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Abstract: In this paper, we propose a novel approach to the fractional power of the Laplace-Bessel
operator ∆ν, defined as

∆ν =

n∑
i=1

∂2

∂x2
i

+
νi

xi

∂

∂xi
, νi ≥ 0.

The fractional power of this operator is introduced as a pseudo-differential operator through the multi-
dimensional Bessel transform. Our primary contributions encompass a normalized singular integral
representation, Bochner subordination, and intertwining relations.
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1. Introduction

Fractional calculus has emerged as both an important and powerful mathematical tool, finding
applications across diverse scientific domains where phenomena often display non-local or anomalous
behavior [1–4]. In particular, the fractional power of the Laplace operator ∆ =

∑n
i=1 ∂

2
i is a focal point

of investigation in various mathematical and applied contexts [5–8]. Its definition involves the Fourier
transform:

(−∆)α/2ϕ = F −1(∥ξ∥αF ϕ(ξ)), for ϕ ∈ S (Rn),

where F and F −1 represent the Fourier transform and its inverse, and S (Rn) denotes the Schwartz
space.

An alternative representation valid for α ∈ (0, 2) of the fractional Laplacian is provided through a
pointwise formula, as articulated in [9]:

(−∆)α/2 f (x) =
1

γn(α)
lim
ε→0

∫
Rn\B(0,ε)

f (x) − f (x − y)
∥y∥n+α

dy,
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where γn(α) is a constant defined as

γn(α) =
πn/2|Γ

(
−α2

)
|

2αΓ
(

n+α
2

) ,

and B(0, ε) denotes the ball of radius ε centered at the origin.
It is crucial to recognize that the fractional Laplacian exhibits various equivalent definitions

throughout Rn, as extensively discussed in [9]. This variability underscores the rich mathematical
structure and diverse perspectives associated with this nonlocal differential operator.

Within this expansive framework, our study is dedicated to exploring a specific facet of fractional
calculus, with a particular focus on a singular differential operator known as the Laplace-Bessel
operator [10, (1.88)], which is given by

∆ν =

n∑
i=1

Bνi , Bνi =
∂2

∂x2
i

+
νi

xi

∂

∂xi
, νi ≥ 0. (1.1)

The Laplace-Bessel operator serves as a mathematical model for phenomena characterized by multi-
axial symmetry in various domains. Extensive harmonic analysis related to this operator has been
conducted by prominent mathematicians, including B. Muckenhoupt and E. Stein [11], I. Kipriyanov,
M. Klyuchantsev [12–14], K. Trimeche [15], L. Lyakhov [16, 17], K. Stempak [18], E. L. Shishkina,
and S. M. Sitnik [10], among others.

The fractional Laplace-Bessel operator, denoted as (−∆ν)α/2 with order α, is introduced in our
work as a pseudo-differential operator through the multi-dimensional Bessel transform. The
investigation into the fractional Laplace-Bessel operator was pioneered by L. Lyakhov [19], and
additional insights have been contributed by [16, 20]. For specific insights into the one-dimensional
case, refer to [10, 21–23].

Since the fractional Laplace-Bessel operator reduces to the standard Laplacian when the multi-
index ν is equal to zero, a challenging question arises: Does the equivalence of the ten definitions of
the fractional Laplace operator still hold for the fractional Bessel operator? To address this question,
we ground our investigation in a meticulously defined function space, denoted as H α

ν (Rn
+), capturing

functions that exhibit well-behaved behavior under the fractional Laplace-Bessel operator. This space
is inspired by the fractional Sobolev spaces introduced by Butzer et al. [24].

To tackle this question, we employ the well-known multi-dimensional Poisson transform Pν, as
defined in [10, Definition 23], and establish a new intertwining relation between the fractional
Laplacian and the fractional Laplace-Bessel operator valid in the Schwartz space S ∗(Rn), given by

Pν(−∆)α/2 = (−∆ν)α/2Pν. (1.2)

This relation is reduced for α = 2 to the one obtained in [10, Statement 4, pp. 137]. Since the multi-
dimensional Poisson transform keeps the Schwartz space invariant, this particularly partially responds
to our starting question.

The structure of the paper is as follows:
In Section 2, we provide an initial overview of foundational concepts. The topics covered

encompass the multi-dimensional Bessel transform, generalized translation operator, and generalized
convolution, collectively setting the stage for a comprehensive understanding of subsequent content.

AIMS Mathematics Volume 9, Issue 8, 21524–21537.



21526

Section 3 succinctly presents the primary research outcomes. Here, we summarize the significant
findings that have been attained through our investigation.

In Section 4, we furnish a comprehensive proof of the core results. Through meticulous derivation
and thorough explanation, we establish the validity of our findings, providing readers with an in-depth
grasp of the underlying mathematical foundations.

Finally, in Section 5, we present additional results, including relations such as Bochner
subordination and intertwining relations for the fractional Laplace-Bessel.

2. Preliminaries

In the subsequent discussions, we will employ the following notations:

• S ∗(Rn): The space of C∞ functions, even with respect to each variable, and rapidly decreasing
together with their derivatives.
• Lp

ν (Rn
+), 1 ≤ p ≤ ∞: The space of measurable functions f on Rn

+ such that

∥ f ∥ν,p =
(∫
Rn
+

| f (x)|p xνdx
)1/p

< ∞, p ∈ [1,∞),

∥ f ∥ν,∞ = ess sup
x∈Rn

+

| f (x)| < ∞.

Here, ν = (ν1, ν2, . . . , νn) and xν = xν1
1 . . . xνn

n and Rn
+ = {x ∈ R

n : x1 > 0, . . . , xn > 0}.
Let ν = (ν1, . . . , νn) be a multi-index with each νi ≥ 0. The multi-dimensional Bessel transform

Fνϕ of a function ϕ ∈ L1
ν(R

n
+) is defined by

Fνϕ(ξ) = ϕ̂(ξ) =
∫
Rn
+

ϕ(x)Jν(x, ξ) xνdx,

where the multi-dimensional Bessel function Jν(x, ξ) is defined as

Jν(x, ξ) =
n∏

i=1

j νi−1
2

(xiξi), with Jν(0, ξ) = 1.

Here, jγ(t) is the normalized Bessel function of the first kind, given by

jγ(t) = 2γΓ(γ + 1)t−γJγ(t), γ ≥ −1/2,

and Jγ(t) denotes the Bessel function of the first kind [25, 26]. We list some well-known basic
properties of the multi-dimensional Bessel transform as follows: For the proofs, we refer to [10] and
the references therein.

(i) For all ϕ ∈ L1
ν(R

n
+), the function Fνϕ is continuous on Rn

+, and we have

∥Fνϕ∥ν,∞ ≤ ∥ϕ∥ν,1 . (2.1)
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(ii) The multi-dimensional Bessel transform Fν acts as a topological isomorphism on S ∗(Rn),
seamlessly extending to an isomorphism on L2

ν(R
n
+), where, for any ϕ ∈ L2

ν(R
n
+), the following

Plancherel formula holds: ∫
Rn
+

|Fνϕ(ξ)|2 ξν dξ = aν

∫
Rn
+

|ϕ(x)|2 xν dx, (2.2)

where

aν = 2|ν|−n
n∏

i=1

Γ2
(
νi + 1

2

)
. (2.3)

(iii) Inversion formula: Let ϕ ∈ L1
ν(R

n
+) such that Fνϕ ∈ L1

ν(R
n
+), then we have

F −1
ν ϕ(ξ) =

1
aν

∫
Rn
+

ϕ(x)Jν(x, ξ) xνdx. (2.4)

The multi-dimensional generalized translation of a continuous function ϕ on Rn denoted by τxϕ is
defined as follows [10, Definition 26]:

τxϕ(y) :=
n∏

i=1

Γ(νi + 1)
√
πΓ(νi +

1
2 )

∫ π

0
. . .

∫ π

0
ϕ
(
(x1, y1)θ1 , . . . , (xn, yn)θn

)
×

n∏
i=1

sin2νi θi dθ1 . . . dθn, (2.5)

where
(xi, yi)θi =

√
x2

i + y2
i − 2xiyi cos θi, i = 1, . . . , n. (2.6)

For every ϕ ∈ Lp
ν (Rn

+), the function τxϕ belongs to Lp
ν (Rn

+), and we have

∥τxϕ∥ν,p ≤ ∥ϕ∥ν,p. (2.7)

The convolution operator determined by τx is as follows:

(ϕ ∗ ψ)(x) =
∫
Rn
+

ϕ(ξ)τxψ(ξ) ξνdξ. (2.8)

This convolution operation is commutative, associative, and satisfies the following property: For
ϕ, ψ ∈ L1

ν(R
n
+), the convolution ϕ ∗ ψ ∈ L1

ν(R
n
+), and we have

Fν(ϕ ∗ ψ) = Fνϕ ·Fνψ.

3. Main results

In this section, we outline the central contributions of this paper, beginning with the introduction of
the fractional Laplace-Bessel operator (−∆ν)α/2 of order α. This fractional derivative is treated as a
pseudo-differential operator using the multi-dimensional Bessel transform. To facilitate our
discussions, we operate within a tailored function space defined as follows:

H α
ν (Rn

+) =
{
ϕ ∈ L2

ν(R
n
+) :

∫
Rn
+

∥ξ∥2α|Fνϕ(ξ)|2ξν dξ < ∞
}
. (3.1)

In accordance with the terminology introduced by Butzer et al. in [24], we commonly denote the space
H α

ν (R) as the fractional Bessel space of order α.
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Definition 3.1. Let 0 < α < 2. For ϕ ∈ H α
ν (Rn

+), we define the fractional Laplace-Bessel
operator (−∆ν)α/2ϕ as

(−∆ν)α/2ϕ = F −1
ν (∥ · ∥αFνϕ), in L2

ν(R
n
+). (3.2)

Remark 3.1. If ∥ · ∥αFνϕ ∈ L1
ν(R

n
+), then the integral in (3.2) exists as an ordinary Lebesgue integral,

that is
(−∆ν)α/2ϕ(ξ) =

1
aν

∫
Rn
+

∥x∥αFνϕ(x)Jν(x, ξ) xνdx, ξ ∈ Rn
+.

For α ∈ (0, 2) and ε > 0, we set

R(α)
ε ϕ(x) =

1
γν(α)

∫
Rn
+\B(0,ε)

ϕ(x) − τxϕ(ξ)
∥ξ∥|ν|+α+n ξν dξ, (3.3)

where the normalized constant γν(α) is given by

γν(α) =
|Γ(−α2 )|

∏n
i=1 Γ(

νi+1
2 )

2α+nΓ( |ν|+α+n
2 )

. (3.4)

The following theorem represents the first main result, as it seeks to characterize the fractional Bessel
space H α

ν (Rn
+) defined in (3.1).

Theorem 3.1. Let α ∈ (0, 2). The following statements are equivalent:

(i) ϕ ∈ L2
ν(R

n
+) and there exists ψ ∈ L2

ν(R
n
+) such that:

∥R(α)
ε ϕ − ψ∥2,ν = o(1) as ε ↓ 0;

(ii) ∥R(α)
ε ϕ∥2,ν = O(1) as ε ↓ 0;

(iii) ϕ ∈H α
ν (Rn

+).

In this specific case, the theorem presented below manifests the classical fractional-order
derivative, extensively explored by A. Marchaud in 1927 [27]. His work holds fundamental
importance in approximation theory and fractional calculus.

Theorem 3.2. Let α ∈ (0, 2). For a function ϕ ∈ Hα(Rn
+), the fractional multi-dimensional Bessel

operator (−∆ν)α/2ϕ(x) can be represented as follows:

(−∆ν)α/2ϕ(x) =
1

γν(α)
lim
ε→0+

∫
Rn
+\B(0,ε)

ϕ(x) − τxϕ(ξ)
∥ξ∥|ν|+α+n ξν dξ in L2

ν(R
n
+).

Building upon Theorem 3.2 with ν = (0, . . . , 0), we derive the following representation of the Laplace
operator ∆ = ∂2

∂x2
1
+ · · · + ∂2

∂x2
n

throughout Rn
+.

Corollary 3.1. Let α ∈ (0, 2). For a function ϕ ∈Hα(Rn
+), the fractional Laplace operator (−∆)α/2ϕ(x)

on Rn
+ can be represented as follows:

(−∆)α/2ϕ(x) =
1

γ(α)
lim
ε→0+

∫
Rn
+\B(0,ε)

2ϕ(x) − ϕ(x + ξ) + ϕ(x − ξ)
∥ξ∥n+α

ξn dξ,

where the normalized constant γ(α) is given by

γ(α) =
π

n
2 |Γ(−α2 )|

2n+αΓ(n+α
2 )

.
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The corollary that follows, has previously been established in [23]. It is a direct consequence of
Theorem 3.2 in the case when n = 1 and ν ≥ 0.

Corollary 3.2. For a function ϕ ∈Hα(R+), the fractional Bessel derivative (−Bν)α/2ϕ, with α ∈ (0, 2),
takes the form:

(−Bν)α/2ϕ(x) =
2α+1Γ( ν+α+1

2 )

Γ( ν+1
2 )|Γ(−α2 )|

lim
ε→0+

∫ ∞

ε

ϕ(x) − τxϕ(ξ)
ξα+1 dξ.

The next proposition highlights additional properties of the fractional Laplace-Bessel operator, which
can be readily discerned by employing (3.2) and the traits of the multi-dimensional Bessel transform.
The specific details are intentionally left for the readers.

Proposition 3.1. Let ϕ, ψ ∈Hν(Rn
+).

(i) Translation invariance: for all x ∈ Rn
+,

τx(−∆ν)α/2ϕ = (−∆ν)α/2τxϕ, in L2
ν(R

n
+).

ii) Convolution invariance:

(−∆ν)α/2(ϕ ∗ ψ) = ((−∆ν)α/2ϕ) ∗ ψ, in L2
ν(R

n
+).

iii) Symmetry:
⟨(−∆ν)α/2ϕ, ψ⟩L2

ν(Rn
+) = ⟨ϕ, (−∆ν)α/2ψ⟩L2

ν(Rn
+).

4. Proof of the main results

Lemma 4.1. For α ∈ (0, 2), it holds∫
Rn
+

1 −Tν(x, ξ)
∥ξ∥|ν|+α+n ξν dξ = γν(α)∥x∥α.

Proof. We start by recalling the following formula [25, Ch.12]:∫ ∞

0
Jγ(ar)rγ+1e−p2r2

dr =
aγ

(2p2)γ+1 e−a2/4p2
, Re(γ) > −1. (4.1)

Then
1

2|ν|t
|ν|+1

2
∏n

i=1 Γ(
νi+1

2 )

∫
Rn
+

e−∥ξ|
2/4tJγ(x, ξ)ξνdξ = e−t∥x∥2 . (4.2)

In particular, for x = 0, and using the fact that Tν(0, ξ) = 1, we get

1

2|ν|t
|ν|+1

2
∏n

i=1 Γ(
νi+1

2 )

∫
Rn
+

e−∥ξ|
2/4tξνdξ = 1. (4.3)

Combining (4.2) and (4.3) to get∫
Rn
+

e−∥ξ|
2/4t

t
1
2 (|ν|+n)

(
1 −Tν(x, ξ)

)
ξνdξ = 2|ν|

n∏
i=1

Γ(
νi + 1

2
)
(
1 − e−t∥x∥2). (4.4)
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Multiplying both sides of (4.4) by t−1−α/2 and integrating over (0,∞) with respect to the variable t, we
obtain ∫

Rn
+

∫ ∞

0

e−∥ξ|
2/4t

t1+ 1
2 (|ν|+α+n)

(
1 −Tν(x, ξ)

)
ξνdt dξ = 2|ν|

n∏
i=1

Γ(
νi + 1

2
)
∫ ∞

0

1 − e−t∥ξ∥2

t1+α/2 dt. (4.5)

A straightforward computation reveals that∫ ∞

0

e−
∥ξ∥2

4t

t1+ 1
2 (|ν|+α+n)

dt = 2|ν|+n+αΓ((|ν| + n + α)/2)∥ξ∥−(|ν|+n+α).

To evaluate the second integral in (4.5), we use the following:

λα/2 =
1

|Γ(−α2 )|

∫ ∞

0

(
1 − e−tλ) dt

t1+ α2
, 0 < α < 2. (4.6)

Therefore, ∫
Rn
+

1 −Tν(x, ξ)
∥ξ∥|ν|+α+n ξν dξ =

|Γ(−α2 )|
∏n

i=1 Γ(
νi+1

2 )

2α+nΓ( |ν|+α+n
2 )

∥x∥α.

□

We introduce the function

λα,ε(x) =
1

γν(α)

∫
Rn
+\B(0,ε)

1 −Tν(x, ξ)
∥ξ∥|ν|+α+n ξν dξ. (4.7)

In the following, we give some elementary properties of λα,ε(x), and their proofs follows easily from
Lemma 4.1.

Lemma 4.2. For the function λα,ε(x), the following holds:

i) |λα,ε(x)| ≤ 1,
ii) |λα,ε(x)| ≤ ∥x∥α,

iii) lim
ε↓0

λα,ε(x) = ∥x∥α.

Proposition 4.1. For 0 < α < 2, the operator R(α)
ε is a bounded operator from L2

ν(R
n
+) onto itself, and

satisfies
∥R(α)

ε f ∥2,ν ≤ κ(ε) ∥ f ∥2,ν, (4.8)

where

κ(ε) =
2α+1Γ( |ν|+α+n

2 )

αεα|Γ(−α2 )|Γ( n+|ν|
2 )

. (4.9)

Proof. Applying Holder-Minkowski inequality and using (2.7), we get

∥ f (x) − τx f (ξ)∥2,ν ≤ 2∥ f ∥2,ν. (4.10)

This leads to
∥R(α)

ε f ∥2,ν ≤
2∥ f ∥2,ν
γν(α)

∫
C B(0,ε)

1
∥ξ∥|ν|+α+n ξ

νdξ.
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Utilizing polar coordinates, the integral becomes∫
C B(0,ε)

1
∥ξ∥|ν|+α+n ξ

νdξ =
∫ ∞

ε

1
rα+1

∫
Sn−1
+

ωνdσ(ω)dr. (4.11)

From [28], we have ∫
Sn−1
+

ωνdσ(ω) =
∏n

i=1 Γ(
νi+1

2 )

2n−1Γ(n+|ν|
2 )

. (4.12)

Therefore, ∫
C B(0,ε)

1
∥ξ∥|ν|+α+n ξ

νdξ =
2α+1Γ( |ν|+α+n

2 )

αεα|Γ(−α2 )|Γ(n+|ν|
2 )

. (4.13)

This completes the proof. □

Proposition 4.2. Let ϕ ∈ L2
ν(R

n
+). The multi-dimensional Bessel transform of R(α)

ε ϕ is given by

Fν(R(α)
ε ϕ) = λα,εFκϕ, in L2

ν(R
n
+). (4.14)

Proof. For ϕ ∈ L2
ν(R

n
+), and since L1

ν(R
n
+) ∩ L2

ν(R
n
+) is dense in L2

ν(R
n
+), we choose a sequence ϕn ∈

L1
ν(R

n
+) ∩ L2

ν(R
n
+) with limn→∞ ∥ϕn − ϕ∥2,ν = 0. By Fubini’s theorem, we easily obtain

Fν(R(α)
ε ϕn)(x) = λα,ε(x)Fν(ϕn)(x). (4.15)

Then, by Lemma 4.2 and the isometry property of the multi-dimension Bessel transform,

∥Fν(R(α)
ε ϕ) − λα,ε(x)Fνϕ∥2,κ

≤ ∥Fκ(R(α)
ε ϕ) −Fν(R(α)

ε ϕn)∥2,ν + ∥λα,ε{Fν(ϕn) −Fν(ϕ)}∥2,ν
≤ C(ε)∥ϕ − ϕn∥2,ν,

where C(ε) = a1/2
ν (κ(ε) + 2). Thus, this proves the assertion. □

Now, we proceed to the proof of Theorem 3.1.

Proof. We will establish the implications (i)⇒ (ii), (ii)⇒ (iii), and (iii)⇒ (i).
(i)⇒ (ii): This implication is direct.
(ii)⇒ (iii): Assume that condition (ii) holds. Utilizing Fatou’s Lemma, we obtain

∥∥. ∥αFνϕ∥2,ν ≤ lim inf
ε↓0
∥λα,εFνϕ∥2,ν

= lim inf
ε↓0
∥Fν(R(α)

ε ϕ)∥2,ν

= aν lim inf
ε↓0
∥R(α)

ε ϕ∥2,ν.

Since the last term is finite due to the assumed condition, we establish (iii).
(iii) ⇒ (i): Assume ϕ ∈ H α

ν (Rn
+). Given that the multi-dimensional Bessel transform is an

isomorphism of L2
ν(R

n
+), there exists ψ ∈ L2

ν(R
n
+) such that Fνψ(x) = ∥x∥αFνϕ(x). Consequently, we

have
a1/2
ν ∥R

(α)
ε ϕ(x) − ψ(x)∥2,ν = ∥Fν(R(α)

ε ϕ) −Fν(ψ)∥2,ν = ∥
(
λα,ε(x) − ∥x∥α

)
Fν(ϕ)∥2,ν.
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Additionally, we find (
λα,ε(x) − ∥x∥α

)2
|Fνϕ|

2 ≤ 4∥x∥2α|Fνϕ|
2 = 4|Fνψ|

2.

Applying the Lebesgue dominated convergence theorem, we conclude that

lim
ε↓0
∥
(
λα,ε − ∥ · ∥

α)2Fνϕ∥
2
2,ν = 0.

This completes the proof of (i).
Hence, we have established all three implications, concluding the proof. □

Proof of Theorem 3.2. By applying Proposition 4.1 and utilizing Lemma 4.2 (iii), we have

lim
ε→0+

Fν(R(α)
ε ϕ)(ξ) = lim

ε→0+
λα,ε(ξ)Fνϕ(ξ) = ∥ξ∥αFνϕ(ξ). (4.16)

Furthermore, employing the isometry property of the multi-dimensional Bessel transform,

lim
ε→0+
∥Fν(R(α)

ε ϕ) −Fν(−∆ν)α/2ϕ)∥2,ν = lim
ε→0+
∥R(α)

ε ϕ − (−∆ν)α/2ϕ∥2,ν = 0.

Since the pointwise limit must coincide almost everywhere with the strong limit, the assertion follows.
□

5. Further results

In what follows, we restrict ourselves to the Schwartz space S ∗(Rn). For ϕ ∈ S ∗(Rn) and α > 0, as
indicated in Remark 3.1, the fractional Laplace-Bessel operator (−∆ν)α/2ϕ(ξ) is given by

(−∆ν)α/2ϕ(ξ) =
1
aν

∫
Rn
+

∥x∥αFνϕ(x)Jν(x, ξ) xν dx.

Since the multi-dimensional Bessel transform Fν maps the Schwartz space S ∗(Rn) onto itself, it is
evident that (−∆ν)α/2ϕ is a C∞-bounded function on Rn, and it satisfies the relationship

∆ν(−∆ν)α/2ϕ = (−∆ν)α/2∆νϕ.

By the dominated convergence theorem, we obtain the following results:

lim
α→0

(−∆ν)α/2ϕ = ϕ and lim
α→2

(−∆ν)α/2ϕ = −∆νϕ.

For α ∈ (0, 2), we have

(−∆ν)α/2ϕ(x) =
1

γν(α)

∫
Rn
+

ϕ(x) − τxϕ(ξ)
∥ξ∥|ν|+n+α ξνdξ.
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5.1. Bochner subordination

Before stating our result, let’s recall that the Laplace-Bessel operator −∆ν is the generator of a
strongly continuous one-parameter semigroup {et∆ν}t≥0, where the operator et∆ν is defined as [29]

et∆νϕ = F −1
ν

(
e−t∥ · ∥2Fνϕ

)
, (5.1)

for all t ≥ 0 and ϕ ∈ L2
ν(R

n
+). Consequently, et∆ν is an integral operator represented by

et∆νϕ(x) = (G t
ν ∗ ϕ)(x) =

∫
Rn
+

τxG
t
ν (ξ)ϕ(ξ)dµν(ξ),

where

G t
ν (x) =

e−
∥x∥2

4t

2|ν|t
|ν|+1

2
∏n

i=1 Γ(
νi+1

2 )
. (5.2)

Of particular interest is the scenario when p ∈ [1, 2) and ϕ ∈ C0(Rn)∩Lp(Rn
+). In this case, the function

u(t, x) = G t
ν ∗ ϕ(x) plays a pivotal role as an infinitely smooth solution to the Cauchy problem:∆νu(x, t) = ∂u(x,t)

∂t ,

u(x, 0) = ϕ(x).

Theorem 5.1. Let 0 < α < 2. For ϕ ∈ S ∗(Rn), we have

(
− ∆ν

)α/2
ϕ(x) =

1
|Γ(−α2 )|

∫ ∞

0

(
ϕ(x) − et∆νϕ(x)

) dt

t1+α2
. (5.3)

Proof. Since et∆kϕ ∈ S ∗(Rn), applying the inversion formula for the multi-dimensional Bessel
transform and the properties (5.1) of the heat semigroup, we obtain:

ϕ(x) − et∆νϕ(x) =
1
aν

∫
Rn
+

(1 − e−t∥ξ∥2)Fνϕ(ξ)Tν(x, ξ)ξνdξ.

This equality, combined with the relation (2.1), implies that∫ ∞

0
|ϕ(x) − et∆νϕ(x)|

dt
t1+ α2
=
|Γ(−α2 )|

aν

∫
Rn
+

∥ξ∥α|Fνϕ(ξ)|ξνdξ < +∞.

Therefore, Fubini’s theorem can be applied to obtain

1
Γ(−α2 )

∫ ∞

0
ϕ(x) − et∆νϕ(x)

dt
t1+ α2
=

1
aν

∫
Rn
+

∥ξ∥αFνϕ(ξ) Tν(x, ξ)ξν

= (−∆ν)α/2ϕ(x).

□
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5.2. Intertwining relations

Recall the well-known Poisson operator Pνϕ(x). This operator acts on the integrable function
ϕ ∈ Lp

ν (Rn
+) and is defined by

Pνϕ(x) =
cν
x2ν

∫ x1

0
· · ·

∫ xn

0
ϕ(ξ)

n∏
i=1

(x2
i − ξ

2
i )νi−1/2 dξi, (5.4)

where the normalized constant cν is given by

cν =
n∏

i=1

2Γ(νi + 1)
√
πΓ(νi + 1/2)

. (5.5)

In one dimension, the Poisson transform is also known as the Riemann-Liouville transform. Extending
this concept to multiple dimensions, we can refer to the Poisson transform as the multi-dimensional
Riemann-Liouville transform. It has been demonstrated in [10, pp. 137] that the Poisson integral
transform serves as an intertwining operator between the multi-dimensional Bessel operator and the
Laplace operator ∆ on Rn

+. More precisely, for ϕ ∈ S ∗(Rn), we have

Pν∆ϕ = ∆νPνϕ. (5.6)

In the following theorem, we extend the intertwining relation (5.6) to the fractional setting.

Theorem 5.2. In the Schwartz space S ∗(Rn), the following intertwining relation holds:

Pν(−∆)α/2 = (−∆ν)α/2Pν. (5.7)

Proof. From [10, formula 3.138], we have

Tν(x, ξ) =Pν[e−i⟨x,ξ⟩]. (5.8)

By applying the inversion formula for the standard Fourier transform F and utilizing Fubini’s theorem,
we derive the following expression:

Pν(et∆ϕ)(x) =
1
aν

∫
Rn
+

e−t∥ξ∥2F ϕ(ξ)Pν[e−i⟨x,ξ⟩]ξν dξ

=
1
aν

∫
Rn
+

e−t∥ξ∥2F ϕ(ξ)Tν(x, ξ)ξν dξ.

Utilizing this equality, the intertwining relation (5.6), and the differentiation theorem under the integral
sign, we observe that

∆νPν(et∆ϕ) =Pν∆(et∆ϕ) =Pν

(
∂

∂t
et∆ϕ

)
=
∂

∂t
Pν(et∆ϕ).

Additionally, the dominated convergence theorem implies that limt→0 Pν(et∆ϕ) = Pνϕ. Hence, the
function Pν(et∆ϕ) serves as a solution to the ∆ν-Cauchy problem:∆νu(x, t) = ∂u(x,t)

∂t ,

u(x, 0) =Pνϕ(x).

AIMS Mathematics Volume 9, Issue 8, 21524–21537.



21535

As Pνϕ is bounded, the solution to this problem is unique, yielding

et∆ν[Pν(ϕ)] =Pν

(
et∆ϕ

)
.

Finally, combining this relation with (5.3) and Fubini’s theorem yields the desired intertwining relation.
□

6. Conclusions

In conclusion, our study focuses on the domain of fractional calculus by introducing and analyzing
the fractional Laplace-Bessel operator as a pseudo-differential operator. We have successfully
established a comprehensive framework that not only elucidates the fundamental properties of the
fractional Laplace-Bessel operator but also connects it with the classical fractional Laplacian through
a novel intertwining relation. This relationship is validated within the Schwartz space. Future
research will aim to further explore the practical applications of these theoretical findings and extend
the analysis to other related fractional differential operators.
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