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1. Introduction

In 1995, Kamps presented the notion of generalized order statistics (GOS), which is the unification
of different models of ascendingly ordered random variables (RVs). The GOS incorporates significant
and well-known concepts that have been discussed individually in the statistical literature. Many
models of ascendingly ordered RVs, such as sequential order statistics, progressive Type-1I (PT-II)
censored order statistics, ordinary order statistics (OOS), record values, and Pfeifer’s record model,
are theoretically contained in the GOS model.

Assume F(.) to be an arbitrary continuous cumulative distribution function (CDF) with probability
density function (PDF) f(.). Assume also k > 0, n € N, and i = (m,my,--- ,m,_;) € R""! to be the
parameters such thaty, = kandy;, =k+n—-i+ M;, fori=1,--- ,n—1, where M; = Z?;il m,. Then,
the RVs X mx.i = 1,- -+, n, are said to be GOS, if their joint PDF is given by
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=

where F()=1-F()and F7'(0) < x; <--- < x, < F'(1).

Several models of arranged RVs can be considered special instances of GOS. my = m, = -+ =
My =m;y;=k+m—i)(m+1),i=1,---,n corresponds to m-generalized order statistics (m-GOS),
vi=n—i+1(m; =0,k = 1) corresponds to OOS, and m; = —1;y; = k,i=1,--- ,n, k € N corresponds
to k-recored values. Also, for m; = R;, n = my + ZZ’;’I R,,R, € N,and y; = n — Z’ 'R, —i+1,
1 <i < my, where my denotes the fixed number of failure of units to be observed, the model reduces to
PT-II censored order statistics.

Under the condition y; # yj,i,j=1,--- ,n—1,i # j, Kamps and Cramer [23] derived the PDF of
Xk, 1 £r<nas

Fonana® = Coof@ Y ai [F]" (1.2)
i=1

and the joint PDF of X,.,, s and X4 » 1, s = 1,--+ ,n, r < s as

Frsnmw(®y) = Cyy [Zai,r [F(x)]%HZ 5’3[?3;] ]

i=1 j=r+l
WICN R 13
F(X) Fyy
where C,_y = [, vi, iy = H’; —l<isr<n, anda(’) Hf;“ Tt I<j<s<n
It can be shown that for m; = m, = =m,_; =m+#* —1 (Khan and Khan [24]),

~ (1) r—1
G = o 1y - 1)!(r— i)

and .
4" = (=)™ s—r—1j
BT m Dy s —r=DI\ s—j
Therefore, the PDF of X,.,, 7« given in (1.2) reduces to
C r—1
Frnmi®) = [Fe]™ rog" (F), (1.4)

(r— 1)‘
and the joint PDF of X,., 74 and X;., 74 given in (1.3) reduces to

Csi i mo o s—r—
Frsnns53) = T |F)|" g5 (Fo) [ (F) = b (FGe)] ™!
<[FO)|"™ fef0). x <, (1.5)
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, {—La —x)m™ m# 1,
where C,_y = [, vi» vi = k+ (@ —i(m+ 1), hy(x) = § ™! and g,,(x) =
—In(1 - x), m= -1,

hy(x) — h,(0), x € [0, 1) (see Kamps [22]).

David [8] introduced the concept of concomitants of order statistics (COS), but Yang [47] described
the general theory of COS. Concomitants are important in selection and prediction issues, ranked set
sampling, parameter estimation, and the characterization of parent bivariate distributions. For a brief
overview of the uses of the concomitants of ordered RVs, see Veena and Thomas [46] and the references
therein. For a review of fundamental findings on COS, see Daivd and Nagaraja [9]. Furthermore, for
some of the recent works on COS, we refer to Philip and Thomas [36-38], Kumar et al. [29], Barakat
et al. [3], and Koshti and Kamalja [28].

Several authors have investigated the concomitants of GOS (CGOS), including Ahsanullah and
Nevzorov [1], Beg and Ahsanullah [4], El-Din et al. [13], Domma and Giordano [11], Hanif and
Shahbaz [15], Shahbaz and Shahbaz [40], Tahmasebi et al. [44], Alawady et al. [2], and Kamal
etal. [20]. Let (X}, Y;),i = 1,--- ,nbe arandom sample from a bivariate distribution function F y(x,y).
When the X-variates are ordered in ascending order as Xi.,mx < Xommk < Xzmmk < -+ < Xpmmk,> then
Y-variates paired (not necessarily in ascending order) with these GOS are called the CGOS and are
indicated by Yj,.nmi. ¥ = 1,- -+ ,n. The PDF of Y}, s 1s given by (Ahsanullah and Nevzorov, [1])

h[r:n,ﬁl,k](y) = f f@lx)ﬁ’:n,nﬁ,k(x)dxa (16)
where f(y|x) is the conditional PDF of Y given X and f,.,, »«(x) is defined in (1.2).
Moreover, the joint PDF of Y|,., a4 and Yjenmi, 7,8 = 1,--+ ,n, r < s1s given by
hisnmia(,y2) = f f SOulx) f2lx2) frsnma (X1, X2)dx2d Xy, (1.7)
—o0 J x|

where f, ;.. mx(x1, X2) 1s given in (1.3).

One of the most notable applications of COS is in ranked set sampling (RSS). RSS is considered
a beneficial sampling strategy for improving estimation efficiency and precision if the variable under
study is expensive to measure or difficult to get, yet inexpensive and simple to rank. RSS was proposed
by Mclntyre [31] and then supported by Takahasi and Wakimoto [45] through mathematical theory.
The procedure for RSS is described as follows:

1) Randomly choose n? units from the population under study, then divide them into 7 sets of n units.

2) Order the elements of each set without making actual measurements.

3) Choose and quantify the /" minimum from the i"* set,i = 1,--- ,n, to create a new set of size n,
known as the RSS.

4) If a large sample size is required, repeat the above three steps d times (cycles) until a sample of
size nd 1s obtained.

For a comprehensive review of the theory and applications of RSS, see Chen et al. [7]. In some practical
applications, the study variable, say, Y, is more difficult to measure, whereas an auxiliary variable X
associated with Y is easily quantifiable and may be precisely arranged. In this situation, Stokes [42]
created another RSS technique, which is as follows:
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1) Atrandom, choose n independent bivariate sets of size n.
2) Take note of the value of the auxiliary variable on each of these units.
3) From the i set of size n, choose the variable Y associated with the i smallest X,i=1,--- ,n.

The resulting set of n units is known as the RSS. Consider (X;.n),, Y(izny,), § = 1,--- ,n to be the pair
chosen from the i set, where X, is the i order statistics of the auxiliary variate in the i’ set
and Yj;.,), 1s the measurement made on the Y variate associated with X.,).. Y|i,, 1S obviously the
concomitant of the i order statistics resulting from the i sample. Numerous authors in the literature
have considered the estimation of parameters of the various bivariate distributions using RSS and its
modifications. Some work in this area is by Chacko and Thomas [5], Philip and Thomas [36, 37],
Koshti and Kamalja [26], Irshad et al. [16, 17], and Dong et al. [12].

COS and higher moments of multivariate distributions have received a lot of attention in recent
years. Most of the literature on concomitants is concentrated on symmetric distributions such
as multivariate normal (Sheikhi et al., [41]; Chaumette and Vincent, [6]) or multivariate elliptical
(Jamalizadeh and Balakrishnan, [18]). Skewed distributions have gained a lot of interest recently in the
literature since many datasets encountered in reality have some degree of skewness. In this regard, the
distribution theory of COS from skew distributions has been investigated by several authors, including
Hanif and Shahbaz [15], Shahbaz and Shahbaz [40], Tahmasebi et al. [44], Shahbaz et al. [39], and
Kamal et al. [20]. In this article, we consider the bivariate generalized Weibull (BGW) distribution
and the CGOS arising from it. There are numerous reasons for considering this particular bivariate
distribution. Due to the presence of four parameters, the joint PDF of the BGW distribution is quite
flexible and can take on various shapes depending on the shape parameter. The joint PDF, joint CDF,
and conditional PDF for the BGW distribution are all in closed forms, making them appropriate for
usage in practice. The univariate marginals of this distribution are able to analyze various types of
hazard rates. In addition, it can be utilized for modeling bivariate lifetime data in a variety of scenarios.
So far, no results on CGOS arising from the BGW distribution have been found in the literature.
Thus, the current study aims to develop the distribution theory of CGOS originating from the BGW
distribution and apply it to associated inference problems.

The article is structured as follows: In Section 2, we provide a brief overview of the BGW
distribution and some of its properties. In Section 3, we present the marginal PDF as well as the
explicit expressions for the single moments of CGOS from the BGW distribution. The joint PDF of
CGOS from the BGW distribution is also obtained in Section 3. Furthermore, the explicit expressions
for the product moments of CGOS are derived. Section 4 presents the best linear unbiased (BLU)
estimator of the parameter of the study variable contained in the BGW distribution using Stokes’s RSS
and some of the other modified RSS schemes. In Section 5, we apply the results to a real dataset. In
Section 6, conclusions are provided.

2. BGW distribution

A bivariate RV (X, Y) is said to follow a BGW distribution if its PDF is given by (Pathak et al. [34])
f(x, y) — QQZ(ﬂlﬁz)—lx(l—ly(l—le—w(x,y;qﬁ)(l _ e—w(x,y;¢))9—2(l _ ge—w(x,y;(b))’ (2 1)

where x,y > 0, @,£1,6, >0,0< 0 < 1, w(x,y;¢) = ;—: +;—Z, and ¢ = (a,B1,5,). The BGW distribution
includes the bivariate generalized exponential distribution (refer to Mirhosseini et al. [32]) and the
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bivariate generalized Rayleigh distribution (refer to Pathak and Vellaisamy [35]) as sub-models. The
conditional PDF of Y given X = x is (Pathak et al. [34])

FOR) = By e (1 — e IYA(1 - g D)1 - i, (2.2)

The RV X ~ EW(a, B, 0) is a member of the exponentiated Weibull (EW) distribution with PDF

) = Ba@B) xR (1 —e Y x>0, 2.3)
and CDF
Fix) = (1—e ) x>0. (2.4)

Similarly, Y ~ EW(a, B,, 0). A series expansion of the PDF of the BGW distribution is given by

[>9)

fony) = azwlﬁzrlx“‘ly“‘lZ(?)(—1>f“j2e‘f‘”<x’y;¢>. 2.5)

j=1
Pathak et al. [34] showed that the product moments of the BGW distribution are
P q\ a2t N (O) L
E(xPy?) =T(1 + =) + =)ByB; Z N (2.6)
a a Jj

ip+)/a’
= J

If we make the transformation, U = % and V = ,5'1*’ Br = ,6’; / “ i=1,2, the standard BGW distribution
1 2
has the joint PDF as

(o)

9 ; : (03 Q
*u,v) = azu”_lva_lz(_)(—l)]“ jreT i, 2.7)
J

J=1

It is clear that the variables U and V have the standard EW distribution as marginal functions with
PDFs are, respectively, given by

W) = Gaule™ (1 -e™) 1 u>0, (2.8)

v = 6 e (1 - v > 0. (2.9)
3. Distribution theory of CGOS from BGW distribution
In this part, we obtain the distributions and moments of CGOS arising from the BGW distribution.

3.1. Marginal PDF and single moments of CGOS

Suppose (X;,Y;) and (U;,V;) are random samples of size n each originating from the BGW
distribution and the standard BGW distribution, with PDFs provided by (2.1) and (2.7), respectively.
Let V},.umx be the concomitant of the r" GOS U,.nmx- Then, the PDF and the p™ moments of Virmikls
r=1,---,n are given by the following two theorems:
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Theorem 1. If V., sk is the concomitant of the r'" GOS from the standard BGW distribution, then the
PDF of Viymip forr =1,--- ,n, is given by

Bma) = @Coy )" > i, POy e v 20, (3.1)
=1 j=1
where 6q(J, ;) = ( )ZZ NG 1)1””(7’ )B( J, 0t + 1) and B(.,.) is the complete beta function.

Proof. Using the PDF of U,.,, s (1.2) in (1.6), the PDF of the r'" CGOS Virmmk 1 given as
r 00 _ 1
mmmo:cHZ@J mmeFfwm (3.2)
i=1 0

In view of (2.7) and (2.8), we get

00 Vi~

i) = aC. Z Z Z ir (_1)j+T+lj2(§)

i=1 j=1 7=0

=1 .
X(y )v"_le_” f e (1 — e 9)"dz
T 0

[provided that vy; is an integer], 3.3)

where z = u®. Now, by using Eq (3.3121) in Gradshteyn and Ryzhik [14] to compute the integral
in (3.3), we obtain the result given in (3.1). O

Corollary 1. Taking m; = my = --- = m,_, = m # —1 in (3.1), the PDF of the r'" concomitant of
m-GOS from the standard BGW distribution is given by

r

_ aC,_l r—i .2 r—1 jva 4
hpnmig(v) = =1 Z Z(— ) W 59(], v v 20, (3.4)

i=1 j=1

where y; = k+ (n—i)(m + 1).

Remark 1. When m = 0 and k = 1 in (3.4), we get the PDF of the r'" COS from the standard BGW
distribution as

B (V) = “C’"ZZ( 1)“2(r 1)5H(J,n—z+1)v“ e, (3.5)

i=1 j=1
!
where Cr:n = m

Theorem 2. Under the conditions of Theorem 1, the p™ moment of Virnmi IS

1)
/Jg’)n .k = Cr 1 Z Z al r 69(]9 71 . . (36)

i=1 j=1
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Proof. Using (3.1), the p” moment of Virmmi 18 glven as

#Ef)nmk] = [ [rin,m, k]] f Vph[rinﬁl,k] (v)dv
=C,. 122%] 69(1,71)f zie idy, (3.7
i=1 j=1
where z = v*. Then, after integration, we get (3.6). m]
Corollary 2. Taking my = my = --- = m,_; = m # —1 in (3.6), the p™ moment of the concomitant of
m-GOS is given by

C Sy (D (r-1 F(”+1)

») _ r-1 e 7
’u[rnWlk] - (r_ 1)7 ZZ (m+ 1)r—1(r_ )59(]ayl) ,3_1 (38)

i=1 j=1 J

Remark 2. Letm = 0 and k = 1 in (3.8), then the p™ moment of COS is
luif)n] = E[Vrn]]

-1 K&+
- YY1 ( _ )59(1, i+ D)= (3.9)

=1 j=1 Je

3.2. Joint PDF and product moments of CGOS

Let Virigg and Vigumigs > S = 1,--+ ,n,r < s be the concomitants of the 7" and s™ GOS from the
standard BGW distribution. Then, the joint PDF and the product moments of V., s and Vi, x4 are
given by the following two theorems:

Theorem 3. The joint PDF of concomitants Vi, mi and Vignmi, - S = 1, ,n,r < s is given by

Bpsnmia(vi,v2) = @Cy_ 12 Z Zza,ra | K1 Kk20g(K1, K2y Yis ¥ )

i=1 j=r+l k=1 k=

XV(II lv(21' le (K1V1+K2V2) LV, Vo > 0’ (310)

where

T vi—lyi—y;j—1 vi— 1 Yi—Vi— 1
o K tktT T2 L ! J
69(K1,K2’ Yis 7]) (K )(K )Z Z ( 1) ( T1 )( L) )

1 2 71=0 71=0

XB(K] + K2,9T2 + 1)3F2 (Kz,—QT],Kl + Ky Ky + 1,K1 + Ky + 97'2 + 1; 1),

where ;F>(ay, ay, as; by, by; x) denotes the hypergeometric function defined by

N (ar)e(az)e(as)e xf

F ) 1) ; b 2 b ; = o
sFa(ay, az, as; by, ba; x) (b)) 1!

and (¢); = c(c+ 1)---(c + £ — 1) is the ascending factorial.
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Proof. Using (1.3) in (1.7), the joint PDF of the #" and s CGOS V/,.,.n4) and V| 1S given as

h[,,s;n,m,k](vl,w) = Cs—l Z Z a;ra (r)f f f(vllul)f(v2|u2)

i=1 j=r+l
yimyj-1

< [Fan™ [Fa)]”™ fan) fun)dus dus. (3.11)

In view of (2.7) and (2.8), we get

r S ] o]
4 2
h[r,s:n,rh,k](vl’ VZ) = «a Cs—l Z Z Z Z ai,r a;f;(_l)l(ﬁkrr

i=1 j=r+l k=1 k=1

6 9 — — — @ g
XK K ViVl g
K1/\K2

xf i e = (1= e D P () duy, (3.12)
0

where

1 a @
Iuy) = Z( 1)’1(” ) f us~l e (1 — ™) duy

71=0

_a—lz( 1)71(71 I)BW(KZ,T19+1), (3.13)

71=0

where w = e and B,,(.,.) denotes the incomplete beta function defined by B,,(a;,a,) = fow x4 -
x)“"ldx.
Now, putting the value of I(u) in (3.12), we get

) co Vi~ 1yi— Yi—

2
B snmi(Vi,v2) = @*Cy 12 Z Z Z Z Z aj, Cl;’r‘z(—l)'ﬁ'@”'+T2+

i=1 j=r+l k=1 kp=171=0 72=0

XK%K% 0\ 6 Vi~ 1 Yi—VYi— 1 v(lr—lvfzz—le—Klv‘lye—sz‘z’
K1 J\K2 T1 T2

Xf e (1 — e B, (kp, 7,0 + 1)dz
0

[provided that y; — y; is an integer] , (3.14)

where z = u{. We know that B, (a;,a;) = vZ—allel (a1, 1 —ay; a; + 1; w) (see Mathai and Saxena, [30]),
and

1
f 11 = x"" 2 Fi(c, d; e; x)dx = B(a,b)3Fa(c, d, a; e, a + b; 1).
0
(3.15)

Therefore,
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oo oo Yj—lvi—yj-1

2
h[r,s:n,ﬁz,k](vla V2) = @ Cv 12 Z Z Z Z Z alr ("rz(_l)Kl+K2+Tl+72+

i=1 j=r+lk=1k=17=0 71,=0

0\f06 =N\ fyi—y: -1 o o
XK%Kz( )( )(7] )(7 )/J )V?—lvg—le—lqvl e—sz2
Ki1J\K2 T1 T

1
Xf tK1+K2—1(1 _ [)T202F1(K2, —Tlg; K> + 1; t)dt’
0

where = e7*. Now, using (3.15), we get the result of (3.10). O

Corollary 3. Atmy =my =--- =m,_; = m # —1in (3.10), the joint PDF of concomitants V., 1 and
Vignmu of the ¥ and s™ m-GOS for the standard BGW distribution is given by

@*C,_, D= r=1\(s=r—1) ,
HrsnmiV1:V2) = (r—l)!(s—r—l)'zzz <m+1>s2(r-z)( s—j )K‘Kz

i=1 j=r+l k=1 k=1

X8g(K1, K2, Vi ¥j) Vi Vgl e VTR [y ) > 0, (3.16)

where y; = k+ n—i)(m+1).

Remark 3. For m = 0 and k = 1 in (3.16), we obtain the joint PDF of the v and s™ COS from the
standard BGW distribution as

o e o AT

i=1 j=r+l k=1 k=1

a—1 e 1 (k1] +k215)
Vo

X0p(k1,kp,n—i+ 1,n—j+1)v] , Vi1, va > 0, (3.17)

n!

where Crsn = G Do

Theorem 4. The product moments of two concomitants Vi, mx and Visnmi are given by

.9
/J[f,sq;n,,h’k] = Cs IZ Z ZZ“”‘Z(Q Oa(K1, K2, Vis ¥ j)

i=1 j=r+lki=1ky=

T2+ 1D)IE+1)
X

71 7 . (3.18)
Ki’ Ké’

Proof. Using (3.10), the p™ and g™ moments of Virmmk and Vi, m are given as

(r.9) — =
#[rsnmk] - E[ [r:n,mk] snmk]] f f vvzh[rsnmk](VI’VZ)dVIdVZ

=Cy IZ Z Zza”a K1K269(K1»K2»71’7])

i=1 j=r+l k=1 k=

X f f 2y 25 e MRz dz,, (3.19)
0 0

where z; = v, i = 1, 2. Then, after integration, we get (3.18). O
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Corollary 4. Setting m; = m, = --- =m,_; = m # —1in (3.18), we can get the product moments of
two concomitants of m-GOS of the standard BGW distribution.

Remark 4. When m = 0 and k = 1 in (3.18), we get the product moments of COS as

(C27) P q
M[rcn] - E[V[rn]v[vn]]

e 2 22 L)

i=1 j=r+l k=1 k=

F(p+1)F(q+l)
171 q
1

X0g(ky,kp,n—i+ 1,n—j+1) (3.20)

Ka/

Ky 2

Remark 5. Atm; = R;, n = mg + Z;’i"l R;, and y; = n — Z’ 'R, —i+1,1<i< myg in Theorems 1-4,
the results for PT-1I censored order statistics can be obtamed.

Remark 6. From (3.9), the expressions of means and variances of the COS Y|y, i = 1,- -+ ,n, arising
from the BGW distribution, are obtained as follows:

E[Y[i:n]] = ﬁ;E[V[i:n]]

= ﬂ;l‘l[l}’l] ’

VarlYiml = B> VarlViu]

_ [*2
- M2 6i,i1l’l7

where Var[Viim] = :“E?)n] - (ﬂ[i;n])z. The expression of the covariances between Y;.,j and Y.,y is given,
using (3.9) and (3.20), by

Cov[Yjin, Y[j:n]] = ,BEZCOV[V[i;n], V[j:n]]

_ p*2
- M2 6i,j:n’

where Cov(Viiny, Vijim) = Miijin) — MiimMijns 1 S 0< j < n.

The means and variances of the COS of the standard BGW distribution for n = 1,---,5 and
different values of the parameters a and 6 are calculated in Tables 1 and 2. It can be noted that the
condition _, ,u[r =1 :“1;1’ Jj = 1,2 is satisfied (see David and Nagaraja, [10]). In Tables 3-6, we
have computed the means and variances of the concomitants of PT-II censored order statistics. From
Tables 1-6, one can observe that the variances are decreasing with respect to .
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Table 1. Means and variances of the COS for the standard BGW distribution with 8 = 0.50.

Mean

Variance

a=1

a=2

a=1

a=2

—_—

N B WD~ DB WD~ WK =N ==

0.613519
0.454473
0.772564
0.363977
0.635465
0.841114
0.304634
0.542006
0.728923
0.878510
0.262399
0.473577
0.644650
0.785106
0.901861

0.626050
0.503844
0.748256
0.427653
0.656226
0.794272
0.374043
0.588481
0.723970
0.817706
0.333637
0.535668
0.667700
0.761484
0.831761

0.710359
0.546719
0.823408
0.445089
0.700844
0.870593
0.375757
0.610825
0.773394
0.897399
0.325339
0.541753
0.696872
0.816517
0.914894

0.221580
0.200615
0.212676
0.181090
0.204833
0.210246
0.164726
0.195696
0.204791
0.209868
0.151085
0.186636
0.198827
0.205248
0.210035

Table 2. Means and variances of the COS for the standard BGW distribution with 8 = 0.90.

Mean

AIMS Mathematics

Variance

a=1

a=2

a=1

a=2

—_—

N B WD~ D WD~ W=D ==

0.933392
0.898058
0.968725
0.873819
0.946537
0.979820
0.855345
0.929241
0.963834
0.985148
0.840423
0.915036
0.950548
0.972691
0.988263

0.846157
0.823580
0.868735
0.807493
0.855752
0.875226
0.794891
0.845300
0.866204
0.878234
0.784489
0.836498
0.858502
0.871339
0.879957

0.956977
0.935961
0.975495
0.922204
0.959950
0.982898
0.912004
0.948711
0.970591
0.986887
0.903900
0.939966
0.961071
0.976741
0.989375

0.217410
0.219775
0.214025
0.221774
0.214226
0.213799
0.223493
0.214709
0.213524
0.213854
0.224999
0.215307
0.213522
0.213459
0.213938
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Table 3. Means of the concomitants of PT-1I censored order statistics for the standard BGW
distribution with 8 = 0.50.

a mgp,n  Scheme Mean

1 2,10 8,0 0.155927 0.664362

1 2,10 0,8 0.155927 0.292953

1 3,10 7,0,0 0.155927 0.52911 0.799614

1 3,10 0,0,7 0.155927 0.292953 0.412797

1 4,10 6,0,0,0 0.155927 0.453142 0.681045 0.858899

1 4,10 0,0,0,6 0.155927 0.292953 0.412797 0.51814

1 5,10 5,0,0,0,0 0.155927 0.403773 0.601249 0.760842 0.891585
1 5,10 0,0,0,0,5 0.155927 0.292953 0.412797 0.51814 0.61135
2 2,10 8,0 0.220176 0.671147

2 2,10 0,8 0.220176  0.377969

2 3,10 7,0,0 0.220176 0.574761 0.767534

2 3,10 0,0,7 0.220176 0.377969 0.492427

2 4,10 6,0,0,0 0.220176 0.516571 0.691139 0.805731

2 4,10 0,0,0,6 0.220176 0.377969 0.492427 0.579475

2 5,10 5,0,0,0,0 0.220176 0.476621 0.636421 0.745858 0.825689
2 5,10 0,0,0,0,5 0.220176 0.377969 0.492427 0.579475 0.648751

Table 4. Means of the concomitants of PT-II censored order statistics for the standard BGW
distribution with 8 = 0.90.

a myp,n  Scheme Mean

1 2,10 8,0 0.791751 0.94913

1 2,10 0,8 0.791751 0.867371

1 3,10 7,0,0 0.791751 0.924635 0.973624

1 3,10 0,0,7 0.791751 0.867371 0.905027

1 4,10 6,0,0,0 0.791751 0.908991 0.955924 0.982475

1 4,10 0,0,0,6 0.791751 0.867371 0.905027 0.929301

1 5,10 5,0,0,0,0 0.791751 0.897741 0.94274 0.969107 0.986931
1 5,10 0,0,0,0,5 0.791751 0.867371 0.905027 0.929301 0.946824
2 2,10 8,0 0.749137 0.856937

2 2,10 0,8 0.749137 0.805526

2 3,10 7,0,0 0.749137 0.84219 0.871684

2 3,10 0,0,7 0.749137 0.805526 0.830734

2 4,10 6,0,0,0 0.749137 0.832503 0.861564 0.876744

2 4,10 0,0,0,6 0.749137 0.805526 0.830734 0.846014

2 5,10 5,0,0,0,0 0.749137 0.825394 0.853831 0.869298 0.879226
2 5,10 0,0,0,0,5 0.749137 0.805526 0.830734 0.846014 0.85658
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Table 5. Variances of the concomitants of PT-II censored order statistics for the standard
BGW distribution with 8 = 0.50.

a mgp,n  Scheme Variance

1 2,10 8,0 0.195285 0.741739

1 2,10 0,8 0.195285 0.347562

1 3,10 7,0,0 0.195285 0.606725 0.840167

1 3,10 0,0,7 0.195285 0.347562 0.469548

1 4,10 6,0,0,0 0.195285 0.525646 0.734255 0.882579

1 4,10 0,0,0,6 0.195285 0.347562 0.469548 0.570046

1 5,10 5,0,0,0,0 0.195285 0.47150 0.658836 0.796939 0.906852
1 5,10 0,0,0,0,5 0.195285 0.347562 0.469548 0.570046 0.654972
2 2,10 8,0 0.107449 0.213924

2 2,10 0,8 0.107449 0.150092

2 3,10 7,0,0 0.107449 0.19876  0.210507

2 3,10 0,0,7 0.107449 0.150092 0.170312

2 4,10 6,0,0,0 0.107449 0.186296 0.203372 0.209697

2 4,10 0,0,0,6 0.107449 0.150092 0.170312 0.182349

2 5,10 5,0,0,0,0 0.107449 0.176605 0.196217 0.204539 0.209823
2 5,10 0,0,0,0,5 0.107449 0.150092 0.170312 0.182349 0.190473

Table 6. Variances of the concomitants of PT-II censored order statistics for the standard
BGW distribution with 8 = 0.90.

b

a my,n  Scheme Variance

1 2,10 8,0 0.877894  0.963287

1 2,10 0,8 0.877894 0.913014

1 3,10 7,0,0 0.877894 0.946946 0.978427

1 3,10 0,0,7 0.877894 0.913014 0.932212

1 4,10 6,0,0,0 0.877894 0.937071 0.965229 0.984791

1 4,10 0,0,0,6 0.877894 0.913014 0.932212 0.946122

1 5,10 5,0,0,0,0 0.877894 0.93025 0.956015 0.974096 0.988277
1 5,10 0,0,0,0,5 0.877894 0913014 0.932212 0.946122 0.957275
2 2,10 8,0 0.230545 0.214788

2 2,10 0,8 0.230545 0.218499

2 3,10 7,0,0 0.230545 ,0.215351 0.213791

2 3,10 0,0,7 0.230545 0.218499 0.214908

2 4,10 6,0,0,0 0.230545 0.21593 0.213631 0.213794

2 4,10 0,0,0,6 0.230545 0.218499 0.214908 0.213561

2 5,10 5,0,0,0,0 0.230545 0.216466 0.213713 0.213429 0.213892
2 5,10 0,0,0,0,5 0.230545 0.218499 0.214908 0.213561 0.213094
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4. BLU estimator of the parameter 55 of BGW distribution

In this part, we obtain the BLU estimator of 5} involved in the BGW distribution using Stoke’s
RSS. Assume that # sets of units, each of size n, are taken from the BGW distribution with the PDF
given in (2.1). Let Xy, i = 1,--- ,n represent the observation made on the auxiliary variable X in
the i unit of the RSS, and Y;,,, represent the measurement performed on the Y variable in the same
unit. It is obvious that ¥};.,;, has the same distribution as Yj;,, the concomitant of the i order statistics
(see David and Nagraja, [10], p. 145). From Remark 6, the mean and the variance of Y}, are given

as E[Yjin,] = B3 Hyim» and Var[Y,,] = ;2(5,-,[;,,, 1 < i < n. Because the two measurements Yj;.,;, and
Yijm; (i # j) of Y are based on two independent samples, we have Cov[Y(;..;, Y(j);] = 0.
Let Y = Yy Yizngs -+ s Y[n;n]")' denote the column vector of COS. Then, the mean vector and

the variance-covariance matrix of Yy, can be written as

E[Yq] = 55, 4.1)
and

2
D[Y[n]] = ; A, (42)

where ft = (U101 * > Mpneny) and A = diag(Sy 1.0, 02, > Opnen)- If the parameters « and 6 are known,
then the combination of (4.1) and (4.2) allow us to apply the generalized Gauss-Markov theorem (see
David and Nagraja, [10], p. 185). Hence, the BLU estimator 5 of 3} is given as

By = WA W EATY,
= Z aiY(in;s (4.3)
i=1

i1 /O i
Where ai — n/J[l.n]/ iin

. A* . .
T and the variance of 8} is given by

Varlfs] = (@A
n -1
= [Z :u[zi;n]/di,i:n) ;2- 4.4)
i=1

We have calculated the coefficients a; of Y;.,,,i = 1,--- ,nin ,é; and Var[,BA;]/,BE‘2 forn=1,---,5,
and different values of the parameters « and 6 are presented in Tables 7 and 8.

A modified RSS approach is presented by Stokes [43], wherein only the largest or smallest judgment
ranked unit is selected for quantification. Let n random samples each of size n be drawn from the BGW
distribution. From each of the n samples, choose the unit for which the measurement on the auxiliary
variable X is the smallest (largest) and measure the Y variable associated with it. Then, we call the
collection of observations Y1y, Yiimngs -« » Y1ing, (Yiwenlys Yinengos = * > Yineng,) @s the lower RSS (LRSS)
(upper RSS (URSS)).

Based on LRSS and URSS, the BLU estimators 5}, ,cc and 33 << of B3 are

~ 1
Biirss = . ZY[]:n]i’ 4.5)
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- 1 !
*
= (P (4.6)
2,URSS e ;
and their variances are
- -1
Va’”[ﬂ;,uess] = (”#[21 ] /51,1:n) ;2, 4.7)
- -1
Var[B;,URSS] = (”ﬂfn:n]/‘sn,n:n) ;2- (4.8)

. . ~* ~* . A* .
The efficiencies e; of B3, pc¢ and e, of 57 ¢ relative to 87 are given by

Var[ﬁA; ] Var[ﬁzk ]

€ = ), &= e,
Var(B] xss] Var(B; ykss]

see, for example, Koshti and Kamalja [27] and Philip and Thomas [37]. We have computed the
efficiencies e; and e, forn = 2,---,5, @ = 1,2, and 8 = 0.50, 0.90, which are presented in Table 9.
From Table 9, it can be observed that:

e The efficiency e, is less than one for all selected values of «, 8, and n. So, ,BA; is relatively more
efficient than 85 .

e The efficiency e; decreases as a increases, and for a fixed pair (n, @), e; increases as 6 increases.

e The efficiency e; is greater than one for all selected values of @, 6, and n. Thus, B; urss 18 relatively
more efficient than ,BA; .

e The efficiency e, increases as « increases, and for a fixed pair (n, @), e, decreases as 6 increases.

Table 7. The coefficients @; in the BLUE ,é; and Var[,BZ‘ 1185 2 for 6 = 0.50.

a n Coeflicients (a;) Var[ﬁ;]/ﬁ;k2

1 1 1.62994 1.88722
2 0.75389 0.85091 0.90691
3 0.48490 0.53764 0.57288 0.59296
4 0.35637 0.39005 0.41430 0.43032 0.43957
5 0.28143 0.30502 0.32279 0.33551 0.34396 0.34893

2 1 1.59732 0.56534
2 0.64431 0.90259 0.25654
3 0.38632 0.52409 0.61801 0.16359
4 027147 0.35952 0.42265 0.46582 0.11956
5 0.20763 0.26986 0.31575 0.34884 0.37235 0.09402
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Table 8. The coefficients a; in the BLUE ,é; and Var[,BAE 1/B85* for 6 = 0.90.

a n Coeflicients (a;) Var[821/8;”

1 1 1.07136 1.09843
2 0.52613 0.54453 0.54834
3 0.34606 0.36012 0.36408 0.36523
4 0.25675 0.26814 0.27185 0.27327 0.27375
5 0.20354 0.21310 0.21651 0.21800 0.21866 0.21891

2 1 1.18181 0.30365
2 0.56671 0.61384 0.15123
3 0.36625 0.40182 0.41178 0.10059
4 0.26791 0.29656 0.30558 0.30934 0.07533
5 0.20987 0.23386 0.24202 0.24571 0.24758 0.06019

Table 9. Efficiencies of the estimators 33 1rss and B3 urss relative to ﬁ} .

(5] (%)

0 a=1 a=2 a=1 a=72
0.50 0.68524 0.64926 1.31476 1.35074
0.50 0.52948 0.49563 1.44557 1.47260
0.50 0.43425 0.40617 1.51216 1.52362
0.50 0.36923 0.34637 1.55104 1.54852
090 0.94500 0.93347 1.05501 1.06654
090 090719 0.88724 1.07020 1.08120
090 0.87843 0.85183 1.07685 1.08669
090 0.85528 0.82321 1.08048 1.08932

N B W Wn R WS

5. Real data application

For illustration purposes, we have considered the American Football League dataset given in
Jamalizadeh and Kundu [19]. The bivariate dataset represents the game time to the first points scored
by kicking the ball between goal posts (X) and the game time’ by moving the ball into the end zone
(Y). Pathak et al. [34] demonstrated that the BGW distribution fits this data better than other real-life
time models. Here, we generate random samples of size five using forty-two pairs of observations. The
samples under RSS schemes are displayed in Table 10.

Table 10. Samples of size n = 5 under various RSS schemes.

Scheme Sample values for Y-variable
RSS 0.75 7.78 38.07 49.75 20.57
LRSS 0.75 2.9 29 642 3098
URSS 49.88 15.53 49.75 42.35 20.57

The estimator of 55 under various RSS schemes is a function of @ and 6, which are unknown in
this case. Thus, the method of moment estimation can be taken (see Kamalja and Koshti [21], for

AIMS Mathematics Volume 9, Issue 8, 22002-22021.
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example). To obtain the moment estimators of o and 6, we use the moment equations based on the
moments of Y-observations and the moment equation based on the correlation between (X, Y). These
give & = 3.39821 and § = 0.24259. Table 11 shows the estimates of B5 under the RSS, LRSS, and
URSS schemes. The results show that ,B; urss has the smallest variance. This is consistent with the
findings of the efficiency performance study in Section 4.

Table 11. The estimates of 85 under various RSS schemes.

Scheme Estimator of 85  Estimate of 8}  Variance/; :

RSS B 48.4195 0.07167
LRSS B3 ks 33.1903 0.89618
URSS B3 ugss 45.0528 0.03010

6. Conclusions

In this paper, we have considered the CGOS from the BGW distribution. We have derived the
PDFs and moments of CGOS from the BGW distribution. Similar results for order statistics and PT-
IT censored order statistics are presented as special instances. Finally, we have obtained the BLU
estimator of the parameter associated with the study variable based on Stoke’s RSS. Moreover, a real
dataset is used for illustration purposes. The results for higher joint moments can be used to create
skewness or kurtosis matrices (Kollo, [25]), which have important applications in both independent
component analysis and invariant coordinate selection. This could be an interesting topic for future
research. It will also be interesting to discuss the problem of predicting intervals for future order
statistics and record values using concomitants of order statistics and record values arising from
BGW distribution; see, for example, Muraleedharan and Chacko [33]. In addition, some information
measures, such as the Shannon entropy and extropy, for CGOS can also be investigated.
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