	0.213892
2	5,10	$0,0,0,0,5$	0.230545	0.218499	0.214908	0.213561	0.213094

4. BLU estimator of the parameter β_{2}^{\star} of BGW distribution

In this part, we obtain the BLU estimator of β_{2}^{\star} involved in the BGW distribution using Stoke's RSS. Assume that n sets of units, each of size n, are taken from the BGW distribution with the PDF given in (2.1). Let $X_{\left(i: n n_{i}\right.}, i=1, \cdots, n$ represent the observation made on the auxiliary variable X in the $i^{t h}$ unit of the RSS, and $Y_{[i: n]_{i}}$ represent the measurement performed on the Y variable in the same unit. It is obvious that $Y_{[i: n]_{i}}$ has the same distribution as $Y_{[i: n]}$, the concomitant of the $i^{\text {th }}$ order statistics (see David and Nagraja, [10], p. 145). From Remark 6, the mean and the variance of $Y_{[i: n]}$ are given as $E\left[Y_{[:: n]_{i}}\right]=\beta_{2}^{\star} \mu_{[i: n]}$, and $\operatorname{Var}\left[Y_{[i: n]_{i}}\right]=\beta_{2}^{\star 2} \delta_{i, i: n}, 1 \leq i \leq n$. Because the two measurements $Y_{[i: n]_{i}}$ and $Y_{[j: n]_{j}}(i \neq j)$ of Y are based on two independent samples, we have $\operatorname{Cov}\left[Y_{[i: n]_{i}}, Y_{[j: n]_{j}}\right]=0$.

Let $\mathbf{Y}_{[n]}=\left(Y_{[1: n]_{1}}, Y_{[2: n]}, \cdots, Y_{[n: n]_{n}}\right)^{\prime}$ denote the column vector of COS. Then, the mean vector and the variance-covariance matrix of $\mathbf{Y}_{[n]}$ can be written as

$$
\begin{equation*}
E\left[\mathbf{Y}_{[n]}\right]=\beta_{2}^{\star} \boldsymbol{\mu} \tag{4.1}
\end{equation*}
$$

and

$$
\begin{equation*}
D\left[\mathbf{Y}_{[n]}\right]=\beta_{2}^{\star^{2}} \Lambda \tag{4.2}
\end{equation*}
$$

where $\boldsymbol{\mu}=\left(\mu_{[1: n]}, \cdots, \mu_{[n: n]}\right)^{\prime}$ and $\Lambda=\operatorname{diag}\left(\delta_{1,1: n}, \delta_{2,2: n}, \cdots, \delta_{n, n: n}\right)$. If the parameters α and θ are known, then the combination of (4.1) and (4.2) allow us to apply the generalized Gauss-Markov theorem (see David and Nagraja, [10], p. 185). Hence, the BLU estimator $\hat{\beta}_{2}^{\star}$ of β_{2}^{\star} is given as

$$
\begin{align*}
\hat{\beta_{2}^{\star}}= & \left(\boldsymbol{\mu}^{\prime} \Lambda^{-1} \boldsymbol{\mu}\right)^{-1} \boldsymbol{\mu}^{\prime} \Lambda^{-1} \mathbf{Y}_{[n]} \\
& =\sum_{i=1}^{n} a_{i} Y_{[i: n]}, \tag{4.3}
\end{align*}
$$

where $a_{i}=\frac{\mu_{i: n} / \delta_{i, i n}}{\sum_{i=1}^{n} \mu_{[: i n]} \mid \delta_{i, i n}}$, and the variance of $\hat{\beta_{2}^{\star}}$ is given by

$$
\begin{align*}
\operatorname{Var}\left[\hat{\beta_{2}^{\star}}\right]= & \left(\boldsymbol{\mu}^{\prime} \Lambda^{-1} \boldsymbol{\mu}\right)^{-1} \beta_{2}^{\star^{2}} \\
& =\left(\sum_{i=1}^{n} \mu_{[i: n]}^{2} / \delta_{i, i: n}\right)^{-1} \beta_{2}^{\star^{2}} \tag{4.4}
\end{align*}
$$

We have calculated the coefficients a_{i} of $Y_{[i: n] i}, i=1, \cdots, n$ in $\hat{\beta}_{2}^{\star}$ and $\operatorname{Var}\left[\hat{\beta}_{2}^{\star}\right] / \beta_{2}^{\star}$ for $n=1, \cdots, 5$, and different values of the parameters α and θ are presented in Tables 7 and 8.

A modified RSS approach is presented by Stokes [43], wherein only the largest or smallest judgment ranked unit is selected for quantification. Let n random samples each of size n be drawn from the BGW distribution. From each of the n samples, choose the unit for which the measurement on the auxiliary variable X is the smallest (largest) and measure the Y variable associated with it. Then, we call the collection of observations $Y_{[1: n]_{1}}, Y_{[1: n]_{2}}, \cdots, Y_{[1: n]_{n}}\left(Y_{[n: n]_{1}}, Y_{[n: n]_{2}}, \cdots, Y_{[n: n]_{n}}\right)$ as the lower RSS (LRSS) (upper RSS (URSS)).

Based on LRSS and URSS, the BLU estimators $\tilde{\beta}_{2, L R S S}^{\star}$ and $\tilde{\beta}_{2, U R S S}^{\star}$ of β_{2}^{\star} are

$$
\begin{equation*}
\tilde{\beta}_{2, L R S S}^{\star}=\frac{1}{n \mu_{[1: n]}} \sum_{i=1}^{n} Y_{[1: n]} \tag{4.5}
\end{equation*}
$$

$$
\begin{equation*}
\tilde{\beta}_{2, U R S S}^{\star}=\frac{1}{n \mu_{[n: n]}} \sum_{i=1}^{n} Y_{[n: n] i}, \tag{4.6}
\end{equation*}
$$

and their variances are

$$
\begin{align*}
& \operatorname{Var}\left[\tilde{\beta}_{2, L R S S}^{\star}\right]=\left(n \mu_{[1: n]}^{2} / \delta_{1,1: n}\right)^{-1} \beta_{2}^{\star^{2}}, \tag{4.7}\\
& \left.\operatorname{Var}\left[\tilde{\beta}_{2, U R S S}^{\star}\right]=\left(n \mu_{[n: n]}^{2}\right] \delta_{n, n: n}\right)^{-1} \beta_{2}^{\star^{2}} . \tag{4.8}
\end{align*}
$$

The efficiencies e_{1} of $\tilde{\beta}_{2, \text { LRSS }}^{\star}$ and e_{2} of $\tilde{\beta}_{2, U R S S}^{\star}$ relative to $\hat{\beta_{2}^{\star}}$ are given by

$$
e_{1}=\frac{\operatorname{Var}\left[\hat{\beta_{2}^{\star}}\right]}{\operatorname{Var}\left[\tilde{\beta}_{2, L R S S}^{\star}\right]}, \quad e_{2}=\frac{\operatorname{Var}\left[\hat{\beta_{2}^{\star}}\right]}{\operatorname{Var}\left[\tilde{\beta}_{2, U R S S}^{\star}\right]},
$$

see, for example, Koshti and Kamalja [27] and Philip and Thomas [37]. We have computed the efficiencies e_{1} and e_{2} for $n=2, \cdots, 5, \alpha=1,2$, and $\theta=0.50,0.90$, which are presented in Table 9 . From Table 9 , it can be observed that:

- The efficiency e_{1} is less than one for all selected values of α, θ, and n. So, $\hat{\beta_{2}^{\star}}$ is relatively more efficient than $\tilde{\beta}_{2, L R S S}^{\star}$.
- The efficiency e_{1} decreases as α increases, and for a fixed pair $(n, \alpha), e_{1}$ increases as θ increases.
- The efficiency e_{2} is greater than one for all selected values of α, θ, and n. Thus, $\tilde{\beta}_{2, U R S S}^{\star}$ is relatively more efficient than $\hat{\beta_{2}^{\star}}$.
- The efficiency e_{2} increases as α increases, and for a fixed pair $(n, \alpha), e_{2}$ decreases as θ increases.

Table 7. The coefficients a_{i} in the BLUE $\hat{\beta_{2}^{\star}}$ and $\operatorname{Var}\left[\hat{\beta_{2}^{\star}}\right] / \beta_{2}^{\star 2}$ for $\theta=0.50$.

α	n	Coefficients $\left(a_{i}\right)$					
1	1	1.62994					
	2	0.75389	0.85091				
	3	0.48490	0.53764	0.57288			0.90691
	4	0.35637	0.39005	0.41430	0.43032		0.59296
	5	0.28143	0.30502	0.32279	0.33551	0.34396	0.43957
2	1	1.59732					0.34893
	2	0.64431	0.90259				0.56534
	3	0.38632	0.52409	0.61801			0.25654
	4	0.27147	0.35952	0.42265	0.46582		0.16359
	5	0.20763	0.26986	0.31575	0.34884	0.37235	0.11956

Table 8. The coefficients a_{i} in the BLUE $\hat{\beta_{2}^{\star}}$ and $\operatorname{Var}\left[\hat{\beta_{2}^{\star}}\right] / \beta_{2}^{\star 2}$ for $\theta=0.90$.

α	n	Coefficients $\left(a_{i}\right)$					
1	1	1.07136					
	2	0.52613	0.54453				
$\left.\beta_{2}^{\star}\right] / \beta_{2}^{\star 2}$							
	3	0.34606	0.36012	0.36408			0.54834
	4	0.25675	0.26814	0.27185	0.27327		0.36523
	5	0.20354	0.21310	0.21651	0.21800	0.21866	0.27375
2	1	1.18181					0.21891
	2	0.56671	0.61384				0.30365
	3	0.36625	0.40182	0.41178			0.15123
	4	0.26791	0.29656	0.30558	0.30934		0.10059
	5	0.20987	0.23386	0.24202	0.24571	0.24758	0.06019

Table 9. Efficiencies of the estimators $\tilde{\beta}_{2, L R S S}^{\star}$ and $\tilde{\beta}_{2, U R S S}^{\star}$ relative to $\hat{\beta_{2}^{\star}}$.

	e_{1}				e_{2}	
n	θ	$\alpha=1$	$\alpha=2$	$\alpha=1$	$\alpha=2$	
2	0.50	0.68524	0.64926	1.31476	1.35074	
3	0.50	0.52948	0.49563	1.44557	1.47260	
4	0.50	0.43425	0.40617	1.51216	1.52362	
5	0.50	0.36923	0.34637	1.55104	1.54852	
2	0.90	0.94500	0.93347	1.05501	1.06654	
3	0.90	0.90719	0.88724	1.07020	1.08120	
4	0.90	0.87843	0.85183	1.07685	1.08669	
5	0.90	0.85528	0.82321	1.08048	1.08932	

5. Real data application

For illustration purposes, we have considered the American Football League dataset given in Jamalizadeh and Kundu [19]. The bivariate dataset represents the game time to the first points scored by kicking the ball between goal posts (X) and the 'game time' by moving the ball into the end zone (Y). Pathak et al. [34] demonstrated that the BGW distribution fits this data better than other real-life time models. Here, we generate random samples of size five using forty-two pairs of observations. The samples under RSS schemes are displayed in Table 10.

Table 10. Samples of size $n=5$ under various RSS schemes.

Scheme	Sample values for Y-variable				
RSS	0.75	7.78	38.07	49.75	20.57
LRSS	0.75	2.9	2.9	6.42	3.98
URSS	49.88	15.53	49.75	42.35	20.57

The estimator of β_{2}^{\star} under various RSS schemes is a function of α and θ, which are unknown in this case. Thus, the method of moment estimation can be taken (see Kamalja and Koshti [21], for
example). To obtain the moment estimators of α and θ, we use the moment equations based on the moments of Y-observations and the moment equation based on the correlation between (X, Y). These give $\hat{\alpha}=3.39821$ and $\hat{\theta}=0.24259$. Table 11 shows the estimates of β_{2}^{\star} under the RSS, LRSS, and URSS schemes. The results show that $\tilde{\beta}_{2, U R S S}^{\star}$ has the smallest variance. This is consistent with the findings of the efficiency performance study in Section 4.

Table 11. The estimates of β_{2}^{\star} under various RSS schemes.

Scheme	Estimator of β_{2}^{\star}	Estimate of β_{2}^{\star}	Variance $/ \beta_{2}^{\star 2}$
RSS	$\hat{\beta}_{2}^{\star}$	48.4195	0.07167
LRSS	$\tilde{\beta}_{2, \text { LRSS }}^{\star}$	33.1903	0.89618
URSS	$\tilde{\beta}_{2, \text { URSS }}^{\star}$	45.0528	0.03010

6. Conclusions

In this paper, we have considered the CGOS from the BGW distribution. We have derived the PDFs and moments of CGOS from the BGW distribution. Similar results for order statistics and PTII censored order statistics are presented as special instances. Finally, we have obtained the BLU estimator of the parameter associated with the study variable based on Stoke's RSS. Moreover, a real dataset is used for illustration purposes. The results for higher joint moments can be used to create skewness or kurtosis matrices (Kollo, [25]), which have important applications in both independent component analysis and invariant coordinate selection. This could be an interesting topic for future research. It will also be interesting to discuss the problem of predicting intervals for future order statistics and record values using concomitants of order statistics and record values arising from BGW distribution; see, for example, Muraleedharan and Chacko [33]. In addition, some information measures, such as the Shannon entropy and extropy, for CGOS can also be investigated.

Use of AI tools declaration

The authors declare they have not used Artificial Intelligence (AI) tools in the creation of this article.

Acknowledgments

The author would like to acknowledge the Deanship of Graduate Studies and Scientific Research, Taif University for funding this work.

Conflict of interest

The author declares that no conflict of interest exist.

References

1. M. Ahsanullah, V. B. Nevzorov, Ordered random variables, Nova Science Publishers Incorporated (NY), 2001.
2. M. A. Alawady, H. M. Barakat, S. Xiong, M. A. Abd Elgawad, Concomitants of generalized order statistics from iterated Farlie-Gumbel-Morgenstern type bivariate distribution, Comm. Statist.Theory Methods, 51 (2022), 5488-5504. https://doi.org/10.1080/03610926.2020.1842452
3. H. M. Barakat, E. M. Nigm, M. A. Alawady, I. A. Husseiny, Concomitants of order statistics and record values from iterated FGM type bivariate-generalized exponential distribution, REVSTATStatist. J., 19 (2021), 291-307. https://doi.org/10.57805/revstat.v19i2.344
4. M. I. Beg, M. Ahsanullah, Concomitants of generalized order statistics from Farlie-Gumbel-Morgenstern distributions, Stat. Methodol., 5 (2008), 1-20. https://doi.org/10.1016/j.stamet.2007.04.001
5. M. Chacko, P. Y. Thomas, Estimation of a parameter of Morgenstern type bivariate exponential distribution by ranked set sampling, Ann. Inst. Statist. Math., 60 (2008), 301-318. https://doi.org/10.1007/s10463-006-0088-y
6. E. Chaumette, F. Vincent, Concomitant of ordered multivariate normal distribution with application to parametric inference, 2017 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), IEEE, 2017, 4481-4485. https://doi.org/10.1109/ICASSP.2017.7953004
7. Z. Chen, Z. Bai, B. K. Sinha, Ranked set sampling: theory and applications, Vol. 176, New York: Springer, 2004. https://doi.org/10.1007/978-0-387-21664-5
8. H. A. David, Concomitants of order statistics, Bull. Int. Statist. Inst., 45 (1973), 295-300.
9. H. A. David, H. N. Nagaraja, 18 Concomitants of order statistics, Handbook statist., 16 (1998), 487-513. https://doi.org/10.1016/S0169-7161(98)16020-0
10. H. A. David, H. N. Nagaraja, Order statistics, John Wiley \& Sons, 2004. https://doi.org/10.1002/0471722162
11. F. Domma, S. Giordano, Concomitants of m-generalized order statistics from generalized Farlie-Gumbel-Morgenstern distribution family, J. Comput. Appl. Math., 294 (2016), 413-435. https://doi.org/10.1016/j.cam.2015.08.022
12. Y. F. Dong, W. X. Chen, M. Y. Xie, Best linear unbiased estimators of location and scale ranked set parameters under moving extremes sampling design, Acta Math. Appl. Sin., Engl. Ser., 39 (2023), 222-231. https://doi.org/10.1007/s 10255-023-1043-x
13. M. M. El-Din, M. M. Amein, M. S. Mohamed, Concomitants of case-II of generalized order statistics from Farlie-Gumbel-Morgenstern distributions, J. Statist. Appl. Probabil., 3 (2014), 345. https://digitalcommons.aaru.edu.jo/jsap/vol3/iss3/5
14. I. S. Gradshteyn, I. M. Ryzhik, Table of integrals, series, and products, Academic press, 2014.
15. S. Hanif, M. Q. Shahbaz, Concomitants of generalized order statistics for a bivariate exponential distribution, Pak. J. Stat. Oper. Res., 12 (2016), 227-234. https://doi.org/10.18187/pjsor.v12i2.1326
16. M. R. Irshad, R. Maya, A. I. Al-Omari, S. P. Arun, G. Alomani, The extended Farlie-GumbelMorgenstern bivariate Lindley distribution: concomitants of order statistics and estimation, Electron. J. Appl. Stat. Anal., 14 (2021), 373-388. https://doi.org/10.1285/i20705948v14n2p373
17. M. R. Irshad, R. Maya, A. I. Al-Omari, A. A. Hanandeh, S. P. Arun, Estimation of a parameter of farlie-gumbel-morgenstern bivariate bilal distribution by ranked set sampling, Reliabil.: Theory Appl., 18 (2023), 164-175.
18. A. Jamalizadeh, N. Balakrishnan, Concomitants of order statistics from multivariate elliptical distributions, J. Stat. Plan. Infer., 142 (2012), 397-409. https://doi.org/10.1016/j.jspi.2011.07.010
19. A. Jamalizadeh, D. Kundu, Weighted Marshall-Olkin bivariate exponential distribution, Statistics, 47 (2013), 917-928. https://doi.org/10.1080/02331888.2012.670640
20. M. Kamal, I. Alam, A. Rahman, A. Salam, S. Zarrin, Moments properties of concomitants of generalized order statistics from FGMTBM exponential distribution, Reliabil.: Theory Appl., 18 (2023), 348-358.
21. K. K. Kamalja, R. D. Koshti, Application of ranked set sampling in parameter estimation of cambanis-type bivariate exponential distribution, Statistica, 82 (2022), 145-175. https://doi.org/10.6092/issn.1973-2201/11973
22. U. Kamps, A concept of generalized order statistics, J. Stat. Plan. Infer., 48 (1995), 1-23. https://doi.org/10.1016/0378-3758(94)00147-N
23. U. Kamps, E. Cramer, On distributions of generalized order statistics, Statistics, 35 (2007), 269280. https://doi.org/10.1080/02331880108802736
24. A. H. Khan, M. J. S. Khan, On ratio and inverse moment of generalized order statistics from Burr distribution, Pak. J. Stat., 28 (2012), 59-68.
25. T. Kollo, Multivariate skewness and kurtosis measures with an application in ICA, J. Multivariate Anal., 99 (2008), 2328-2338. https://doi.org/10.1016/j.jmva.2008.02.033
26. R. D. Koshti, K. K. Kamalja, Parameter estimation of Cambanis-type bivariate uniform distribution with ranked set sampling, J. Appl. Stat., 48 (2021), 61-83. https://doi.org/10.1080/02664763.2019.1709808
27. R. D. Koshti, K. K. Kamalja, Efficient estimation of a scale parameter of bivariate Lomax distribution by ranked set sampling, Calcutta Statist. Assoc. Bull., 73 (2021), 24-44. https://doi.org/10.1177/0008068321992520
28. R. D. Koshti, K. K. Kamalja, A review on concomitants of order statistics and its application in parameter estimation under ranked set sampling, J. Korean Stat. Soc., 53 (2024), 65-99. https://doi.org/10.1007/s42952-023-00235-2
29. S. Kumar, M. J. S. Khan, S. Kumar, Concomitant of order statistics from new bivariate gompertz distribution, J. Mod. Appl. Stat. Meth., 18 (2019), 1-20. https://doi.org/10.56801/10.56801/v18.i. 1056
30. A. M. Mathai, R. K. Saxena, Generalized hypergeometric functions with applications in statistics and physical sciences, Vol. 348, Springer Berlin, Heidelberg, 1973. https://doi.org/10.1007/BFb0060468
31. G. A. McIntyre, A method for unbiased selective sampling, using ranked sets, Aust. J. Agr. Res., 3 (1952), 385-390. https://doi.org/10.1071/AR9520385
32. S. M. Mirhosseini, M. Amini, D. Kundu, A. Dolati, On a new absolutely continuous bivariate generalized exponential distribution, Stat. Methods Appl., 24 (2015), 61-83. https://doi.org/10.1007/s 10260-014-0276-5
33. L. Muraleedharan, M. Chacko, Interval prediction of order statistics and record values using concomitants of order statistics and record values for Morgenstern family of distributions, J. Stat. Res., 56 (2023), 55-73. https://doi.org/10.3329/jsr.v56i1.63946
34. A. K. Pathak, M. Arshad, Q. J. Azhad, M. Khetan, A. Pandey, A novel bivariate generalized Weibull distribution with properties and applications, Amer. J. Math. Management Sci., 42 (2023), 279-306. https://doi.org/10.1080/01966324.2023.2239963
35. A. K. Pathak, P. Vellaisamy, A bivariate generalized linear exponential distribution: properties and estimation, Commun. Stat.-Simul. Comput., 51 (2022), 5426-5446. https://doi.org/10.1080/03610918.2020.1771591
36. A. Philip, P. Y. Thomas, On concomitants of order statistics arising from the extended Farlie-Gumbel-Morgenstern bivariate logistic distribution and its application in estimation, Stat. Methodol., 25 (2015), 59-73. https://doi.org/10.1016/j.stamet.2015.02.002
37. A. Philip, P. Y. Thomas, On concomitants of order statistics and its application in defining ranked set sampling from Farlie-Gumbel-Morgenstern bivariate Lomax distribution, JIRSS, 16 (2017), 67-95.
38. A. Philip, P. Y. Thomas, On concomitants of order statistics from Farlie-Gumbel-Morgenstern bivariate lomax distribution and its application in estimation, JIRSS, 16 (2022), 67-95.
39. S. H. Shahbaz, M. Al-Sobhi, M. Q. Shahbaz, B. Al-Zahrani, A new multivariate Weibull distribution. Pak. J. Stat. Oper. Res., 14 (2018), 75-88. https://doi.org/10.18187/pjsor.v14i1. 2192
40. S. H. Shahbaz, M. Q. Shahbaz, Concomitants of generalized order statistics for a bivariate Weibull distribution, Pak. J. Stat. Oper. Res., 13 (2017), 867-874. https://doi.org/10.18187/pjsor.v13i4.2139
41. A. Sheikhi, Y. Mehrali, M. Tata, On the exact joint distribution of a linear combination of order statistics and their concomitants in an exchangeable multivariate normal distribution, Stat. Papers, 54 (2013), 325-332. https://doi.org/10.1007/s00362-012-0430-9
42. S. L. Stokes, Ranked set sampling with concomitant variables, Comm. Statist.-Theory Methods, 6 (1977), 1207-1211. https://doi.org/10.1080/03610927708827563
43. S. L. Stokes, Inferences on the correlation coefficient in bivariate normal populations from ranked set samples, J. Amer. Statist. Assoc., 75 (1980), 989-995. https://doi.org/10.1080/01621459.1980.10477584
44. S. Tahmasebi, A. A. Jafari, M. Ahsanullah, Properties on concomitants of generalized order statistics from a bivariate Rayleigh distribution, Bull. Malays. Math. Sci. Soc., 41 (2018), 355370. https://doi.org/10.1007/s40840-015-0297-8
45. K. Takahasi, K. Wakimoto, On unbiased estimates of the population mean based on the sample stratified by means of ordering, Ann. Inst. Stat. Math., 20 (1968), 1-31. https://doi.org/10.1007/BF02911622
46. T. G. Veena, P. Y. Thomas, Role of concomitants of order statistics in determining parent bivariate distributions, Comm. Statist.-Theory Methods, 46 (2017), 7976-7997. https://doi.org/10.1080/03610926.2016.1171351
47. S. S. Yang, General distribution theory of the concomitants of order statistics, Ann. Statist., 5 (1977), 996-1002. https://doi.org/10.1214/aos/1176343954
© 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0)
