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Abstract: In today’s electricity markets, accurate electricity price forecasting provides valuable
insights for decision-making among participants, ensuring reliable operation of the power system.
However, the complex characteristics of electricity price time series hinder accessibility to accurate
price forecasting. This study addressed this challenge by introducing a novel approach to predicting
prices in the Peruvian electricity market. This approach involved preprocessing the monthly electricity
price time series by addressing missing values, stabilizing variance, normalizing data, achieving
stationarity, and addressing seasonality issues. After this, six standard base models were employed to
model the time series, followed by applying three ensemble models to forecast the filtered electricity
price time series. Comparisons were conducted between the predicted and observed electricity prices
using mean error accuracy measures, graphical evaluation, and an equal forecasting accuracy statistical
test. The results showed that the proposed novel ensemble forecasting approach was an efficient and
accurate tool for forecasting monthly electricity prices in the Peruvian electricity market. Moreover,
the ensemble models outperformed the results of earlier studies. Finally, while numerous global studies
have been conducted from various perspectives, no analysis has been undertaken using an ensemble
learning approach to forecast electricity prices for the Peruvian electricity market.
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1. Introduction

The Peruvian electricity market is collaborative, with key players working together to ensure
efficiency and reliability. The Ministry of Energy and Mines formulates and evaluates national
policies related to energy development, promoting sustainability while minimizing environmental
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impact. The Supervisory Agency of Investment in Energy and Mining oversees and regulates the
Energy and Mining sectors, setting regulated electricity prices and ensuring compliance with
regulations. The Committee for the Economic Operation of the National Interconnected System
manages the balance between electricity generation and demand, determining the optimal dispatch of
resources and coordinating the expansion of the transmission infrastructure [1].

The National Institute for the Defense of Free Competition and the Protection of Intellectual
Property ensures fair competition, protects consumer rights, and investigates potential violations in
the electricity market—Peru’s electricity market functions as a regulated system. The regulatory
authority establishes a comprehensive tariff structure that includes costs associated with generation,
transmission, distribution, and a reasonable profit margin for distribution companies. This regulated
price aims to provide stability and predictability for consumers, and any changes require approval
from the Supervisory Agency of Investment in Energy and Mining [2].

Grasping electric power price is critical for all system users. This insight allows for educated
decisions on energy infrastructure investment, pricing strategies, and overall system dependability
(see [3, 4]). Forecasting electric power prices is valuable, especially when studying historical
electrical power price time series [5–7]. These studies give valuable insights by detecting trends,
seasonality, patterns, and peak-price times linked with high system load. The inherent
unpredictability of the energy price series has prompted substantial studies into electricity price
forecasting, employing various modeling tools and approaches [8–10]. Initial studies on electricity
price forecasting typically employed statistical techniques and decomposition-combination
approaches [11–13]. More advanced methods, such as machine learning models, hybrid learning
techniques, and ensemble learning algorithms, have also been employed [14, 15]. The statistical
methods included linear and nonlinear autoregressive models and other variants, such as integrated
moving averages. Additionally, uncomplicated, double, and triple exponential smoothing models
were applied, and they are known for their relatively straightforward mathematical structures
compared to more computationally intensive models [16]. For example, the study in [17] proposed a
model decomposed into a deterministic component encompassing trends and periodicities and a
stochastic component. The proposed forecasting technique was applied to the Italian electricity price
time series, which generated one-day-ahead forecasts for a year, demonstrating the methodology’s
effectiveness in forecasting electricity prices.

Unlike traditional methods and models reliant on standard regression and time series approaches,
machine learning models excel at addressing the nonlinearities inherent in electricity price forecasting
problems. For example, the authors in [18] introduced machine learning models that predict
electricity prices, including long short-term memory, convolutional neural networks, gated recurrent
units, and deep neural networks. The study then conducted a comprehensive benchmark to assess the
models’ accuracy. All four models achieved significant results, with deep neural networks
demonstrating the best overall performance. On the other hand, the researchers have also investigated
hybrid models combining features from various existing models [19–21]. For instance, the work
in [22] utilized wavelet transforms to enhance accuracy and incorporated machine learning models
like kernel extreme learning machine and Self-adaptive particle swarm optimization for optimization.
The results demonstrated improved prediction accuracy and greater applicability than individual or
hybrid methods. However, many authors used ensemble learning to improve forecasting accuracy,
where multiple learners are trained and combined for better accuracy, gaining traction in academic
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literature [23, 24]. For instance, a study in [25] proposed an ensemble method for the Italian market
that involved filtering the price series and utilizing machine learning models for the residual segment.
The final prediction combined estimates from both components and outperformed other individual
models, highlighting the ensemble approach’s potential.

This study proposes a new approach to forecasting monthly prices in the Peruvian electricity
market. The strategy involves training multiple learners to combine their predictions later to improve
accuracy, a technique known as ensemble learning. The goal is to leverage individual learners’
diversity and strengths, often generated using different algorithms or subsets of data, to create a more
robust, accurate, and efficient forecasting model. The proposed time series ensemble approach treats
the first preprocessed electricity prices time series for missing values, variance stabilization,
normalization, stationarity, and seasonality issues to achieve this. It then uses six standard time series
models and three proposed ensemble models to anticipate the clean prices time series free from initial
treatments. The proposed ensemble models are based on the weighting technique, such as equal
weight to single models, in-sample-based weighing (training), and out-of-sample (validation). The
proposed improved time series ensemble forecasting approach anticipates monthly electric power
prices using Peruvian electricity market data spanning January 2001 to December 2022. Therefore,
the primary contributions to this work are as follows:

i) An improved approach to forecasting month-ahead electric power prices is suggested, which uses
a time series ensemble method for better accuracy and efficiency.

ii) The efficiency of the proposed ensemble models is compared to various single linear and
nonlinear time-series models, which are also used within the proposed improved ensemble forecasting
approach.

iii) To evaluate the accuracy and efficiency of the proposed approach, six different accuracy average
errors are determined, and a statistical equal forecast test, the Diebold-Marino test, and graphical
evaluation using line plots, bar plots, autocorrelation, and partial correlation plots are performed.

iv) The outcomes of the best ensemble model are highly accurate and efficient compared to the best
models reported in the literature for month-ahead electric power price forecasting.

v) The proposed improved time series ensemble forecasting approach can be extended and applied
to other energy markets to assess its efficacy.

vi) This study is the first to propose a forecasting strategy for the Peruvian electricity market.

The rest of the manuscript is organized into distinct sections: Section 2 details the proposed
approach, Section 3 applies it to the Peruvian dataset and compares it to existing models (Section 4),
and Section 5 concludes the study with limitations and future research directions.

2. The proposed ensemble approach for time series

This section exposes a recently introduced time series ensemble technique tailored explicitly for
predicting electricity prices within Peru’s electricity market framework. The temporal scope under
scrutiny pertains to the forecasting horizon of one month in advance. In the proposed ensemble
forecasting approach, the first step involves preprocessing the monthly electricity price data to address
missing values, variance stabilization, normalization, stationarity, and seasonality. Subsequently, a set
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of six standard time series models is systematically employed. These models include the
autoregressive, autoregressive integrated moving averages, exponential smoothing model, nonlinear
autoregressive integrated moving averages, neural network autoregressive, and the theta model. In
addition, three ensemble models are introduced to predict future electricity prices without the issues
mentioned, such as missing values and inconsistencies in variance, normalization, stationarity, and
seasonality.

The ensemble models utilized a weighting technique incorporating equal weights for individual
models, in-sample-based weighing during the training phase, and out-of-sample weighing during
validation. An analysis of monthly electricity price data spanning from January 2001 to
December 2022 was undertaken to complete the current study. Six distinct accuracy measures were
employed, encompassing mean absolute error, mean absolute percent error, mean absolute scaled
error, root relative squared error, root mean squared error, and root mean squared log error.

The proposed novel time series ensemble technique was evaluated using line charts, bar charts,
autocorrelation, and partial correlation charts. Additionally, hypothesis testing was incorporated,
utilizing the Diebold-Mariano test. Furthermore, a comparative analysis was conducted by pitting the
forecasting results of the best ensemble model against the most robust evidence presented by
individual models.

2.1. Preparation of raw data

The main goal of this study is to achieve an accurate and efficient one-month-ahead forecast for
Peruvian electricity prices. To achieve this objective, we implemented a sequential methodology to
model and forecast the electricity price time series in the Peruvian market. We aim to understand the
complex characteristics of electricity price dynamics over time. These characteristics are expected
to include missing values, a nonlinear long-run trend, pronounced seasonality, high volatility, non-
normality, and non-stationarity.

See Figure 1a for the monthly electricity price time series, Figure 1b for the mean of twenty years’
monthly variations in electricity prices, Figure 1c for the autocorrelation plot of the original electricity
prices at sixty lags, and Figure 1d for the partial autocorrelation plot of original electricity prices at sixty
lags. The figure clearly illustrates a discernible nonlinear long-run trend and an annual seasonality.
Furthermore, non-normality and non-stationarity are also evident from these visual representations.

The proposed approach addresses these irregularities before modeling and forecasting to achieve
high accuracy and efficient forecasts. First, it replaces a few missing observations with the mean of
their five surrounding values. Second, the natural logarithm is applied to stabilize variance and standard
deviation. Third, the regression splines method captures the nonlinear trend, and dummy variables
address monthly seasonality. For instance, model these components using the following procedure:
Let the time series of the electric power price time series be denoted by log(Ym); m shows the mth

month data point. Thus, the dynamics of the log monthly electric prices times series, log(Ym), may be
described as:

log(Ym) = τm + am + ym. (2.1)
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Figure 1. Characterization of Peruvian electricity prices (2001–2022): time series plot
(a): visualizes the price movements over time; mean monthly variation (b): displays the
average monthly change in prices; autocorrelation function plot (c): analyzes the correlation
of price changes at different time lags; partial autocorrelation function plot (d): examines the
correlation between price changes after accounting for the influence of past lags.

That is, the log(Ym) is divided into these components: a long-run nonlinear trend component (τm), a
yearly seasonality component (am), and a residual component (ym). The (τm) component is a function
of the series (1, 2, 3, . . . ,m) and is estimated by the regression splines method, and dummies capture
the annual periodicity

am, j =

12∑
j=1

ζ jIm, j.

The variable Im, j is assigned a value of 1 when j refers to the ith month and 0 otherwise. The
regression coefficients (ζ j) associated with these components are determined using the ordinary least
square method. Once the estimated deterministic component (long-run trend and annual periodicity)
is obtained, the residual or stochastic component can be derived as

ym = log(Ym) − (τ̂m + âm). (2.2)
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Thus, once the electric power price time series (Ym) is preprocessed (to address the issue of
missing values and their imputation, stabilize the variance and standard deviation, and remove the
deterministic properties), the next step is to model the remaining residual ym series; the current work
considers six single-time series models autoregressive, exponential smoothing, autoregressive
integrated moving averages, nonlinear autoregressive, Theta, and neural network autoregressive, and
three of their proposed ensemble models. The ensemble models utilize a weighting technique,
assigning equal weights, in-sample-based weighting during training, and out-of-sample weighting
during validation. Dedicated subsections provide detailed descriptions of these models, ensuring a
methodical and structured presentation.

2.1.1. Autoregressive model

The autoregressive (AR) model is a time-series framework that uses past observations to predict
future values. It assumes that a variable’s future value depends linearly on past values, like the previous
month’s data influencing the next. The model uses coefficients to determine the weight of each past
observation in the prediction. The order of an AR model is denoted as ‘p’, which specifies the number
of past values considered [26]. For example, an AR(1) model uses only the previous value, while an
AR(2) model uses the previous two values

vm = α0 + α1vm−1 + α2vm−2 + . . . + αpvm−p + em. (2.3)

In Eq (2.3), the α0, denotes the intercept, and α1, α1, . . . , αp, are the coefficient of
vm−1, vm−2, . . . , vm−p, respectively.

2.1.2. Exponential smoothing (ESM) model

The ESM is a forecasting model used for time series data. It assigns decreasing weights to past
observations as they get older, giving more importance to recent data. This reflects the idea that future
values are more likely to be similar to recent observations than those from the distant past [27]. The
ESM can be expressed mathematically as follows:

vm+1 = α·vm + (1 − α) · vm−1. (2.4)

In Eq (2.4), α denotes the smoothing parameter that determines the weight of the most recent
observation. However, the vm+1 denotes the predicted value of the variable at a time (m+1), vm, the
observed value of the variable at a time (m), and vm−1 observed the value of the variable at a time
(m-1).

2.1.3. Theta model

The theta model is a different forecasting approach. It focuses on modifying the local curvature
of the time series data through a coefficient theta (η), not directly calculating an average, while the
provided formula represents a simple moving average [27]

vm,η = aη + bη(t − 1) + ηvm. (2.5)
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In Eq (2.5),vm,η shows the forecasted value at a time (t) for a specific η value, and aη, bη constants
are estimated through a minimization process. vm denotes the actual data point at a time (t). η is the
parameter influencing the forecast.

The theta model, characterized by its simplicity and user-friendliness, is an appropriate
methodology for short-term forecasting within the domain of stationary time series. However, its
performance may be limited by strong trends or seasonality.

2.1.4. Autoregressive moving average (ARMA) model

The ARMA model combines the strengths of both AR and moving average (MA) models to
predict future values. It considers past observations, similar to AR models, and past forecast errors,
like MA models, to make predictions. This model is defined by two parameters: p and q. The p
represents the number of past observations used (AR order), and the q represents the number of past
forecast errors included (MA order). The AR component captures the influence of past data points on
the current value, while the MA component accounts for the impact of past forecasting errors [28].
Mathematically, an ARMA model can be expressed as follows:

vm = α0 + α1vm−1 + α2vm−2 + . . . + αpvm−p + em + θ1em−1 + θ2em−2 + . . . + θqem−q. (2.6)

In Eq (2.6), vm shows the current value of the response variable; α0 denotes the intercept, α1, α2,
and αp are the AR part coefficients; the em is an error term at time t, and θ1, . . . , θq are the MA part
coefficients.

2.1.5. Nonparametric autoregressive (NAR) model

NAR offers an alternative to traditional parametric models by utilizing flexible and adaptive
techniques like kernel regression or spline functions. Unlike parametric models requiring
mathematical equations, NAR eliminates the need to estimate specific parameters. Critical features of
NAR include flexibility, the absence of predefined parameters, a focus on local relationships, and
reliance on data-driven techniques to capture complex and nonlinear dependencies within time series
data. Specifically, NAR does not assume a predetermined parametric form for the relationship
between a data point vm and its preceding terms, allowing them to accommodate potential
nonlinearities [29]. This relationship is expressed as nonparametric, deviating from predefined
mathematical structures. The relationship is expressed as

vm = x1(vm−1) + x2(vm−2) + . . . + xp(vm−p) + em. (2.7)

In this context, x j ( j = 1, 2, . . . , p) denotes smoothing functions that capture the relationship
between a data point vm and its past values. For example, cubic regression splines are employed as the
functions x j, and lags 1, 2, and 3 are incorporated into the NAR modeling procedure.

2.1.6. Neural network autoregressive (NNA) model

The NNA model is a machine learning technique used in time series analysis to predict future values
based on past observations. It considers past values denoted as vm−1, vm−2, . . . , vm−p, where p is the time
lag parameter, to learn a function that maps these past observations to future values. The NNA model is
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trained using backpropagation and gradient descent to minimize the difference between its predictions
and observed values. The forecasting process first involves determining the AR order, which specifies
the number of past values needed to predict the current value. The NNA is then trained on a dataset
that reflects this order. The number of input nodes in the NNA corresponds to the autoregressive order,
with each node representing a past-lag observation in the univariate time series. The NNA’s output
node then provides the predicted value. Determining the optimal number of hidden nodes in an NNA
often requires experimentation [30]. Therefore, careful consideration is necessary when selecting the
number of training iterations to avoid overfitting the model. This study uses a simple NNA architecture
with a single hidden layer containing three nodes. This can be expressed as

vm = g(vm−1, vm−2, vm−3),

where vm represents the predicted value (e.g., preprocessed monthly electricity price). g represents the
neural network function with three hidden nodes in a single layer. vm−1, vm−2, and vm−3 represent the
past values used for prediction lagged by 1, 2, and 3 periods, respectively.

2.1.7. The proposed ensemble models

An ensemble technique, at its core, combines predictions from multiple models, each carefully
calibrated before being merged. This approach leverages the strengths of individual models while
mitigating their weaknesses. In this study, ensemble techniques were initially used to calculate weights
for the outputs of individual models. Consequently, the proposed ensemble incorporates three distinct
weighting strategies:

a) Equal weight: all individual models contribute equally to the ensemble, denoted as ensemble (E).

b) Weighting by training accuracy: weights are assigned based on the mean accuracy measures
(the mean absolute error (MAE), the mean scaled absolute error (MASE), the mean absolute percent
error (MAPE), the root mean squared error (RMSE), the root relative squared error (RRSE), and the
root mean log squared error (RMSLE)), during training, denoted as ensemble (I). Models with higher
training accuracy receive higher weights.

c) Weighting by validation accuracy: weights are assigned based on the mean accuracy measures
on the validation set denoted as ensemble (O).

Models with higher validation accuracy receive higher weights. The model assigns greater weight
to the ensemble model for datasets with a lower mean error (not mean accuracy errors). Models with
higher mean errors contribute less weight to the ensemble. Notably, the model weights are small
positive values that sum to one, representing the relative contribution of each model to the overall
ensemble performance.

Thus, after estimating the long-run trend component and annual periodicity using the spline
regression method and dummy variables discussed above, the next step is forecasting the remaining
part (ym) using six single and three proposed ensemble models as discussed above. Thus, this work
can obtain the monthly electric power demand for the next month’s forecast as follows:

Ŷm+1 = exp(τ̂m + âm + ŷm). (2.8)
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2.2. Evaluation criteria

This study examines three distinct evaluation criteria applied to the proposed time series ensemble
forecasting technique: accuracy metrics, a test of equal forecast accuracy, and graphical assessment
(see [31]). Primarily, the accuracy metrics include the MAE, the MASE, the MAPE, the RMSE, the
RMSLE, and the RRSE. Thus, the mathematical form of these accuracy metrics is presented in the
following way:

MAE =
1
M

M∑
m=1

|vm − v̂m|,

MASE =
1
M


|vm − v̂m|

1
M-1

M∑
m=2
|vm − vm-1|

 ,
MAPE =

1
M

M∑
m=1

∣∣∣∣∣vm − v̂m

vm

∣∣∣∣∣ ,
RMSE =

 M∑
m=1

[
(vm − v̂m)2

M

]0.5 ,
RMSLE =

 1
M

M∑
m=1

[log(vm + 1) − log(v̂m + 1)]2

0.5 ,
RRSE =


M∑

m=1
(vm − v̂m)2

M∑
m=1

(vm − vm)2


0.5

.

In the given formulations, vm denotes observed values, while v̂m represents forecasted electricity prices
for the m-th observation (m = 1, 2, ..., 48). Generally, lower values for all the listed metrics indicate
better predictive accuracy of the model.

Second, the Diebold-Mariano (DM) test [32] is employed to evaluate the accuracy of the proposed
ensemble forecasting approach. This statistical test is commonly used in time series analysis to
compare the accuracy of two forecasting models [33]. It evaluates whether the errors generated by
one model are statistically different from the errors of another. To perform the DM test, the forecast
errors of each model are calculated using a loss function. These errors are the differences between the
observed values (vm) and the forecasted values (v̂m). The test statistic is then calculated by comparing
the mean squared errors of the two models. Suppose the test statistic is greater than a certain threshold
and the p-value is lower than a predetermined significance level (e.g., α = 0.05). In that case, we
conclude that the forecasts from one model are statistically significantly better than the other.

The null and alternative hypotheses of the DM test are:

H0: There is no difference in forecast accuracy between the two models (H0 : d̄ = 0).

Ha: The two models differ in the forecast accuracy (Ha : d̄ , 0).
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Therefore, the null hypothesis implies no statistically significant difference in forecast accuracy
between the models, while the alternative hypothesis suggests a significant difference exists.

In the third phase of the analysis, a graphical evaluation is performed on the residuals derived from
the forecasted and observed electricity prices generated by the final optimal model. This involves
creating and analyzing various diagnostic plots, including histograms, line plots, box plots, and
autocorrelation/partial autocorrelation plots. To summarize this section, the primary procedural steps
of the proposed time series ensemble forecasting techniques are listed in bullet points below.
Furthermore, a visual representation of the procedural flow is provided in Figure 2.
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Figure 2. A proposed time series ensemble approach framework.

• In the first step, the electric power prices time series (Ym) is preprocessed (to address the issue
of missing values and their imputation, stabilize the variance and standard deviation, and remove
the deterministic properties), discussed in detail in Section 2.1.
• In the second step, we divide the stochastic (short-run dynamic) electric power time (ym) into

three parts: training, validation, and testing datasets. Let

yn, n = 1, 2, ...,N(264)

represent the electricity time series of electricity prices. Then, training dataset:

yt, t = 1, 2, ...,T (180);
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validation dataset:
yu, u = 1, 2, ...,U(48);

testing dataset:
ym,m = 1, 2, ...,M(48);

where
N(N = T + U + M)

is the total number of data points.
• In the third step, model the train data using single models, i.e., AR, ARMA, ESM, NAR, NNA,

and theta models.
• In the fourth step, calculate the one-month-ahead forecast using the expanding window technique.

The forecast values, ŷ j
N−(T+U+m) for j = 1, 2, 3, 4, 5, 6, are obtained by the models listed in step 3.

• In the fifth step, the output of a basic ensemble method is mathematically described by Eq (2.9).

ŷ j
N−(T+V)+m =

6∑
j=1

ω jŷ
j
N−(T+V)+m, (2.9)

where ω j, j = 1, 2, . . . , 6 are obtained by three weighting strategies:
a) Equal weight to all single models and denoted by ensemble (E);
b) Weight assigned based on training, mean accuracy measures (MAE, MASE, MAPE, RMSE,
RRSE, and RMSLE), and denoted by (ensemble (I));
c) Weight assigned based on validation mean accuracy measures and denoted by (ensemble (O)).
The lower accuracy means the error model assigns more weight to the ensemble model in training
and validation datasets. In contrast, the highest accuracy mean error model has less weight than
the ensemble model. However, the model weights are small, positive values, and the sum of all
weights equals one, indicating the percentage of trust or expected performance from each model.
• In the sixth step, obtain the one-month-ahead forecast values using equations for the E, I, and O

models.
• In the last step, evaluate the model based on accuracy and average errors (MAPE, MASE, MAE,

RMSE, RMSLE, and RRSE).

3. Case study results

This study investigates monthly electricity prices in the Peruvian market from January 2001 to
December 2022 (22 years, 264 data points). The data is divided into three sets: training (2001–2014),
validation (2015–2018), and testing (2019–2022). Exploratory data analysis (Figure 1) reveals the
presence of a nonlinear trend, seasonality, non-normality, and non-stationarity. Table 1 summarizes
the characteristics of the data before and after various transformations, like taking the natural
logarithm (addressing variance stabilization) and differencing (exploring stationarity). While a single
statistical value suggests non-stationarity, further investigation using multiple tests is crucial for
confirmation. The first-order difference may be applied to achieve stationarity, but its effectiveness
needs to be statistically evaluated. If stationarity is confirmed, the transformed data can be used for
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modeling and forecasting. This study employs nine forecasting models (six individual and three
ensembles). It compares their performance using various error metrics (MAE, MASE, MAPE,
RMSE, RRSE, and RMSLE) presented in Section 2.2.

Table 1. Peruvian electricity market: analyzing stationarity, seasonality, linearity, and
normality in natural logarithm-transformed electricity prices.
Statistic Original prices log(prices) diff(log(prices) R(diff(log(prices))
Min 4.493000 1.502500 -0.178000 -0.318400
Q1 5.547500 1.713300 -0.023100 -0.038900
Q2 6.980000 1.943000 -0.000900 0.013000
Mean 6.847100 1.903700 0.001500 0.000000
Q3 7.762500 2.049300 0.023700 0.052200
Mode 7.530000 2.018900 0.000000 -0.031100
Var 1.849300 0.041100 0.002500 0.003600
SD 1.359900 0.202600 0.049600 0.059700
Max 9.650000 2.267000 0.277400 0.097100
Stationary -1.210800 -1.185300 -7.304700 -0.909800
Seasonality 4.706700 4.779000 5.435100 0.020000
Normality 13.165900 16.131600 340.316200 339.129400
Linearity 8.359543 6.913214 - -

Based on the results presented in Table 2, the proposed ensemble models generally outperform the
single time series models regarding one-month-ahead electricity price prediction accuracy.
Specifically, the ESM exhibits the lowest error values among the single models across most metrics
(MAPE, MAE, MASE, RMSE, RRSE, and RMLSE), indicating its strong performance. Among the
ensemble models: The ensemble (O) demonstrates superior performance, achieving the lowest error
values for all considered metrics (MAPE, MAE, MASE, RMSE, RRSE, and RMLSE). Notably, its
MAPE value of 0.025278 suggests a high level of forecasting accuracy. Therefore, based on the
provided metrics, ensemble (O) emerges as the most accurate and efficient model for
one-month-ahead electricity price forecasting compared to all nine models considered in this study.
Ensemble (I) is the second-best performing model within the ensemble category.

Table 2. One-month-ahead electricity price forecasting: average forecast errors.
Model MAPE MAE MASE RMSE RRSE RMLSE
AR 0.031887 0.226967 0.906638 0.323678 0.806174 0.040367
ARIMA 0.032208 0.229174 0.915454 0.324077 0.807169 0.040419
ESM 0.031869 0.226952 0.906580 0.323457 0.805624 0.040327
NNA 0.038966 0.275971 1.102387 0.364993 0.909076 0.045213
NAR 0.042357 0.300534 1.200509 0.426857 1.063159 0.053710
Theta 0.032195 0.229349 0.916155 0.324072 0.807155 0.040381
ensemble (E) 0.034287 0.243722 0.973568 0.342232 0.852387 0.042702
ensemble (I) 0.026900 0.191328 0.764274 0.255640 0.636716 0.031939
ensemble (O) 0.025278 0.179678 0.717738 0.276624 0.688979 0.034370

After calculating the performance metrics, we used the DM test to statistically assess the superiority
of models within the proposed ensemble technique (see Table 3 for p-values). Our analysis indicates a
5% significance level. The performance comprises nine forecasting models, including six base models
and three proposed ensemble models. Statistical analysis (DM test) revealed that the ensemble (O)
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model achieved statistically superior performance across all models. Notably, the ensemble (I) model
also showed strong results, outperforming seven other models. These findings confirm the ensemble
(O)’s accuracy as the most reliable model for one-month-ahead electricity price forecasting within the
scope of this study. These results support the conclusion that the ensemble (O) model offers the most
accurate and reliable one-month-ahead electricity price forecasts among the models considered.

Table 3. The DM test: comparing one model to others.
Models AR ARIMA ESM NNA NAR Theta ensemble (E) ensemble (I) ensemble (O)
AR 0.000000 0.106350 0.125330 0.891280 0.847020 0.770150 0.885110 0.117180 0.009630
ARIMA 0.893650 0.000000 0.896050 0.891410 0.849260 0.886300 0.889560 0.125850 0.011190
ESM 0.874670 0.103950 0.000000 0.891170 0.847190 0.834170 0.883950 0.116730 0.009040
NNA 0.108720 0.108590 0.108830 0.000000 0.696380 0.108290 0.108370 0.109670 0.008860
NAR 0.152980 0.150740 0.152810 0.303620 0.000000 0.152690 0.154870 0.149270 0.047020
Theta 0.229850 0.113700 0.165830 0.891710 0.847310 0.000000 0.893220 0.120390 0.012010
ensemble (E) 0.114890 0.110440 0.116050 0.891630 0.845130 0.106780 0.000000 0.116510 0.010830
ensemble (I) 0.882820 0.874150 0.883270 0.890330 0.850730 0.879610 0.883490 0.000000 0.092750
ensemble (O) 0.890370 0.888810 0.890960 0.891140 0.852980 0.887990 0.889170 0.907250 0.000000

We performed a graphical analysis to further validate our proposed ensemble (O) model’s
superiority. Figure 3 visually compares the actual and forecasted electricity prices for the top three
models: ensemble (O), ensemble (I), and ESM. The ensemble (O) model’s forecasts closely track the
actual prices, demonstrating its exceptional accuracy. Additionally, we examined the correlogram
plots (autocorrelation and partial autocorrelation) of the residuals for these three models (Figure 4).
The absence of significant autocorrelation in the residuals of all models indicates that they have been
sufficiently whitened, signaling satisfactory model performance.
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Figure 3. Comparison of original and forecasted Peruvian electricity prices: ensemble (O),
ensemble (I), and ESM models (24 months).
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Figure 4. Autocorrelation function and partial autocorrelation plots for the three best models
among all nine considered models: ensemble (O) model (a,b); ensemble (I) model (c,d); and
ESM model (e,f).

In conclusion, the combination of accuracy metrics (MAE, MASE, MAPE, RMSE, RRSE, and
RMLSE), statistical testing (DM test), and graphical analysis provides compelling evidence for the
superiority of our proposed ensemble forecasting approach in one-month-ahead Peruvian electricity
price prediction. Specifically, the ensemble (O) model consistently generates the most precise forecasts
compared to this study’s other single and ensemble models.
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4. Discussion

Having identified ensemble (O) as the best model based on accuracy metrics (MAPE, MAE,
MASE, RMSE, RRSE, and RMLSE), statistical testing (DM test), and graphical analysis, we
compared it with the existing literature. We found our model highly competitive based on the
performance metrics achieved by other proposed methods. Figure 5 and Table 4 compare ensemble
(O) with the best models from four previous studies. We applied several models from these studies to
our data, including the coyote optimization algorithm-complementary ensemble empirical mode
decomposition (COA-CEEMD) model (see [24]): this model produced consistently higher error
values than ensemble (O) across all metrics. For example, its MAPE was 0.029868, exceeding
ensemble (O)’s 0.025278. Similarly, MAE, MASE, RMSE, RRSE, and RMSLE values were also
higher for this model. The deep feedforward neural network (DFNN) model [34] This model also had
higher prediction errors than ensemble (O), with a MAPE of 0.031578 and higher values for other
metrics.
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Figure 5. Performance of the proposed approach compared to benchmarks.

Table 4. One-month-ahead accuracy comparison of proposed ensemble models with existing
literature in Peruvian electricity price forecasting.

Model MAPE MAE MASE RMSE RRSE RMLSE
ensemble (O) 0.025278 0.179678 0.717738 0.255640 0.636716 0.031939
The COA–CEEMD–Proposed [24] 0.029868 0.217778 0.836838 0.289300 0.717916 0.037149
The DFNN model [34] 0.031578 0.237778 0.876648 0.314300 0.747916 0.039149
The MLP model [35] 0.034578 0.257778 0.913028 0.394300 0.836616 0.041929
The NNAR model [36] 0.038966 0.275971 1.102387 0.364993 0.909076 0.045213
The NP-ARMA Model [37] 0.029288 0.212178 0.829638 0.280500 0.716616 0.036529
The DR-SFGM model [38] 0.030168 0.219578 0.846838 0.290500 0.726216 0.037909

Multilayer perceptron (MLP) model [35] The average accuracy measures obtained using this
model on our data were significantly higher compared to ensemble (O). Neural network
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autoregressive (NNAR) model [36]: The performance obtained with this model was worse than
ensemble (O) on our dataset. Nonlinear autoregressive moving average (NP-ARMA) model [37]:
This model also yielded higher error metrics compared to our ensemble (O) model. Dynamic
regression with stochastic gradient matching (DR-SFGM) model [38]: This model achieved lower
accuracy metrics than our ensemble (O) model when applied to our dataset. In conclusion, these
comparisons suggest that ensemble (O) offers competitive performance for one-month-ahead
electricity price forecasting in the Peruvian market, even when compared to existing methods.

However, this work only focuses on the Peruvian electricity market; in the future, the proposal of
the current research study should be extended to other electricity markets—for instance, the European
electricity markets, the United American electricity market, the United Kingdom, the Chinese
electricity markets, and so on. On the other hand, it may also be expanded and used for other datasets,
such as electrical power systems [39, 40], air pollution [41], and railway signaling [42].

The current work proposal relies on only single linear and nonlinear time-series models; it might
use other models like machine learning, deep learning, patch time series transformer, and
decomposition linear model in future projects within the current proposal. Furthermore, exogenous
variables (consumer load, fuel, carbon dioxide emission prices, average solar radiation, and wind
speed) should be incorporated within the proposed ensemble time series forecasting technique in the
future to enhance the forecasting accuracy of electricity prices.

5. Conclusions

In today’s dynamic electricity markets, accurate price forecasting enables market players to make
informed decisions that optimize costs and ensure system stability. However, the complex nature of
electricity prices often presents significant challenges to forecasting accuracy. This study proposes a
novel time series ensemble technique specifically tailored for electricity price forecasting in the
Peruvian market. Preprocessing plays a crucial role in achieving accurate forecasts. It addresses
missing values, variance fluctuations, non-normalization, and non-stationarity. Combining base
forecasting models (both linear and nonlinear) with ensemble techniques can potentially enhance
forecasting accuracy. The evaluation process employed a combination of accuracy metrics, graphical
analysis, and statistical testing to demonstrate the effectiveness of the proposed methodology. The
study’s findings suggest that the proposed time series ensemble technique offers a highly efficient and
accurate approach for predicting monthly electricity prices in the Peruvian market. Compared to other
models, the proposed ensemble models exhibited the lowest mean errors, highlighting the
effectiveness of the ensemble approach in capturing the complex dynamics of electricity prices.
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