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1. Introduction

Fractional differential equations arise in the mathematical modeling of various problems such as
biology, fluid mechanics, electrochemistry, finance, and many other areas of applications; see, e.g., [1–
3]. This fact motivated the study of fractional differential equations in various directions: existence of
solutions [4, 5], comparison principles [6, 7], inverse problems [8, 9], inequalities [10], etc.

One of the most important topics of the theory of differential and partial differential equations
is the issue of nonexistence of solutions, which was initiated by the famous Liouville theorem for
harmonic functions (see, e.g., [11]). Nonexistence theorems have several applications, in particular, in
the study of blow-up of solutions (see, e.g., [12]). The study of nonexistence of solutions to fractional
differential equations and inequalities was initiated by Kirane and his collaborators. Next, this topic
was developed by many authors. For instance, Kirane and Malik [13] investigated the profile of the
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blowing-up solutions to the nonlinear system of fractional differential equations
u′(t) + CDα

0u(t) = |v(t)|q, t > 0,

v′(t) + CDβ
0v(t) = |u(t)|p, t > 0,

u(0) = u0, v(0) = v0,

where 0 < α, β < 1, CDα
0 (resp. CDβ

0) is the Caputo fractional derivative of order α (resp. β), p, q > 1,
and u0, v0 ∈ R. Laskri and Tatar [14] considered nonlinear fractional differential inequalities of the
form  Dα

0u(t) ≥ tγ|u(t)|m, t > 0,

lim
t→0+

(I1−α
0 u)(t) = b,

(1.1)

where 0 < α < 1, Dα
0 is the Riemann-Liouville fractional derivative of order α, b ∈ R, m > 1, and

γ ∈ R. Using the test function method (see [12]), the authors obtained sufficient conditions under
which (1.1) admits no global solution. Kassim, Furati, and Tatar [15] studied fractional differential
inequalities of the form 

CDα
0u(t) + CDβ

0u(t) ≥ tγ|u(t)|m, t > 0,

u(i)(0) = bi, i = 0, 1, · · · n − 1,

where 0 < β ≤ α, n = −[−α], γ ∈ R, m > 1, and bi ∈ R, i = 0, 1, · · · , n − 1. More recent works can be
found in [16–19] (see also the references therein).

In all the above cited works, the fractional derivatives were considered in the sense of Riemann-
Liouville or Caputo (see, e.g., [20] for the definitions of these operators). Very recently, in [21], the
authors studied fractional differential inequalities of the form

Dα
a;σ,ηu(t) ≥ V(t)|u(t)|p, t > a,

lim
t→a+

(
I1−α
a;σ,η+αu

)
(t) = ua,

(1.2)

where 0 < α < 1, a > 0, σ > 0, η ∈ R, p > 1, ua > 0, and V is a measurable positive function. Here,
Dα

a;σ,η denotes the Erdélyi-Kober fractional derivative of order α and parameters σ and η, and I1−α
a;σ,η+α

denotes the left-sided Erdélyi-Kober fractional integral of order 1 − α and parameters σ and η + α. It
was shown that, if

lim inf
T→∞

T
−σαp
p−1

∫ T

a
V
−1
p−1 (t)t

pασ
p−1 +σ(η+1)−1 dt = 0, (1.3)

then (1.2) admits no weak solution. In particular, when

V(t) ≥ CV(tσ − aσ)γ,

where CV > 0 is a constant, it was proved that, if one of the following conditions:

(C1) : p(1 − α) − 1 < γ < p − 1, (α + η)p ≤ η,

(C2) : (p − 1)(1 + η) < γ < p − 1, (α + η)p > η,
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holds, then (1.2) admits no weak solution.
The aim of the first part of this work is to obtain sufficient conditions for the nonexistence of weak

solutions to the inhomogeneous version of (1.2) (with V ≡ 1), namely,

Dα
a;σ,ηu(t) ≥ |u(t)|p + f (t), t > a (1.4)

subject to the initial condition
lim
t→a+

(
I1−α
a;σ,η+αu

)
(t) = ua, (1.5)

where a > 0, σ > 0, η ∈ R, 0 < α < 1, p > 1, ua ∈ R, and f ∈ L1
loc([a,∞)). Our motivation for

considering problems of type (1.4) is to study the influence of the inhomogeneous term f on the large-
time behavior of solutions to (1.2) with V ≡ 1. We show that, if f (t) ≥ C f t−ση(tσ − aσ)γ, t > a, where
C f > 0 is a constant, and γ > max{η,−1}, then for all p > 1, (1.4) and (1.5) admit no weak solution.

We next extend our study to systems of fractional differential inequalities of the form Dα
a;σ,ηu(t) ≥ g(t)|v(t)|p, t > a,

Dβ
a;σ,ηv(t) ≥ h(t)|u(t)|q, t > a

(1.6)

subject to the initial conditions

lim
t→a+

(
I1−α
a;σ,η+αu

)
(t) = ua, lim

t→a+

(
I1−β
a;σ,η+αv

)
(t) = va, (1.7)

where 0 < α, β < 1, p, q > 1, g, h are positive measurable functions, and ua, va ∈ R. Our motivation for
considering systems of the form (1.6) is to extend the obtained results in [13] from the Caputo sense to
the Erdélyi-Kober sense.

We finally mention that some existence and nonexistence results for a class of nonlinear Erdélyi-
Kober type fractional differential equations on unbounded domains were established in [22], making
use of some tools from fixed point theory. The approach that we use in this paper is based on nonlinear
capacity estimates specifically adapted to Erdélyi-Kober fractional derivatives.

The organization of the rest of the paper is as follows. In Section 2, some notions and properties
related to Erdélyi-Kober fractional operators are recalled. The definitions of weak solutions to the
considered problems as well as the obtained results are presented in Section 3. Some important lemmas
are established in Section 4. Finally, the proofs of our obtained results are given in Section 5.

2. Preliminaries and notation

In this section, we recall briefly some basic notions and properties related to Erdélyi-Kober
fractional operators, and fix some notation. For more details, we refer to [20].

Let a,T ∈ R be fixed such that 0 < a < T . We first recall the Riemann-Liouville fractional integral
operators.

The left-sided and right-sided Riemann-Liouville fractional integrals of order κ > 0 of a function
f ∈ L1([a,T ]) are defined respectively by

(Iκa f )(t) =
1
Γ(κ)

∫ t

a
(t − s)κ−1 f (s) ds

AIMS Mathematics Volume 9, Issue 8, 21686–21702.



21689

and

(IκT f )(t) =
1
Γ(κ)

∫ T

t
(s − t)κ−1 f (s) ds,

for almost everywhere t ∈ [a,T ], where Γ denotes the gamma function.
The left-sided and right-sided Erdélyi-Kober fractional integrals of order α > 0 and parameters

σ > 0 and η ∈ R of a function f ∈ L1([a,T ]), are defined respectively by

(Iαa;σ,η f )(t) =
σt−σ(α+η)

Γ(α)

∫ t

a

sση+σ−1 f (s)
(tσ − sσ)1−α ds

and

(IαT ;σ,η f )(t) =
σtση

Γ(α)

∫ T

t

sσ(1−α−η)−1 f (s)
(sσ − tσ)1−α ds,

for almost everywhere t ∈ [a,T ].
Some relations between the Riemann-Liouville and Erdélyi-Kober fractional integrals can be easily

obtained. Using the change of variable z = sσ, for a < t < T , we obtain

(Iαa;σ,η f )(t) =
t−σ(α+η)

Γ(α)

∫ tσ

aσ

zη f (z
1
σ )

(tσ − z)1−α dz

= t−σ(α+η)
(
Iαaσ f̃

)
(tσ),

where
f̃ (z) = zη f (z

1
σ ), aσ < z < Tσ.

Using the same change of variable, we get

(IαT ;σ,ηg)(t) =
tση

Γ(α)

∫ Tσ

tσ

z−(α+η)g(z
1
σ )

(z − tσ)1−α ds

= tση(IαTσ g̃)(tσ),

where
g̃(z) = z−(α+η)g(z

1
σ ), aσ < z < Tσ.

We have the following integration by parts rule (see [21]).

Lemma 2.1. Let µ, σ > 0 and η ∈ R. Let k,m ≥ 1 and 1
k +

1
m ≤ 1+µ (k , 1 and m , 1 if 1

k +
1
m = 1+µ).

If f ∈ Lk([a,T ]) and g ∈ Lm([a,T ]), then∫ T

a
tσ−1(Iµa;σ,η f )(t)g(t) dt =

∫ T

a
tσ−1 f (t)(IµT ;σ,ηg)(t) dt.

The proof of the following result can be found in [21].

Lemma 2.2. Let 0 < µ < 1, σ > 0, and η ∈ R. For λ ≫ 1 (λ is sufficiently large), let

φ(t) = (Tσ − aσ)−λ(Tσ − tσ)λ, a ≤ t ≤ T. (2.1)

For all a < t < T, we have

IµT ;σ,η+1−µ

(
tση+1φ′

)
(t) = −

Γ(λ + 1)σ
Γ(λ + µ)

(Tσ − aσ)−λ(Tσ − tσ)µ+λ−1tσ(η+1−µ). (2.2)
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Let 0 < α < 1, σ > 0, η ∈ R and f be a function such that

tσ(η+1)I1−α
a;σ,η+α f ∈ AC([a,T ]),

where AC([a,T ]) denotes the space of absolutely continuous functions on [a,T ]. The (left-sided)
Erdélyi-Kober fractional derivative of order α and parameters σ and η of f is defined by (see, e.g., [20])

Dα
a;σ,η f (t) = t−ση

(
1

σtσ−1

d
dt

) (
tσ(η+1)I1−α

a;σ,η+α f
)

(t),

for almost everywhere t ∈ [a,T ].
Throughout this paper, we shall use the following notations. By C, we mean a positive constant

independent of T and the solutions u and v. Its value is not necessarily the same from one line to
another. By λ ≫ 1, where λ > 0, we mean that λ is sufficiently large.

3. The results

In this section, we state our obtained results for problems (1.4)–(1.7).
Let us define weak solutions to (1.4) and (1.5). For all T > a, we introduce the set of functions

ΨT =
{
ψ ∈ C2([a,T ]) : ψ ≥ 0, ψ(T ) = 0

}
.

Definition 3.1. We say that u is a weak solution to (1.4) and (1.5), if u ∈ Lp
loc([a,∞)) and∫ T

a
|u(t)|pψ(t) dt+

∫ T

a
f (t)ψ(t) dt+

a
σ
ψ(a)ua ≤ −

1
σ

∫ T

a
tσ−1u(t)

(
I1−α
T ;σ,η+αtση+1(t1−σ(η+1)ψ)′

)
(t) dt, (3.1)

for all T > a and ψ ∈ ΨT .

Notice that, if u satisfies (1.4) and (1.5), then for all T > a, multiplying (1.4) by ψ ∈ ΨT , integrating
by parts over (a,T ), using Lemma 2.1 and (1.5), we obtain (3.1).

Our main result for problems (1.4) and (1.5) is stated in the following theorem.

Theorem 3.2. Let a > 0, σ > 0, α ∈ (0, 1), and p > 1. Let f ∈ L1
loc([a,∞)) be such that

f (t) ≥ C f t−ση(tσ − aσ)γ, (3.2)

for almost everywhere t > a, where C f > 0 is a constant. If

γ > max {η,−1} , (3.3)

then (1.4) and (1.5) admit no weak solution.

Remark 3.3. From Theorem 3.2, we show that the value of the parameter α has no effect on the
nonexistence result.
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Remark 3.4. In the homogeneous case ( f ≡ 0), problem (1.4) under the initial condition (1.5), reduces
to problem (1.2) with V ≡ 1. In this case, from the obtained result in [21], if one of the conditions:

(i) : p(1 − α) < 1, (α + η)p ≤ η,

(ii) : η < −1, (α + η)p > η,

holds, then we have no weak solution. From Theorem 3.2, we show that under conditions (3.2)
and (3.3), the effect of the inhomogeneous term on the large-time behavior of solutions is considerable.
Namely, in this case, for every p > 1, the inhomogeneous problems (1.4) and (1.5) admit no weak
solution.

We now define weak solutions to (1.6) and (1.7).

Definition 3.5. We say that the pair of functions (u, v) is a weak solution to (1.6) and (1.7), if u ∈
Lq

loc([a,∞), h(t) dt) ∩ L1
loc([a,∞)), v ∈ Lp

loc([a,∞), g(t) dt) ∩ L1
loc([a,∞)) and∫ T

a
|v(t)|pg(t)ψ(t) dt +

a
σ
ψ(a)ua ≤ −

1
σ

∫ T

a
tσ−1u(t)

(
I1−α
T ;σ,η+αtση+1(t1−σ(η+1)ψ)′

)
(t) dt, (3.4)∫ T

a
|u(t)|qh(t)ψ(t) dt +

a
σ
ψ(a)va ≤ −

1
σ

∫ T

a
tσ−1v(t)

(
I1−β
T ;σ,η+βt

ση+1(t1−σ(η+1)ψ)′
)

(t) dt, (3.5)

for all T > a and ψ ∈ ΨT .

Notice that, if (u, v) satisfies (1.6) and (1.7), then for all T > a, multiplying the first inequality
in (1.6) by ψ ∈ ΨT , integrating by parts over (a,T ), using Lemma 2.1 and (1.7), we obtain (3.4).
Similarly, multiplying the second inequality in (1.6) by ψ and integrating by parts over (a,T ), we
get (3.5).

Our main result for (1.6) and (1.7) is stated in the following theorem.

Theorem 3.6. Let a > 0, σ > 0, η ∈ R, 0 < α, β < 1, and p, q > 1. Assume that g
−1
p−1 , h

−1
q−1 ∈ L1

loc([a,∞))
and ua, va ≥ 0. If one of the following conditions:

(i) va > 0 and

lim inf
T→∞

T−σq(α+βp)
(∫ T

a
tσ(η+1)−1+σqα

q−1 h
−1
q−1 (t) dt

)q−1 (∫ T

a
tσ(η+1)−1+σpβ

p−1 g
−1
p−1 (t) dt

)(p−1)q

= 0, (3.6)

(ii) ua > 0 and

lim inf
T→∞

T−σp(β+αp)
(∫ T

a
tσ(η+1)−1+σpβ

p−1 g
−1
p−1 (t) dt

)p−1 (∫ T

a
tσ(η+1)−1+σqα

q−1 h
−1

q−1 (t) dt
)(q−1)p

= 0, (3.7)

is satisfied, then (1.6) and (1.7) admit no weak solution.

Remark 3.7. If α = β, p = q, g = h = V , ua = va, and u = v, then system (1.6) under the initial
conditions (1.7) reduces to (1.2). In this case, (3.6) and (3.7) reduce to (1.3). Then, we recover the
nonexistence result obtained in [21] for (1.2).
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We now consider singular weight functions of the forms

g(t) = (t − a)−γ, h(t) = (t − a)−ρ, (3.8)

where γ, ρ ≥ 0 are constants. It can be easily seen that g
−1
p−1 , h

−1
q−1 ∈ L1

loc([a,∞)). From Theorem 3.6, we
deduce the following result.

Corollary 3.8. Let a > 0, σ > 0, η < −1, 0 < α, β < 1, p, q > 1, and ua, va ≥ 0. Let g and h be the
functions defined by (3.8), where γ, ρ ≥ 0. If one of the conditions:

(i) va > 0 and

γq + ρ
σ

< min
{
q (α + βp) , q

[
α − (η + 1)(p − 1)

]
, q (βp − η − 1) + η + 1,−(η + 1)(pq − 1)

}
,

(3.9)
(ii) ua > 0 and

ρp + γ
σ

< min
{
p (β + αq) , p

[
β − (η + 1)(q − 1)

]
, p (αq − η − 1) + η + 1,−(η + 1)(pq − 1)

}
,

holds, then (1.6) and (1.7) admit no weak solution.

We provide below an example to illustrate the above result.

Example 3.9. Consider the system of fractional differential inequalities D1/2
a;σ,−2u(t) ≥ (t − a)−γ|v(t)|2, t > a,

D1/4
a;σ,−2v(t) ≥ (t − a)−ρ|u(t)|3, t > a,

(3.10)

where a > 0, σ > 0, γ, ρ ≥ 0, subject to the initial conditions (1.7) with ua, va > 0. System (3.10) is a
special case of (1.6), where g, h are defined by (3.8), α = 1

2 , β = 1
4 , η = −2, p = 2, and q = 3. From

Corollary 3.8, if
3γ + ρ
σ

< 3, (3.11)

then system (3.10) under the initial conditions (1.7) admits no weak solution. In this case, we have

γq + ρ
σ

=
3γ + ρ
σ

,

and

q (α + βp) = 3, q
[
α − (η + 1)(p − 1)

]
= 3 +

3
2
, q (βp − η − 1) + η + 1 = 3 +

1
2
,−(η + 1)(pq − 1) = 5,

which shows that (3.9) is equivalent to (3.11).
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4. Auxiliary results

In this section, we establish some important lemmas that will be used later in the proofs of our main
results.

For all T > a and ψ ∈ ΨT , let

J(ψ) =
∫ T

a
t

(σ−1)p
p−1 ψ

−1
p−1 (t)

∣∣∣∣(I1−α
T ;σ,η+αtση+1(t1−σ(η+1)ψ)′

)
(t)

∣∣∣∣ p
p−1

dt (4.1)

and

K1(ψ) =
∫ T

a
t

(σ−1)q
q−1 h

−1
q−1 (t)ψ

−1
q−1 (t)

∣∣∣∣(I1−α
T ;σ,η+αtση+1(t1−σ(η+1)ψ)′

)
(t)

∣∣∣∣ q
q−1

dt, (4.2)

K2(ψ) =
∫ T

a
t

(σ−1)p
p−1 g

−1
p−1 (t)ψ

−1
p−1 (t)

∣∣∣∣(I1−β
T ;σ,η+βt

ση+1(t1−σ(η+1)ψ)′
)

(t)
∣∣∣∣ p

p−1
dt. (4.3)

We have the following a priori estimate for problems (1.4) and (1.5) .

Lemma 4.1. If u is a weak solution to (1.4), (1.5), and ua ≥ 0, then∫ T

a
f (t)ψ(t) dt ≤ CJ(ψ), (4.4)

for all T > a and ψ ∈ ΨT , provided J(ψ) < ∞.

Proof. Let u be a weak solution to (1.4), (1.5), and ua ≥ 0 . Let T > a and ψ ∈ ΨT , where J(ψ) < ∞.
By (3.1), we have∫ T

a
|u(t)|pψ(t) dt +

∫ T

a
f (t)ψ(t) dt +

a
σ
ψ(a)ua ≤

1
σ

∫ T

a
tσ−1|u(t)|

∣∣∣∣(I1−α
T ;σ,η+αtση+1(t1−σ(η+1)ψ)′

)
(t)

∣∣∣∣ dt.

Since ua ≥ 0, the above inequality yields∫ T

a
|u(t)|pψ(t) dt +

∫ T

a
f (t)ψ(t) dt ≤

1
σ

∫ T

a
tσ−1|u(t)|

∣∣∣∣(I1−α
T ;σ,η+αtση+1(t1−σ(η+1)ψ)′

)
(t)

∣∣∣∣ dt. (4.5)

On the other hand, we have by Young’s inequality that

1
σ

∫ T

a
tσ−1|u(t)|

∣∣∣∣(I1−α
T ;σ,η+αtση+1(t1−σ(η+1)ψ)′

)
(t)

∣∣∣∣ dt

=

∫ T

a

(
|u(t)|ψ

1
p (t)

) ( 1
σ

tσ−1ψ
−1
p (t)

∣∣∣∣(I1−α
T ;σ,η+αtση+1(t1−σ(η+1)ψ)′

)
(t)

∣∣∣∣) dt

≤
1
p

∫ T

a
|u(t)|pψ(t) dt +CJ(ψ),

which implies by (4.5) that(
1 −

1
p

) ∫ T

a
|u(t)|pψ(t) dt +

∫ T

a
f (t)ψ(t) dt ≤ CJ(ψ).

Since 1 − 1
p > 0, the above inequality yields (4.4). □
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We also have the following a priori estimate for problems (1.6) and (1.7).

Lemma 4.2. If (u, v) is a weak solution to (1.6), (1.7), and ua, va ≥ 0, then

(ψ(a)va)pq−1 ≤ C
[
K1(ψ)

]q−1 [
K2(ψ)

](p−1)q (4.6)

and
(ψ(a)ua)pq−1 ≤ C

[
K2(ψ)

]p−1 [
K1(ψ)

](q−1)p , (4.7)

for all T > a and ψ ∈ ΨT , provided Ki(ψ) < ∞, i = 1, 2.

Proof. Let (u, v) be a weak solution to (1.6) and (1.7). Let T > a and ψ ∈ ΨT be such that Ki(ψ) < ∞,
i = 1, 2. By (3.4), we have∫ T

a
|v(t)|pg(t)ψ(t) dt +

a
σ
ψ(a)ua ≤

1
σ

∫ T

a
tσ−1|u(t)|

∣∣∣∣(I1−α
T ;σ,η+αtση+1(t1−σ(η+1)ψ)′

)
(t)

∣∣∣∣ dt. (4.8)

On the other hand, by Hölder’s inequality, we get∫ T

a
tσ−1|u(t)|

∣∣∣∣(I1−α
T ;σ,η+αtση+1(t1−σ(η+1)ψ)′

)
(t)

∣∣∣∣ dt

=

∫ T

a

(
|u(t)|h

1
q (t)ψ

1
q (t)

) (
tσ−1h

−1
q (t)ψ

−1
q (t)

∣∣∣∣(I1−α
T ;σ,η+αtση+1(t1−σ(η+1)ψ)′

)
(t)

∣∣∣∣) dt

≤

(∫ T

a
|u(t)|qh(t)ψ(t) dt

) 1
q [

K1(ψ)
] q−1

q ,

which implies by (4.8) that∫ T

a
|v(t)|pg(t)ψ(t) dt +

a
σ
ψ(a)ua ≤

1
σ

(∫ T

a
|u(t)|qh(t)ψ(t) dt

) 1
q [

K1(ψ)
] q−1

q . (4.9)

Similarly, by (3.5), we have∫ T

a
|u(t)|qh(t)ψ(t) dt +

a
σ
ψ(a)va ≤

1
σ

∫ T

a
tσ−1|v(t)|

∣∣∣∣(I1−β
T ;σ,η+βt

ση+1(t1−σ(η+1)ψ)′
)

(t)
∣∣∣∣ dt. (4.10)

Making use of Hölder’s inequality, we obtain∫ T

a
tσ−1|v(t)|

∣∣∣∣(I1−β
T ;σ,η+βt

ση+1(t1−σ(η+1)ψ)′
)

(t)
∣∣∣∣ dt ≤

(∫ T

a
|v(t)|pg(t)ψ(t) dt

) 1
p [

K2(ψ)
] p−1

p ,

which implies by (4.10) that∫ T

a
|u(t)|qh(t)ψ(t) dt +

a
σ
ψ(a)va ≤

1
σ

(∫ T

a
|v(t)|pg(t)ψ(t) dt

) 1
p [

K2(ψ)
] p−1

p . (4.11)

Since ua ≥ 0, it follows from (4.9) that∫ T

a
|v(t)|pg(t)ψ(t) dt ≤

1
σ

(∫ T

a
|u(t)|qh(t)ψ(t) dt

) 1
q [

K1(ψ)
] q−1

q .
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The above estimate together with (4.11) implies that∫ T

a
|u(t)|qh(t)ψ(t) dt +

a
σ
ψ(a)va ≤

(∫ T

a
|u(t)|qh(t)ψ(t) dt

) 1
pq

σ
−(p+1)

p
[
K1(ψ)

] q−1
pq

[
K2(ψ)

] p−1
p .

We now use Young’s inequality to get∫ T

a
|u(t)|qh(t)ψ(t) dt +

a
σ
ψ(a)va ≤

1
pq

∫ T

a
|u(t)|qh(t)ψ(t) dt +C

([
K1(ψ)

] q−1
pq

[
K2(ψ)

] p−1
p

) pq
pq−1

,

that is, (
1 −

1
pq

) ∫ T

a
|u(t)|qh(t)ψ(t) dt +

a
σ
ψ(a)va ≤ C

([
K1(ψ)

]q−1 [
K2(ψ)

](p−1)q
) 1

pq−1
,

which yields (4.6). Similarly, since va ≥ 0, it follows from (4.11) that∫ T

a
|u(t)|qh(t)ψ(t) dt ≤

1
σ

(∫ T

a
|v(t)|pg(t)ψ(t) dt

) 1
p [

K2(ψ)
] p−1

p .

The above estimate together with (4.9) gives us that∫ T

a
|v(t)|pg(t)ψ(t) dt +

a
σ
ψ(a)ua ≤

(∫ T

a
|v(t)|pg(t)ψ(t) dt

) 1
pq

σ
−(q+1)

q
[
K2(ψ)

] p−1
pq

[
K1(ψ)

] q−1
q ,

which implies by Young’s inequality that(
1 −

1
pq

) ∫ T

a
|v(t)|pg(t)ψ(t) dt +

a
σ
ψ(a)ua ≤ C

([
K2(ψ)

]p−1 [
K1(ψ)

](q−1)p
) 1

pq−1

and (4.7) follows. □

For T > a with T ≫ 1 and λ ≫ 1, let us consider test functions of the form

ψ(t) = tσ(η+1)−1φ(t), a ≤ t ≤ T, (4.12)

where φ is the function defined by (2.1).

Lemma 4.3. The function ψ defined by (4.12) belongs to ψT .

Proof. The result follows immediately from (2.1) and (4.12). □

Let us now estimate the integral terms J(ψ) and Ki(ψ), i = 1, 2.

Lemma 4.4. We have
J(ψ) ≤ CT

−σαp
p−1

(
ln T + Tσ

(
η+1+ pα

p−1

))
. (4.13)

Proof. By (4.12), for all a < t < T , we have

tση+1(t1−σ(η+1)ψ)′(t) = tση+1φ′(t),
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which implies by Lemma 2.2 with µ = 1 − α that(
I1−α
T ;σ,η+αtση+1(t1−σ(η+1)ψ)′

)
(t) = I1−α

T ;σ,η+α

(
tση+1φ′

)
(t)

= −
Γ(λ + 1)σ
Γ(λ + µ)

(Tσ − aσ)−λ(Tσ − tσ)λ−αtσ(η+α).
(4.14)

Then, by (2.1), it holds that

t
(σ−1)p

p−1 ψ
−1
p−1 (t)

∣∣∣∣(I1−α
T ;σ,η+αtση+1(t1−σ(η+1)ψ)′

)
(t)

∣∣∣∣ p
p−1

=Ct
(σ−1)p

p−1 t
1−σ(η+1)

p−1 φ
−1
p−1 (Tσ − aσ)

−λp
p−1 (Tσ − tσ)

(λ−α)p
p−1 t

σ(η+α)p
p−1

=Ct
(σ−1)p

p−1 +
1−σ(η+1)

p−1 +
σ(η+α)p

p−1 (Tσ − aσ)
λ

p−1 (Tσ − tσ)
−λ
p−1 (Tσ − aσ)

−λp
p−1 (Tσ − tσ)

(λ−α)p
p−1

=Ctσ(η+1)−1+σpα
p−1 (Tσ − aσ)−λ(Tσ − tσ)λ−

αp
p−1 .

Using (4.1) and integrating over (a,T ), we obtain

J(ψ) =
∫ T

a
t

(σ−1)p
p−1 ψ

−1
p−1 (t)

∣∣∣∣(I1−α
T ;σ,η+αtση+1(t1−σ(η+1)ψ)′

)
(t)

∣∣∣∣ p
p−1

dt

= C(Tσ − aσ)−λ
∫ T

a
tσ(η+1)−1+σpα

p−1 (Tσ − tσ)λ−
αp
p−1 dt

≤ C(Tσ − aσ)
−αp
p−1

∫ T

a
tσ(η+1)−1+σpα

p−1 dt

≤ CT
−σαp
p−1

(
ln T + Tσ

(
η+1+ pα

p−1

))
,

which proves (4.13). □

Lemma 4.5. Assume that h
−1
q−1 ∈ L1

loc([a,∞)). We have

K1(ψ) ≤ C(Tσ − aσ)
−αq
q−1

∫ T

a
tσ(η+1)−1+σqα

q−1 h
−1
q−1 (t) dt. (4.15)

Proof. By (4.14), it holds that

t
(σ−1)q

q−1 h
−1
q−1 (t)ψ

−1
q−1 (t)

∣∣∣∣(I1−α
T ;σ,η+αtση+1(t1−σ(η+1)ψ)′

)
(t)

∣∣∣∣ q
q−1

=Ch
−1
q−1 (t)

[
t

(σ−1)q
q−1 t

1−σ(η+1)
q−1 φ

−1
q−1 (Tσ − aσ)

−λq
q−1 (Tσ − tσ)

(λ−α)q
q−1 t

σ(η+α)q
q−1

]
=Ch

−1
q−1 (t)

[
t

(σ−1)q
q−1 +

1−σ(η+1)
q−1 +

σ(η+α)q
q−1 (Tσ − aσ)

λ
q−1 (Tσ − tσ)

−λ
q−1 (Tσ − aσ)

−λq
q−1 (Tσ − tσ)

(λ−α)q
q−1

]
=Ch

−1
q−1 (t)tσ(η+1)−1+σqα

q−1 (Tσ − aσ)−λ(Tσ − tσ)λ−
αq

q−1 .

Using (4.2) and integrating over (a,T ), we obtain

K1(ψ) =
∫ T

a
t

(σ−1)q
q−1 h

−1
q−1 (t)ψ

−1
q−1 (t)

∣∣∣∣(I1−α
T ;σ,η+αtση+1(t1−σ(η+1)ψ)′

)
(t)

∣∣∣∣ q
q−1

dt

= C(Tσ − aσ)−λ
∫ T

a
tσ(η+1)−1+σqα

q−1 h
−1
q−1 (t)(Tσ − tσ)λ−

αq
q−1 dt

≤ C(Tσ − aσ)
−αq
q−1

∫ T

a
tσ(η+1)−1+σqα

q−1 h
−1

q−1 (t) dt,
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which proves (4.15). □

Similarly, by (2.1), (4.3), and (4.12), we obtain the following estimate of K2(ψ).

Lemma 4.6. Assume that g
−1
p−1 ∈ L1

loc([a,∞)). We have

K2(ψ) ≤ C(Tσ − aσ)
−βp
p−1

∫ T

a
tσ(η+1)−1+σpβ

p−1 g
−1
p−1 (t) dt.

The following estimates follow immediately from Lemmas 4.5 and 4.6.

Lemma 4.7. Assume that h
−1
q−1 ∈ L1

loc([a,∞)) and g
−1
p−1 ∈ L1

loc([a,∞)). We have

[
K1(ψ)

]q−1 [
K2(ψ)

](p−1)q
≤ CT−σq(α+βp)

(∫ T

a
tσ(η+1)−1+σqα

q−1 h
−1
q−1 (t) dt

)q−1 (∫ T

a
tσ(η+1)−1+σpβ

p−1 g
−1
p−1 (t) dt

)(p−1)q

and[
K2(ψ)

]p−1 [
K1(ψ))(q−1)p

≤ CT−σp(β+αp)
(∫ T

a
tσ(η+1)−1+σpβ

p−1 g
−1
p−1 (t) dt

)p−1 (∫ T

a
tσ(η+1)−1+σqα

q−1 h
−1

q−1 (t) dt
)(q−1)p

.

5. Proofs of the obtained results

This section is devoted to the proofs of Theorems 3.2 and 3.6, and Corollary 3.8.

Proof of Theorem 3.2. We use a contradiction argument. Namely, suppose that u is a weak solution
to (1.4) and (1.5). By Lemmas 4.1 and 4.5, we have∫ T

a
f (t)ψ(t) dt ≤ CJ(ψ), (5.1)

where for T, λ ≫ 1, the function ψ is defined by (4.12). On the other hand, by (2.1), (3.2), and (4.12),
we have ∫ T

a
f (t)ψ(t) dt = (Tσ − aσ)−λ

∫ T

a
f (t)tσ(η+1)−1(Tσ − tσ)λ dt

≥ C f (Tσ − aσ)−λ
∫ T

a
t−ση(tσ − aσ)γtσ(η+1)−1(Tσ − tσ)λ dt

= C f (Tσ − aσ)−λ
∫ T

a
(tσ − aσ)γ(Tσ − tσ)λtσ−1 dt.

(5.2)

Furthermore, we have

(Tσ − aσ)−λ
∫ T

a
(tσ − aσ)γ(Tσ − tσ)λtσ−1 dt

=(Tσ − aσ)−λ
∫ T

a
(tσ − aσ)γ(Tσ − tσ)λtσ−1 dt

=(Tσ − aσ)−λ
∫ T

a
(tσ − aσ)γ [(Tσ − aσ) − (tσ − aσ)]λ tσ−1 dt

=

∫ T

a
(tσ − aσ)γ

(
1 −

tσ − aσ

Tσ − aσ

)λ
tσ−1 dt.

AIMS Mathematics Volume 9, Issue 8, 21686–21702.



21698

Making the change of variable s =
tσ − aσ

Tσ − aσ
and using that γ > −1 (by (3.3)), we obtain

(Tσ − aσ)−λ
∫ T

a
(tσ − aσ)γ(Tσ − tσ)λtσ−1 dt

=
1
σ

(Tσ − aσ)γ+1
∫ 1

0
s(γ+1)−1(1 − s)(λ+1)−1

=
1
σ

(Tσ − aσ)γ+1B(γ + 1, λ + 1),

where B is the beta function. Hence, by (5.2), we have∫ T

a
f (t)ψ(t) dt ≥ C(Tσ − aσ)γ+1

≥ CTσ(γ+1).

(5.3)

We now use Lemma 4.4, (5.1), and (5.3) to get

Tσ(γ+1) ≤ CT
−σαp
p−1

(
ln T + Tσ

(
η+1+ pα

p−1

))
,

that is,
1 ≤ C (T τ1 ln T + T τ2) , (5.4)

where

τ1 = −σ

(
αp

p − 1
+ (γ + 1)

)
and

τ2 = −σ(γ − η).

Note that due to (3.3), we have τi < 0, i = 1, 2. Hence, passing to the limit as T → ∞ in (5.4) , we
reach a contradiction. This completes the proof of Theorem 3.2. □

Proof of Theorem 3.6. We also use a contradiction argument. Namely, suppose that (u, v) is a weak
solution to (1.6) and (1.7).

We first consider the case (i). By Lemma 4.2, for all T > a and ψ ∈ ΨT , we have

(ψ(a)va)pq−1 ≤ C
[
K1(ψ)

]q−1 [
K2(ψ)

](p−1)q , (5.5)

provided Ki(ψ) < ∞, i = 1, 2. In particular, since g
−1
p−1 , h

−1
q−1 ∈ L1

loc([a,∞)), then by Lemmas 4.3, 4.5,
and 4.6, (5.5) holds for the function ψ defined by (4.12). Since ψ(a) = aσ(η+1)−1 > 0, then (5.5) reduces
to

vpq−1
a ≤ C

[
K1(ψ)

]q−1 [
K2(ψ)

](p−1)q ,

which implies by the first estimate in Lemma 4.7 that

vpq−1
a ≤ CT−σq(α+βp)

(∫ T

a
tσ(η+1)−1+σqα

q−1 h
−1

q−1 (t) dt
)q−1 (∫ T

a
tσ(η+1)−1+σpβ

p−1 g
−1
p−1 (t) dt

)(p−1)q

.
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Passing to the infimum limit as T → ∞ in the above inequality and using (3.6), we obtain (recall that
va ≥ 0)

vpq−1
a = 0,

which contradicts the fact that va > 0.
Consider now the case (ii). Similarly to the previous case, we obtain by Lemmas 4.2, 4.3, 4.5,

and 4.6 that
upq−1

a ≤ C
[
K2(ψ)

]p−1 [
K1(ψ))(q−1)p ,

where ψ is defined by (4.12). Then, from the second estimate in Lemma 4.7, we deduce that

upq−1
a ≤ CT−σp(β+αp)

(∫ T

a
tσ(η+1)−1+σpβ

p−1 g
−1
p−1 (t) dt

)p−1 (∫ T

a
tσ(η+1)−1+σqα

q−1 h
−1

q−1 (t) dt
)(q−1)p

.

Passing to the infimum limit as T → ∞ in the above inequality and using (3.7), we obtain (recall that
ua ≥ 0)

upq−1
a = 0,

which contradicts the fact that ua > 0.
Hence, in both cases (i) and (ii), we reach a contradiction. This completes the proof of Theorem 3.6.

□

Proof of Corollary 3.8. We only give the proof of the case (i). The proof of the case (ii) follows using
a similar argument. By the definition of h, for T ≫ 1, we have∫ T

a
tσ(η+1)−1+σqα

q−1 h
−1
q−1 (t) dt =

∫ T

a
tσ(η+1)−1+σqα

q−1 (t − a)
ρ

q−1 (t) dt

≤ (T − a)
ρ

q−1

∫ T

a
tσ(η+1)−1+σqα

q−1 dt

≤ CT
ρ

q−1

(
ln T + Tσ

(
η+1+ qα

q−1

))
,

which implies that(∫ T

a
tσ(η+1)−1+σqα

q−1 h
−1
q−1 (t) dt

)q−1

≤ C
(
T ρ(ln T )q−1 + T ρ+σ((η+1)(q−1)+qα)

)
. (5.6)

Similarly, by the definition of g, we have(∫ T

a
tσ(η+1)−1+σpβ

p−1 g
−1
p−1 (t) dt

)(p−1)q

≤ C
(
T γq(ln T )(p−1)q + T γq+σ((η+1)(p−1)q+pqβ)

)
. (5.7)

Then, it follows from (5.6) and (5.7) that

T−σq(α+βp)
(∫ T

a
tσ(η+1)−1+σqα

q−1 h
−1
q−1 (t) dt

)q−1 (∫ T

a
tσ(η+1)−1+σpβ

p−1 g
−1
p−1 (t) dt

)(p−1)q

≤C
(
T η1(ln T )pq−1 + T η2(ln T )q−1 + T η3(ln T )(p−1)q + T η4

)
,

(5.8)
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where

η1 = γq + ρ − σq(α + βp),
η2 = γq + ρ + σq

[
(η + 1)(p − 1) − α

]
,

η3 = γq + ρ + σ
[
q(η + 1 − βp) − η − 1

]
,

η4 = γq + ρ + σ(η + 1)(pq − 1).

Observe that from (3.9), we have ηi < 0, i = 1, 2, 3, 4. Hence, from (5.8), we deduce that

lim
T→∞

T−σq(α+βp)
(∫ T

a
tσ(η+1)−1+σqα

q−1 h
−1

q−1 (t) dt
)q−1 (∫ T

a
tσ(η+1)−1+σpβ

p−1 g
−1
p−1 (t) dt

)(p−1)q

= 0,

which shows that (3.6) is satisfied. Then, Theorem 3.6 applies. □

6. Conclusions

Using nonlinear capacity estimates, sufficient conditions for the nonexistence of weak solutions
were obtained for the inhomogeneous Erdélyi-Kober fractional differential inequality (1.4) subject to
the initial condition (1.5) (see Theorem 3.2) and the system of Erdélyi-Kober fractional differential
inequalities (1.6) under the initial conditions (1.7) (see Theorem 3.6). By comparing Theorem 3.2 with
the recent result obtained in [21] for the homogeneous problem (1.2) with V ≡ 1, we observe that, if the
inhomogeneous term f satisfies (3.2) and (3.3), then the nonexistence holds for every p > 1. However,
in the homogeneous case, the nonexistence holds for a certain range of p. Furthermore, Theorem 3.6
recovers the nonexistence result established in [21] (See Remark 3.7).

In this paper, we only studied the nonexistence of solutions to the considered problems. It would be
interesting to extend this study in order to get sufficient conditions for the existence of solutions. We
hope that in a future work, this question will be solved.
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