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Abstract: Nonnegative Tucker decomposition (NTD) is one of the renowned techniques in feature
extraction and representation for nonnegative high-dimensional tensor data. The main focus behind the
NTD-like model was how to factorize the data to get ahold of a high quality data representation from
multidimensional directions. However, existing NTD-like models do not consider relationship and
properties between the factor matrix of columns while preserving the geometric structure of the data
space. In this paper, we managed to capture nonlinear local features of data space and further enhance
expressiveness of the NTD clustering method by syncretizing organically approximately orthogonal
constraint and graph regularized constraint. First, based on the uni-side and bi-side approximate
orthogonality, we flexibly proposed two novel approximately orthogonal NTD with graph regularized
models, which not only in part make the factor matrix tend to be orthogonality, but also preserve
the geometrical information from high-dimensional tensor data. Second, we developed the iterative
updating algorithm dependent on the multiplicative update rule to solve the proposed models, and
provided its convergence and computational complexity. Finally, we used numerical experimental
results to demonstrate the effectiveness, robustness, and efficiency of the proposed new methods on the
real-world image datasets.
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1. Introduction

As the speedy expansion of technology is about acquiring and processing information, most
factual data exists in tensor form, e.g., electroencephalography signal data, video volume data,
hyperspectral image data, color image data, and functional magnetic resonance imaging data.
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Enormous and intricate data is ubiquitous in real-world application scenarios; see [1–3]. Typical
dimensional reduction methods, such as singular value decomposition [4], local linear
embedding [5, 6], vector quantization [7], principal component analysis [8, 9], nonnegative matrix
factorization (NMF) [10–12], etc., extract their low-dimensional representation from
high-dimensional ones. A commonality of the abovementioned low rank approximation methods is
that converting the data matrices (tensors) of samples into a new large matrix may substantially
corrupt the architecture of sample data space. To preserve the internal nature of tensor data and study
the low-dimensional representation of high-order domain, many tensor decomposition
methods [13–15] have been developed. Kim et al. introduced a nonnegative Tucker decomposition
(NTD) [16, 17] by combining Tucker decomposition with nonnegativity constraints on the core tensor
and factor matrices. By adding nonnegativity constraints, NTD could not only obtain the parts-based
representation like NMF, but also improve the uniqueness of Tucker decomposition. Recent efforts
have extended NTD to boost calculation efficiency and meet different demands in actual applications
by incorporating suitable constraint conditions [18–20] with NTD, including smoothness, graph
Laplacian, sparsity, orthogonality, and supervision, just to name a few.

The model that adds effective and feasible constraints to the NTD model is called the NTD-like
model. For example, Liu et al. [21] stated a graph regularized Lp smooth NTD method by adding the
graph regularization and Lp smooth constraint into NTD to retain smooth and more accurate solutions
of the objective function. Qiu et al. [22] proposed a graph Laplacian-regularized NTD (GNTD)
method. GNTD extracts the low-dimensional parts-based representation and preserves the
geometrical information simultaneously from the high-dimensional tensor data. Subsequently, Qiu
et al. [23] developed an alternating proximate gradient descent method to solve the proposed GNTD
framework. Chen et al. [24] designed an adaptive graph regularized NTD model, which adaptively
learns the optimal graph to capture local manifold information. Li et al. [25] asserted a manifold
regularization NTD (MR-NTD) by employing a manifold regularization term for the core tensor
constructed in the NTD to preserve geometric information in tensor data. Huang et al. [26] gave a
dynamic hypergraph regularized NTD method by incorporating the hypergraph structure and NTD in
a unified framework. Jing et al. [27] recommended a label constrained NTD using partial labels to
construct a label matrix. Then, they embedded the label term and graph regularization term into NTD
for guiding the algorithm to obtain more correct categories in clustering tasks. To make use of the
available label information of sample data, Qiu et al. [28] built up a semi-supervised NTD (SNTD)
model by propagating the limited label information and learning the nonnegative tensor
representation. This part can only cover a small subset of the many important and interesting ideas
that have emerged. There are other related studies; see [29–31] for details.

However, the aforementioned NTD-like model does not take into account the orthogonality
constraint. In fact, the orthogonality structure of factor matrices makes sense in practical use. In [32],
the equivalence of the orthogonal nonnegative matrix factorization (ONMF) problem and K-means
clustering has been well discussed. To maintain this characteristic, Pan et al. [33] developed an
orthogonal NTD model by considering the orthogonality on each factor matrix. It can get the
clustering information from the factor matrices and their joint connection weight from the core tensor.
The orthogonal NTD model not only helps to keep the inherent tensor structure but also performs well
in data compression. Lately, drawing on the idea of approximate orthogonality from [34], Qiu
et al. [35] affirmed a flexible multi-way clustering model called approximately orthogonal NTD for
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soft clustering. This model provides extra flexibility to handle crossed memberships while making the
orthogonality of the factor matrix adjustable. However, these methods that consider orthogonality still
have their shortcomings. In clustering problems, it is common to consider the factor matrix of the last
direction as an approximation of the original data. Using graph regularization constraints to the factor
matrix of the last direction can capture more internal manifold information of the data tensor. They
fail to pay attention to the geometrical structure of the data space and the potential connections
between samples.

The geometrical structure and resilient orthogonality of the data space are indispensable. To
balance the two purposes, in this paper, we propose two approximately orthogonal NTD with graph
regularized (AOGNTD) models by jointly blending the graph regularization and approximately
orthogonal constraints into the NTD framework. The new model we propose is essentially an
NTD-like model. The main contributions of this paper are fourfold:

• Coupling the graph regularized term, the approximately orthogonal term, and the objective
function of NTD, we construct a novel tensor-based frame. Based on whether we add the
approximately orthogonal constraint to the N-th factor matrix, two models naturally generated.
• By regulating the quality of approximation and picking the appropriate graph for the learning task,

the models allow us to detect more complex, latent, and structural correlations among sample data.
• This algorithm is sensitive to the input of parameters, which means this option determines the

performance of clustering results. To overcome the issue, we use the grid method to select
competent parameters.
• Numerical experiments on frequently adopted datasets are conducted to illustrate the feasibility

of the proposed methods for image clustering and classification tasks. Extensive experimental
results show that the AOGNTD models could significantly improve the performance.

The rest of this paper is organized as follows. In Section 2, we review the related models. In
Section 3, the two AOGNTD methods are proposed. In Section 4, we have discussed its theoretical
convergence, provided a solution process and computational complexity. Finally, experiments for
clustering tasks are presented in Section 5, and conclusions are drawn in Section 6.

2. The brief review of NTD and GNTD

NTD could be considered as a special case of NMF with sparser and multi-linear basic vectors.
Given a nonnegative data tensor

X ∈ RI1×I2×...×IN−1×IN
+ ,

NTD aims at decomposing the nonnegative tensor X into a nonnegative core tensor

G ∈ RJ1×J2×...×JN
+

multiplied by N nonnegative factor matrices

A(r) ∈ RIr×Jr
+ (r = 1, 2, . . . ,N)

along each mode. To achieve this goal, NTD minimizes the sum of squared residues between the data
tensorX and the multi-linear product of core tensorG and factor matrices A(r), which can be formulated
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as

min
G,A(1),...,A(N)

ONT D =
1
2

∥∥∥X − G ×1 A(1) ×2 A(2) · · · ×N A(N)
∥∥∥2,

s.t.G ⩾ 0, A(r) ⩾ 0, r = 1, 2, . . . ,N,
(2.1)

where in the following, the operator ×r is referred to as the r-mode product. The r-mode product of a
tensor

Y ∈ RJ1×J2×...×JN

and a matrix U ∈ RIr×Jr , denoted by Y ×r U, is

(Y ×r U) j1... jr−1ir jr+1... jN =

Jr∑
jr=1

y j1... jr−1 jr jr+1... jN uir jr .

Equation (2.1) can be represented as a matrix form:

min
G(N),A(1),...,A(N)

ONT D =
1
2

∥∥∥X(N) − A(N)G(N)(⊗p,NA(p))⊤
∥∥∥2,

s.t.G(N) ⩾ 0, A(r) ⩾ 0, r = 1, 2, . . . ,N,

where
A(N) ∈ RIN×JN

+ , ⊗p,NA(p) = A(N−1) ⊗ A(N−2) ⊗ · · · ⊗ A(1),

⊗ denotes the Kronecker product, and

X(N) ∈ R
IN×I1I2···IN−1
+ and G(N) ∈ R

JN×J1 J2···JN−1
+

are the mode-N unfolding matrices of data tensor X and core tensor G, respectively. Therefore, the
NTD regard as the NMF with the encoding matrix

A(N) ∈ RIN×JN
+

and the basis matrix
G(N)(⊗p,NA(p))⊤,

where IN and JN can be regarded as the number of all samples and the dimension of low-dimensional
representation of X.

The local geometric structure can be effectively modeled through a nearest neighbor graph on data
points, which originates from spectral graph theory and manifold learning. Graphs using the broad
range of p nearest neighbors are generated and employed. The most commonly weighted matrices are
heat kernel and 0-1 weighting. The heat kernel is

Wi j =

 e
−

∥∥∥yi − y j

∥∥∥2
σ2 , y j ∈ N(yi) or yi ∈ N(y j),

0, otherwise,

AIMS Mathematics Volume 9, Issue 8, 21755–21785.



21759

where N(yi) is composed of the p-nearest neighbors of sample yi, and σ is the Gaussian kernel
parameter to control the values of similarity. In our experiment, it was set to 1. Alternatively, 0-1
weighting gave a binarization of weight definition as

Wi j =

{
1, y j ∈ N(yi) or yi ∈ N(y j),
0, otherwise.

This 0-1 weight is the cosine weight method, which is used in the subsequent image experiments.
To measure the dissimilarity of data points zi, z j in the low-dimensional representation A(N),

d = (zi, z j) = ||zi − z j||
2

is under consideration. The definition of graph Laplacian is

1
2

n∑
i, j=1

||zi − z j||
2Wi j =

n∑
i=1

z⊤i zi

n∑
j=1

Wi j −

n∑
i, j=1

z⊤i z jWi j

=

n∑
i=1

z⊤i ziDii −

n∑
i, j=1

z⊤i z jWi j

= Tr(A(N)T DA(N)) − Tr(A(N)T WA(N))

= Tr(A(N)T LA(N)),

where W is a weight matrix, L = D −W is called the graph Laplacian, and

Dii =
∑

j

Wi j

is a diagonal matrix whose elements are column sums of W. Minimizing the above formula, we hope
if yi and y j are close, zi and z j are consistent with this trend. If data zi and z j are similar, the value
of Wi j is relatively large. The operation of trace effectively characterizes the smoothness of low-rank
representations.

GNTD is obtained by minimizing the following objective function:

min
G(N),A(1),...,A(N)

OGNT D =
1
2

∥∥∥X − G ×1 A(1) ×2 A(2) . . . ×N A(N)
∥∥∥2 + λ

2
Tr(A(N)T LA(N)),

s.t.G ⩾ 0, A(r) ⩾ 0, r = 1, 2, . . . ,N,

where Tr(·) represents the trace of a matrix, L is called the graph Laplacian matrix, and λ is a
nonnegative parameter for balancing the importance of a graph regularization term and reconstruction
error term. It is worthwhile to integrate the graph regularization into mode-N low-dimensional
representation A(N).

3. Approximately orthogonal NTD with graph regularized

In this section, an approximately orthogonal NTD with graph regularized model is proposed, the
specific updating rules are introduced, the convergence of stated algorithms are proved, and their
computational complexity is investigated.
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3.1. Approximately orthogonal term

As an orthogonal version of NMF, an orthogonal nonnegative matrix factorization has been proven
to be closely related to k-means clustering. For a given nonnegative data matrix X ∈ RM×N

+ , the ONMF
seeks nonnegative factors U ∈ RM×R

+ and V ∈ RN×R
+ through the following optimization:

min
U⩾0,V⩾0

OONMF =
1
2

∥∥∥X − UV⊤
∥∥∥2,

s.t.V⊤V = I,

where
V = [v1, v2, . . . , vr], (r = 1, 2, . . . ,R).

The rigid orthogonality constraint of V actually consists of two parts: the unit-norm constraints

vT
r vr = 1

and the orthogonality (zero) constraints

vT
r v j = 0, r , j,

where vi denotes the i-th column of the encoding matrix V. It is reasonable to generalize the
orthogonality of NMF to the orthogonality of each directional matrix in NTD:

min
G,A(1),...,A(N)

OONT D =
1
2

∥∥∥X − G ×1 A(1) ×2 A(2) · · · ×N A(N)
∥∥∥2,

s.t.G,A(r) ⩾ 0, A(r)⊤A(r) = I, r = 1, 2, . . . ,N.
(3.1)

The orthogonality of the direct absorption about the factor matrix makes model solving more complex,
so we cast around for its approximate orthogonal form. The unit-norm constraints are not obligatory.
In the paper, we attempted not to put to use this condition. Hence, we only need to focus on the
orthogonality constraints that explain the independent relationship between columns. Under the non-
negativity constraints, we have

a(r)
i
⊤

a(r)
j ⩾ 0

for any i and j. The form of trace

R∑
i=1

R∑
j=1, j,i

a(r)
i
⊤

a(r)
j = Tr(A(r)⊤QA(r))

is a convenient mathematical expression of a partially and approximately orthogonality of matrix,
where

Q = 1R1T
R − I,

1R is an all-one R-by-1 column vector, I is an identity matrix, and R will be assigned different values
depending on the corresponding issue. The larger the value of this item, the greater the degree of
orthogonality of the matrix.
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3.2. The proposed AOGNTD model

Notice that ∥∥∥X − G ×1 A(1) ×2 A(2) · · · ×N A(N)
∥∥∥2

=
∥∥∥X(N) − A(N)G(N)(⊗p,NA(p))⊤

∥∥∥2
F

=
∥∥∥X(N) − USV⊤

∥∥∥2
F

holds, where
U = A(N), S = G(N), V = ⊗p,NA(p).

We see that the nonnegative 3-factorization:

X(N) ≈ USV⊤

gives a good framework for clustering the rows and columns of X(N). We consider uni-side and bi-side
approximately orthogonal cases in the tri-factorization, respectively, so two models are spontaneously
born:

• Uni-sided approximately orthogonality:
V⊤V = I is weakened to

∑
i, j,i, j VT

i V j (Vi and V j stand for the different column of V), or simply

N−1∑
r=1

Tr(A(r)T QA(r))

for convenience of calculation. The original expression contains the mass of Kronecker product
operations, which is too expensive.

• Bi-sided approximately orthogonality:
U⊤U = I and V⊤V = I are weakened to

∑
i, j,i, j UT

i U j and
∑

i, j,i, j VT
i V j, or simply

N∑
r=1

Tr(A(r)T QA(r))

for convenience of calculation.

It is easy to detect that uni-sides situation is a special case of bi-sides situation. Out of such
inspiration, we can embed the approximately orthogonal regularization into regular GNTD to develop
AOGNTD (or bi-AOGNTD):

min
G,A(1),...,A(N)

Ob j =
1
2

∥∥∥X − G ×1 A(1) ×2 A(2) · · · ×N A(N)
∥∥∥2

+
µr

2

N∑
r=1

Tr(A(r)T QA(r)) +
λ

2
Tr(A(N)T LA(N)),

s.t.G ⩾0, A(r) ⩾ 0, r = 1, 2, . . . ,N,

(3.2)
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where L is graph Laplacian matrix,
Q = 1R1T

R − I,

and µr, λ are positive integers. When µN = 0 is held, the bi-AOGNTD model could degenerate into
uni-AOGNTD. The objective function is:

min
G,A(1),...,A(N)

1
2

∥∥∥X − G ×1 A(1) ×2 A(2) · · · ×N A(N)
∥∥∥2 + µr

2

N−1∑
r=1

Tr(A(r)T QA(r)) +
λ

2
Tr(A(N)T LA(N)),

s.t.G ⩾ 0, A(r) ⩾ 0, r = 1, 2, . . . ,N − 1.

In the AOGNTD model,

• ∥X − G ×1 A(1) ×2 A(2) . . . ×N A(N)∥
2 is the main part, which is the key to feature extraction.

• Tr(A(r)T QA(r)), r = 1, . . . ,N is used to ensure that the first n − 1 factor matrices are partially
orthogonal, which makes global structure more accurate.

• Tr(A(N)T LA(N)) is the basis for graph optimization, which is achieved by the Laplacian regularizer
to conserve the smooth structure of low-rank expression.

We expect that the proposed AOGNTD model can capture more global structure and local manifold
information.

4. Optimization algorithm

Solving the global optimal solution of (3.2) is tough, so we adopt the block coordinate descent
framework that updates the core tensor or one factor matrix each time while fixing others. This update
rule is also known as the multiplicative update rule. It is a validated compromise plan between speed
and convenient of implementation.

We use the Lagrange multiplier method and apply the mode-n unfolding form. The Lagrange
function is

L =
1
2

∥∥∥X(n) − A(n)G(n)(⊗p,nA(p))⊤
∥∥∥2

F
+
µr

2

N∑
r=1

Tr(A(r)T QA(r))

+
λ

2
Tr(A(N)T LA(N)) + Tr(ΦnGT

(n)) +
N∑

r=1

Tr(ΨrA(r)⊤),

(4.1)

whereΦn andΨr are the Lagrange multipliers matrices of G(n) and A(r), respectively. The function (4.1)
can be rewritten as

L =
1
2

Tr(X(n)X⊤(n)) − Tr(X(n)(⊗p,nA(p))G⊤(n)A
(n)⊤) +

1
2

Tr(A(n)G(n)(⊗p,nA(p)⊤A(p))GT
(n)A

(n)⊤)

+
µr

2

N∑
r=1

Tr(A(r)T QA(r)) +
λ

2
Tr(A(N)T LA(N)) + Tr(ΦnG⊤(n)) +

N∑
r=1

Tr(ΨrA(r)⊤).

The entire updating rule is divided into tripartite, containing the solutions of factor matrices A(n),
(n = 1, 2, . . . ,N − 1), the solutions of factor matrices A(N), and the solutions of core tensor G.
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4.1. Updating factor matrix

To update A(r), r = 1, . . . ,N, we fix G and the other factor matrix.
The partial derivatives of L in (4.1) with respect to A(n), (n = 1, 2, . . . ,N − 1) are

∂L

∂A(n) = −X(n)(⊗p,nA(p))G⊤(n) + A(n)G(n)(⊗p,nA(p)⊤A(p))G⊤(n) + µnQA(n) + Ψn.

By using the Karush-Kuhn-Tucker (KKT) condition, i.e.,

∂L/∂A(n) = 0 and A(n) ⊙ Ψn = 0,

where in the following, ⊙ denotes the Hadamard product. According to ∂L/∂A(n) = 0, we obtain

Ψn = X(n)(⊗p,nA(p))G⊤(n) − A(n)G(n)(⊗p,nA(p)⊤A(p))G⊤(n) − µnQA(n).

By calculating

A(n) ⊙ Ψn = A(n) ⊙ (X(n)(⊗p,nA(p))G⊤(n)) − A(n) ⊙ (A(n)G(n)(⊗p,nA(p)⊤A(p))G⊤(n) − µnQA(n)),

which together with
A(n) ⊙ Ψn = 0

yields the following updating rule for A(n)(n = 1, 2, . . . ,N − 1):

A(n)
i j ← A(n)

i j

P+[[X(n)(⊗p,nA(p))G⊤(n) + µnIA(n)]i j]

[A(n)G(n)(⊗p,nA(p)⊤A(p))G⊤(n) + µn1R1T
RA(n)]i j

, (4.2)

where
P+[η] = max(0, η).

The partial derivative of L in (4.1) with respect to A(N) is

∂L

∂A(N) = − X(N)(⊗p,NA(p))G⊤(N) + A(N)G(N)(⊗p,NA(p)⊤A(p))G⊤(N)

+ µNQA(N) + λLA(N) + ΨN .

Similarly, we consider the KKT condition

∂L/∂A(N) = 0 and A(N) ⊙ ΨN = 0.

As a result, we obtain the following updating rule for A(N):

A(N)
i j ← A(N)

i j

P+[[X(N)(⊗p,NA(p))G⊤(N) + µNIA(N) + λWA(N)]i j]

[A(N)G(N)(⊗p,NA(p)⊤A(p))G⊤(N) + µN1R1T
RA(N) + λDA(N)]i j

. (4.3)

When only considering the unilateral information of the triple decomposition, the iterative format will
undergo slight changes and the following updating rule for A(N) is

A(N)
i j ← A(N)

i j

P+[[X(N)(⊗p,NA(p))G⊤(N) + λWA(N)]i j]

[A(N)G(N)(⊗p,NA(p)⊤A(p))G⊤(N) + λDA(N)]i j
. (4.4)
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4.2. Updating core tensor

To update G, we fix A(r), r = 1, . . . ,N.
The objective function in (4.1) about G can be changed into

L =
1
2

∥∥∥vec(X) − Fvec(G)
∥∥∥2

2
+ vec(G)T vec(Φ), (4.5)

where
F = A(N) ⊗ A(N−1) ⊗ . . . ⊗ A(1) ∈ RI1I2...IN×J1 J2...JN ,

vec(X) expands the tensor X into a 1-dimension vector and vec(Φ) represents the Lagrange multiplier
of vec(G). The partial derivative of L in (4.5) with respect to vec(G) is

∂L

∂vec(G)
= F⊤Fvec(G) − F⊤vec(X) + vec(Φ).

By applying
∂L/∂vec(G) = 0 and (vec(G))i(vec(Φ))i = 0,

we obtain the following updating rule:

(vec(G))i ← (vec(G))i
P+[(F⊤vec(X))i]

(F⊤Fvec(G))i
. (4.6)

At this point, the optimization problem has been solved. According to the above iteration rules, we
summarize the process of AOGNTD method, as shown in Algorithm 1.

Algorithm 1. Algorithm of the AOGNTD method.
Require: Data matrix X, cluster number k; parameter λ, µ.
Ensure: Core tensor G, nonnegative factor matrices A(r), r = 1, 2, . . . ,N.

1: Initialize A(r) as random matrices and G as an arbitrary positive tensor.
2: Calculate the weight matrix W.
3: repeat
4: Update A(n), by (4.2), where n = 1, 2, . . . ,N − 1.
5: Update A(N) by (4.3) or (4.4).
6: Update G by (4.6).
7: until the algorithm convergence condition is satisfied.

4.3. Theoretical investigation

In [11], we are well aware that if G(u, u
′

) is an auxiliary function for F(u), then F(u) is nonincreasing
under the updating rule

ut+1 = argmin
u

G(u, ut). (4.7)

The equality
F(ut+1) = F(ut)

holds only if ut is a local minimum of G(u, ut). Each subproblem has an optimal solution, which is the
fundamental basis and theorem support about our algorithm. The construction and design of auxiliary
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functions are of utmost importance in this part. Before expounding the local convergence theorem, we
offer three lemmas about diverse auxiliary functions.

For any element a(n)
i j in A(n)(n = 1, 2, . . . ,N−1), let Fi j(a

(n)
i j ) denote the part of the objective function

in (3.2) relevant to a(n)
i j . The iterative process is element-wise, so it is necessary to imply that each

Fi j(a
(n)
i j ) is nonincreasing under the iteration rule. The first-order derivative of the Fi j(a

(n)
i j ) with respect

to a(n)
i j is

F
′

i j(a
(n)
i j ) = [−X(n)(⊗p,nA(p))G⊤(n) + A(n)G(n)(⊗p,nA(p)⊤A(p))G⊤(n) + µn1R1T

RA(n)]i j,

and
F
′′

i j(a
(n)
i j

t
) = [G(n)(⊗p,nA(p)⊤A(p))G⊤(n) + µn1R1T

R] j j

is the second order derivative of the Fi j(a
(n)
i j ) relevant to a(n)

i j
t
.

Lemma 1. The function

G(a(n)
i j , a

(n)
i j

t
) =Fi j(a

(n)
i j

t
) + F

′

i j(a
(n)
i j

t
)(a(n)

i j − a(n)
i j

t
)

+
1
2

[A(n)tG(n)(⊗p,nA(p)⊤A(p))G⊤(n) + µn1R1T
RA(n)t]i j

a(n)
i j

t × (a(n)
i j − a(n)

i j
t
)2

(4.8)

is an auxiliary function for Fi j(a
(n)
i j ), with the matrix

A(n)t
= (a(n)

i j
t
).

Proof. Basically, G(u, u
′

) is an auxiliary function for F(u) if the conditions

G(u, u
′

) ≥ F(u) and G(u, u) = F(u)

are satisfied.
G(a(n)

i j
t
, a(n)

i j
t
) = Fi j(a

(n)
i j

t
)

clearly holds, so we only need to testify that

G(a(n)
i j , a

(n)
i j

t
) ≥ Fi j(a

(n)
i j ).

The Taylor expansion of Fi j(a
(n)
i j ) at a(n)

i j
t
is

Fi j(a
(n)
i j ) = Fi j(a

(n)
i j

t
) + F

′

i j(a
(n)
i j

t
)(a(n)

i j − a(n)
i j

t
) +

1
2

F
′′

i j(a
(n)
i j

t
)(a(n)

i j − a(n)
i j

t
)2. (4.9)

Comparing (4.8) with (4.9), we can see that

G(a(n)
i j , a

(n)
i j

t
) ≥ Fi j(a

(n)
i j )

is equivalent to
[A(n)tG(n)(⊗p,nA(p)⊤A(p))G⊤(n)]i j

a(n)
i j

t ≥ [G(n)(⊗p,nA(p)⊤A(p))G⊤(n)] j j.
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We have

[A(n)tG(n)(⊗p,nA(p)⊤A(p))G⊤(n)]i j =

Jn∑
l=1

a(n)
il

t
[G(n)(⊗p,nA(p)⊤A(p))G⊤(n)]l j

≥ a(n)
i j

t
[G(n)(⊗p,nA(p)⊤A(p))G⊤(n)] j j,

thus, the inequality
G(a(n)

i j , a
(n)
i j

t
) ≥ Fi j(a

(n)
i j )

holds. □

Let Fi j(a
(N)
i j ) denote the part of the objective function in (3.2) relevant to a(N)

i j in A(N).

Lemma 2. The function

G(a(N)
i j , a

(N)
i j

t
) =Fi j(a

(N)
i j

t
) + F

′

i j(a
(N)
i j

t
)(a(N)

i j − a(N)
i j

t
)

+
1
2

[A(N)tG(N)(⊗p,NA(p)⊤A(p))G⊤(N) + λDA(N)t
+ µN1R1T

RA(N)t]i j

a(N)
i j

t × (a(N)
i j − a(N)

i j
t
)2

(4.10)

is an auxiliary function for Fi j(a
(N)
i j ).

Lemma 3. Let gi denote the element of vec(G) and Fi(gi) denote the part of the objective function
in (4.1) relevant to gi. The function

G(gi, gt
i) = Fi(gt

i) + F
′

i (g
t
i)(gi − gt

i) +
(F⊤Fvec(Gt))i

gt
i

(gi − gt
i)

2 (4.11)

is an auxiliary function for Fi(gi).

Due to the similarity between the proofs of Lemmas 1–3, they are omitted here.

Theorem 4. The objective function in (4.1) is nonincreasing under the updating rules in (4.2), (4.3),
and (4.6). The objective function is invariant under these updates if, and only if, A(r), r = 1, 2, . . . ,N,
G are at a stationary point.

Proof. Replacing G(u, u
′

) in (4.7) by (4.8), we obtain

∂G(a(n)
i j , a

(n)
i j

t
)

∂a(n)
i j

= F
′

i j(a
(n)
i j

t
) +

[A(n)tG(n)(⊗p,nA(p)⊤A(p))G⊤(n) + µn1R1T
RA(n)t]i j

a(n)
i j

t (a(n)
i j − a(n)

i j
t
) = 0,

which yields

a(n)t+1

i j = a(n)t

i j

[X(n)(⊗p,nA(p))G⊤(n) + µnIA(n)t
]i j

[A(n)tG(n)(⊗p,nA(p)⊤A(p))G⊤(n) + µn1R1T
RA(n)t]i j

.

According to Lemma 1, Fi j(a
(n)
i j ) is nonincreasing under the updating rules (4.2) for A(n). Then, putting

G(a(N)
i j , a

(N)
i j

t
) of (4.10) into (4.7), we can obtain

a(N)t+1

i j = a(N)t

i j

[X(N)(⊗p,NA(p))G⊤(N) + λWA(N)t
+ µNIA(N)t

]i j

[A(N)tG(N)(⊗p,NA(p)⊤A(p))G⊤(N) + λDA(N)t
+ µN1R1T

RA(N)t]i j
.
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From Lemma 2, Fi j(a
(N)
i j ) is nonincreasing under the updating rules (4.3) for A(N). Finally, putting

G(gi, gt
i) of (4.11) into (4.7),

gt+1
i = gt

i
(F⊤vec(X))i

(F⊤Fvec(Gt))i
.

In accordance with Lemma 3, Fi(gi) is nonincreasing under the updating rule (4.6).
The proof of Theorem 4 is completed. □

4.4. Computational complexity analysis

In this subsection, we discuss the computational cost of our proposed algorithms in comparison to
other methods. The common way to express the complexity of one algorithm is using big O notation,
but it is not precise enough to differentiate the complexities. Thus, we additionally count the
arithmetic operations for each algorithm, including fladd (a floating-point addition), flmlt (a
floating-point multiplication) and fldiv (a floating-point division). Specifically, we provide the
computational complexity analysis of uni-AOGNTD and bi-AOGNTD models. There are many
Kronecker product operations in our update rules, which needs high time cost. So, we will replace the
Kronecker product with tensor operation during the calculation process.

To facilitate the estimation of computational complexity, we consider the case where r = 3 in the
models. Taking uni-AOGNTD as an example, the update rules, respectively, are

A(1)
i j ← A(1)

i j

[(X ×2 A(2)⊤ ×3 A(3)⊤)(1)G⊤(1) + µIA(1)]i j

[A(1)G(1)(X ×2 A(2)⊤A(2) ×3 A(3)⊤A(3))(1)G⊤(1) + µ1R1T
RA(1)]i j

,

A(2)
i j ← A(2)

i j

[(X ×1 A(1)⊤ ×3 A(3)⊤)(2)G⊤(2) + µIA(2)]i j

[A(2)G(2)(X ×1 A(1)⊤A(1) ×3 A(3)⊤A(3))(2)G⊤(2) + µ1R1T
RA(2)]i j

,

A(3)
i j ← A(3)

i j

[(X ×1 A(1)⊤ ×2 A(2)⊤)(3)G⊤(3) + λWA(3)]i j

[A(3)G(3)(X ×1 A(1)⊤A(1) ×2 A(2)⊤A(2))(3)G⊤(3) + λDA(3)]i j

and

Gi jk ← Gi jk
[X ×1 A(1)⊤ ×2 A(2)⊤ ×3 A(3)⊤]i jk

[G ×1 A(1)⊤A(1) ×2 A(2)⊤A(2) ×3 A(3)⊤A(3)]i jk
.

where
X(1)(A(2) ⊗ A(3)) = X ×2 A(2)⊤ ×3 A(3)⊤

and so on.
The frequently used expressions and the specific calculations for the two methods are provided in

Table 1. By calculating the computational complexity of the four formats and considering the fact
Ii ≫ Ji, we can gain the complexity of the proposed uni-AOGNTD as O(I1I2I3J), in which

J = 3(J1 + J2 + J3).

Then, we also can acquire the complexity of the bi-AOGNTD method as O(I1I2I3J). According to the
analysis of other compared methods in corresponding literature, Table 2 generalizes the complexity of
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compared algorithms. The new algorithm will inevitably increase a certain amount of computation,
but it can be ignored in terms of overall computational complexity.

Table 1. Computational operation counts.

Fladd Flmlt Fldiv

Y ×r U Ir J1J2 . . . JN Ir J1J2 . . . JN −

X ×2 AT
2 ×3 AT

3 I1I2I3J2 + I1I3J2J3 I1I2I3J2 + I1I3J2J3 −

G ×2 AT
2 A2 ×3 AT

3 A3 J1J2
2 J3 + J1J2J2

3 + I2J2
2 + I3J2

3 J1J2
2 J3 + J1J2J2

3 + I2J2
2 + I3J2

3 −

uni-AOGNTD

A(1) I1I2I3J2 + I1I3J2J3 + J1J2
2 J3 + J1J2J2

3
+I2J2

2 + I3J2
3 + 3I1J1J2J3 + 2I1J1(I1 + 2)

I1I2I3J2 + I1I3J2J3 + J1J2
2 J3 + J1J2J2

3 + I2J2
2

+I3J2
3 + 3I1J1J2J3 + 2I1J1(I1 + 1) + I1J1

I1J1

A(2) I1I2I3J1 + I2I3J1J3 + J2
1 J2J3 + J1J2J2

3
+I1J2

1 + I3J2
3 + 3I2J1J2J3 + 2I2J2(I2 + 2)

I1I2I3J1 + I2I3J1J3 + J2
1 J2J3 + J1J2J2

3 + I1J2
1

+I3J2
3 + 3I2J1J2J3 + 2I2J2(I2 + 1) + I2J2

I2J2

A(3) I1I2I3J1 + I2I3J1J2 + J2
1 J2J3 + J1J2

2 J3

+I1J2
1 + I2J2

2 + 3I3J1J2J3 + 2I3J3(I3 + 2)
I1I2I3J1 + I2I3J1J2 + J2

1 J2J3 + J1J2
2 J3 + I1J2

1
+I2J2

2 + 3I3J1J2J3 + 2I3J3(I3 + 2) + I3J3
I3J3

G
I1I2I3J1 + I2I3J1J2 + J2

1 J2J3 + J1J2
2 J3

+J1J2J2
3 + I1J2

1 + I2J2
2 + I3J2

3 + I3J1J2J3

I1I2I3J1 + I2I3J1J2 + J2
1 J2J3 + J1J2

2 J3 + I1J2
1

+I2J2
2 + 3I3J1J2J3 + J1J2J3

J1J2J3

bi-AOGNTD

A(1) I1I2I3J2 + I1I3J2J3 + J1J2
2 J3 + J1J2J2

3
+I2J2

2 + I3J2
3 + 3I1J1J2J3 + 2I1J1(I1 + 2)

I1I2I3J2 + I1I3J2J3 + J1J2
2 J3 + J1J2J2

3 + I2J2
2

+I3J2
3 + 3I1J1J2J3 + 2I1J1(I1 + 1) + I1J1

I1J1

A(2) I1I2I3J1 + I2I3J1J3 + J2
1 J2J3 + J1J2J2

3
+I1J2

1 + I3J2
3 + 3I2J1J2J3 + 2I2J2(I2 + 2)

I1I2I3J1 + I2I3J1J3 + J2
1 J2J3 + J1J2J2

3 + I1J2
1

+I3J2
3 + 3I2J1J2J3 + 2I2J2(I2 + 1) + I2J2

I2J2

A(3) I1I2I3J1 + I2I3J1J2 + J2
1 J2J3 + J1J2

2 J3

+I1J2
1 + I2J2

2 + 3I3J1J2J3 + 4I3J3(I3 + 2)
I1I2I3J1 + I2I3J1J2 + J2

1 J2J3 + J1J2
2 J3 + I1J2

1
+I2J2

2 + 3I3J1J2J3 + 4I3J3(I1 + 1) + I3J3
I3J3

G
I1I2I3J1 + I2I3J1J2 + J2

1 J2J3 + J1J2
2 J3

+J1J2J2
3 + I1J2

1 + I2J2
2 + I3J2

3 + I3J1J2J3

I1I2I3J1 + I2I3J1J2 + J2
1 J2J3 + J1J2

2 J3 + I1J2
1

+I2J2
2 + 3I3J1J2J3 + J1J2J3

J1J2J3

Table 2. Computational operation counts.

Model Objective function Overall Supplement

NMF minU,V,
1
2

∥∥∥∥∥∥X − UV

∥∥∥∥∥∥2 s.t.U,V ⩾ 0 O(MNK)

NTD minG,A(1),...,A(N)
1
2

∥∥∥X − G ×1 A(1) ×2 A(2) · · · ×N A(N)
∥∥∥2

s.t.G ⩾ 0,A(r) ⩾ 0
O(I1I2I3J) J = 3(J1 + J2 + J3)

GNTD
minG,A(1),...,A(N)

1
2

∥∥∥X − G ×1 A(1) ×2 A(2) · · · ×N A(N)
∥∥∥2

+
λ

2
Tr(A(N)T LA(N)) s.t.G ⩾ 0,A(r) ⩾ 0

O(I1I2I3J) J = 3(J1 + J2 + J3)

uni-AOGNTD
minG,A(1),...,A(N)

1
2

∥∥∥X − G ×1 A(1) ×2 A(2) · · · ×N A(N)
∥∥∥2

+
µr

2
∑N−1

r=1 Tr(A(r)T QA(r)) +
λ

2
Tr(A(N)T LA(N))

s.t.G ⩾ 0,A(r) ⩾ 0

O(I1I2I3J) J = 3(J1 + J2 + J3)

bi-AOGNTD
minG,A(1),...,A(N)

1
2

∥∥∥X − G ×1 A(1) ×2 A(2) · · · ×N A(N)
∥∥∥2

+
µr

2
∑N

r=1 Tr(A(r)T QA(r)) +
λ

2
Tr(A(N)T LA(N))

s.t.G ⩾ 0,A(r) ⩾ 0

O(I1I2I3J) J = 3(J1 + J2 + J3)
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5. Experiments

In this Section, according to [36], two indicators, accuracy (AC) and normalized mutual information
(NMI), are used to evaluate the clustering performance. The AC is defined as

AC =
δ(ki,map(ci))

n
,

where ci denotes the label from clustering method, ki is the true label of object xi, δ(x, y) is the indicator
function, n is the total number of objects, and map(ci) is the mapping function. The NMI is defined as

NMI =

∑c
u=1
∑k

v=1 log( nnuv

nun′v
)√

(
∑c

u=1 nulog(nu
n ))(
∑k

v=1 n′vlog(n′v
n ))
,

where nuv is the number of cluster, and ni and n
′

i are the data points in the true label cluster and the
clustering label cluster, respectively.

All the experiments are run with MATLAB on a PC equipped with Intel i5-10210U and 8GB of
RAM.

5.1. Compared methods

To evaluate the effectiveness of the proposed AOGNTD methods, we compare the clustering
performance of our methods with the other six state of the art and previously mentioned methods,
which are k-means [36], NMF [11], graph regularized NMF (GNMF) [36], graph dual regularized
NMF (GDNMF) [37, 38] , NTD [17], and GNTD [22, 23]. In order to distinguish DNMF of the
original article from DNMF with the label information [27], we have written DNMF [37, 38] as
GDNMF.

5.2. Datasets description

Three databases are used to conduct the experiments in Figure 1, and the details of public datasets
are stated as follows (the COIL20 dataset means the Columbia University image library dataset, the
ORL dataset means the Oxford-rotating dataset):

Figure 1. COIL20 (left), Yale (middle), and ORL dataset (right).
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5.2.1. COIL20 dataset

The COIL20 dataset collects 1440 grayscale images of 20 subjects. The objects were placed on
a motorized turntable, which was rotated through 360 degrees to vary object pose with respect to a
fixed camera. Images of the objects were taken at pose intervals of 5 degrees, which corresponds to 72
images per object. In our experiments, each image was resized to 32×32 pixels and all images are
stacked into a tensor X ∈ R32×32×1440 .

5.2.2. Yale dataset

The Yale faces dataset contains 165 grayscale images in GIF format of 15 individuals. There
are 11 images per subject, one per different facial expression or configuration. Each image was
resized into 32×32 pixels. In the experiments, all images form a tensor X ∈ R32×32×165 .

5.2.3. ORL dataset

The ORL dataset collects 400 grayscale 112×92 faces images which consist of 40 different subjects
with 10 distinct images. For some subjects, the images were taken at different lighting, times, and
facial expressions. For each image, we resized it to be 32×32 pixels in our experiment. These images
construct a tensor of X ∈ R32×32×400 .

5.3. Parameter selection

Identifying and adjusting the parameter combination of the algorithm has always been a striking
matter in machine learning. The size of core tensor plays a prominent role in our algorithms. For
NTD-based methods, the size of the core tensor is set to {10 × 10 × s, 20 × 20 × s, 30 × 30 × s} in three
datasets, where s is positive integer.

There are multiple regularization parameters λ and µr, r = 1, 2, . . . ,N balancing the effects of the
reconstruction term, graph Laplacian term, and approximately orthogonal term in our model. To
reduce parameter adjustment pressure, we study the influence on the clustering performance when the
parameters λ and µr = µ and the ratio of sampling vary. Since it is infeasible to consider the changes
of these parameters disposable, we use the grid control method to determine the relatively optimal
parameters of the process.

To begin, determining the numerical range of two parameters is [5e− 5, 1e+ 4], then select t values
within this range, and finally select t2 results to achieve the best clustering effect. For the COIL20
dataset, we set {1e − 1, 1, 1e + 1, 1e + 2} as selections of the parameters λ and µ in uni-AOGNTD
format, where t = 4, and choose the best among 16 values. It is crucial to weigh the two measurement
criteria reasonably when comparing results.

In principle, the numerical value of AC (accuracy) is the main factor, supplemented by NMI. More
details can be found in Figures 2–7. Figures 2–7 shows the specific parameter selection, and the optimal
parameter setting is circled in black. The symbol dataset-k, say, COIL20-4, represents the categories
extracted from a certain dataset. During the procedure of parameter option, we found strong graph
regularity and weak orthogonality of the AOGNTD models.
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Figure 2. The clustering performance of the uni-AOGNTD method on the COIL20 datasets.
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Figure 3. The clustering performance of the bi-AOGNTD method on the COIL20 datasets.
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Figure 4. The clustering performance of the uni-AOGNTD method on the Yale datasets.
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Figure 5. The clustering performance of the bi-AOGNTD method on the Yale datasets.
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Figure 6. The clustering performance of the uni-AOGNTD method on the ORL datasets.
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Figure 7. The clustering performance of the bi-AOGNTD method on the ORL datasets.

5.4. Experiments for effectiveness and analysis

Tables 3–8 show the average clustering results of the compared algorithms on three datasets,
respectively. We bold mark the best results with each clustering number k on each dataset. In each
experiment, we randomly selected k categories as the evaluated data. We construct the graph
Laplacian using p-nearest neighbors in which the neighborhood size p is set to 5. We run the
experiment and apply K-means 10 times on the low-dimensional representation matrix of each
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method. To make the experimental result validated, we repeat the above operations 10 times and
calculate the averages, so there are a total of 100 calculations.

From Tables 3–8, our AOGNTD algorithms present better performance on the three datasets with
varying category counts. In the comparison of data, the following phenomena can also be observed:

(1) For the COIL20 dataset, its performance is the most outstanding. The proposed uni-AOGNTD
method attains 9%, 8.27%, 7.66%, 6.69%, 8.48%, 3.39% improvement corresponding to AC
and 12.39%, 10.92%, 10.17%, 9.14%, 12.51%, 3.15% improvement corresponding to NMI in
comparison with K-means, NMF, GNMF, GDNMF, NTD, GNTD, respectively. In the same
way, the proposed bi-AOGNTD algorithm attains 8.65%, 7.92%, 7.31%, 6.34%, 8.13%, 3.04%
improvement corresponding to AC and 12.41%, 10.96%, 10.22%, 9.18%, 12.55%, 3.19%
improvement corresponding to NMI in comparison with K-means, NMF, GNMF, GDNMF,
NTD, GNTD, respectively.

(2) For the Yale dataset, the uni-AOGNTD method attains 4.87%, 3.71%, 3.4%, 2.85%, 2.72%,
and 2.02% improvement corresponding to AC and 5.11%, 4.63%, 4.33%, 3.09%, 3.38%, 2.38%
improvement corresponding to NMI in comparison with K-means, NMF, GNMF, GDNMF,
NTD, GNTD, respectively. The uni-AOGNTD and bi-AOGNTD models are about equal in
problem-solving skills.

(3) For the ORL dataset, the uni-AOGNTD method attains 7.94%, 2.48%, 2.02%, 1.86%, 12.33%,
and 0.72% improvement corresponding to AC and 9.48%, 4.31%, 3.88%, 3.72%, 15.29%, 1.1%
improvement corresponding to NMI in comparison with K-means, NMF, GNMF, GDNMF, NTD,
GNTD, respectively. The clustering effect of uni-AOGNTD method and bi-AOGNTD method are
roughly the same.

Table 3. AC (%) of different algorithms on COIL20 dataset.

k k-means NMF GNMF GDNMF NTD GNTD uni-AOGNTD bi-AOGNTD

2 89.10±12.07 97.60±4.96 97.65±4.86 98.33±5.03 90.55±12.09 98.33±5.03 100.00 100.00

4 75.86±15.01 71.68±16.99 72.47±17.14 77.31±14.95 71.42±13.90 76.29±18.45 81.94±15.35 81.46±17.55

6 65.63±9.12 68.11±11.97 68.65±13.00 68.58±11.39 70.79±12.56 73.61±13.04 75.73±14.88 75.10±13.77

8 66.61±10.32 64.37±10.37 65.60±10.77 65.90±8.09 69.49±8.54 71.00±10.92 74.73±10.22 73.80±10.85

10 64.92±8.72 63.01±8.14 65.58±8.19 65.63±7.19 66.41±7.64 66.01±10.52 71.64±9.21 72.29±10.04

12 62.38±8.40 63.84±8.26 64.16±7.52 62.73±7.78 62.37±8.93 66.59±9.24 70.55±8.57 70.21±9.82

14 62.08±7.40 60.09±5.76 60.52±5.85 62.66±5.80 60.92±7.08 68.92±8.03 70.46±8.12 70.21±7.94

16 59.84±5.81 62.55±5.64 63.33±5.73 63.70±6.06 61.38±6.09 69.24±7.52 70.69±7.05 70.04±7.39

18 60.41±5.19 60.03±4.91 60.56±4.64 62.54±5.37 59.28±4.88 65.89±6.89 69.16±7.27 68.91±6.34

20 57.49±4.71 60.29±4.49 59.22±4.70 60.01±4.64 56.90±4.03 64.47±5.75 69.35±5.20 68.79±6.28

Avg. 66.43 67.16 67.77 68.74 66.95 72.04 75.43 75.08
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Table 4. NMI (%) of different algorithms on COIL20 dataset.

k k-means NMF GNMF GDNMF NTD GNTD uni-AOGNTD bi-AOGNTD

2 65.77±30.18 91.29±17.74 91.38±17.53 94.59±16.31 72.77±31.77 94.59±16.31 100.00 100.00

4 69.61±15.08 69.05±16.24 69.99±17.15 74.89±11.95 69.64±13.21 71.24±17.77 81.51±12.92 85.18±13.08

6 66.49±8.37 69.69±11.15 70.68±12.54 66.91±10.45 70.39±12.97 78.68±10.49 81.21±10.79 80.28±10.74

8 71.64±7.72 69.25±9.14 70.60±9.13 70.62±6.76 73.10±7.25 79.90±7.88 81.54±7.51 82.70±6.87

10 73.85±6.80 70.39±7.17 72.18±7.40 72.95±5.68 72.72±6.05 76.73±10.00 81.72±5.41 83.51±6.06

12 72.32±6.53 71.76±6.11 72.15±5.94 71.83±6.84 70.77±7.14 79.16±7.36 81.94±5.37 81.80±6.01

14 74.36±5.58 70.62±4.84 71.11±4.53 72.82±4.20 71.16±5.16 82.12±4.70 82.89±4.27 81.45±4.77

16 72.96±3.57 73.17±3.64 73.99±3.57 74.48±3.75 71.84±4.21 82.81±3.99 82.85±3.72 82.84±3.97

18 74.37±3.02 71.92±2.81 72.27±2.62 74.66±3.37 71.42±2.85 81.00±3.86 82.31±4.54 82.28±3.54

20 73.43±2.42 72.40±2.36 72.64±2.54 73.59±2.43 69.76±2.39 81.00±3.14 82.72±2.58 81.94±3.32

Avg. 71.48 72.95 73.70 74.73 71.36 80.72 83.87 83.91

Table 5. AC (%) of different algorithms on Yale dataset.

k k-means NMF GNMF GDNMF NTD GNTD uni-AOGNTD bi-AOGNTD

3 62.03±10.93 59.73±9.23 59.97±9.35 62.12±9.66 60.82±11.96 61.55±12.06 67.48±12.52 66.06±13.70

5 51.42±8.72 54.42±8.37 55.56±8.64 56.00±6.62 56.02±11.44 56.16±11.52 58.82±8.18 58.76±8.16

7 47.58±7.31 48.91±6.24 49.03±6.05 48.56±6.94 49.45±7.26 50.83±7.78 53.26±10.38 52.74±9.37

9 42.70±5.72 45.03±5.05 45.16±5.33 45.32±5.91 47.44±6.05 47.59±5.55 48.02±6.16 48.23±5.83

11 40.41±4.78 41.51±4.55 41.74±4.67 43.31±4.80 41.94±4.60 43.96±4.57 44.69±4.68 44.02±4.62

13 39.08±4.53 41.54±3.67 41.72±3.86 41.59±4.01 41.80±4.67 41.60±4.52 42.45±4.97 41.92±4.02

15 38.43±3.71 38.64±3.80 38.73±3.68 38.88±3.10 39.25±4.00 39.94±3.64 41.02±2.73 40.36±2.97

Avg. 45.95 47.11 47.42 47.97 48.10 48.80 50.82 50.30

Table 6. NMI (%) of different algorithms on Yale dataset.

k k-means NMF GNMF GDNMF NTD GNTD uni-AOGNTD bi-AOGNTD

3 34.72±15.81 30.16±13.95 30.37±14.32 38.05±14.35 31.74±17.86 32.85±16.57 39.26±17.48 38.44±19.12

5 38.18±9.08 39.38±8.69 40.46±8.64 40.90±8.35 40.66±13.87 40.80±14.01 45.91±12.66 46.92±11.59

7 40.82±7.59 39.88±6.68 39.99±6.64 40.44±7.54 40.79±7.32 44.21±9.39 46.67±11.39 46.14±10.51

9 41.03±5.87 41.75±4.54 41.82±4.27 41.47±5.64 45.16±6.19 44.82±5.55 45.26±6.01 45.36±5.80

11 41.51±4.42 41.79±4.35 42.28±4.16 43.61±4.49 42.65±4.43 43.99±4.20 44.81±3.99 44.05±4.28

13 43.11±4.13 44.55±3.18 44.56±3.38 43.63±3.53 44.38±4.24 44.74±3.99 45.63±4.21 45.26±3.70

15 38.43±3.71 43.70±3.19 43.78±3.20 43.85±2.54 44.58±2.96 45.53±3.05 46.06±2.59 45.68±2.58

Avg. 39.69 40.17 40.47 41.71 41.42 42.42 44.80 44.55
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Table 7. AC (%) of different algorithms on ORL dataset.

k k-means NMF GNMF GDNMF NTD GNTD uni-AOGNTD bi-AOGNTD

2 88.65±16.89 90.35±12.84 90.25±13.58 91.35±10.80 86.45±15.46 98.20±5.80 99.00±3.02 98.70±3.23

4 73.73±14.28 82.08±13.92 82.48±14.08 80.23±16.09 71.43±12.83 83.10±16.65 83.40±16.44 83.80±16.16

6 68.57±10.69 72.20±11.02 72.37±11.83 72.75±11.64 61.32±13.98 72.68±10.59 75.30±12.14 76.35±10.86

8 62.29±10.23 69.91±10.22 68.49±9.91 67.98±10.06 54.05±13.90 70.48±9.09 70.55±9.87 70.88±9.39

10 62.22±7.44 65.46±7.37 66.89±8.69 67.88±7.73 58.00±11.64 68.78±8.97 69.15±8.91 69.05±9.14

15 57.78±5.38 64.19±6.03 64.83±6.80 65.03±7.26 56.13±11.52 65.82±6.07 65.99±6.88 65.99±6.31

20 54.68±5.25 61.11±6.01 61.92±6.36 62.27±5.24 50.25±11.76 62.36±5.63 62.49±6.80 62.79±5.67

25 55.38±4.56 61.10±4.23 61.70±4.82 62.21±5.44 52.83±10.18 61.91±5.63 62.05±5.14 62.20±5.68

30 52.07±3.78 58.80±4.44 59.56±4.46 59.06±4.21 45.35±14.04 59.55±5.04 60.44±4.03 60.23±3.71

35 51.86±3.07 57.15±3.52 57.28±3.63 58.69±3.59 49.01±10.39 57.00±4.35 59.31±3.85 58.91±3.99

40 51.48±3.35 56.46±3.42 58.03±3.73 58.17±3.36 45.58±9.31 58.25±3.27 58.38±3.15 58.36±3.36

Avg. 61.70 67.16 67.62 67.78 57.31 68.92 69.64 69.75

Table 8. NMI(%) of different algorithms on ORL dataset.

k k-means NMF GNMF GDNMF NTD GNTD uni-AOGNTD bi-AOGNTD

2 70.82±40.76 70.64±34.38 71.39±34.53 73.87±32.41 62.85±35.80 93.53±15.58 96.10±11.76 94.62±12.59

4 68.42±16.36 79.91±12.97 80.06±13.49 77.86±15.48 64.81±14.60 80.18±19.54 82.13±15.94 82.46±16.15

6 69.52±9.93 74.09±9.67 74.01±11.38 74.10±11.53 60.51±17.75 76.41±8.52 79.18±8.17 79.69±8.01

8 65.60±10.31 74.99±8.75 73.82±8.16 72.66±9.05 55.10±17.20 75.27±7.38 75.52±7.61 75.73±7.08

10 68.35±6.79 73.18±5.33 73.80±6.37 75.33±5.98 63.76±13.26 75.73±7.47 77.98±7.79 77.82±8.17

15 69.53±4.25 76.00±4.69 76.38±5.10 75.83±4.99 66.67±12.51 76.64±4.86 76.64±5.09 76.93±4.93

20 69.21±4.42 74.10±4.32 74.67±4.72 75.24±3.62 64.33±11.76 75.59±4.15 75.98±4.65 76.01±4.15

25 71.68±3.25 75.77±2.66 76.62±3.26 76.92±3.62 68.37±9.31 77.04±3.91 77.11±3.69 77.15±3.59

30 70.58±2.41 75.39±2.97 76.13±2.65 75.66±2.68 62.90±12.97 76.28±2.88 76.66±2.81 76.55±2.45

35 71.17±1.94 74.71±2.11 75.35±2.09 76.02±2.11 67.46±9.66 75.39±2.77 76.86±2.18 76.48±2.30

40 71.84±2.01 74.91±1.90 76.03±1.90 76.55±1.83 66.07±7.95 76.79±1.79 76.88±1.63 76.90±1.85

Avg. 69.70 74.87 75.30 75.46 63.89 78.08 79.18 79.12

As can be seen, the uni-AOGNTD and bi-AOGNTD methods are superior to the compared
methods, due to innovating and balancing the approximately orthogonal regularization and the graph
regularization in conjunction with the unified NTD for tensor data representation. The local minimum
solution is compressed to a better solution space under the adjustment of parameters. Intuitively, the
nonnegativity of the factor matrix and the model constraint reduce the feasible solution domain to
near local minima.

The clustering results of methods containing graph regularization terms for A(N) are extended in
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Figure 8. In short, the fresh approaches produced the highest and stablest AC and NMI.
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Figure 8. The clustering performance of four methods on COIL-20, Yale, and ORL datasets.

5.5. Convergence study

As described in Section 3, the convergence of the proposed algorithms has been theoretically
proved. In this subsection, we experimentally study the convergence of the proposed algorithms by
assuming link between the number of iterations and the value of the objective function in Figure 9.
The trend intuitively suggests that the objective function can converge effectively under the
multiplication iteration rules and explains the correctness of Theorem 4.
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Figure 9. Convergence curves of AOGNTD on COIL-20, Yale, and ORL datasets.

6. Conclusions

In this paper, we built up two novel AOGNTD methods for tensor data representation. The
convergence analysis is given. The AOGNTD method presents more competent representation and
achieves better clustering performance on the publicly available real-world datasets through two
adjustable regularization parameters. Although AOGNTD methods perform well in image clustering
tasks, it can be further improved in two possible directions in the future. First, the graph in our
algorithm is fixed, but it is thought-provoking whether to obtain joint information from multiple
graphs or learn the optimal graph. In addition, a large number of NTD-based methods rely on
K-means, and designing independent classification methods without any additional clustering
procedure is the main point of further research.
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