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Abstract: Cholera, as an endemic disease around the world, has imposed great harmful effects on
human health. In addition, from a microscopic viewpoint, the interference of random factors exists in
the process of virus replication. However, there are few theoretical studies of viral infection models
with biologically reasonable stochastic effects. This paper studied a stochastic cholera model used to
describe transmission dynamics in China. In this paper, we adopted a special method to simulate
the effect of environmental perturbations to the system instead of using linear functions of white
noise, i.e., the transmission rate of environment to human was satisfied Ornstein–Uhlenbeck processes,
which is a more practical and interesting. First, it was theoretically proved that the solution to the
stochastic model is unique and global, with an ergodic stationary distribution. Moreover, by solving the
corresponding Fokker–Planck equation and using our developed algebraic equation theory, we obtain
the exact expression of probability density function around the quasi-equilibrium of the stochastic
model. Finally, several numerical simulations are provided to confirm our analytical results.
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1. Introduction

Cholera, a pervasive endemic disease, poses substantial risks to global public health, resulting in
significant morbidity and mortality. The World Health Organization (WHO) reported that cholera
incidence reached approximately 3.1 million cases and 95,000 fatalities in 2022, marking a 145%
increase relative to the average of the preceding five years. Transmission of cholera primarily occurs
through the ingestion of the pathogen, characterizing it as both a waterborne and foodborne disease.
The consumption of water contaminated with sewage along with the ingestion of victuals prepared
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in unsanitary conditions can significantly facilitate the transmission of the pathogen. Additionally,
direct interpersonal contact with infected individuals can transmit the pathogen to susceptible hosts.
High-risk individuals carrying the pathogen may spread cholera to their family members through close
contact. Individuals who have recovered from cholera may develop a temporary acquired immunity
to the pathogen. However, recent studies indicate that this acquired immunity may wane within a
few months or weeks. These findings emphasize the critical necessity for ongoing research into
the mechanisms of cholera transmission and the development of effective control measures. Various
epidemiological frameworks and models have been extensively studied [1–4]. Gui [5] developed a
four-dimensional epidemiological model for the dynamics of cholera transmission, as follows:



dS
dt
= µN − (β̄eS

B
κ + B

+ βhS I) − µS − νS ,

dI
dt
= β̄eS

B
κ + B

+ βhS I − (γ + µ)I,

dR
dt
= γI − µR + νS ,

dB
dt
= ξI − δB − cB,

(1.1)

where N(S + I + R = N) represents the total population of China. The population is separated into
three groups: individuals who are susceptible (S ), infected (I), and recovered (R). In addition to these
demographic groups, it is important to consider the potential implications of disinfection in controlling
cholera, which is closely related to the concentration of vibrios in contaminated water (denoted by state
B). In addition, Table 1 provides further information on parameters.

Table 1. Summary of the parameters used in the model.
Parameter Value Comments Unit
µ 0.0066/365 Natural birth or death rate day−1

κ 500 Environment concentration of Vibrio cholera cells/mL
N 1.36 × 109 Human population in China None
βe Estimated Environment-to-human transmission rate day−1

βh Estimated Human-to-human transmission rate day−1

ν Estimated Vaccination coverage rate day−1

γ 0.2 Recovery rate day−1

ξ 10 Rate of human contribution to Vibrio cholera cells ·mL−1 · day−1

δ 1/30 Decay rate of vibrios day−1

c 4/365 Disinfection rate day−1

In system (1.1), the third equation is independent of the others, indicating that we only need to study
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the dynamics of the following subsystems

dS
dt
= µN − (β̄eS

B
κ + B

+ βhS I) − µS − νS ,

dI
dt
= β̄eS

B
κ + B

+ βhS I − (γ + µ)I,

dB
dt
= ξI − δB − cB,

(1.2)

According to [5], the basic reproduction number is obtained by R0 = βh
µN

(µ+ν)(γ+µ) + β̄e
µNξ

(µ+ν)(γ+µ)(δ+c)κ .
Moreover, the relevant threshold dynamics of system (1.2) is as follows:
• If R0 < 1, system (1.2) has a disease-free equilibrium E0 = ( µN

µ+ν
, 0, 0), which is globally

asymptotically stable.
• If R0 > 1, there exists a unique endemic equilibrium E+ = (S +, I+, B+) =

(µNξ−(γ+µ)(δ+c)B+

(µ+ν)ξ , (δ+c)B+

ξ
, B+) and it is globally asymptotically stable, where B+ is the unique positive

root of the following quadratic equation

βh(γ + µ)(δ + c)2

(µ + ν)ξ
B2 +

[
β̄e(γ + µ)(δ + c)

µ + ν
+
κβh(γ + µ)(δ + c)2

(µ + ν)ξ
+ (γ + µ)(δ + c) −

βhµN(δ + c)
µ + ν

]
B

− κ(γ + µ)(δ + c)(R0 − 1) = 0,

and µNξ > (γ + µ)(δ + c)B+.
Since it has been proven that the stochastic model can more accurately explain biological processes

and infectious illnesses, there is increasing scholarly interest in examining the impact of environmental
disturbances on epidemic models [6–10]. As a result, the development and research into stochastic
models have intensified. For example, Jiang et al. [11] examined stationary distributions and extinction
in non-autonomous logistic equations with random perturbations. In addition, several studies [12–15]
have yielded notable conclusions in this field. One of the most important factors in the epidemic
model (1.2) is βe, which is always fluctuating around the average value β̄e owing to the continuous
spectrum of environmental noise. In this sense, βe should be considered a random variable. We assume
that βe(t) is an Ornstein–Uhlenbeck process and satisfies the following form to imitate environmental
noise’s effect on transmission rates:

dβe(t) = α(β̄e − βe(t))dt + σdW(t),

where α and σ are positive constants indicating the speed of reversion and intensity of volatility,
respectively, and β̄e is a positive constant representing the long-term average transmission rate βe.
W(t) is a standard Brownian motion defined on a complete probability space (Ω,F , {Ft}t≥0 ,P) with a
filtration {Ft}t≥0 . According to Mao’s monograph [16], we can obtain that

βe(t) = β̄e + (βe(0) − β̄e)e−αt + σ

∫ t

0
e−α(t−s)dW(s).

The expectation and variance of βe(t) are

E[βe(t)] = β̄e + (βe(0) − β̄e)e−αt and Var[βe(t)] =
σ2

2α
(1 − e−2αt).
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As a result, the limit distribution of the Ornstein–Uhlenbeck process βe(t) is N(β̄e,
σ2

2α ). In other

words, the probability density of the limit distribution is π(x) =
√
α

√
πσ

e−
α(x−β̄e)2

σ2 . Furthermore, it is
straightforward to deduce that limt→0+ E[βe(t)] = βe(0) and limt→0+ Var[βe(t)] = 0. This result
suggests the Ornstein–Uhlenbeck process could be more suitable for describing random perturbations.
Moreover, we let β+e (t) := max{β(t), 0}, since the transmission rate coefficient should be non-negative.
Thus, we obtain the following stochastic model:


dS (t) =

[
µN − β+e

S (t)B(t)
κ + B(t)

− βhS (t)I(t) − µS (t) − νS (t)
]
dt,

dI(t) =
[
β+e

S (t)B(t)
κ + B(t)

+ βhS (t)I(t) − (γ + µ)I(t)
]
dt,


dB(t) =

[
ξI(t) − δB(t) − cB(t)

]
dt,

dβe(t) = α
[
βe − βe(t)

]
dt + σdW(t).

(1.3)

In addition, we obtain
d(S + I) = [µN − µS − νS − γI − µI]dt

≤
[
µN − µ(S + I)

]
dt.

Considering the third equation of system (1.3), we have

dB = (ξI − δB − cB)dt

≤
[
ξN − (δ + c)B

]
dt.

Accordingly, region

Γ =
{
(S , I, B, βe) ∈ R3

+ × R : S + I < N, B <
ξN
δ + c

}
is positively invariant set with respect to model (1.3). As a result, we take the supposition that initial
values fulfill S (0) + I(0) < N, B(0) < ξN

c , throughout the entire paper. We summarize our main
contributions and innovations in comparison with the existing literature as follows: (i) To obtain
the existence of a stationary distribution, which is a probability distribution with some invariant
properties, we develop an innovative approach to build some stochastic Lyapunov functions. (ii)
During the following discussion, we explore the sufficient conditions for the existence of stationary
distribution. The probability density function corresponding to the quasi-equilibrium is established,
which is of great significance. (iii) We also study the sufficient conditions for the disease to exterminate
exponentially. In summary, the remainder of our paper is structured as follows. The existence and
uniqueness of a global solution to system (1.3), as well as other relevant mathematical Lemma, are
all presented in Section 2. The sufficient criteria for an ergodic stationary distribution of system (1.3)
are derived in Section 3. To be complete, we build sufficient conditions for eliminating viruses and
infected cells in Section 4. Lastly, numerical simulations are carried out to demonstrate our theoretical
findings.
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2. Preliminaries

An important lemma is introduced in this section to obtain the accurate probability density
expression.
Lemma 2.1. [17] For the algebraic equation H2

0 + A0Σ0 + Σ0AT
0 = 0, where H0 = diag(1, 0, 0, 0), Σ0 is

a real symmetric matrix and the standard matrix

A0 =


−η1 −η2 −η3 −η4

1 0 0 0
0 1 0 0
0 0 1 0

 .
If η1 > 0, η3 > 0, η4 > 0 and η1η2η3 − η

2
3 − η

2
1η4 > 0, then Σ0 is a positive definite matrix, where

Σ0 =



η2η3−η1η4

2(η1η2η3−η
2
3−η

2
1η4) 0 −

η3

2(η1η2η3−η
2
3−η

2
1η4) 0

0 η3

2(η1η2η3−η
2
3−η

2
1η4) 0 −

η1

2(η1η2η3−η
2
3−η

2
1η4)

−
η3

2(η1η2η3−η
2
3−η

2
1η4) 0 η1

2(η1η2η3−η
2
3−η

2
1η4) 0

0 −
η1

2(η1η2η3−η
2
3−η

2
1η4) 0 η1η2−η3

2η4(η1η2η3−η
2
3−η

2
1η4)

 .
Here, A0 in this form is called the standard R1 matrix.
Theorem 2.1. The system (1.3) has a unique global solution (S (t), I(t), B(t), βe(t)) that will remain in
Γ with probability one (a.s.) for any initial value of (S (0), I(0), B(0), βe(0)) ∈ Γ.
Proof. To prove the existence and uniqueness of positive solutions to stochastic models, we usually rely
on the standard approach and the classical Khasminskii Lyapunov functional method, which is similar
to [18]. Constructing the appropriate Lyapunov function is crucial. We construct a non-negativity
C2-function U0(S , I, B, βe) as follows

U0(S , I, B, βe) = S − 1 − ln S + I − 1 − ln I + B − 1 − ln B +
β2

e

2
.

Since u − 1 − ln u ≥ 0 for any u > 0, then the above function is non-negativity. Applying Itô’s formula
to U0, we have

LU0(t) = (1 −
1
S

)[µN − (β+e
S B
κ + B

+ βhS I) − µS − νS ] + (1 −
1
I

)[β+e
S B
κ + B

+ βhS I − (γ + µ)I],

+ (1 −
1
B

)[ξI − δB − cB] + αβe[βe − βe(t)] +
1
2
σ2,

= µN − µS − νS − (γ + µ)I + ξI − δB − cB −
µN
S
+ β+e

B
κ + B

+ βhI + µ + ν − β+e
S B

I(κ + B)
− βhS

+ γ + µ −
ξI
B
+ δ + c + αβeβe − αβ

2
e +

1
2
σ2

≤ µN + (ξ + βh)I + 2µ + δ + c + γ + ν +
1
2
σ2 + αβeβe − αβ

2
e+ | βe |

≤ µN + (ξ + βh)N + 2µ + δ + c + γ + ν +
1
2
σ2 + sup

βe∈R

{−αβ2
e + αβeβe+ | βe |}

:= W0,

where W0 is a positive constant, which is independent of S , I, B and βe.
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3. Stationary distribution

The aim of this section is to analyze whether the stochastic model has a stationary distribution that
reflects infectious disease persistence. Define

Rs
0 =

βhµN

(µ + ν)(γ + µ + (a1+b1)ξNσ
(δ+c)κ

√
πα

)
+

µNξβ̂e

κ(µ + ν)(δ + c)(γ + µ + (a1+b1)ξNσ
(δ+c)κ

√
πα

)

where β̂e = (
∫ ∞

0
x

1
4π(x)dx)4, π(x) =

√
α

√
πσ

e−
α(x−β̄e)2

σ2 , a1 =
βhµN

(µ+ν)2 , b1 =
µNξβ̂e

(µ+ν)2(δ+c)κ .

Theorem 3.1. Suppose that Rs
0 > 1, then the stochastic system (1.3) admits at least one ergodic

stationary distribution η(· ) on Γ.
Proof. Using Itô’s formula to − ln S , − ln I and − ln B, respectively, we have

L(− ln S ) =
−µN

s
+ β+e

B
κ + B

+ βhI + µ + ν,

L(− ln I) = −β+e
S B

I(κ + B)
− βhS + γ + µ,

L(− ln B) = −
ξI
B
+ δ + c.

(3.1)

Then, define
U1 = − ln I − (a1 + b1) ln S − b2 ln B + b3B,

where positive constants a1, b1, b2, b3 will be approved later. Using Ito’s formula on U1 and
combining (3.1), we obtain

LU1 = −βhS − a1
µN
s
+ a1(µ + ν) − β+e

S B
I(κ + B)

− b1
µN
S
− b2
ξI
B
− b3(δ + c)(κ + B)

+ b1(µ + ν) + b2(δ + c) + b3κ(δ + c) + (a1 + b1)β+e
B
κ + B

+ (a1 + b1)βhI + γ + µ + b3ξI

≤ −2
√
βhµNa1 − 4 4

√
µNβ+e ξ(δ + c)b1b2b3 + a1(µ + ν) + b1(µ + ν) + b2(δ + c)

+ b3κ(δ + c) + γ + µ +
(a1 + b1)
κ

β+e B + [(a1 + b1)βh + b3ξ]I

= −2
√
βhµNa1 − 4

4
√
µNβ̂eξ(δ + c)b1b2b3 + a1(µ + ν) + b1(µ + ν) + b2(δ + c)

+ b3κ(δ + c) + γ + µ +
(a1 + b1)
κ

β̄eB + [(a1 + b1)βh + b3ξ]I +
(a1 + b1)
κ

B(β+e − β̄e)

+ 4
(

4
√
µNβ̂eξ(δ + c)b1b2b3 −

4
√
µNξβ+e (δ + c)b1b2b3

)
,

(3.2)

where
β̂e = (

∫ ∞

0
x

1
4π(x)dx)4.

Note that β+e =
|βe |+βe

2 , we have

β+e − β̄e =
|βe| − β̄e + βe − β̄e

2
≤ |βe − β̄e|. (3.3)
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Choose

a1 =
βhµN

(µ + ν)2 , b1 =
µNξβ̂e

(µ + ν)2(δ + c)κ
, b2 =

µNξβ̂e

(µ + ν)(δ + c)2κ
, b3 =

µNξβ̂e

(µ + ν)(δ + c)2κ2
. (3.4)

Substituting (3.3) and (3.4) into (3.2), we have

LU1 ≤ −
βhµN

(µ + ν)
−

µNξβ̂e

(µ + ν)(δ + c)κ
+ γ + µ +

(a1 + b1)
κ

β̄eB + [(a1 + b1)βh + b3ξ]I +
(a1 + b1)
κ

B(β+e − β̄e)

+ 4
(

4
√
µNβ̂eξ(δ + c)b1b2b3 −

4
√
µNβ+e ξ(δ + c)b1b2b3

)
≤ −
βhµN

(µ + ν)
−

µNξβ̂e

(µ + ν)(δ + c)κ
+ γ + µ +

(a1 + b1)
κ

β̄eB + [(a1 + b1)βh + b3ξ]I

+
(a1 + b1)
κ

ξN
δ + c

|βe − β̄e| + 4
(

4
√
µNβ̂eξ(δ + c)b1b2b3 −

4
√
µNβ+e ξ(δ + c)b1b2b3

)
= −
βhµN

(µ + ν)
−

µNξβ̂e

(µ + ν)(δ + c)κ
+ γ + µ +

(a1 + b1)ξN
κ(δ + c)

·
σ
√
πα
+

(a1 + b1)
κ

β̄eB

+ [(a1 + b1)βh + b3ξ]I +
(a1 + b1)
κ

ξN
(δ + c)

(|βe − β̄e| −
σ
√
πα

) + 4
(

4
√
µNβ̂eξ(δ + c)b1b2b3

−
4
√
µNβ+e ξ(δ + c)b1b2b3

)
= −(Rs

0 − 1)
(
γ + µ +

(a1 + b1)ξNσ
κ(δ + c)

√
πα

)
+

(a1 + b1)
κ

β̄eB + [(a1 + b1)βh + b3ξ]I

+
(a1 + b1)
κ

ξN
δ + c

(|βe − β̄e| −
σ
√
πα

) + 4
(

4
√
µNβ̂eξ(δ + c)b1b2b3 −

4
√
µNβ+e ξ(δ + c)b1b2b3

)
,

(3.5)

where

Rs
0 =

βhµN

(µ + ν)(γ + µ + (a1+b1)ξNσ
(c+δ)κ

√
πα

)
+

µNξβ̂e

κ(µ + ν)(δ + c)(γ + µ + (a1+b1)ξNσ
(c+δ)κ

√
πα

)

=
βhµN

(µ + ν)(γ + µ + (a1+b1)ξNσ
(c+δ)κ

√
πα

)
+

µNξ(
∫ ∞

0
x

1
4π(x)dx)4

κ(µ + ν)(δ + c)(γ + µ + (a1+b1)ξNσ
(c+δ)κ

√
πα

)
.

Then, define

U2 = U1 +
(a1 + b1)β̄e

κ(δ + c)
B.

Making the use of Itô’s formula to U2, we have

LU2 ≤ −(Rs
0 − 1)

(
γ + µ +

(a1 + b1)ξNσ
κ(c + δ)

√
πα

)
+ [(a1 + b1)βh + b3ξ +

(a1 + b1)β̄eξ

κ(δ + c)
]I

+ g1(βe) + g2(β+e ),
(3.6)

where
g1(βe) =

(a1 + b1)ξN
κ(c + δ)

(
|βe − β̄e| −

σ
√
πα

)
,

g2(β+e ) = 4
(

4
√
µNξβ̂e(δ + c)b1b2b3 −

4
√
µNξβ+e (δ + c)b1b2b3

)
.
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Next, we define

U3 = − ln S − ln B − ln(N − S − I) − ln(
ξN

c + δ
− B) +

β2
e

2
.

Combining (3.1) and applying Itô’s formula to U3, we have

LU3 ≤ −
µN
s
−
ξI
B
−

γI
N − S − I

−
δB

ξN
c+δ − B

+ β+e
B
κ + B

+ βhI + 2µ + ν + δ + 2c

− αβ2
e + αβ̄eβe +

1
2
σ2

≤ −
µN
s
−
ξI
B
−

γI
N − S − I

−
δB

ξN
c+δ − B

−
α

2
β2

e + H1,

(3.7)

where

H1 = sup
βe∈R

{
−
α

2
β2

e + αβ̄eβe+ | βe |

}
+ βhN + 2µ + 2c + ν + δ +

1
2
σ2.

Then, we define

U4 = M0U2 + U3,

where M0 is a sufficiently large constant satisfying

−M0(Rs
0 − 1)

(
γ + µ +

(a1 + b1)ξNσ
(c + δ)κ

√
πα

)
+ H1 ≤ −2. (3.8)

Then, from (3.6)–(3.8), we have

LU4 ≤ −
µN
s
−
ξI
B
−

γI
N − S − I

−
δB

ξN
c+δ − B

−
α

2
β2

e − 2 + M0

[
(a1 + b1)βh + b3ξ +

(a1 + b1)β̄eξ

κ(δ + c)

]
I

+ M0g1(βe) + M0g2(β+e )
:= g3(S , I, B, βe) + M0g1(βe) + M0g2(β+e )

(3.9)

where

g3(S , I, B, βe) = −
µN
s
−
ξI
B
−

γI
N − S − I

−
δB

ξN
c+δ − B

−
α

2
β2

e−2+M0

[
(a1+b1)βh+b3ξ+

(a1 + b1)β̄eξ

κ(δ + c)

]
I. (3.10)

Next, we construct a compact set Dε ⊂ Γ as follows

Dε = {(S , I, B, βe) ∈ Γ
∣∣∣S ≥ ϵ, I ≥ ϵ, B ≥ ϵ2, S + I ≤ N − ϵ2, B ≤

ξN
c + δ

− ϵ3},
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such that g3(S , I, B, βe) ≤ −1 for any (S , I, B, βe) ∈ Γ \ Dε := Dc
ε. Then, let Dc

ε =
6⋃

i=1
Dc
ε,i, where

Dc
ε,1 = {(S , I, B, βe) ∈ Γ

∣∣∣I < ϵ},
Dc
ε,2 = {(S , I, B, βe) ∈ Γ

∣∣∣S < ϵ},
Dc
ε,3 =

{
(S , I, B, βe) ∈ Γ

∣∣∣B < ϵ2, I ≥ ϵ
}
,

Dc
ε,4 =

{
(S , I, B, βe) ∈ Γ

∣∣∣S + I > N − ϵ2, I ≥ ϵ
}
,

Dc
ε,5 =

{
(S , I, B, βe) ∈ Γ

∣∣∣B > ξN
c + δ

− ϵ3, B ≥ ϵ2
}
,

Dc
ε,6 =

{
(S , I, B, βe) ∈ Γ

∣∣∣ | βe |>
1
ϵ

}
,

ε is a small enough constant satisfying the following inequalities

M0

[
(a1 + b1)βh + b3ξ +

(a1 + b1)β̄eξ

κ(δ + c)

]
ε ≤ 1. (3.11)

−min
{
µN
ε
,
ξ

ε
,
γ

ε
,
δ

ε
,
α

2ε2

}
+ M0

[
(a1 + b1)βh + b3ξ +

(a1 + b1)β̄eξ

κ(δ + c)

]
N ≤ 1. (3.12)

Case 1. If (S , I, B, βe) ∈ Dc
ε,1, from (3.10) and (3.11), we have

g3(S , I, B, βe) ≤ −2 + M0

[
(a1 + b1)βh + b3ξ +

(a1 + b1)β̄eξ

κ(δ + c)

]
I

≤ −2 + M0

[
(a1 + b1)βh + b3ξ +

(a1 + b1)β̄eξ

κ(δ + c)

]
ε ≤ −1.

Case 2. If (S , I, B, βe) ∈ Dc
ε,2, from (3.10) and (3.12), we obtain

g3(S , I, B, βe) ≤ −
µN
S
+ M0

[
(a1 + b1)βh + b3ξ +

(a1 + b1)β̄eξ

κ(δ + c)

]
I − 2

≤ −
µN
ε
+ M0

[
(a1 + b1)βh + b3ξ +

(a1 + b1)β̄eξ

κ(δ + c)

]
N − 2 ≤ −1.

Case 3. If (S , I, B, βe) ∈ Dc
ε,3, from (3.10) and (3.12), we derive

g3(S , I, B, βe) ≤ −
ξI
B
− 2 + M0

[
(a1 + b1)βh + b3ξ +

(a1 + b1)β̄eξ

κ(δ + c)

]
I

≤ −
ξ

ε
+ M0

[
(a1 + b1)βh + b3ξ +

(a1 + b1)β̄eξ

κ(δ + c)

]
N − 2 ≤ −1.

Case 4. If (S , I, B, βe) ∈ Dc
ε,4, from (3.10) and (3.12), we get

g3(S , I, B, βe) ≤ −
γI

N − S − I
− 2 + M0

[
(a1 + b1)βh + b3ξ +

(a1 + b1)β̄eξ

κ(δ + c)

]
I

≤ −
γ

ε
+ M0

[
(a1 + b1)βh + b3ξ +

(a1 + b1)β̄eξ

κ(δ + c)

]
N − 2 ≤ −1.
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Case 5. If (S , I, B, βe) ∈ Dc
ε,5, from (3.10) and (3.12), we have

g3(S , I, B, βe) ≤ −
δB

ξN
c+δ − B

− 2 + M0

[
(a1 + b1)βh + b3ξ +

(a1 + b1)β̄eξ

κ(δ + c)

]
I

≤ −
δ

ε
+ M0

[
(a1 + b1)βh + b3ξ +

(a1 + b1)β̄eξ

κ(δ + c)

]
N − 2 ≤ −1.

Case 6. If (S , I, B, βe) ∈ Dc
ε,6, from (3.10) and (3.12), we obtain

g3(S , I, B, βe) ≤ −
αβ2

e

2
− 2 + M0

[
(a1 + b1)βh + b3ξ +

(a1 + b1)β̄eξ

κ(δ + c)

]
I

≤ −
α

2ε2 + M0

[
(a1 + b1)βh + b3ξ +

(a1 + b1)β̄eξ

κ(δ + c)

]
N − 2 ≤ −1.

In summary, we have
g3(S , I, B, βe) ≤ −1 ∀ (S , I, B, βe) ∈ Dc

ε.

Let

Q = sup
(S ,I,B,βe)∈Γ

{
−
µN
s
−
ξI
B
−

γI
N − S − I

−
δB

ξN
c+δ − B

−
α

2
β2

e − 2+M0

[
(a1 + b1)βh + b3ξ +

(a1 + b1)β̄eξ

κ(δ + c)

]
I
}
.

Then, we have
g3(S , I, B, βe) ≤ Q < +∞, ∀(S , I, B, βe) ∈ Γ.

The function U4 has the minimum value U4(S 0, I0, B0, β0
e), since it tends to +∞ as (S , I, B, βe)

approaches the boundary of Γ. Thus, we obtain a non-negative function

U(S , I, B, βe) = U4 − U4(S 0, I0, B0, β0
e).

Then, applying Itô’s formula to U, we have

LU ≤ g3(S , I, B, βe) + M0g1(βe) + M0g2(β+e ).

For any initial value (S (0), I(0), B(0), βe(0)) ∈ Γ and a interval [0, t], using the Itô’s integral and then
taking mathematical expectation to U, we get

0 ≤
EU(S (t), I(t), B(t), βe(t)

t

=
EU(S (0), I(0), B(0), βe(0))

t
+

1
t

∫ t

0
E(LU(S (τ), I(τ), B(τ), βe(τ)))dτ

≤
EU(S (0), I(0), B(0), βe(0))

t
+

1
t

∫ t

0
E(g3(S (τ), I(τ), B(τ), βe(τ)))dτ

+
M0(a1 + b1)ξN

c + δ
E
[1

t

∫ t

0
|βe(τ) − β̄e|dτ −

σ
√
πα

]
+ 4M0

4
√
µNξ(δ + c)b1b2b3E

[1
t

∫ t

0

(
4
√
β̂ − 4
√
β+e (τ)

)
dτ
]
.

(3.13)
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Given the ergodicity of βe(t) and the strong law of large numbers, we have

lim
t→+∞

1
t

∫ t

0
|βe(s) − β̄e|ds =

σ
√
πα
, (3.14)

lim
t→+∞

1
t

∫ t

0

4
√
β+e (s)ds =

∫ +∞

−∞

4
√

max{x, 0}π(x)dx =
∫ +∞

0
x

1
4π(x)dx =

4
√
β̂e. (3.15)

Taking the inferior limit on both sides of (3.13) and combining with (3.12), (3.14) and (3.15), we get
that

0 ≤ lim inf
t→+∞

EU(S (0), I(0), B(0), βe(0))
t

+ lim inf
t→+∞

1
t

∫ t

0
E(g3(S (τ), I(τ), B(τ), βe(τ)))dτ

= lim inf
t→+∞

1
t

∫ t

0
E(g3(S (τ), I(τ), B(τ), βe(τ))1{S (τ),I(τ),B(τ),βe(τ)∈Dε})dτ

+ lim inf
t→+∞

1
t

∫ t

0
E(g3(S (τ), I(τ), B(τ), βe(τ))1{S (τ),I(τ),B(τ),βe(τ)∈Dc

ε}
)dτ

≤ Q lim
t→+∞

1
t

∫ t

0
1
{S (τ),I(τ),B(τ),βe(τ)∈Dε}dτ − lim

t→+∞

1
t

∫ t

0
1
{S (τ),I(τ),B(τ),βe(τ)∈Dc

ε}
dτ

≤ −1 + (Q + 1) lim inf
t→+∞

1
t

∫ t

0
1
{S (τ),I(τ),B(τ),βe(τ)∈Dε}dτ.

Therefore, we have

lim inf
t→+∞

1
t

∫ t

0
1
{S (τ),I(τ),B(τ),βe(τ)∈Dε}dτ ≥

1
Q + 1

> 0, a.s.

Making use of Fatou’s lemma [19], we have

lim
t→+∞

1
t

∫ t

0
P(τ, (S (0), I(0), B(0), βe(0)),Dε)dτ ≥

1
Q + 1

> 0, ∀(S (0), I(0), B(0), βe(0)) ∈ Dε, (3.16)

where P(t, (S , I, B, βe,A) represents the transition probability of (S (t), I(t), B(t), βe(t))T belonging to
the set A. According to the Lemma 2.1 in [20], system (1.3) has at least one stationary stochastic
distribution when Rs

0 > 1.

4. Probability density function

The purpose of this section is to derive the explicit expression of probability density function around
the quasi-endemic equilibrium based on the corresponding four-dimensional matrix equation.

The quasi-endemic equilibrium P∗ = (S ∗, I∗, B∗, β∗e) is the solution of the following equations.

µN − (β∗eS ∗
B∗

κ + B∗
+ βhS ∗I∗) − µS ∗ − νS ∗ = 0,

β∗eS ∗
B∗

κ + B∗
+ βhS ∗I∗ − (γ + µ)I∗ = 0,

ξI∗ − δB∗ − cB∗ = 0,
α(β̄e − β

∗
e) = 0.

(4.1)
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By direct calculation, if R0 > 1, the solution of the above equation is unique, and it is

S ∗ = S +, I∗ = I+, B∗ = B+, β∗e = β̄e,

where S +, I+ and B+ are the same as Section 1.
Letting (z1, z2, z3, z4)T = (S − S ∗, I − I∗, B − B∗, S − S ∗, β̄e − β

∗
e)T , system (1.3) can be linearized as

follows: 
dz1 = (−a11z1 − a12z2 − a13z3 − a14z4)dt,

dz2 = (a21z1 − a22z2 + a13z3 + a14z4)dt,

dz3 = (a32z2 − a33z3)dt,

dz4 = −a44z4dt + σdW(t),

(4.2)

where

a11 =
β̄eB∗

κ + B∗
+ βhI∗ + µ + ν > 0, a12 = βhS ∗ > 0, a13 = β̄eS ∗

κ

(κ + B∗)2 > 0, a14 =
S ∗B∗

κ + B∗
> 0,

a21 =
β̄eB∗

κ + B∗
+ βhI∗ = a11 − (µ + ν) > 0, a22 = −βhS ∗ + (γ + µ) =

β̄eB∗S ∗

(κ + B∗)I∗
> 0, a32 = ξ > 0,

a33 = δ + c > 0, a44 = α.

Letting
Z = (z1, z2, z3, z4)T , W(t) = (0, 0, 0,W(t))T ,G = diag(0, 0, 0, σ)

and

A =


−a11 −a12 −a13 −a14

a21 −a22 a13 a14

0 a32 −a33 0
0 0 0 −a44

 ,
then, linearized Eq (4.2) can be expressed by matrix

dZ(t) = AZd(t) +GdW(t).

Based on the continuous Markov processes in [21], system (1.3) has a unique probability density
function Φ(z1, z2, z3, z4) surrounding the quasi-endemic equilibrium; according to Fokker–Plank
equation, its form is as follows:

∂Φ(z(t), t)
∂t

+
∂

∂z
[Az(t)Φ(z(t), t)] −

σ2

2
∂2Φ(z(t), t)
∂z2

4

= 0.

As a result, Φ(z1, z2, z3, z4) can be expressed by a quasi-Gaussian distribution since the diffusion matrix
G is constant. Therefore

Φ(z1, z2, z3, z4) = qe−
1
2 (z1,z2,z3,z4)P(z1,z2,z3,z4)T

,

where q is a constant to ensure that the normalized condition is established∫
R4 Φ(z1, z2, z3, z4)dz1dz2dz3dz4 = 1. Then, PG2P + AT P + PA = 0 is satisfied by the real symmetric

matrix P. If the matrix P is inverse, which denotes P−1 = Σ, it can be equivalently changed into

G2 + AΣ + ΣAT = 0. (4.3)

AIMS Mathematics Volume 9, Issue 8, 21918–21939.



21930

To find the exact expression of the probability density function Φ(z1, z2, z3, z4), we will solve Eq (4.3).
Theorem 4.1. Assuming that if R0 > 1, then for any initial value (S (0), I(0), B(0), βe(0)) ∈ Γ, the
stationary distribution of system (1.3) around P∗ has a normal density function as follows:

Φ(S , I, B, βe) = (2π)−2|Σ|−
1
2 exp

{
−

1
2

(S −S ∗, I− I∗, B−B∗, βe−β
∗
e)Σ−1(S −S ∗, I− I∗, B−B∗, βe−β

∗
e)T
}

where Σ is a positive definite matrix that takes the form

Σ = ϱ2(J4J3J2J1)−1Σ0[(J4J3J2J1)−1]T .

Here,

J1 =


0 0 0 1
1 0 0 0
0 1 0 0
0 0 1 0

 , J2 =


1 0 0 0
0 1 0 0
0 1 1 0
0 0 0 1

 , J3 =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 a32

a12+a21+a22−a11
1

 ,

J4 =


r1 r2 m2 m3

0 m1(a12 + a21 + a22 − a11) m1(−a22 − a12 − a33) a2
33

0 0 m1 −a33

0 0 0 1

 ,

Σ0 =



η2η3−η1η4

2(η1η2η3−η
2
3−η

2
1η4) 0 −

η3

2(η1η2η3−η
2
3−η

2
1η4) 0

0 η3

2(η1η2η3−η
2
3−η

2
1η4) 0 −

η1

2(η1η2η3−η
2
3−η

2
1η4)

−
η3

2(η1η2η3−η
2
3−η

2
1η4) 0 η1

2(η1η2η3−η
2
3−η

2
1η4) 0

0 −
η1

2(η1η2η3−η
2
3−η

2
1η4) 0 η1η2−η3

2η4(η1η2η3−η
2
3−η

2
1η4)

 ,
where ϱ = −σa14m1(a12+a21+a22−a11), m1 =

a32(a21+a33−a11)
a12+a21+a22−a11

, m2 = m1[a12(a11−a21+a22+a33)+a22(a22+

a33)+a13a32+a2
33], m3 = −a13(a12+a21+a22−a11)m1−a3

33, r1 = −a14m1(a12+a21+a22−a11), r2 = m1(a12+

a22 + a21 − a11)(−a11 − a22 − a33), η1 = H1 + a44, η2 = H2 + H1a44, η3 = H3 + H2a44, η4 = H3a44, H1 =

a11+a22+a33, H2 = a11(a22+a33)+a12a21+(a22a33−a13a32),H3 = a33(a11a22+a12a21)+a32a13(a21−a11).
Proof. The first step we need is to confirm that A is a Hurwitz matrix. Let φA(λ) be the characteristic
polynomial of matrix A, which can be written as follows:

φA(λ) =

∣∣∣∣∣∣∣∣∣∣∣
λ + a11 a12 a13 a14

−a21 λ + a22 −a13 −a14

0 −a32 λ + a33 0
0 0 0 λ + a44

∣∣∣∣∣∣∣∣∣∣∣ = (λ + a44)

∣∣∣∣∣∣∣∣∣
λ + a11 a12 a13

−a21 λ + a22 −a13

0 −a32 λ + a33

∣∣∣∣∣∣∣∣∣
= (λ + a44)(λ3 + H1λ

2 + H2λ + H3),

(4.4)

where H1 = a11 + a22 + a33, H2 = a11(a22 + a33)+ a12a21 + (a22a33 − a13a32),H3 = a33(a11a22 + a12a21)+
a32a13(a21 − a11). The characteristic roots of φA(λ) can be derived by: λ1 = −a44 and λ3 +H1λ

2 +H2λ+

H3 = 0. By calculations, we can obtain

a22a33 − a13a32 =
β̄eB∗S ∗

(κ + B∗)I∗
(δ + c) −

β̄eS ∗κξ
(κ + B∗)2 =

ξβ̄eS ∗I∗B∗

(κ + B∗)2 > 0,

AIMS Mathematics Volume 9, Issue 8, 21918–21939.
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H3 = a33(a11a22 + a12a21) + a32a13(a21 − a11)

= a33

[
(a21 + µ + ν)a22 + a12a21

]
− (µ + ν)a32a13

= a33a21a22 + a22a33(µ + ν) + a12a21a33 − (µ + ν)a32a13

= a33a21a22 + a12a21a33 + (µ + ν)
[
a22a33 − a13a32

]
> 0,

which yields that H1 > 0, H2 > 0, H3 > 0, and H1H2 − H3 > 0. This implies that all the roots of the
characteristic equation (4.4) have negative real parts and the matrix A is a Hurwitz matrix.

Next, by solving the equation G2 + AΣ + ΣAT = 0, we shall find the form of Σ and demonstrate that
it is positive definite.

Let A1 = J1AJ−1
1 , where the ordering matrix J1 is given by

J1 =


0 0 0 1
1 0 0 0
0 1 0 0
0 0 1 0

 .
Then,

A1 =


−a44 0 0 0
−a14 −a11 −a12 −a13

a14 a21 −a22 a13

0 0 a32 −a33

 .
Define A2 = J2A1J−1

2 , where the elimination J2 takes the form

J2 =


1 0 0 0
0 1 0 0
0 1 1 0
0 0 0 1

 ,
then, we have

A2 =


−a44 0 0 0
−a14 a12 − a11 −a12 −a13

0 a12 + a21 + a22 − a11 −a22 − a12 0
0 −a32 a32 −a33

 .
Next, let A3 = J3A2J−1

3 , where

J3 =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 a32

a12+a21+a22−a11
1

 ,
by simple calculation, then

A3 =


−a44 0 0 0
−a14 a12 − a11 −a12 +

a13a32
a12+a21+a22−a11

−a13

0 a12 + a21 + a22 − a11 −a22 − a12 0
0 0 m1 −a33

 ,
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where m1 =
a32(a21+a33−a11)
a12+a21+a22−a11

.

Let A4 = J4A3J−1
4 , where the standardized transform matrix J4 takes the form

J4 =


r1 r2 m2 m3

0 m1(a12 + a21 + a22 − a11) m1(−a22 − a12 − a33) a2
33

0 0 m1 −a33

0 0 0 1

 ,
where r1 = −a14m1(a12 + a21 + a22 − a11), r2 = m1(a12 + a22 + a21 − a11)(−a11 − a22 − a33),m2 =

m1[a12(a11 − a21 + a22 + a33) + a22(a22 + a33) + a13a32 + a2
33], m3 = −a13(a12 + a21 + a22 − a11)m1 − a3

33.

By direct calculation, we obtain

A4 =


−η1 −η2 −η3 −η4

1 0 0 0
0 1 0 0
0 0 1 0

 ,
This characteristic polynomial is also invariant according to the invariant of matrix elementary
transformations. Consequently, we can obtain

η1 = H1 + a44, η2 = H2 + H1a44, η3 = H3 + H2a44, η4 = H3a44.

Additionally, Eq (4.3) is equivalently convertible into the following form

(J4J3J2J1)G2(J4J3J2J1)T + A4(J4J3J2J1)Σ(J4J3J2J1)T + [(J4J3J2J1)Σ(J4J3J2J1)T ]AT
4 = 0,

i.e., G2
0 + A4Σ0 + Σ0AT

4 = 0,

where G0 = diag(1, 0, 0, 0), Σ0 = ϱ
−2(J4J3J2J1)Σ(J4J3J2J1)T , ϱ = −σa14m1(a12 + a21 + a22 − a11).

Using Lemma 2.1, the form of Σ0 can be given as

Σ0 =



η2η3−η1η4

2(η1η2η3−η
2
3−η

2
1η4) 0 −

η3

2(η1η2η3−η
2
3−η

2
1η4) 0

0 η3

2(η1η2η3−η
2
3−η

2
1η4) 0 −

η1

2(η1η2η3−η
2
3−η

2
1η4)

−
η3

2(η1η2η3−η
2
3−η

2
1η4) 0 η1

2(η1η2η3−η
2
3−η

2
1η4) 0

0 −
η1

2(η1η2η3−η
2
3−η

2
1η4) 0 η1η2−η3

2η4(η1η2η3−η
2
3−η

2
1η4)

 .

More importantly, from H1 > 0, H2 > 0, H3 > 0, a44 > 0 and H1H2 − H3 > 0, we can deduce
that η1 > 0, η3 > 0, η4 > 0 and η1(η2η3 − η1η4) − η2

3 = (H1 + a44)(H1H2 − H3)a2
44 + H3(H1H2 −

H3) + H2(H1H2 − H3)a44 > 0. So, the matrix Σ0 is a positive definite matrix. Therefore, the matrix
Σ = ϱ2(J4J3J2J1)−1Σ0[(J4J3J2J1)−1]T is also positive definite. As a result, the density function around
quasi-endemic equilibrium P∗ = (S ∗, I∗, B∗, β∗) is as follows

Φ(S , I, B, βe) = (2π)−2|Σ|−
1
2 exp

{
−

1
2

(S −S ∗, I− I∗, B−B∗, βe−β
∗
e)Σ−1(S −S ∗, I− I∗, B−B∗, βe−β

∗
e)T
}
.
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5. Extinction

In this section, we explore the condition of disease extinction. Defining

RE
0 = (1 +

ν

µ
)R0 +

R0(µ + ν)(δ + c)σ

µβ̄e
√
παmin

{
δ + c, βhµN

(µ+ν)R0

} .
Theorem 5.1. If RE

0 < 1, then the disease of system (1.3) will exponentially die out a.s.
Proof. We define a C2-function F as follows

F(I, B) = l1I + l2B,

where l1 = (1 + ν
µ
)R0 and l2 =

β̄eN
κ(δ+c) . By using the Itô’s formula to ln F, we obtain

d ln F =
1
F

{
l1
[β+e S B
κ + B

+ βhS I − (γ + µ)I
]
+ l2
[
ξI − δB − cB

]}
≤

1
F

{
l1β̄e

N
κ

B + l1βhNI −
[
l1(γ + µ) − l2ξ

]
I − l2(δ + c)B

}
+

1
F

l1
N
κ

B(β+e − β̄e)

≤
1
F

(
β̄e

N
κ

B + βhNI
)(

(1 +
ν

µ
)R0 − 1

)
+

1
F

N
κ

l1B | βe − β̄e |

=
1

l1I + l2B

(
β̄e

N
κ

B + βhNI
)(

(1 +
ν

µ
)R0 − 1

)
+

1
l1I + l2B

N
κ

l1B | βe − β̄e |

≤ min
{
β̄eN
κl2
,
βhN
l1

}(
(1 +

ν

µ
)R0 − 1

)
+

l1N
l2κ
| βe − β̄e | .

(5.1)

By integrating (5.1) from 0 to t and dividing by t on both sides, we get

ln F(t) − ln F(0)
t

≤ min
{
β̄eN
κl2
,
βhN
l1

}(
(1 +

ν

µ
)R0 − 1

)
+

l1N
l2κ

1
t

∫ t

0
| βe(τ) − β̄e | dτ.

Combining (3.14) and letting t → +∞, we know that

lim sup
t→+∞

ln F(t)
t
≤ min

{
β̄eN
κl2
,
βhN
l1

}(
(1 +

ν

µ
)R0 − 1

)
+

l1N
l2κ
·
σ
√
πα

= min
{
δ + c,

βhNµ
(µ + ν)R0

}(
(1 +

ν

µ
)R0 − 1

)
+

R0(µ + ν)(δ + c)σ
µβ̄e
√
πα

= min
{
δ + c,

βhNµ
(µ + ν)R0

}{
(1 +

ν

µ
)R0 +

R0(µ + ν)(δ + c)σ

µβ̄e
√
παmin

{
δ + c, βhµN

(µ+ν)R0

} − 1
}

= min
{
δ + c,

βhNµ
(µ + ν)R0

}
(RE

0 − 1).

Therefore, if RE
0 < 1, then we have lim supt→+∞

ln F(t)
t ≤ min

{
δ + c, βhNµ

(µ+ν)R0

}
(RE

0 − 1) < 0, which

indicates limt→+∞ I(t) = 0 and limt→+∞ B(t) = 0. This suggests that system (1.3) sickness will disappear
exponentially.
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6. Numerical simulation

Our analytical results are illustrated in this section through numerical simulations. Assuming x(t) =
βe(t) − β̄e, the discretization equation for system (1.3) is:

S j+1 = S j +

[
µN − x j

S jB j

κ + B j
− β̄e

S jB j

κ + B j
− βhS jI j − µS j − νS j

]
△t,

I j+1 = I j +

[
x j

S jB j

κ + B j
+ β̄e

S jB j

κ + B j
+ βhS jI j − (γ + µ)I j

]
△t,

B j+1 = B j +

[
ξI j − δB j − cB j

]
△t,

x j+1 = x j − αx j△t + σ
√
△tζ j,

where the time increment △t > 0, ζ j are random variables and satisfy Gaussian distribution N(0, 1) for
j = 1, 2 . . . , n.
Example 6.1. Let (S (0), I(0), B(0), x(0)) = (1.4008 × 108, 3.944 × 107, 1.088 × 108, 1.36 × 108), β̄e =

5.35 × 10−2, βh = 2.05 × 10−9, ν = 0.04/365 and the other parameter values are presented in Table1.
Direct computation leads to that (S ∗, I∗, B∗, β∗e) = (1.3704×108, 3.8996×107, 9.6683×107, 5.35×10−2)
and

Rs
0 =

βhµN

(µ + ν)(γ + µ + (a1+b1)ξNσ
(c+δ)κ

√
πα

)
+

µNξ(
∫ ∞

0
x

1
4π(x)dx)4

κ(µ + ν)(δ + c)(γ + µ + (a1+b1)ξNσ
(c+δ)κ

√
πα

)
= 3.9494 > 1,

R0 = βh
µN

(µ + ν)(γ + µ)
+ β̄e

µNξ
(µ + ν)(γ + µ)(δ + c)κ

= 4.1652 > 1,

From Figure 1, it can be seen that system (1.3) has a stationary distribution.

Σ = ρ2(J4J3J2J1)−1Σ0[(J4J3J2J1)−1]T ,

Σ =


1.3113e−9 −3.5157e−10 −9.0090e−10 −1.8204e−6

−2.9152e−10 2.6035e−10 6.4350e−10 1.1973e−6

7.5525e−10 6.4351e−10 1.5955e−9 2.5330e−6

1.7913e−6 1.4428e−6 3.1406e−6 0.0655

 .
Therefore, the solution (S (t), I(t), B(t), βe(t)) of system (1.3) follows the normal density function

Φ(S , I, B, βe) ∼ N
(
(S ∗, I∗, B∗, β∗e)T ,Σ

)
= N
(
(1.3704× 108, 3.8996× 107, 9.6683× 107, 5.35× 10−2)T ,Σ

)
.

Φs = 1.1017 × 104e−3.8129×108(S−1.3704×108)2
,

ΦI = 2.4725 × 104e−1.9205×109(I−3.8996×107)2
,

ΦB = 9.9877 × 103e3.11339×108(B−9.6683×107)2
.
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Figure 1. Graphs on the left show the trajectory of the stochastic system and the deterministic
system under perturbation σ = 0.01, and graphs on the right show histograms and marginal
density functions of the solution.

From Figure 2, we can find that the marginal density functions basically coincide with the
corresponding fitting curves.
Example 6.2. Choose β̄e = 3.1 × 10−4, βh = 1.32 × 10−5, ν = 0.31017/365, σ = 0.6, α = 4, and the
rest of the parameters unchanged, by direct calculation leads to RE

0 = (1+ ν
µ
)R0+

R0(µ+ν)(δ+c)σ

µβ̄e
√
παmin

{
δ+c, βhµN(µ+ν)R0

} =
0.8489 < 1. Thus, from Theorem 5.1, the disease of the system (1.3) will be extinct exponentially in a
long time, which is supported by Figure 3.
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Figure 2. Computer simulations for: (i) the frequency histogram fitting density curves of S , I
of system (1.3) with 900000 iteration points, respectively. (ii) the marginal density functions
of S , I of system (1.3).

Figure 3. Computer simulations for the numbers of individuals I, B of system (1.3), with
parameters β̄e = 2.71 × 10−4, βh = 2.71 × 10−4, ν = 0.31017/365, σ = 0.6, α = 4.

7. Conclusions

In this paper, on the basis of both biological significance and mathematically reasonable hypotheses,
we illustrate that the Ornstein–Uhlenbeck process has a more stable variability than the linear
perturbation and nonlinear perturbation. In this sense, we establish and analyze a stochastic cholera
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model with Ornstein–Uhlenbeck process to describe the propagation mechanism of cholera disease in
the population. It is proved that the stochastic model has a unique global positive solution. We derive
two critical conditions Rs

0 and RE
0 ; the system has at least one stationary distribution if Rs

0 > 1; the virus
will be cleared out if RE

0 < 1. The probability density function near the quasi-positive equilibrium is
obtained by solving the corresponding Fokker–Planck equation. Mathematically, the existence of a
stationary distribution implies the weak stability in the viewpoint of stochastic process. Biologically,
the existence of a stationary distribution and probability density indicates the persistence of the disease.
Finally, numerical simulations are used to verify our theoretical results.
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