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Abstract: Cholera, as an endemic disease around the world, has imposed great harmful effects on
human health. In addition, from a microscopic viewpoint, the interference of random factors exists in
the process of virus replication. However, there are few theoretical studies of viral infection models
with biologically reasonable stochastic effects. This paper studied a stochastic cholera model used to
describe transmission dynamics in China. In this paper, we adopted a special method to simulate
the effect of environmental perturbations to the system instead of using linear functions of white
noise, i.e., the transmission rate of environment to human was satisfied Ornstein—Uhlenbeck processes,
which is a more practical and interesting. First, it was theoretically proved that the solution to the
stochastic model is unique and global, with an ergodic stationary distribution. Moreover, by solving the
corresponding Fokker—Planck equation and using our developed algebraic equation theory, we obtain
the exact expression of probability density function around the quasi-equilibrium of the stochastic
model. Finally, several numerical simulations are provided to confirm our analytical results.
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1. Introduction

Cholera, a pervasive endemic disease, poses substantial risks to global public health, resulting in
significant morbidity and mortality. The World Health Organization (WHO) reported that cholera
incidence reached approximately 3.1 million cases and 95,000 fatalities in 2022, marking a 145%
increase relative to the average of the preceding five years. Transmission of cholera primarily occurs
through the ingestion of the pathogen, characterizing it as both a waterborne and foodborne disease.
The consumption of water contaminated with sewage along with the ingestion of victuals prepared
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in unsanitary conditions can significantly facilitate the transmission of the pathogen. Additionally,
direct interpersonal contact with infected individuals can transmit the pathogen to susceptible hosts.
High-risk individuals carrying the pathogen may spread cholera to their family members through close
contact. Individuals who have recovered from cholera may develop a temporary acquired immunity
to the pathogen. However, recent studies indicate that this acquired immunity may wane within a
few months or weeks. These findings emphasize the critical necessity for ongoing research into
the mechanisms of cholera transmission and the development of effective control measures. Various
epidemiological frameworks and models have been extensively studied [1-4]. Gui [5] developed a
four-dimensional epidemiological model for the dynamics of cholera transmission, as follows:

ds _
— =uN - B. I)—uS —vs,

o M (,BSK+B+ﬁhS) uS —v§

dl . _ B

— =BS— +BS T - (y + W,

dR '
— =yl - uR+vS,

g " YT HR A+

dB &I — 6B - cB

_ = —_ —-C ,

dt

where N(S + I + R = N) represents the total population of China. The population is separated into
three groups: individuals who are susceptible (S ), infected (/), and recovered (R). In addition to these
demographic groups, it is important to consider the potential implications of disinfection in controlling
cholera, which is closely related to the concentration of vibrios in contaminated water (denoted by state
B). In addition, Table 1 provides further information on parameters.

Table 1. Summary of the parameters used in the model.

Parameter Value Comments Unit
7 0.0066/365 Natural birth or death rate day ™!
K 500 Environment concentration of Vibrio cholera cells/mL
N 1.36 x 10° Human population in China None
Be Estimated Environment-to-human transmission rate day™
B Estimated Human-to-human transmission rate day™
v Estimated Vaccination coverage rate day™
0% 0.2 Recovery rate day™!
3 10 Rate of human contribution to Vibrio cholera cells - mL™" - day™
0 1/30 Decay rate of vibrios day™!
c 4/365 Disinfection rate day™'

In system (1.1), the third equation is independent of the others, indicating that we only need to study
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the dynamics of the following subsystems

ds -

— =uN - (3,8 SI)—uS —vS,

o M B K+B+ﬁh )—uS —v

dl -

— =B, —— I- I, 1.2
5 =BS — 5 +BST=(r+ ) (12)
dB &I — 6B —cB

_ = —_ —-C

dt ’

uN n HUNE
B (u+v)(y+p0) + B (V) (y+)(G+o)k

According to [5], the basic reproduction number is obtained by Ry =
Moreover, the relevant threshold dynamics of system (1.2) is as follows:

o If Ry < 1, system (1.2) has a disease-free equilibrium E, = (;‘TA’V,O, 0), which is globally
asymptotically stable.

e If Ry > 1, there exists a unique endemic equilibrium E* = (S*,I",B*) =
(UNEG@r0B” ©0+aB” By and it is globally asymptotically stable, where B* is the unique positive

u+v)§ ’
root of the following quadratic equation
+ )6 +¢)? Bo(y + ) (S + + )6 + ¢)? NS +
By + W@+ )y [Bly + )0+ )  kBnly + )6 +0)” (o + 16 +¢) — BrNG© + )]
(1 +v)é H+V (1 +v)§ H+v

—k(y+ (@ +)(Ry—1) =0,

and uNé > (y + p)(6 + ¢)B*.

Since it has been proven that the stochastic model can more accurately explain biological processes
and infectious illnesses, there is increasing scholarly interest in examining the impact of environmental
disturbances on epidemic models [6—-10]. As a result, the development and research into stochastic
models have intensified. For example, Jiang et al. [11] examined stationary distributions and extinction
in non-autonomous logistic equations with random perturbations. In addition, several studies [12-15]
have yielded notable conclusions in this field. One of the most important factors in the epidemic
model (1.2) is B., which is always fluctuating around the average value 8, owing to the continuous
spectrum of environmental noise. In this sense, 8, should be considered a random variable. We assume
that S.(7) is an Ornstein—Uhlenbeck process and satisfies the following form to imitate environmental
noise’s effect on transmission rates:

dIBG(t) = a’(Be _ﬁe(t))dt + O'dW([),

where o and o are positive constants indicating the speed of reversion and intensity of volatility,
respectively, and f3, is a positive constant representing the long-term average transmission rate 3,.
W(t) is a standard Brownian motion defined on a complete probability space (2, .7, {.%,}_,,P) with a
filtration {.%,} . According to Mao’s monograph [16], we can obtain that

=0°

Be(®) = Be + (B(0) = B)e™ + o f e IAW (s).
0

The expectation and variance of 5,(¢) are

2

E[B.(1)] =Bg + (B.(0) _Be)e—m and Var[B.(1)] = ;—_a(l _ e—ZQt).
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As a result, the limit distribution of the Ornstein—Uhlenbeck process SB.(f) is N(B., %). In other

. . e e _atpe)® o
words, the probability density of the limit distribution is 7(x) = \‘é‘;e «2 . Furthermore, it is

straightforward to deduce that lim,o: E[B.(¥)] = B.(0) and lim,(+ Var[B,(t)] = 0. This result
suggests the Ornstein—Uhlenbeck process could be more suitable for describing random perturbations.
Moreover, we let 8 (f) := max{f(z), 0}, since the transmission rate coefficient should be non-negative.
Thus, we obtain the following stochastic model:

S(1)B(1)
K+ B(®)

[ SOB() )
arw = 6= T FBSOI0 -+ wio]ar

ds () = [uN—ﬁ: —BiSDI(D) — S (1) — ¥S (r)]dr,

dB(r) = [fl(t) —0B(t) — CB(t)]dt,
) (1.3)
4B.(1) = |, ~ Bult)|dr + AW (0),

In addition, we obtain
diS +1) = [uN —uS —vS —yl — ulldt
< [uN — u(S + I)]dt.

Considering the third equation of system (1.3), we have

dB = (£I - 6B — cB)dt
< [éN = (5 + ¢)B]dL.

Accordingly, region

I = {(S,I,B,ﬁe)eRixR:S +I<N,B< ¢N }
o+c

is positively invariant set with respect to model (1.3). As a result, we take the supposition that initial
values fulfill S(0) + I1(0) < N, B(0) < %’,V, throughout the entire paper. We summarize our main
contributions and innovations in comparison with the existing literature as follows: (i) To obtain
the existence of a stationary distribution, which is a probability distribution with some invariant
properties, we develop an innovative approach to build some stochastic Lyapunov functions. (ii)
During the following discussion, we explore the sufficient conditions for the existence of stationary
distribution. The probability density function corresponding to the quasi-equilibrium is established,
which is of great significance. (iii) We also study the sufficient conditions for the disease to exterminate
exponentially. In summary, the remainder of our paper is structured as follows. The existence and
uniqueness of a global solution to system (1.3), as well as other relevant mathematical Lemma, are
all presented in Section 2. The sufficient criteria for an ergodic stationary distribution of system (1.3)
are derived in Section 3. To be complete, we build sufficient conditions for eliminating viruses and
infected cells in Section 4. Lastly, numerical simulations are carried out to demonstrate our theoretical
findings.
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2. Preliminaries

An important lemma is introduced in this section to obtain the accurate probability density

expression.
Lemma 2.1. [17] For the algebraic equation Hg + Ao + ZOAg = 0, where H, = diag(1,0,0,0), X, is
a real symmetric matrix and the standard matrix

M -2 —n3 —MNa
1 0 0 0
D=ty 1 0 0
0O 0 1 0

Ifnp; >0, 73 >0, ny > 0and mimns — 1735 — nina > 0, then X is a positive definite matrix, where

13 —nin4 O _ 73 0
201m2m3 =5 =n7714) 201 m2m3-12-117114)
0 [ N 0 _ Uil
Y = 2mmm—n3—m14) 20— -1
0= 13 () m 0 .

" 2mmm ) 2mmam—n5—-m14)
0 . m_ 0 __mmem
2mmms—n5—m14) 204(mmm =31 1a)
Here, Aj in this form is called the standard R; matrix.
Theorem 2.1. The system (1.3) has a unique global solution (S (¢), I(¢), B(t), 5.(¢)) that will remain in
I" with probability one (a.s.) for any initial value of (S (0), 1(0), B(0),5.(0)) € T.
Proof. To prove the existence and uniqueness of positive solutions to stochastic models, we usually rely
on the standard approach and the classical Khasminskii Lyapunov functional method, which is similar
to [18]. Constructing the appropriate Lyapunov function is crucial. We construct a non-negativity
C?-function Uy(S, I, B, B.) as follows
B

Uo(S.1.Bf) =S ~1~InS +1~1~Inl+B~1-InB+=.

Since u — 1 —Inu > O for any u > 0, then the above function is non-negativity. Applying [t6’s formula
to Uy, we have

SB
k+ B

1. . SB
+BiSD =S —vS1+ (1= DIB; +BuST - (y + 11,

K+ B

1
LU = (1 = )N = B;

+ (1= DIEL = 6B~ Bl + a.IB, B + 507,

N
= uN — uS — S —(y+,u)]+§l—6B—cB—'uT+ﬁ:

SB
+Bul +u+v-p4;

K+ B eI(K+B)_ﬁhS

él e 2,1 o
+y+,u—§+6+c+a,8e,86—a/ﬂe+§<7

1 _
s,uN+(§+ﬁh)I+2y+6+c+y+v+50-2+a,86ﬁ€—0z,8§+|,Be|

1 _
S,uN+(§+ﬁh)N+2p+5+c+y+v+502+;u§{—aﬁ§+aﬁeﬂe+Iﬁe 1}
€

= W,

where W is a positive constant, which is independent of S, /, B and S..
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3. Stationary distribution

The aim of this section is to analyze whether the stochastic model has a stationary distribution that
reflects infectious disease persistence. Define

RS = BN n HUNEB.
0 (a1+b))éNT (a1+b))éNT
U+ +u+ Gocme) K+ + o)y +u+ Fmr)
A o 1 _W(X—Be)z N N. Ae
where B, = () ¥ir(x)dx), n(x)= S =, ay= 2 by = M

Theorem 3.1. Suppose that R > 1, then the stochastic system (1.3) admits at least one ergodic
stationary distribution 7(- ) on I'.
Proof. Using 1t6’s formula to —In S, —In7and — In B, respectively, we have

—uN B
L-lnS)= 2 4 g 4Bl + 1+,
s K+ B
LD =—g—8  _psiys 3.1)
nl)=— - .
e[( B) h Y T K,
¢l

L(-InB) = ~5 +0+c.
Then, define
U, = —Inl - (a1 +b1)lnS —bzlnB+b3B,

where positive constants aj, by, b,,b; will be approved later. Using Ito’s formula on U; and
combining (3.1), we obtain

SB N 1
e[( +B) 1%—b2§——b3(5+c)(/<+3)

B
+bi(u+v)+by(d+ )+ bsk(d+ )+ (ar + bl)ﬁjK+ Z

unN
LU1 = —,BhS —al— +(11(/J+V) ,3

+ (ay + b)Bul +y + u+ bsél

< =2 \BuNa; — AJuUNBEES + c)b1babs + ai(u + v) + by( + v) + by(6 + ¢)

+b3K(6+c)+y+,u+( L f l)ﬁ B+ [(ay + b))By + b€l

= =2+/ByuNa, — 4i/,uNﬁe§(6 + )b bybs +a;(u+v)+bi(u+v)+by(d+ )

+b3k(6+C)+y+u + ]),BeB + [(ar + D1)Br + b3EN + (@ + b])B(ﬁ - B.) (3.2)

+ 4(\JUNBLEG + bbby ~ NEBEG + 1D )
B.=( f ) X r(x)dx),
0

5 _ Iﬁel _Be +ﬁe _Be
- 2

where

Note that 5} = @, we have

< B, = Bel. (3.3)
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Choose
Lo~ BN o uNeB . pNg, ___ HN& (3.4)
P T ROt ok T AnG+ 0k T ()6 + o)X '
Substituting (3.3) and (3.4) into (3.2), we have
BN uNEB, (a1 + b)) (a) + bo
LU]S_(p+v)_(y+v)((5+c)K+7+M+ BeB + [(ar + b)By + bsé) + ————B(B; - p.)

+ 4 \JUNB.£G + CVorbsbs ~ JRNBEG + c)blbzbg)

BN UNEB, (a1 +b1)
S E R e A BB+ [(ay + b))y + batll
b) éEN . o )
+ D00 EE g B+ 4(NuNBE@ + clbrbabs — YRNBEEG + Obibabs
_ BN uNEB, puy WHDOEN 0 (@b g
w+v @rno+rox LM T Tkero Vra PR

@+b) &N o o 35
A W)+4(\//1Nﬁe§(5+€)blbzb3 (3.5)

+ [(a1 + b1)Bn + D& +

— JuNBIE®D + c)blbzbg)

— (PSS _ (al + bl)‘fNO' (611 + bl)
=& 1)(7+”+ K(5+c)\/7@)+
(611 +by) EN

(B~ Bl - \%) - 4(i/uNBef<5 + Obibabs — YUNBIE® + Obibabs ),

BeB + [(a1 + b)By + b3éll

where )
RS = BN HNEB.
=

(1 + v)(y + p + biche) T A NG+ Oy +a s

BiuN UNE(J)” xin(x)dxn)*
Ty b G T S+ )y a4 LT
(c+o)k VT K+ o)
Then, define _
(a1 + b1,
k(0 + ¢)

U,=U, +

Making the use of Itd’s formula to U,, we have

LU, < _(R(v) _ 1)(7+ﬂ + (a; +b1)§N0')+ [(a) + bl)ﬁh + b3§+ (a +bl)ﬁeé‘: I

k(c + &) Vra k(6 +¢) (3.6)
+ gl(ﬁe) + gZ(ﬁ:)a
where (@ + b)EN
_ a4 1
8§16 = =55 ('Be ~ B - m)
2B = 4 \JuNER(6 + c)brbabs — NGB+ b1babs).
AIMS Mathematics
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Next, we define

EN Be
Us=-InS -InB-In(N-S§ -I)—In(—— - B) + —.
3 nS —InB —In( )= In(=—~-B)+3
Combining (3.1) and applying It6’s formula to U3, we have
uUN &I vl OB .
LU; £ —— - = — - + +6l +2u+v+0+2
TS B N-S-1 & g thdranty ‘
~ 1
- aﬁg + af.fB. + 50'2 (3.7)
N ¢l 1 OB
L — SB2 + Hy,

-~ s B N-S-1 &N _p 27°¢

c+0

where

_ 1
H, :sup{—%,8§+a,8€ﬁe+|,8€|}+,6’hN+2,u+2c+v+(5+50'2.
BeeR

Then, we define

Us = MyU, + Us,

where M, is a sufficiently large constant satisfying

(Cll + b])fNO'
M, RS—I( " +—)+H <-2. 3.8
oRy = Dy + (e + Vo 1 (3.8)
Then, from (3.6)—(3.8), we have
uN €I yI 0B a , [ (ay + by)BE
LUy < ——— = — - - =B, -2+ M, +b)By + b3¢ + ———|1
4 T B N_S_1I %—B 2’86 o|(ar + b1)B + b3& 0 1 0)
¢ (3.9
+ Mog1(B.) + Mog2(B;)
= 83(S, I, B,B.) + Mog1(B.) + Mog>(B;)
where
uN &I yI 6B a , (a1 + b)B.E
S,I,B,B,) = ———-2— - —=B-2+M, +b)By+byé+———=|1. (3.10
g3( Be) s B N-s-1 Z_p >Be of(a1+b1)By+b3& @10 (3.10)
Next, we construct a compact set D, C I" as follows
N
D,={(S.I.BB)ET|S>e, 1> B>€,S+I<N-€,B< §+5 - €,
c

AIMS Mathematics Volume 9, Issue 8, 21918-21939.



21926

6
such that g3(S, I, B,3,) < —1forany(S,1,B,B.) € I' \ D, := Dg. Then, let Dg = | J D¢ ,, where
i=1 ’

DS, ={(S.1.B,B.) €T |l <€},

D¢, ={(S,1,B.B)eT|S <&,

D; ;= {(S,I, B.,B.) € F|B <é 1> e},

Dy = {(S,I,B,,Be) € F|S +I>N-€,1> 6},

. EN 3 2}
DC = I B € l B - - B >
&5 {(S’ »B,Be) | > cto €, €7,

1
Dg’ﬁ = {(S7IaB’ﬁe) € 1—‘| |ﬁe |> E}a

€ is a small enough constant satisfying the following inequalities

b1)Be
MO[(a] +b)By + bié + —(a;(; ;i’; f]s < (3.11)
C(UN & ¥y § a (a) + by)B.E
—mln{?, ;, g, ;, E} + Mo[(al + b])ﬁh + b3-§: + W]N <1I. (3.12)

Case 1. If (S,1,B,B.) € Dg,w from (3.10) and (3.11), we have

g3(Sa I» B’ﬁE) < -2+ MO

(ay + b1)By + baé + (a1 +bl),3e§]l

k(0 + ¢)
(a1 + by)B.E
k(0 +¢)

S—2+M0[(a1 T+ b)By + bak + ]ss—l.

Case 2. If (S, 1, B,B.) € D¢, from (3.10) and (3.12), we obtain

&,2°

N b3,
&8, LB.p) < H M(,[(a1 +b)By + bié + %] -2
HN (a) + b))B.E
<- - +M0[(Cll+b1)ﬁh+b3§+w]]\7—2§—],

Case 3. If (S, 1, B,B.) € D¢, from (3.10) and (3.12), we derive

£,3°
&l (a1 + b1)B.é
83(S, L, B.fe) < =5 —2+ Mo[(al +b1)By + b3+ TxGro ]1

(ar + bl)Bef]

N-2<-1.
k(0 + ¢)

< —g + MO[(al +b1)Bn + bsé +

Case 4. If (S,1,B,B.) € Dg’4, from (3.10) and (3.12), we get
yi

(ar + b))B.E
83(8. 1. B.po) S~ sl

—2+M0[(a1 +b1),8h+b3§+ K(5+C)
(ar + b))

Y
< —g + M()[(Cll + bl)ﬁh + bgf + K(6 n C)

]N—zs—L
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Case 5. If (S, 1, B,3,) € D¢ ., from (3.10) and (3.12), we have

&5

(ar + bo,éef] ;
k(0 +¢)

5 b
szt MO[(al + b))+ b3é + %]

oB
08 1B < ~gr—— =2+ M| (@1 + b, + bok +

c+0

N-2<-1.

Case 6. If (S,1,B,[.) € Di, from (3.10) and (3.12), we obtain

2 b _e
0. 1,880 < -5 24 il + by, + g+ CEDPE
2 k(6 +¢)
a (a, + b))B.
< —@ + MO[(al + bl)ﬁh + b3§+ L(Tlcff]]v— 2<-1.
In summary, we have
g3(S,1,B,B,) < -1 VY (S,1,B,B,) € D;.
Let
uN €I yI B a (ar +b1)Be§] }
= sup (- - 2R -2+ M, b by¢ + LS Iyt
¢ (S,I,S;/E)GF{ s B N-S§S-1I % - B Z'Be + Mol (@ + b +bas + k(6 + ¢)

Then, we have
83(S,I,B,B,) < Q < +oo, Y(S,1,B,B8.) €T.

The function U, has the minimum value Uy(S°, 1°, B°, %), since it tends to +oco as (S,1,B,53,)
approaches the boundary of 7. Thus, we obtain a non-negative function

U(S,1,B,B.) = Us — Uy(S°, I°, B, BY).
Then, applying Itd’s formula to U, we have
LU < g3(S,1,B,B.) + Mogi(B.) + Mog>(3,).

For any initial value (S (0), 1(0), B(0),5.(0)) € I' and a interval [0, 7], using the Itd’s integral and then
taking mathematical expectation to U, we get

< BUGS®, 1), B®), B.(1)
- t

- SEOLOIOLD L [ Bwus@. 1. B pdes
0

0

EU(S (0), 1(0), B(0),5.(0)) 1 ("
L BUS ), I( t) (0). B ))+? fo E(g3(S (1), [(7), B(7), B.(T)))dT (3.13)
My(a; +b)EN 1 (7 : 7
+TE[;£We(T)_ﬁe|dT_ W]

T 4MoJENEG + c)blbzbﬁE fo t ({‘[ﬁ - é/%)dr].
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Given the ergodicity of 5,(¢) and the strong law of large numbers, we have

1 [ _ o
lim - (8) — Blds = ——, 3.14
Jim 0|,6’(S) Belds N (3.14)

lim 1 4,8:(s)ds = f ) y/max{x, O}r(x)dx = f oox%n(x)dx = i/,ge (3.15)
oo 0

t—+oo [ 0

Taking the inferior limit on both sides of (3.13) and combining with (3.12), (3.14) and (3.15), we get

that
0 < liminf 2UG ©).1(0). B0), 5.(0))

t—+00 t

+ lim inf % f E(g3(S (1), I(7), B(1), B(7)))dT
t—+00 0

e e
= liminf — f E(g3(S (1), I(7), B(T), Bo(T)1,5(1).1(2).B(r) po(1)eD,) AT
0

t—+o00 [

t—+00 [

e A
+ lim inf — f E(g3(S (1), I(1), B(7), B(T)1,5(2).1().B(r) 8. (1)eDs) AT
0
! !

1 o1
<@ lim = | 1500080 8.0e00d7 = 1im — | 1 5(0) 1280 po()epz) AT
t—+oo 0 t—+oo 0

e e
<-1+(0+ 1)11tm +Hlf 7 f 152).1(0).8(2) po(v)eD,1 AT
—+00 0

Therefore, we have

>0, a.s.

1 [ 1
liminf — 1 dr >
t j(; (S (0),1(1),B(7),Be(T)ED:} 0 + 1

t—+00

Making use of Fatou’s lemma [19], we have

lim ! P(, (5(0), 1(0), B(0), B.(0)), D;)dt > 0 ! > 0, Y(5(0),1(0), B(0),B.(0)) € D, (3.16)

t—+o0 ) +1
where P(t,(S, I, B, 3., A) represents the transition probability of (S (¢), I(¢), B(t),8.(t))" belonging to
the set A. According to the Lemma 2.1 in [20], system (1.3) has at least one stationary stochastic
distribution when Rj > 1.

4. Probability density function
The purpose of this section is to derive the explicit expression of probability density function around

the quasi-endemic equilibrium based on the corresponding four-dimensional matrix equation.
The quasi-endemic equilibrium P* = (S*, I*, B*, 5;) is the solution of the following equations.

B*
N-(B.S" +BuS ) —uS* —vS* =0,
HN = (BeS ™ —— + PuSTT) —pS™ =
,B:S*K_I_ T + B, ST = (y+ I =0, (4.1)
&I — 6B — cB" = 0,
aB. — ;) = 0.
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By direct calculation, if Ry > 1, the solution of the above equation is unique, and it is
S* — S+, I* — I+, B* — B+, ﬁ: :Be’

where S, I* and B* are the same as Section 1.
Letting (z1,22,23,24)) = (S =S*,1 - I"',B— B*,S — S*,B. — B;)", system (1.3) can be linearized as
follows:
dzi = (—anz1 — anz — ainzz — ajszs)de,

dzo = (a2121 — anz + a13z3 + a1424)de,

4.2)
dzz = (a2 — aszszz)de,
dzy = —auzadt + O'dW(l),
where
BEB* * * . * S*B*
= +B8, 0 +u+v>0,a,=8,5S">0,a;=BS"——— >0, >0,
an=-—— tBl +pu+y a = P ai =p <1 B) as B
BEB* * * BEB*S*
= + 6, =ay; — (u+ 0, =BS"+(y+un)=——"7-—7>0,a3 = 0,
ar =" B apn —W+v)>0,an=-p (y+w (+ BT >0, a3 =¢6>
ax=0+c¢>0, ay = a.
Letting
Z=(z1,22,23,24)", W(t) = (0,0,0, W())", G = diag(0,0,0, o)
and

—dpp —dpp —aiz —ai
a1 —dp 4z a4
A=
0 azy —dzz 0

0 0 0 —ayy

then, linearized Eq (4.2) can be expressed by matrix

2

dZ(t) = AZd(t) + GAW().

Based on the continuous Markov processes in [21], system (1.3) has a unique probability density
function ®(zy,2,,723,24) surrounding the quasi-endemic equilibrium; according to Fokker—Plank
equation, its form is as follows:

oD(z(t),t) 0 o’ PO, 1)

+ —[Az(HD(z(2), )] —

0.
a0z 2 a2

As aresult, O(zy, 22, 23, 24) can be expressed by a quasi-Gaussian distribution since the diffusion matrix
G is constant. Therefore
D(z1,20,23,24) = qe—%(a,zz,Z3,z4)P(Z1,zz,zz,u)T

where ¢g is a constant to ensure that the normalized condition 1is established
fR4 D(z1, 22,23, 24)dz1dzodz3dzs = 1. Then, PG*P + ATP + PA = 0 is satisfied by the real symmetric
matrix P. If the matrix P is inverse, which denotes P~! = X, it can be equivalently changed into

G*+AZ +2AT = 0. 4.3)
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To find the exact expression of the probability density function ®(z;, 25, z3, 24), we will solve Eq (4.3).
Theorem 4.1. Assuming that if Ry > 1, then for any initial value (S(0), 7(0), B(0),5.(0)) € T, the
stationary distribution of system (1.3) around P* has a normal density function as follows:

1 .
O(S, 1, B,B.) = (20) [z 2 exp{— S8 =8 1=I', B=B", B,=B)x (S =S", I-I', B-B", B, —,BZ)T}
where X is a positive definite matrix that takes the form

Y = 0’ (JaJ3 o)) Zol(Jad3Jad )

Here,
00 01 1 000 1 0 0 0
1 0 0O 01 00 0 1 0 0
=10 10 0270 1 1 o700 1 ol
0010 00 01 0 0 o 1
apptazit+az—aig
r ) ni ns
I, = 0 my(ann +ax +an —an) mi(—ax —apn — as) a§3
0 0 my —as; |’
0 0 0 1
21311174 _ m_
2mmanz—m-mna) 0 2mmm—n3-mna) 0
O 3 0 _ 1
Y= 2(mmam3—13—mi14) 2 M —15—m14)
0=1_ m 0 m 0 >
2mimms—m—mna) 2mimms—m—mna)
0 m 0 nm-m

2mmm—ni-mna) 2043 = =11 1)

where o = —cajym (apn+a +an—ay), m; = %, my = my[ap(ay —ax +ax+ass)+ax(ar+
az)+apan+asg;), my = —ai3(@p+ay+an—ay)m —ay,, ry = —aum(@p+ay +ap—an), r, = my(an+
ayp + ax; —ap)(—an —axn —asz),n = Hy + ass, m = Hy + Hyaas, 3 = H3 + Hyauy, Ny = Hzag, H) =
ay +ay+ass, Hy = ay(axn+ass)+apa +(ana—aas), Hy = a(ayan+apna)+aaiz(a —ai).
Proof. The first step we need is to confirm that A is a Hurwitz matrix. Let ¢4(1) be the characteristic

polynomial of matrix A, which can be written as follows:

A+ an ain as aig 1
—ay A+axp -—aj —a4 T dn a
pa(d) = =(A+aw)| —ay A+an -—ap
0 —axp A+azy 0 0 iy 1+a 4.4)
0 0 0 A+ au 32 33

= A+ aw)(X® + Hi2> + HoA + Hy),

where Hy = ay; + axn +as;, Hy = ayi(axn + as3) + apax + (axaszs —azas), Hy = as(ajaxn +apay) +
apaysz(az; —app). The characteristic roots of ¢4(A) can be derived by: A; = —ay4 and B+ H 22 +HA+
H; = 0. By calculations, we can obtain

B.B'S* BSkE EBS'I'B

— =— (6+0) - =
axaszs — d13ds K+ B*)I*( c) (k + B)? (K + B)?

> (),

AIMS Mathematics Volume 9, Issue 8, 21918-21939.



21931

H; = ass(ayaxn + anay) + anaz(az —app)
= ass|(aar + p+v)an + 61126121] — (1 +v)axaiz
= asxas1ay + anays(p +v) + apaxass — (U + v)asas
= as3ay dy + apaass + (u + V)[61226133 —apaxn| >0,

which yields that H; > 0, H, > 0, H3 > 0, and H,H, — H; > 0. This implies that all the roots of the
characteristic equation (4.4) have negative real parts and the matrix A is a Hurwitz matrix.

Next, by solving the equation G*> + AX + AT = 0, we shall find the form of T and demonstrate that
it is positive definite.

Let A; = J;AJ;!, where the ordering matrix J; is given by

0001

1
J1—O
0

o = O
- o O
o O O

Then,
—ay4 0 0 0

|44 —an —app —ap;
A= .
a4 az; —dyp 43

0 0 asz; —dadsj

Define A, = J,A,J;', where the elimination J, takes the form

1 000
0100
=10 11 of
00 01
then, we have
—dyq 0 0 0
A, = —day4 app —day —ap —ais
0 ap+tay+ap—an —-ap-—-an 0
0 —asz as —as;3
Next, let A3 = J3A4,J;', where
10 0 0
0 1 0 0
5=10 o I ol
0 0 e !
by simple calculation, then
—ay4 0 0 0
A, = —ais4 app —an —app + a12+1162113f;§2—a11 —ai3 ’
0 ap+ay+an-—ap —dx —ap 0
0 0 my —ass
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axn(ax +azz—a)
apptazi+axp-ay’

Let Ay = J4A3 J;l, where the standardized transform matrix J, takes the form

where m; =

r rn ny ms
2
7, = 0 my(ann+ax +an —an) mi(—axn—apn—azs) ax
4 =
0 0 n —das3 ’
0 0 0 1
where r| = —aumi(ann + ax + ax — ay),r2 = mi(anp + an + ax — an)(—ay — an — ass),my =

mi[a(ay — ax + axn + az3) + axnlaxn + azs) + aizaz + a3;l, my = —ay3(an + az + axn — ap)my — a,.
By direct calculation, we obtain
-n
0
1
0
This characteristic polynomial is also invariant according to the invariant of matrix elementary
transformations. Consequently, we can obtain
m = Hy +ay, 12 = Hy + Hiag, 13 = H3 + Haayy, 14 = H3ay,.
Additionally, Eq (4.3) is equivalently convertible into the following form
(JaJ3J2d )G (JyJ3 20 )" + Ay(Ja 3020 NVE( T4 T3 o)) + [(Jad3J2dDE(J4 T30 d,) 1AL = 0,

ie., Gi+AXy+ Al =0,

where Gy = diag(1,0,0,0), £y = 0" *(JaJ3J2J1)E(JsJ3 20", 0 = —oarami(an + az + axn — an).
Using Lemma 2.1, the form of X, can be given as

M3 1174 0 _ 3 0
201m2m3 =05 =n714) 2012312117113
0 3 0 _ m
3 = 2001m2m3 =05 =n714) 2012312117113
0= m 0 m 0 .
2mmam—n3-m4) 2mmams—n3—m14)
0 _m 0 mm =3

2(mmn3—m3 -1 na) 24 (mmams—n3—13n4)

More importantly, from H, > 0, H, > 0, H; > 0, ays > 0 and H H, — H; > 0, we can deduce
that p; > 0,3 > 0,4 > 0 and 5,(qans — mma) — 13 = (Hy + aas)(H Hy — Hs)a;, + Hy(H H, —
H;) + Hy(H H, — H3)ayy > 0. So, the matrix X is a positive definite matrix. Therefore, the matrix
Y = 0*(JsJ3J2J ) Zo[(Jsd3 o d )77 is also positive definite. As a result, the density function around
quasi-endemic equilibrium P* = (S*, I, B, 8) is as follows

1 .
(S, 1,B,5,) = 2r) 2T exp {— E(S ~-S*, I-I', B-B", B.-B)~ (S -S*, I-I", B-B", 8, —ﬁZ)T}-
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5. Extinction

In this section, we explore the condition of disease extinction. Defining
Ro(u +v)(6 + o)

- . WN !
U, Vra min {6 +c, (fi’:)Ro}

RE = (1+ 2)Ry +

Theorem 5.1. If R} < 1, then the disease of system (1.3) will exponentially die out a.s.
Proof. We define a C?>-function F as follows

F(I,B) = I,I + ,B,

where [; = (1 + ﬁ)RO and [, = By using the Itd’s formula to In F, we obtain

K(5 +c)

+S B
dlnF—F{ [ﬁ+ £ BST — (y + W] + LT - 6B—cB]}

I/\

1 N _
1B B+ BN = [y + 10~ bl ~ b6 + OB} + = BB ~B)

%(@%B +pI (1 +;)R0— 1)+ %%hB | Be = B. | (5.1)
= m(ﬁe% +BVT)((1 + R, - 1)+
B.N

Klz

N BB ~B.
lll+lzBK1 ¢ ¢

< mln{

ﬁhN}((] _)R0 - 1)+ 1112—],\: | Be —Be | .

By integrating (5.1) from O to ¢ and dividing by ¢ on both sides, we get

nF@-InFO _ {ﬁeN ﬁhN}((l _)Ro_l +11_le | Bo(t) - B | dr.
t kb =1

Combining (3.14) and letting t — +o00, we know that

Lhr \ra

v B Ro(u+v)(0 +c)o
)Ro}((l u)Ro 1) * pBe \Nma

min{s +
m1n{5+c ,Bh u }{(1+Z)R0+ Ro(u +v)(0 + c)o }_1}
{

lnl‘;(t)sm1 {BeN ﬁhN}((l v ) llN o

lim sup ; + —)Ry—1
Kl H

t—+00

G IRy min o+ ¢, Bt
N
= min {5+ ¢, LUK NGRE 1),
(u+ )Ry

Therefore, if Rf < 1, then we have limsup,_,, lnf(t) < min {5 + ¢, jjx’éo}(ROE — 1) < 0, which

indicates lim,_,,, 1(#) = 0 and lim,_, ., B(¢) = 0. This suggests that system (1.3) sickness will disappear
exponentially.
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6. Numerical simulation

Our analytical results are illustrated in this section through numerical simulations. Assuming x(¢) =
B.(t) — B., the discretization equation for system (1.3) is:

S;B, . SB;
Sj+1:Sj+[/1N—Xj +B _ﬁe +B —ﬁhSI ,qu—VS]]At,
I :1-+[x-Sij + ki) +,BSI (y + )I]At
j+1 Jj JK+BJ' eK+ h Y T )L s

Bj+1 = Bj+ [é‘lj_éBj_CBj At

Xjp1 = Xj — ax;At + 0 VAL,

where the time increment At > 0, {; are random variables and satisfy Gaussian distribution N(0, 1) for
j=12...,n

Example 6.1. Let (S (0), 1(0), B(0), x(0)) = (1.4008 x 108,3.944 x 107,1.088 x 10®,1.36 x 10%), B, =
5.35x 1072, B, = 2.05 x 107, v = 0.04/365 and the other parameter values are presented in Tablel.
Direct computation leads to that (S*, I*, B*, 8) = (1.3704x 10%,3.8996 x 107,9.6683x 107, 5.35x 1072)
and

s BuuN UNE( fooo xi(x)dx)*
Ry = N 4y + tbéNe NG 4 . @rhiNe =3.9494 > 1,
W+ +u+ ovm) K(ﬂ G+ +u+ 50w
N _ N.
Ro = fr—"n HNE = 41652 > 1,

o P s e+ ox

From Figure 1, it can be seen that system (1.3) has a stationary distribution.

Y = p*(JoJ3 o0 1) 2ol (Jad3 T d )T,

1.3113¢™®  -3.5157¢7'% -9.0090e™ 1" —1.8204¢7°
—-2.9152¢71%  2.6035¢71%  6.4350¢71%  1.1973e7°
7.5525¢71%  6.4351e71%  1.5955¢°  2.5330e7°

1.7913¢7¢ 1.4428¢7° 3.1406¢7¢ 0.0655

Y=

Therefore, the solution (S (?), I(¢), B(t), B.(t)) of system (1.3) follows the normal density function
O(S,1,B,B,) ~ N((S*, I", B, )T, X) = N((1.3704 x 10%,3.8996 X 107,9.6683 x 107,5.35 x 1072)T, X).

@, = 1.1017 x 1046—3.8129><108(S—1.37O4><108)2’

®; = 2.4725 x 10%e! 9205%10°(1-3.8996x107)?
®p =9.9877 x 10363.11339><108(B—9.6683><107)2
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Figure 1. Graphs on the left show the trajectory of the stochastic system and the deterministic
system under perturbation o = 0.01, and graphs on the right show histograms and marginal

density functions of the solution.

From Figure 2, we can find that the marginal density functions basically coincide with the

corresponding fitting curves.

Example 6.2. Choose 5, = 3.1 x 107,68, = 1.32 x 107,y = 0.31017/365,0 = 0.6, = 4, and the

rest of the parameters unchanged, by direct calculation leads to R; = (1 + ﬁ)RO +

Ro(u+v)(0+c)or

- . N
MBe V@ min {6+c, f%% }

0.8489 < 1. Thus, from Theorem 5.1, the disease of the system (1.3) will be extinct exponentially in a

long time, which is supported by Figure 3.
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12000 o
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Figure 2. Computer simulations for: (i) the frequency histogram fitting density curves of S, 1
of system (1.3) with 900000 iteration points, respectively. (i1) the marginal density functions
of S, I of system (1.3).

Ity
B()

Figure 3. Computer simulations for the numbers of individuals 7, B of system (1.3), with
parameters 3, = 2.71 x 10748, =2.71 x 107*,v = 0.31017/365,0 = 0.6, = 4.

7. Conclusions
In this paper, on the basis of both biological significance and mathematically reasonable hypotheses,
we illustrate that the Ornstein—Uhlenbeck process has a more stable variability than the linear

perturbation and nonlinear perturbation. In this sense, we establish and analyze a stochastic cholera

AIMS Mathematics Volume 9, Issue 8, 21918-21939.
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model with Ornstein—Uhlenbeck process to describe the propagation mechanism of cholera disease in
the population. It is proved that the stochastic model has a unique global positive solution. We derive
two critical conditions R and ROE ; the system has at least one stationary distribution if R > 1; the virus
will be cleared out if Rf < 1. The probability density function near the quasi-positive equilibrium is
obtained by solving the corresponding Fokker—Planck equation. Mathematically, the existence of a
stationary distribution implies the weak stability in the viewpoint of stochastic process. Biologically,
the existence of a stationary distribution and probability density indicates the persistence of the disease.
Finally, numerical simulations are used to verify our theoretical results.
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