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Abstract: For any positive integer n, let Mp contain the prime numbers less than n. Assuming Mp

as the set of moduli, we draw a graph with the vertex set {1, 2, 3, · · · , n}, and an edge will be built
between the vertices p and q if and only if p ≡ (q mod m) for some m ∈ Mp. We call this graph
a prime congruence simple graph and label this graph as G(n,Mp). The objective of this work is to
characterize prime congruence simple graphs, and afterwards, by utilizing these graphs, solutions to
the system of linear congruences are suggested and demonstrated by applying modular arithmetic. It
is shown that this graph is always a connected graph. The generalized formulae for vertex degrees,
size, chromatic number, domination number, clique number, and eccentricity of the prime congruence
simple graphs are proposed and proved. Also, independence numbers as well as a covering number
for the proposed graph through vertices and edges are evaluated. Lastly, as an application of prime
congruence simple graphs, the solution of a system of linear congruences is discussed in terms of the
degrees of the vertices.
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1. Introduction

Graph theory has proven to be extremely advantageous to the study of different mathematical
structures. An exciting relationship between number theory and graph theory was suggested by S.
Bryant. He used number theory and graph theory to discuss group structures [1]. Interesting results
about graphs based on congruences were investigated by P. Erdos and L. Somer [2, 3]. L. Somer
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constructed the graphs using integers and established the results for the fixed points, isolated fixed
points, semi-regular graph, and the number of components, of the proposed graph [3]. Khalid et al.
introduced and characterized the notion of hyper totient graph and restricted hyper totient graph [4]
by utilizing the connection between number theory and graph theory. Haris et al. examined a number
of intriguing features and talked about power graphs using prime powers in this drive [5]. A. D.
Christopher investigated graphs based on the set of moduli, termed a congruence graph. He proposed
the conditions under which the congruence graph is complete: connected, bipartite, Hamiltonian,
regular, path, and tree graph. He extracted the formulas for the degree sequence of vertices of the
graph [6].

In this paper, we investigate graphs based on prime moduli. The idea is to take all prime numbers
that are less than a given integer. We can build a graph by inserting an edge between two vertices
if both are congruent with respect to any prime number. This is a new innovation in graphs based
on modular arithmetic. Before this idea, the modulus was fixed. In contrast, we are assuming all
primes as moduli and residues of given fixed integer as vertices. We characterize these graphs and find
results regarding vertex degrees, graph size, chromatic number, domination number, clique number,
eccentricity, independence number through the vertex, independence number through edges, covering
number through the vertex, and covering number through the edge of the prime congruence simple
graphs, together with proofs using number theory. Figure 1 depicts the graph of prime moduli of the
integer 10.
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Figure 1. This is a graph of order 10 with vertices as positive integers and constructed on
prime moduli.

2. Preliminaries

The following results and definitions are important to keep this paper self contained. For proofs of
the following results and further details about the idea of a congruence graph, we suggest reading [6]
and [7].

The pair G(V, E) denotes a graph with the vertex set V and edge set E. The number of adjacent
vertices to any specific vertex t is its degree. If the degree of each vertex of the graph is the same, then
the graph is called regular. A vertex u with degree zero is an isolated vertex. The total number of edges
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that are involved in a graph is called the graph size. If each pair of distinct vertices is adjacent, then the
graph is complete. A graph is said to be connected if each vertex is reachable from any other vertex.
A path graph is a graph that can be drawn so that all of its vertices and edges lie on a single straight
line. A path that starts from a given vertex and ends at the same vertex is called a cycle. A connected
graph G is called a Hamiltonian graph if there is a cycle that includes every vertex of G. The distance
between any vertex a and the farthest vertex of the graph is called the eccentricity of the vertex a. The
minimum eccentricity of the arbitrary vertex of the graph G is called the radius, and the maximum
eccentricity of the arbitrary vertex of the graph is termed the diameter of the graph G. A vertex v in a
graph G is called a central vertex if the eccentricity of v is identical to the radius of the graph G. And
if every vertex of G is a central vertex, then G is called self−centered. The complement G of a graph
G is a graph having the same vertices of G such that a pair of vertices is adjacent if and only if they are
not adjacent in G. The lengths of the longest and shortest cycles in a graph are called the circumference
and girth of the graph.

In graph theory, the independence of a vertex set is a crucial topic. In any graph G, a set of vertices is
considered an independent set if no two vertices are adjacent. The cardinality of the largest independent
set is called the vertex independence number of G. α(G) denotes the vertex independence number
of G. A subset L of the set of vertices V is called a cover of the graph if all edges of the graph
are covered by L. Also, the cardinality of the minimum vertex cover of that graph is known as the
vertex covering number. β(G) denotes the vertex covering number of G. A set of edges in a graph
is independent if no two edges in the set are adjacent. The cardinality of the maximum independent
set of edges of a graph is called the edge independence number of that graph. The edge independence
number of a graph G is denoted by α1(G). A subset F of the set of edges E of the graph G, that
covers all vertices of G is called an edge cover of the graph. Moreover, the cardinality of the minimum
edge cover of a graph G is called the edge covering number of the graph G. β1(G) represents the edge
covering number of the graph.

Theorem 2.1. [7] For any graph G having n non-isolated vertices.

α(G) + β(G) = n. (2.1)

and,

α1(G) + β1(G) = n. (2.2)

3. Congruence graph

In this section, we investigate some new results based on the definition of a congruence graph.

Definition 3.1. [6]. Let n ≥ 3 be an integer, and the set of moduli M ⊆ K, where K = {2, 3, · · · , n−1}.
The congruence graph G(n,M) is the graph in which {0, 1, · · · , n − 1} is the set of vertices and an edge
exists between two distinct vertices s and t if s ≡ t (mod m) for some m ∈ M.

The graphs in Figure 2 illustrate the idea of a congruence graph.
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Figure 2. The graph (a) shows a simple planar congruence graph of order 6, which is 3
regular. But the graph (b) is a simple congruence graph of order 9, which is not a regular
graph.

The congruence graphs are very charming and have many interesting research possibilities. In the
following result, we see that the congruence graph is empty if we take a particular singleton set as a
moduli set.

Theorem 3.2. If the congruence graph G(n,M) has order n ≥ 5 and M = {n−1}, then it is an edgeless
graph, i.e., G(n,M) is an empty graph.

Proof. For n ≥ 5, let M = {n − 1}. Then the vertex set V is, {u1, u2, u3, · · · , un}. If the result is false,
then not all the vertices of the congruence graph are isolated. So there must exist at least two vertices,
us and ut, where s , t such that us ≡ ut(mod m) for some us, ut ∈ V,m ∈ M. Since us, ut ≤ n − 1.

|us − ut| < n − 1.
⇒ n − 1 - us − ut.

⇒ us . ut(mod n − 1) ∀ us, vt ∈ V, s , t

contradicting the fact that at least two vertices are adjacent. Hence, no pair of distinct vertices is
adjacent. �

Theorem 3.3. Let n ≥ 6 be a composite integer and M = {m}, where m is the divisor of n. Then the
congruence graph G(n,M) is regular, having m components, and each component will be isomorphic
to the complete graph K n

m−1.

Proof. Suppose n ≥ 6 is a composite number and M = {m},m|n. It is well known that the congruence
relation is an equivalence relation on the set of integers, and the vertex set V = {u1, u2, u3, · · · , un}

consists of positive integers. Therefore, the congruence relation defines a partition of the vertex set
and partitions it into m classes. Clearly, each class contains n

m elements. Moreover, it is evident
that the elements of these equivalent classes are congruent to each other, so vertices in equivalent
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classes are adjacent to each other. This means that each of the subsets of the vertex set will produce a
complete graph. Also, no two vertices of different classes are adjacent to each other, so we will have
m components. Consequently, there must be m components of complete graphs, and each component
will be isomorphic to K n

m−1. �

Corollary 3.4. If n = pk and M = {p}. Then the congruence graph is disconnected and has p
components, and each component is isomorphic to Kp{k−1} − 1.

4. Prime congruence simple graph

Definition 4.1. Let n ≥ 5 be an element of Z+, and let Mp be the set of all primes less than n. A
graph G(n,Mp) in which V = {1, 2, 3, · · · , n} is the set of vertices and two distinct vertices c and d are
adjacent if and only if c ≡ d(mod m) for some m in Mp is called a prime congruence simple graph
(PCSG).

The following graphs in Figure 3 illustrate the idea of prime congruence simple graphs.

13 4 2

(a)

1

3

4

2

(b)

Figure 3. The graph (a) is a prime congruence simple graph of order 4, which is a path. But
(b) shows the prime congruence simple graph of order 5.

Remark. It can be seen that PCSG always produce a complete graph if M = Mp ∪ {1}. Note
that for every two distinct elements a and b, a ≡ b(mod 1). So each pair of vertices ui, uj ∈ V =

{u1, u2, u3, · · · , un} are adjacent to each other. Hence, the congruence graph will be complete.

The following theorem 4.2 characterizes the possible path graphs in PCSG.

Theorem 4.2. The PCSG will be a path graph if and only if it has 3 or 4 vertices.

Proof. Let PCSG be a path graph for any positive integer n, with n , 3, 4. When n is 1 or 2, then by
definition, M must be void, and the graph is not possible. When n = 5, then u1, u2, u3, u4, and u5 are
the possible vertices. In this case, M = {2, 3}. Clearly, the absolute difference between these vertices
is divisible either by 2 or by 3. Then vertex u1 will be adjacent to u3, u4, and u5; vertex u2 will be
adjacent to u4 and u5, and u3 must be adjacent to u5. If we look into the resultant graph, we note that
u1 ∼ u4 ∼ u2 ∼ u5 ∼ u3 ∼ u1. This means that the graph is a cycle, which is contrary to the fact
that PCSG is a path graph. The rest of the cases for n = 6, 7, . . . can be verified in a similar fashion.
Conversely, suppose that PCSG has 3 or 4 vertices. When it has 3 vertices, namely u1, u2, and u3, then
the set M has only one prime, which is 2. So u1 and u3 are the only adjacent vertices. If n = 4, it has 4
vertices, namely u1, u2, u3, and u4. In this case, u1 is adjacent to u3 and u4. u2 is adjacent to u4. �
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Theorem 4.3. Let G(n,Mp) be a PCSG of order n with vertex set V. Let ui ∈ V be an arbitrary vertex.
Then

deg(ui) =

n − 2 if ui ∈ {1, n},
n − 3 otherwise.

Proof. Let G(n,Mp) be a PCSG of order n. Then, by definition, V = {u1, u2, u3, · · · , un}. Note that
any two distinct vertices us, ut in PCSG are adjacent to each other if and only if |us − ut| ≥ 2, where
1 ≤ s, t ≤ n. Also, the set M consists of all primes less than n, so the distinct pair of vertices having
an absolute difference greater than or equal to 2 must be adjacent to each other with respect to some
prime modulus p ∈ M. It is worth mentioning that two consecutive vertices can never be adjacent to
each other; hence, the vertex ut will not be adjacent to ut−1 and ut+1. While ui will be adjacent to all
remaining vertices due to having an absolute deviation from ui greater than or equal to 2. This means
that the vertex ut is adjacent to all vertices except ut−1 and ut+1. Moreover, the vertex ut is not self
adjacent since the graph is simple. Consequently, the vertex u1 is not adjacent to u2 only, and hence its
degree is n − 2. Similarly, the vertex un is not connected to un−1 only and has degree n − 2. Thus, the
rest of the vertices have degree n − 3. �

The following corollary is a direct consequence of Theorem 4.3.

Corollary 4.4. The PCSG of order n ≥ 4 has size (n−1)(n−2)
2 .

Proof. Suppose u1, u2, · · · , un are the n vertices of a prime congruence simple graph G(n,Mp). By
Theorem 4.3, the degree of the vertices u1, un is n − 2, and the degree of the remaining n − 2 vertices
is n − 3. Then, by the Handshaking Lemma, the totality of all degrees of the graph having n vertices is
twice the number of edges. That is,

n∑
i=1

d(ui) = 2|E|

so,

2|E| = 2(n − 2) + (n − 2)(n − 3)
= 2(n − 2) + (n − 2)(n − 3)

or

|E| =
(n − 1)(n − 2)

2
�

In graph theory, it is very important to find Hamiltonian paths. We can find the condition for n such
that the PCSG is Hamiltonian. The following corollary characterizes when a PCSG is Hamiltonian by
restricting the number of vertices.

Corollary 4.5. For n ≥ 5 PCSG is Hamiltonian.

Proof. By Theorem 4.3, the vertices u1 and un have degrees n − 2, and the rest of the vertices have
degrees n− 3. That is, deg(u1)=deg(un)=n− 2 and deg(u2)=deg(u3)=· · ·=deg(un−1) = n− 3. For n ≥ 6,
it can easily be deduced that deg(ui)≥ n

2 . Then, by sufficient condition, Dirac [8] compels that PCSG is
Hamiltonian. �
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A graph that has exactly two odd-degree vertices is called a semi-Eulerian graph. The condition for
the prime congruence simple graph to be a semi-Eulerian graph is given in the succeeding corollary.

Corollary 4.6. If n ≥ 5, then PCSG is semi-Eulerian.

Proof. For n ≥ 5, the vertices u1 and un have a degree of n − 2 and when n is odd, the degree of u1 and
un will be odd, and the remaining n − 2 vertices will have an even degree. So PCSG of odd order is
semi-Eulerian. �

Corollary 4.7. The PCSG of order n ≥ 5 is a closed walk.

Proof. Suppose a prime congruence simple graph has n vertices u1, u2, u3, · · · , un, where n ≥ 5. It is
sufficient to show that PCSG has no vertex of degree 1. By Theorem 4.3, the degree of vertices u1 and
un is n − 2, and the degree of remaining all vertices is n − 3. As n ≥ 5, it is evident that the degree of
each vertex is at least 2. Thus, PCSG will contain no vertex of degree 1. �

The following Corollary 4.8 can be proven to be similar to Corollary 4.7.

Corollary 4.8. For n ≥ 5, PCSG has no isolated vertex. That is, PCSG is always connected.

Let G be any graph, and let V be the set of vertices. A subset K ⊆ V is known as a dominating set if
every element of the set V \ K is adjacent to at least one element of the subset K. If there is no proper
subset of K that is a dominating set for G, then the set K is called the minimal dominating set. The
order of the minimal dominating sets is known as the domination number of the graph G.

Corollary 4.9. For n ≥ 5 the domination number of PCSG is 2.

Proof. In a prime congruence simple graph of n vertices u1, u2, · · · , un, the vertex ut is not adjacent
to ut−1 and ut+1. And being a simple graph, ut is also not self adjacent. Thus, the member of every
singleton set will not be adjacent to all remaining vertices of the graph. If we choose a set of two
consecutive vertices {us, ut} then any other vertex must have a prime multiple deviation with one of the
vertices in the set. This means that the remaining vertices of the graph are adjacent to either us or ut

with respect to that prime modulus. So the set of any two consecutive vertices {us, ut} will form the
smallest dominating set for the prime congruence simple graph G(n,Mp). �

Theorem 4.10. For each PCSG of order n ≥ 5, G(n,Mp) � Pn.

Proof. Let G(n,Mp) be a prime congruence simple graph of order n. We show that G(n,Mp) is a path
graph of order n. In the proof of Theorem 4.3, we have seen that, for n ≥ 5, a pair of consecutive
integers is not adjacent in PCSG. This argument leads us to the fact that consecutive integers are
adjacent in the complement graph of PCSG. That is, u1 ∼ u2 ∼ u3 ∼ · · · ∼ un forms the complement
graph of PCSG. This proves the result. �

Theorem 4.11. The circumference and girth of the PCSG of order n ≥ 5 are n and 3, respectively.

Proof. Consider a prime congruence simple graph of order n ≥ 5. Let {u1, u2, · · · , un} be the set of
vertices. An arbitrary vertex ui of the graph is adjacent to the remaining vertices of the graph except
ui−1 and ui+1. So the length of the smallest cycle in PCSG is 3. Now we have the largest cycle in the
PCSG. There are two cases, either n is even or odd.
Case 1. If n is odd, then u1 ∼ u3 ∼ u5 ∼ · · · ∼ un ∼ u2 ∼ u4 ∼ · · · ∼ un−1 ∼ u1 is a required cycle in
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PCSG that covers all vertices of the graph.
Case 2. If n is even, then u1 ∼ u3 ∼ u5 ∼ · · · ∼ un−1 ∼ u2 ∼ u4 ∼ · · · ∼ un ∼ u1 is a required cycle in
PCSG which contains all vertices of the graph. �

Chromatic numbers are among the fundamentals of graph theory. Recall that the chromatic number
is the minimum number of colors required to color the graph in such a way that if uv ∈ E, then u and v
are of different colors. In the following theorem, we find the chromatic number of our proposed graph.

Theorem 4.12. For n ≥ 4,

γ(G(n,Mp)) =

{ n
2 , if n is even,

n+1
2 , if n is odd.

where γ(G(n,Mp)) represents the chromatic number of the prime congruence simple graph.

Proof. Consider a prime congruence simple graph with n vertices u1, u2, u3, · · · , un where n ≥ 4.
Suppose that the vertex u1 is assigned the color C1. As u1 is not connected to u2 but connected to
all other vertices of the graph, u2 can be given the color C1, but none of the remaining vertices can
be assigned the color C1. Also, u3 and u4 are not adjacent, so both can be assigned the color C2.
Continuing in a similar way reveals that only two vertices, us and ut in the whole graph can have the
same color if |us − ut| = 1. So if PCSG has an even number of vertices, then the graph has n

2 colors. By
a similar argument, if n is odd, then their must be n−1

2 different colors with one vertex left. We assign
this vertex a new color. Thus, we need to have n−1

2 + 1 = n+1
2 different colors. �

For an arbitrary vertex u in G, the maximum distance of the vertex u from all other vertices of the
graph G is known as the eccentricity of the u.

Theorem 4.13. For n ≥ 5 the eccentricity of every vertex in PCSG is 2.

Proof. In a prime congruence simple graph of order n ≥ 5, each vertex ut ∈ V has an edge with all
vertices of the graph except ut−1 , ut and ut+1. Also by Theorem 4.3, deg(ut) ≥ 2, ∀n ≥ 5. Thus, there
is no vertex of degree 1 or zero. Now if we denote by di j the distance of the vertices i and j, then we
conclude that

di j =

{
1 , if ui is adjacent to u j,

2 , if ui is not adjacent to u j.

Consequently, the largest possible distance between two distinct vertices ui and u j, i , j is always 2. �

Corollary 4.14. For n ≥ 5, each vertex in PCSG is central.

The diameter of the graph is the maximum possible distance between distinct pairs of vertices. Let
di be the farthest distances from a vertex u to all other vertices of a graph, and d be the minimum of all
di’s. Then d is termed the as radius of the graph G and is denoted by r(G). And the set of all vertices
whose eccentricity is a fixed minimum number will form the center of the graph.

The following observation can be proved easily by using the notion of eccentricity.
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Remark. (a) In PCSG, diameter = radius = 2.

(b) PCSG is a self-centered graph.

Theorem 4.15. For each PCSG of order n ≥ 5, α(G(n,Mp)) = 2 and β(G(n,Mp)) = n − 2.

Proof. In PCSG of order n ≥ 5, every two consecutive vertices us and ut, where |us − ut| = 1, are not
adjacent. We claim that the set of vertices {ui, uj} with 1 deviation forms the largest independent set for
the PCSG. Consider the set with 3 vertices, u1, u2 and u3. As 3 ≡ 1(mod 2), u1 and u3 are adjacent, that
is, have an edge. A similar result can be proved for any set with more than three vertices. Thus the set
of vertices {us, ut} with deviation 1 is the largest independent set. Therefore, α(G(n,Mp)) = 2. So by
Theorem 2.1, β(G(n,Mp)) = n − 2. �

Theorem 4.16. For each PCSG of order n ≥ 5,

α1(G(n,Mp)) =

{ n
2 , if n is even,

n−1
2 , if n is odd.

β1(G(n,Mp)) =

{ n
2 , if n is even,

n+1
2 , if n is odd.

where α1(G(n,Mp)) and β1(G(n,Mp)) denote the edge independence number and edge covering number
of G(n,Mp), respectively; each of these two is computed through edges.

Proof. In PCSG of order n ≥ 5, u1 is adjacent to all other vertices except u2. And the vertex u2 is
adjacent to all other vertices except u1 and u3. Similarly, u3 is connected to all vertices except u2

and u4, and continuing in the same way, all vertices are connected. Now we want to find a set of
independent edges. That is, no pair of edges in a set is adjacent. We construct the desired set in this
manner.



u1 ∼ u3 ,

u2 ∼ u4 ,

u5 ∼ u7 ,

u6 ∼ u8 ,

.

.

.

un−3 ∼ un−1 ,

un−2 ∼ un where 1 < i < n.

These are n
2 in number, if n is even. The other cases can be proved similarly.
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(a) G(7, {2, 3, 5})
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(b) G(8, {2, 3, 5, 7})

Figure 4. The graph (a) shows that 1 − 3, 5 − 7, 2 − 4 are independent edges for the graph of
odd order(n = 7). And the graph (b) shows that there are 4 independent edges 1 − 3, 5 − 7,
2 − 4, 6 − 8 for prime congruence simple graph of even order (n = 8).

For instance, Figure 4(a) yields that the edges 1 − 3, 5 − 7, and 2 − 4 are independent edges, and
these are three in number for n = 7. And the edges 1 − 3, 5 − 7, 2 − 4, and 6 − 8 are independent, and
these are 4 in number for n = 8, which is revealed from Figure 4(b). �

For any graph G, the complete subgraph G1 of the graph G is called the clique of G. The clique
number ω(G) is the size of the largest clique in a graph G [7].

Theorem 4.17. For each PCSG having order n ≥ 5,

ω(G(n,Mp)) =

{ n
2 , if n is even,

n+1
2 , if n is odd.

Proof. By definition of PCSG, the vertex u1 is connected to all vertices except the vertices whose
absolute deviation from u1 is zero or one. In that case, these vertices cannot define an edge with
respect to a prime modulus. Thus, in the vertex set V = {ui|ui = i, i ∈ N}, all even vertices are
connected to each other, as absolute differences are divisible by some prime number. Hence, the set of
all even vertices forms a clique. In the same way, the set of all odd integer vertices forms a clique. As
the set of vertices V begins with an integer 1, so the number of odd integers is greater or equal to the
number of even integers. Consequently, the set of all odd integer vertices will form the largest clique.

Therefore ω(G(n,Mp)) = n
2 if n ≡ 0(mod 2) and n+1

2 if n is n ≡ 1(mod 2). �

5. Applications via modular arithmetic

Congruence plays a crucial role in geometry and design. Graphs and congruences are highly
correlated, as both assist in analyzing objects. The concept of PCSG is instrumental in resolving
specific congruence relations.

Theorem 5.1. For n ≥ 4 and n ∈ Z+, the linear congruence equation,

(n − 1)x ≡ (n + 1)(mod 2)

is solvable, and degb n
2c in PCSG of order n is a solution. Here, b n

2c represents the greatest integer less
than or equal to n

2 .
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Proof. In a prime congruence simple graph of order n, the degree of any vertex u is either n−2 or n−3
by Theorem 4.3. In particular, degb n

2c is either n − 2 or n − 3. But if n ≥ 4, then degb n
2c, because b n

2c is
neither equal to 1 nor n. We prove that degbn

2c is the solution of the linear congruence

(n − 1)x ≡ (n + 1)(mod 2)

There are two possibilities: either n is even or odd.
Case 1. When n is even, then (n − 1) ≡ 1(mod 2), (n + 1) ≡ 1(mod 2), and (n − 3) ≡ 1(mod 2). This
means that (n − 1)(n − 3) ≡ 1(mod 2). It is evident that (n − 1)(n − 3) ≡ (n + 1)(mod 2). Thus, degb n

2c

is the solution of the linear congruence equation.
Case 2. When n is odd, then (n − 1) ≡ 0(mod 2), (n + 1) ≡ 0(mod 2) and (n − 3) ≡ 0(mod 2). Also,
(n − 1)(n − 3) ≡ 0(mod 2). So, (n − 1)(n − 3)(n + 1) ≡ 0(mod 2). Thus, degb n

2c is the solution to the
congruence. �

Theorem 5.2. Let n ≥ 4, n ∈ Z+, and of the form 3m or 3m + 2. Then, the linear congruence equation,

(n + 2)x ≡ n(mod 3)

is solvable, and degb n
2c in PCSG of order n is the solution. Here, b n

2c represents the greatest integer
less than or equal to n

2 .

Proof. In a prime congruence simple graph of order n, the degb n
2c is n−3, as discussed in Theorem 4.3.

We prove that degb n
2c is the solution of the linear congruence,

(n + 2)x ≡ n(mod 3)

As n is of the form 3m, or 3m + 2, there are two possibilities.
Case 1. When n is of the form 3m, then (n+2) ≡ 2(mod 3), n ≡ 0(mod 3) and (n−3) ≡ 0(mod 3). Being
a product of the form 3m+2 and 3m, (n+2)(n−3) is of the form 3m. That is, (n+2)(n−3) ≡ 0(mod 3).
Moreover, (n + 2)(n − 3) ≡ n(mod 2). Thus, degb n

2c is the solution.
Case 2. When n is of the form 3m + 2, then (n + 2) ≡ 1(mod 3), n ≡ 2(mod 3), and (n− 3) ≡ 2(mod 3).
(n + 2)(n − 3) will be of the form 3m + 2, being the product of the forms 3m + 1 and 3m + 2. That is,
(n + 2)(n − 3) ≡ 2(mod 3). Moreover, (n + 2)(n − 3) ≡ n(mod 3). Thus, degb n

2c is the solution. �

Theorem 5.3. For each positive integer n ≥ 4 of the form 3m + 1, the linear congruence equation,

(n − 1)x ≡ (n + 2)(mod 3)

is solvable, and degb n
2c in PCSG of order n is the solution. Here, b n

2c represents the greatest integer
less than or equal to n

2 .

Proof. As we have discussed in Theorem 4.3, in a prime congruence simple graph of order n, the
degb n

2c is n − 3. We prove that degb n
2c is a solution to the linear congruence

(n − 1)x ≡ (n + 2)(mod 3)

As n is of the form 3m + 1, so (n − 1) ≡ 0(mod 3), (n − 3) ≡ 1(mod 3), and (n + 2) ≡ 0(mod 3).
Also, (n − 1)(n − 3) is of the form 3m. That is, (n − 1)(n − 3) ≡ 0(mod 3). Moreover, (n − 1)(n − 3) ≡
(n + 2)(mod 3). Thus, degb n

2c is the solution. �
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6. Conclusions

In this article, we introduced the notion of prime congruence simple graphs (PCSG). We
characterized the class of prime congruence simple graphs and established conditions under which
PCSG is a complete graph, a path graph, a disconnected graph, or a connected graph. We also
determined the size, eccentricity, diameter, radius, chromatic number, edge covering number, edge
independence number, vertex covering number, vertex independence number, and clique number of
the graph. Moreover, we proved that the prime congruence simple graph of order n ≥ 5 is always
Hamiltonian and also semi-Eulerian if the order of the graph is odd. We have also examined the
enumeration of components of the congruence graph. In the future, we will extend this approach to
group theory, ring theory, and different algebraic structures.
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