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Abstract: Railway interlocking systems are essential safety components in rail transportation,
designed to prevent train collisions. They regulate the transitions between sections of a railway station
using rail traffic control elements. An interlocking system can assess whether the configuration of
these control elements poses a collision risk. Over the years, researchers have developed various
algebraic models to tackle this issue, highlighting the potential use of computer algebra systems in
implementing interlocking systems. In this work, we aim to enhance these systems’ capabilities. Not
only will they indicate whether a situation is dangerous, but if it is, they will also provide guidance
on how to configure certain rail traffic control elements to ensure safety. In this paper, we introduce
an algebraic model that represents the railway station through polynomials. This approach transforms
the task of identifying dangerous situations into calculating the residue of a polynomial over a set of
polynomials. The monomials contained in this residue polynomial encode all possible configurations
that would render the situation safe.
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1. Introduction

Rail transport serves as a key component in global transportation networks, offering a dependable
and effective means for the movement of both commodities and passengers across extensive distances.
Insights from research on the robustness of rail transport systems highlight its significance as an
essential infrastructure, underpinning both economic and societal functions. According to a literature
review on resilience in railway transport systems, rail transportation is a critical infrastructure that
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plays a vital role in the economy and society [1, 2].
Railway Interlocking Systems are a crucial component of railway signalling. These systems consist

of a set of signalling devices that prevent conflicting movements among trains. They ensure that trains
are only granted authority to proceed when the routes have been set, locked, and detected to be clear
of other trains. This intricate system plays a vital role in maintaining the safety and efficiency of rail
traffic.

These systems are designed with the foremost goal of minimizing human mistakes and guaranteeing
a ‘fail-safe’ condition in case of malfunctions, thereby averting any potential hazards. This objective
is accomplished via an intricate array of signals and switches that collectively manage the locomotion
of trains. The signals serve to inform whether a track is available or in use, and the switches determine
the trajectory of the train.

Pachl’s work offers a comprehensive guide to the principles of railway signaling [3]. Traditional
interlocking systems in railways, which are established based on predetermined routes, often rely
on human expertise for route compatibility decisions [4]. Despite this, historical instances have
revealed significant flaws within these systems [5]. In contrast, contemporary interlocking systems
boast the capability to adapt dynamically, enhancing flexibility as they are not confined to fixed routes.
Nonetheless, it is imperative to verify that any alterations to signals or switch positions do not result
in intersecting paths for trains, which could lead to collisions. Absent this assurance, modifications
are withheld, potentially necessitating a delay until a train departs the station. The genesis of railway
interlocking can be traced back to the 19th century, characterized by intricate mechanical constructs
composed of levers and bars. By the mid-20th century, the advent of electric relays necessitated
complex electrical circuitry to mirror the station’s layout. The 1980s marked the debut of computerized
control in railway interlocking systems [6–9], with Spain pioneering its first geographical railway
interlocking system in 1993 [10].

The intricate nature and critical significance of Railway Interlocking Systems render them an
intriguing area for ongoing research and enhancement. Progress in technological capabilities has
seen these systems transition from mechanical to electrical, and presently to computer-operated
frameworks. Each stage of this evolution has contributed to heightened efficiency, dependability,
and safety standards. Nonetheless, such progress is not without its hurdles. The assimilation
of novel technologies demands meticulous attention to ensure they mesh seamlessly with the pre-
existing structures. Moreover, the escalating complexity of these systems inherently raises the risk
of malfunctions. Consequently, persistent research and development are imperative to perpetuate the
advancement of safety and operational efficiency in Railway Interlocking Systems.

Contemporary railway interlocking systems universally employ computerization, whether they are
geographically oriented or route-based. Simple versions of geographical algorithms can encounter
issues with exponential complexity, significantly impacting the time required to identify secure routes
within the rail network. Studies have explored efficient data validation techniques for these systems
[11]. Model checking, particularly with UMC, offers another method for validating geographically
dispersed interlocking systems [12]. Diverse strategies have been utilized in the decision-making
processes of railway interlocking, including, albeit somewhat outdated, a comprehensive annotated
bibliography by Bjorner [13]. The complexity of this issue has spurred extensive research, with recent
investigations focusing on artificial intelligence for fault detection [14] and comparing various safety
verification techniques [15]. There have also been developments in formal model-based methods to
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aid engineers in defining and confirming the specifications of interlocking systems [16]. Morley’s
research employs a theorem prover based on higher-order logic for safety assessments [17], while
Nakamatsu revisits this using temporal logic in annotated logic programs [18]. Winter’s work utilizes
ordered binary decision diagrams for modeling interlocking systems [4]. Notably, Janota’s study for
the Slovak National Railways employs Z notation [19], and Hansen’s for the Danish State Railways
uses the Vienna Development Method [20]. Montigel introduces an advanced early model capable
of handling complex railway topologies, implemented using Petri nets, graphs, Objective-C, and
PROLOG [21]. Yulin’s component-based model represents the station as interconnected components
[22–24]. Luteberget integrates CAD, RailML, and logic programming for application in Norwegian
railway stations [25], and a Dutch station’s topology is articulated using RailML alongside UML class
diagrams in another notable study [26].

Over the years, authors have developed various models to study this problem [27–32]. Some of
these models are based on polynomials, ideals, and Groebner bases [33], similar to those used in
Artificial Intelligence for implementing expert systems [34]. This approach bridges computational
algebra and interlocking problems, suggesting that computer algebra systems can be used to implement
interlocking systems.

Recently, a groundbreaking algebraic model was unveiled [35] that improves the implementation of
interlocking systems. This model provides a linear algorithm that significantly outperforms previous
models and is suitable for large-scale railway stations. However this model determines only whether a
situation is dangerous or not, in case that the situation is dangerous, this model does not provide any
guide on how to configure certain rail traffic control elements to ensure safety. In this paper, we will
extend this model to include this capacity.

The paper is structured as follows. In Section 2, we outline the contributions of the present model
in comparison to the one presented in [35]. In Section 3, we outline the approach of this paper. In
Section 4, we present formal concepts of the interlocking systems and the problem we will focus on.
In Section 5.1, we translate previous concepts into an algebraic model. In Section 6, we demonstrate
how an interlocking system based on our model can be implemented by means of a Computer Algebra
System. In Section 7, we provide our conclusions.

2. Contribution of our model

Let us examine a case study involving interlocking systems to underscore the significance of our
paper and demonstrate the advantages of our proposed model.

Consider the railway station depicted in Figure 1, comprising eight sections (S1 to S8), two turnouts
(D1 and D2), and eight traffic light signals (L1 to L8). This station is equipped with an interlocking
system designed to detect the dangerous situation: the possibility of two trains colliding within the
station’s confines. In our prior research, detailed in [35], we introduced an algebraic model adept at
swiftly identifying potential dangerous scenarios, proving especially effective for larger stations. The
implementation of such systems is vital for maintaining safety within the railway station.

For illustration, let us consider the scenario presented in the railway station shown in Figure 2.
Here, two trains are positioned—one in section S1 and the other in section S10. The traffic light
signals, labelled as L2 and L4, are set to red, while the rest display green. Moreover, the turnout
switch D1 is adjusted to the diverging track setting, and the switch for turnout D2 is in the straight track
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position. The pressing concern is the potential collision between the train in section S1 and the one in
S10. Specifically, the train in S1 could traverse from S1 to S10 via sections S2 and S9. Consequently,
this scenario poses a hazard, necessitating modifications to the railway traffic control components—we
must alter either the signal colors or the turnout positions.

However, when faced with a dangerous situation like this, it falls upon an expert to configure certain
control elements to ensure safety. The model proposed in [35] does not explicitly identify which
control elements need adjustment. While we can simulate the situation to assess its danger level after
making changes, this process can become cumbersome for large stations. In this paper, we aim to
streamline this manual and tedious task by introducing a new algebraic model. Unlike previous models
[27–32, 35], our approach not only detects dangerous situations but also provides specific information
on which rail traffic control elements must be modified to restore safety.

To achieve this, we need to create a new model that addresses the problem. Although the
model presented in this manuscript significantly differs from a previous one, we will build upon the
groundwork laid by the earlier model described in [35]. Leveraging many of the results demonstrated
in the previous paper, we will extend our new model to determine precisely which control elements
must be modified to ensure a safe situation.

The model presented in this paper shares several key points with the previous work described in
[35]:

• Both models are algebraic, representing the situation in the railway station using polynomials.
• Both models allow us to determine whether a situation is safe by calculating the remainder of

polynomial division against a list of polynomials.
• The fact that this model represents the railway station and train positions similarly to the approach

in [35] enables us to leverage many of the results from that previous model for the current one.

Although the current model builds upon the previous one and shares some characteristics, it
represents a substantial departure from its predecessor, particularly from a mathematical perspective:

• In the previous model, there was no explicit representation of control elements. Polynomials
were not associated with turnouts or traffic signals. This limitation prevented the model from
determining which control elements needed adjustment.
• The current model allows us to determine the configuration of control elements to ensure safety,

whereas the previous model did not provide this capability.
• While the previous model calculated the remainder of dividing a monomial by a list of

polynomials, the current model requires dividing a polynomial (with multiple monomials) by
that same list of polynomials.
• The representation of the railway station’s configuration differs from the approach described in

[35]. Here, we explicitly consider control element configurations using polynomials, whereas the
previous model represented them through a monomial, losing information about potential control
element configurations.

In the current version of the paper, there are no sections duplicated from the work cited as [35]. We
have retained its framework, but every theorem and proposition presented here is original to this paper
and was not stated in [35].
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3. Overview

The methodology we present here provides a mathematical framework for assessing whether a
situation at a railway station is dangerous, and if so, offers guidance on how to configure certain rail
traffic control elements to ensure safety. Our approach is based on the following steps:

(1). Representation of the Railway Station in algebraic terms: we define a polynomial ring is
several variables, denoted asA′, and a list E of polynomials in this ringA’.

(2). Representation of a situation in the railway station in algebraic terms: for each situation at
the railway station, we will define a monomial q ∈ A′ that represents the placement of the trains
within the railway station, and a polynomial p f ∈ A

′ that represents the configuration of the rail
traffic control elements at the station.

(3). Identification of dangerous situations: we can verify if a situation is dangerous by checking if
NR(p f q,E) is zero, where NR is the remainder of dividing a polynomial over a set of polynomials.

(4). Safety assurance through the configuration of some traffic control elements. If a situation is
identified as dangerous, our system provides guidance on how to adjust certain control elements
to ensure safety. This is done by updating the polynomial p f , which encodes the control
elements that we allow to change. We then recalculate the polynomial NR(p f q,E) and analyze its
monomials, as they encode all the possible configurations that can ensure safety.

4. Mathematical framework

4.1. Determined configurations

A railway station is characterized by a finite set of sections {S 1 . . . S n} and a set of rail traffic control
elements (traffic lights and turnouts) that physically connect these sections. These connections enable
us to define a binary relation E, defined in [35]:

Definition 4.1. Given a railway station, we define the set E ⊂ Z × Z as follows:

E = {(i, j)|S i is connected to S j or S j is connected to S i

by means of a color light signal or a turnout}

This relation indicates whether there is a physical connection between two sections. Figure 1
provides an illustration of a railway station with 11 sections, where the set E is defined as follows:

E = {(1, 2), (2, 9), (9, 10), (10, 11), (11, 6), (2, 3), (3, 4), (4, 5), (5, 6), (6, 7), (7, 8)
(2, 1), (9, 2), (10, 9), (11, 10), (6, 11), (3, 2), (4, 3), (5, 4), (6, 5), (7, 6), (8, 7)}

As observed, (1, 2) ∈ E signifies that S 1 is connected to S 2. However, it is crucial to note that the
presence (1, 2) ∈ E does not necessarily imply that a train can always transition from section S 1 to
section S 2, as it depends on the indication of the color light signal L1.

Railway stations incorporate rail traffic control elements to determine whether one section is
accessible from another. These control elements fall into two categories: Color light signals which
regulate train movements, and turnouts, which faciliate the switching of trains from one track to
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another. As can be seen, the railway station depicted in Figure 1 is equipped with eight color light
signals and two turnouts. The following definition formalizes the concept of rail traffic control elements
and their states within a railway station.

S1

S9

S2 S3 S4 S5

S10

S11

S6 S8S7

L1

L2

L3

L4 L6

L5

L7

L8

D2D1

Figure 1. A railway station.

Definition 4.2. A rail traffic control element within a railway station can be categorized into two types

• A color light signal L, represented as a pair of sections (S i, S j).
• A turnout D, represented as a triple (S i, S j, S k).

The set of these rail traffic control elements is symbolized by X.
Each control element possesses two states, denoted by 1 or 2. Specifically,

• For a color light signal, the color green is represented by 1, while the color red is represented by
2.
• For a turnout, the straight track position of the switch is represented by 1, and the diverted track

position of the switch is represented by 2.

In Figure 1, the rail traffic control elements are:

X = {L1, L2, L3, L4, L5, L6, L7, L8, D1, D2} =
= {(1, 2), (4, 3), (4, 5), (10, 9), (10, 11), (11, 10), (6, 7), (8, 7)} ∪ {(2, 3, 9), (6, 5, 11)}

The state of the rail traffic control elements determines a configuration of the railway station.
Formally, a determined configuration is defined as a function g : X → {1, 2}.

Definition 4.3. A determined configuration of the railway station is defined as a function:

g : X → {1, 2}

The determined configuration g for the situation depicted in Figure 2 is:
g(L1) = g(L5) = g(L6) = g(L7) = g(L8) = 1
g(L2) = g(L3) = g(L4) = 2
g(D1) = 2
g(D2) = 1

S1

S9

S2 S3 S4 S5

S10

S11

S6 S8S7

L1

D1

L4 L6

L8

L7

L5

L3

L2

D2

Figure 2. A situation in the railway station.
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Given g, a determined configuration of the railway station, we define the relation Pg for this
configuration g. This relation indicates whether a train can transition from one section to another
connected to it.

Definition 4.4. Given a determined configuration, g, we define the set Pg ⊂ E as:

Pg = {(i, j) ∈ E| if a train can pass from section S i to section S j for this configuration g}

Figure 2 depicts a possible configuration of the railway station. As can be observed, since the
switch of the turnout connecting sections S 2, S 3 and S 9 is in the diverted track position, it follows that
(2, 3) < Pg and (2, 9) ∈ Pg.

There are certain pairs of sections (S i, S j) that belong to Pg for all determined configurations. For
instance in Figure 2, a train can always transition from section S 2 to section S 1. We define the set of
these pairs as:

Definition 4.5.

PF = {(i, j) ∈ E| if a train can always pass from section S i to section S j}

In the situation depicted in Figure 1, we have that:

PF = {(2, 1), (3, 4), (5, 4), (9, 10), (7, 8), (7, 6)}

By definition, PF ⊆ Pg for any determined configuration g of the railway station. The remaining
elements in Pg are dictated by the state of the turnouts and the color light signals in the determined
configuration g. We can formally express this as follows:

Definition 4.6. Given a rail traffic control element x and a determined configuration g : X → {1, 2},
we have that:

• if x = (S i, S j) is a color light signal and g(x) = 1 (the color is green), then:

(i, j) ∈ Pg

• if x = (S i, S j) is a color light signal and g(x) = 2 (the color is red), then:

(i, j) < Pg

• if x = (S i, S j, S k) is a turnout and g(x) = 1 (the switch is in the straight track position), then:

(i, j) ∈ Pg, ( j, i) ∈ Pg, (i, k) < Pg, (k, i) < Pg.

• if x = (S i, S j, S k) is a turnout and g(x) = 2 (the switch is in the diverted track position), then:

(i, j) < Pg, ( j, i) < Pg, (i, k) ∈ Pg, (k, i) ∈ Pg.

In Proposition 4.1, we introduce a proposition that allows for the explicit computation of the set Pg

given the configuration g.
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Proposition 4.1. Let g be a determined configuration. We have that:

Pg = PF ∪
⋃

x:(S i,S j)∈X
f (x)=1

{(i, j)} ∪
⋃

x:(S i,S j,S k)∈X
f (x)=1

{(i, j), ( j, i)} ∪
⋃

x:(S i,S j,S k)∈X
f (x)=2

{(i, k), (k, i)}

Proof. This is an immediate consequence of Definition 4.4, Definition 4.5 and Definition 4.6.
□

In the situation depicted in Figure 2, we have that:

Pg = {(2, 1), (3, 4), (5, 4), (9, 10), (7, 8), (7, 6)}∪
{(1, 2)} ∪ {(10, 11)} ∪ {(11, 10)} ∪ {(6, 7)} ∪ {(8, 7)}∪

{(2, 9), (9, 2)} ∪ {(5, 6), (6, 5)}

Trains may be positioned in various sections of the railway station. As multiple trains may occupy
the same section, we will utilize a multiset Q to represent the information regarding the placement of
the trains within the station.

Definition 4.7. We define the multiset Q as the set of sections in which a train is placed: the number
of times that element i appears in Q represents the number of trains located in section S i.

In the scenario depicted in Figure 2, we have {1, 10} because one train is in section S 1 and another
in section S 10.

Given a set Pg and a multiset Q, we can formulate the problem of determining whether the situation
is dangerous or not *. In other words, we can assess if there is a possibility of two trains in the railway
station colliding given the determined configuration g.

4.2. Undefined configurations

In this paper, we will focus on the broader issue of determining the state of a subset of rail traffic
control elements to ensure safety. Specifically, we will set the state of some rail traffic control elements,
while exploring the possibility of discovering the state of others. In the previous section we defined a
determined configuration as a situation where the state of every rail traffic control element is fixed. For
our purposes, we will employ an undefined configuration to represent scenarios where some of the rail
traffic control elements’ states need to be discovered.

Definition 4.8. An undefined configuration is a function:

f : X → {0, 1, 2}

Figure 3 depicts the concept under discussion: the states of traffic lights L1 and L4 are not
determined, and our objective is to ascertain their states to ensure safety. The undefined configuration
corresponding to this figure is as follows:
f (L1) = f (L4) = 0
f (L5) = f (L6) = f (L7) = f (L8) = 1; f (L2) = f (L3) = 2; f (D1) = 2; f (D2) = 1

*The pair (Pg,Q) is referred to as an Interlocking Problem, which is resolved algebraically using a linear algorithm [35].
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S1
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S2 S3 S4 S5

S10

S11

S6 S8S7
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L6

L5

L3

L2

L4

D1

L1 L7

L8

D2

Figure 3. The state of some rail traffic control elements are not fixed.

Given an undefined configuration, f we can identify those rail traffic control elements whose states
we aim to ascertain for safety, as they are mapped to 0 by f . Formally, we define the set U f as follows:

Definition 4.9. Given an undefined configuration f : X → {0, 1, 2}, we define the set U f , as:

U f = f −1(0) = {x ∈ X| f (x) = 0}

In Figure 3 we find that U f = {L1, L4}.
Given f , an undefined configuration, a determined configuration g is derived from it by setting the

states of the rail traffic control elements in U f . We define a potential configuration of f as follows:

Definition 4.10. Given an undefined configuration f : X → {0, 1, 2}, a potential configuration of f is
is a determined configuration g : X → {1, 2} such that for every x ∈ X where f (x) ∈ {1, 2} it holds that
g(x) = f (x).

We denote P f as the set of potential configurations of f . Among all potential configurations, our
goal is to identify those that are safe. We denote S f as the set of potential configurations of f that are
safe.

Given an undefined configuration f , and a multiset Q that denotes the placement of trains, our aim
of this paper is to identify the set S f . As we will explore in Section 5.3 we will compute a polynomial
whose monomials encode all the elements in the set S f (refer to Theorem 5.2)

In the case illustrated in Figure 3, it is clear that if L1 and L4 are red, the situation is safe.
Consequently, a safe potential configuration, g, is:
g(L1) = g(L4) = 2
g(L5) = g(L6) = g(L7) = g(L8) = 1; g(L2) = g(L3) = 2; g(D1) = 2; g(D2) = 1

Figure 4 presents another undefined configuration in which we also aim to ascertain the state of the
switch of the turnout D1.

S1

S9

S2 S3 S4 S5

S10

S11

S6 S8S7

?

?
?

L6

L5L2

L3

D2

L7

L8

L4

L1

D1

Figure 4. The state of some rail traffic control elements are not fixed.

In this case, the undefined configuration, f , is as follows:
f (L1) = f (L4) = f (D1) = 0
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f (L5) = f (L6) = f (L7) = f (L8) = 1; f (L2) = f (L3) = 2; f (D2) = 1

There are several potential configurations of f that are safe (indeed, there are exactly five
possibilities as we will see in Section 6). Two of these are:

L1 and L4 are set to green and D1 is set to the straight track position. That is to say,
g1(L1) = g1(L4) = 1; g1(D1) = 1;
g1(L5) = g1(L6) = g1(L7) = g1(L8) = 1; g1(L2) = g1(L3) = 2; g1(D2) = 1

L1 is set to green, L4 is set to red and D1 is set to the straight track position. That is to say,
g2(L1) = 1; g2(L4) = 2; g2(D1) = 1;
g2(L5) = g2(L6) = g2(L7) = g2(L8) = 1; g2(L2) = g2(L3) = 2; g2(D2) = 1

5. Algebraic representation

In this section, we will express the problem of determining S f for any undefined configuration f
and any multiset Q in algebraic terms. Specifically, we will represent the railway station using a list
of polynomials in a ringA′ (refer to Section 5.1). In Section 5.2 we will represent a specific situation
within this railway station using a monomial q (see Definition 5.2) and a polynomial p f (see Definition
5.5). Finally, in Section 5.3, we will present our main theorem 5.2, which states that the set S f is
encoded in the monomials of the polynomial obtained by the expression NR(p f q,E).

5.1. Representing the railway station

Let us consider a railway station characterized by the set of sections {S 1 . . . S n}, a set of rail traffic
control elements X = {x1 . . . xk} and the relation E representing the potential connectivity of the railway
station. We will depict the railway station using a list of polynomials with the following variables:

• ti. For each section S i in the railway station, we consider a variable ti.
• li j,mi j. For each pair of sections S i and S j where (i, j) ∈ E, we w consider two variables li j and

mi j. In other words, we consider the variables li j and mi j if the station’s topology allows passage
from section S i to section S j under configuration of the railway station.
• zx,1, zx,2: For each rail traffic control element, x, we consider two variables zx,1 and zx,2.

In [35] we considered the polynomial ring:

A = Z2[li j, . . . ,mi j, . . . , ti, . . .]

with the lexicographical order given by li j > mi j > ti. Here we will extend the aforementioned
polynomial ring to:

A′ = Z2[zx,1, zx,2, . . . , li j, . . . ,mi j, . . . , ti, . . .]

with the lexicographical order given by zx,1 > zx,2 > li j > mi j > ti. Next, we will define a list E
of polynomials representing the potential connectivity of the railway station. These polynomials are
the same as the ones defined in the model proposed in [35], which serves as our starting point. Their
application and underlying intuition necessitate comprehensive explanations that are beyond the scope
of this paper, and we direct readers to that paper for an in-depth mathematical understanding of their
role in E, which is essential for the model’s functionality:
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Definition 5.1. Given E (see Definition 4.1), the list of polynomials E representing the railway station
is composed of polynomials inA′ as follows:

• ∀(i, j) ∈ E, the two polynomials:

li jl jiti + mi jm jitit j

li jm jiti + mi jm jitit j

• For each variable ti:
t2
i

In the railway station depicted in Figure 1, we have that:
E = [l1,2l2,1t1 + m1,2m2,1t1t2, l1,2m2,1t1 + m1,2m2,1t1t2,

l2,9l9,2t2 + m2,9m9,2t2t9, l2,9m9,2t2 + m2,9m9,2t2t9,

l9,10l10,9t9 + m9,10m10,9t9t10, l9,10m10,9t9 + m9,10m10,9t9t10,

l10,11l11,10t10 + m10,11m11,10t10t11, l10,11m11,10t10 + m10,11m11,10t10t11,

l11,6l6,11t11 + m11,6m6,11t11t6, l11,6m6,11t11 + m11,6m6,11t11t6,

l2,3l3,2t2 + m2,3m3,2t2t3, l2,3m3,2t2 + m2,3m3,2t2t3,

l3,4l4,3t3 + m3,4m4,3t3t4, l3,4m4,3t3 + m3,4m4,3t3t4,

l4,5l5,4t4 + m4,5m5,4t4t5, l4,5m5,4t4 + m4,5m5,4t4t5,

l5,6l6,5t5 + m5,6m6,5t5t6, l5,6m6,5t5 + m5,6m6,5t5t6,

l6,7l7,6t6 + m6,7m7,6t6t7, l6,7m7,6t6 + m6,7m7,6t6t7,

l7,8l8,7t7 + m7,8m8,7t7t8, l7,8m8,7t7 + m7,8m8,7t7t8,

l2,1l1,2t2 + m2,1m1,2t2t1, l2,1m1,2t2 + m2,1m1,2t2t1,

l9,2l2,9t9 + m9,2m2,9t9t2, l9,2m2,9t9 + m9,2m2,9t9t2,

l10,9l9,10t10 + m10,9m9,10t10t9, l10,9m9,10t10 + m10,9m9,10t10t9,

l11,10l10,11t11 + m11,10m10,11t11t10, l11,10m10,11t11 + m11,10m10,11t11t10,

l6,11l11,6t6 + m6,11m11,6t6t11, l6,11m11,6t6 + m6,11m11,6t6t11,

l3,2l2,3t3 + m3,2m2,3t3t2, l3,2m2,3t3 + m3,2m2,3t3t2,

l4,3l3,4t4 + m4,3m3,4t4t3, l4,3m3,4t4 + m4,3m3,4t4t3,

l5,4l4,5t5 + m5,4m4,5t5t4, l5,4m4,5t5 + m5,4m4,5t5t4,

l6,5l5,6t6 + m6,5m5,6t6t5, l6,5m5,6t6 + m6,5m5,6t6t5,

l7,6l6,7t7 + m7,6m6,7t7t6, l7,6m6,7t7 + m7,6m6,7t7t6,

l8,7l7,8t8 + m8,7m7,8t8t7, l8,7m7,8t8 + m8,7m7,8t8t7,

t2
1, t

2
2, t

2
3, t

2
4, t

2
5, t

2
6, t

2
7, t

2
8, t

2
9, t

2
10, t

2
11]

5.2. Representing situations within the railway station

Like in [35], we will depict a situation with the railway station using a monomial q ∈ A′ to represent
the multiset Q and a polynomial p f ∈ A

′ to represent any undefined configuration f .
For the multiset Q, we have (like in [35]):

Definition 5.2. Given Q (see Definition 4.7), we define the monomial q as:

q =
∏
i∈Q

ti
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The definition of the set Pg is more intricate: initially, we will assign a monomial to each rail
traffic control element (see Definition 5.3); subsequently, we will utilize the monomial of each control
element to assign a monomial to any undefined configuration of the railway station (see Definition 5.5).

Definition 5.3. Given x ∈ X, we define px : {0, 1, 2} → A’:

px(v) =



li j if x = (i, j) is a color light signal and v = 1
mi j if x = (i, j) is a color light signal and v = 2
li jl jimi jm ji if x = (i, j, k) is a turnout and v = 1
mi jm jili jl ji if x = (i, j, k) is a turnout and v = 2
zx,1 px(1) + zx,2 px(2) if v = 0

The monomial pF is allocated to the set PF (see Definition 4.5).

Definition 5.4. We define the monomial pF as:

pF =
∏

it is always possible to pass from i to j

li j

Definition 5.5. Given an undefined configuration f : X → {0, 1, 2}, we define:

p f = pF

∏
x∈X

px( f (x))

In the special case where the undefined configuration f is a determined configuration, we can readily
define p f via the set P f (see Definition 4.4).

Proposition 5.1. Let g be a determined configuration. Let Pg be the set defined according to Definition
4.4. We have that pg is:

pg =
∏

(i, j)∈Pg

li j

∏
(i, j)∈E−Pg

mi j

Proof. This is an immediate consequence of Proposition 4.1, Definition 5.3, Definition 5.4 and
Definition 5.5. □

For a general undefined configuration f , we can compute p f in terms of the monomials pg associated
with the potential configurations g of f (see Proposition 5.2). However, before we present this
proposition, we require a preceding definition, which will play a crucial role in our paper:

Definition 5.6. Let g : X → {1, 2} be a potential configuration of an undefined configuration f . We
define the following monomial:

r f ,g =
∏
x∈U f

zx,g(x)

Proposition 5.2. Let f be an undefined configuration. We have the following:

p f =
∑
g∈P f

r f ,g pg

AIMS Mathematics Volume 9, Issue 8, 21471–21495.



21483

Proof. We have the following:
p f = pF

∏
x∈X px( f (x)) = pF

∏
x<U f

px( f (x))
∏

x∈U f
px( f (x)) =

= pF
∏

x<U f
px( f (x))

∏
x∈U f

(zx,1 px(1) + zx,1 px(2)) =
= pF

∏
x<U f

px( f (x))
∑

g∈P f

∏
x∈U f

(zx,g(x) px(g(x)) =
= pF

∏
x<U f

px( f (x))
∑

g∈P f
r f ,g
∏

x∈U f
px(g(x)) =

=
∑

g∈P f
pFr f ,g

∏
x<U f

px( f (x))
∏

x∈U f
px(g(x)) =

=
∑

g∈P f
pFr f ,g

∏
x<U f

px(g(x))
∏

x∈U f
px(g(x)) =

=
∑

g∈P f
pFr f ,g

∏
x∈X px(g(x)) =

∑
g∈P f

r f ,g pF
∏

x∈X px(g(x)) =
∑

g∈P f
r f ,g pg

□
According to the following proposition, the monomial r f ,g identifies the potential configuration g of

the undefined configuration f .

Proposition 5.3. Let f be an undefined configuration. Let r f ,g be the monomial associated to the
potential configuration g of f (see Definition 5.6), we can obtain g through f and r f ,g by the following
expression:

g(x) =


1 if zx,1|r f ,g

2 if zx,2|r f ,g

f (x) otherwise

Proof. We will consider the following cases:

Case zx,1|r f ,g. By Definition 5.6, we have that g(x) = 1 and x ∈ U f .

Case zx,2|r f ,g. By Definition 5.6, we have that g(x) = 2 and x ∈ U f .

Case zx,1 ̸ |r f ,g and zx,2 ̸ |r f ,g. Since g ∈ {1, 2}, we have that (see Definition 5.6) x < U f . Consequently
g(x) = f (x).

□
In the railway station depicted in Figure 1, we have:

pF = l2,1l3,4l5,4l9,10l7,8l7,6

In the scenario depicted in Figure 3, we have:
p f = l2,1l3,4l5,4l9,10l7,8l7,6 · (z1,1l1,2 + z1,2m1,2) · m4,3 · m4,5 · (z4,1l109 + z4,2m10,9) · l10,11 ·

l11,10 · l6,7 · l8,7 · m2,3m3,2l2,9l9,2 · l6,5l5,6m6,11m11,6

In the scenario depicted in Figure 4, we have:
p f = l2,1l3,4l5,4l9,10l7,8l7,6 · (z1,1l1,2 + z1,2m1,2) · m4,3 · m4,5 · (z4,1l109 + z4,2m10,9) · l10,11 ·

l11,10 · l6,7 · l8,7 · (z9,1l2,3l3,2m2,9m9,2 + z9,2m2,3m3,2l2,9l9,2) · l6,5l5,6m6,11m11,6

5.3. Calculating the set S f

In this section, we will unveil the primary result of our paper. Given a multiset Q that represents the
placement of the trains within the railway station and an undefined configuration f , the monomials of
the polynomial derived by the expression NR(p f q,E) encode all the safe potential configurations of f .
In other words, we can derive the set S f .

We introduce a preliminary lemma:
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Lemma 5.1. let g : X → {1, 2} be a potential configuration of f .

i) We have that NR(pgq,E) is either 0 or a monomial without variables of type z.

– NR(pgq,E) is a monomial without variables of type z
– NR(pgq,E) = 0⇔ g < S f

ii) We have that NR(r f ,g pgq,E) is a monomial. Besides,

NR(r f ,g pgq,E) = r f ,g · NR(pgq,E)

iii) Given G ⊆ P f , we have that

NR(
∑
g∈G

r f ,g pgq,E) =
∑
g∈G

r f ,g NR(pgq,E)

Proof.

i) This is the main result in [35].
ii) This is a immediate consequence of the fact that the polynomials in E does not contain variables

of type z.
iii) We have that:

NR(
∑

g∈G r f ,g pgq,E) = NF(
∑

g∈G r f ,g pgq,E′) =
∑

g∈G NF(r f ,g pgq,E′) =
∑

g∈G NR(r f ,g pgq,E) =∑
g∈G r f ,g NR(pgq,E)

□

Theorem 5.2. Let f : X → {0, 1, 2} be an undefined configuration of a railway station. Let Q be the
multiset of the position of trains in the railway station. We have that:

• If U f = ∅ we have that:

NR(p f q,E) = 0⇔ the situation is dangerous

• If U f , ∅, then the polynomial NR(p f q,E) includes exactly |S f | distinct monomials, each of which
represents a safe potential configuration of f . Specifically, we have:

NR(p f q,E) =
∑
g∈S f

r f ,g · ug

where ug is a monomial inA.
In the case that S f = ∅ (the situation is dangerous regardless of the state of the traffic rail control
elements in U f ), we have that:

NR(p f q,E) = 0

Proof.

• Suppose that U f = ∅.
We have that f is also a potential configuration of f (see Definition 4.10). We have that f ∈ S f if
and only if NR(p f q,E) , 0. By definition, we have that f ∈ S f if and only if the situation is safe.
Consequently, we have that the situation is dangerous if and only if NR(p f q,E) = 0

AIMS Mathematics Volume 9, Issue 8, 21471–21495.



21485

• Suppose that U f , ∅.
NR(p f q,E) = (By Proposition 5.2)
= NR(

∑
g∈P f

r f ,g pgq,E) = (by iii in Lemma 5.1)
=
∑

g∈P f
r f ,g NR(pgq,E) = (by i in Lemma 5.1)

=
∑

g∈S f
r f ,g NR(pgq,E) =

∑
g∈S f

r f ,g · ug

where ug = NR(pgq,E)

According to Proposition 5.3 all the terms r f ,g ·ug in the summand are monomials, they are different
each other, and each one identifies each potential configuration g that is safe. Consequently, the size of
S f is given by the number of monomials of p f . □

In the scenario depicted in Figure 3, we have:
NR(p f q,E) = z1,2z4,2 · l2,1l2,9l3,4l5,4l5,6l6,5l6,7l7,6l7,8l8,7l9,2l9,10m1,2m2,3m3,2m4,3m4,5m6,11m10,9m10,11m11,6

m11,10t1t10t11

As observed, the polynomial NR(p f q,E) is simply one monomial. Therefore, according to Theorem
5.2, there is only one safe potential configuration, g1. This implies that S f = {g1}. Given that r f ,g1 =

z1,2z4,2, it follows that g1(L1) = g1(L4) = 2. In other words, the color of the lights signals L1 and L4
must be set to red to ensure safety.

In the situation depicted in Figure 4, we have:
NR(p f q,E) = z1,1z4,1z9,1 · l5,4l5,6l6,5l6,7l7,6l7,8l8,7m1,2m2,1m2,3m2,9m3,2m3,4m4,3m4,5m6,11m9,2m9,10

m10,9m10,11m11,6m11,10t1t2t3t4t9t10t11 +

+ z1,1z4,2z9,1 · l5,4l5,6l6,5l6,7l7,6l7,8l8,7l9,10m1,2m2,1m2,3m2,9m3,2m3,4m4,3m4,5m6,11m9,2m10,9m10,11

m11,6m11,10t1t2t3t4t10t11 +

+ z1,2z4,1z9,1 · l2,1l2,3l3,2l3,4l5,4l5,6l6,5l6,7l7,6l7,8l8,7m1,2m2,9m4,3m4,5m6,11m9,2m9,10m10,9m10,11

m11,6m11,10t1t9t10t11 +

+z1,2z4,2z9,1 ·l2,1l2,3l3,2l3,4l5,4l5,6l6,5l6,7l7,6l7,8l8,7l9,10m1,2m2,9m4,3m4,5m6,11m9,2m10,9m10,11m11,6m11,10t1t10t11+

+ z1,2z4,2z9,2 · l2,1l2,9l3,4l5,4l5,6l6,5l6,7l7,6l7,8l8,7l9,2l9,10m1,2m2,3m3,2m4,3m4,5m6,11m10,9m10,11m11,6m11,10t1t10t11

As observed, NR(p f q,E) is the sum of five monomial. Consequently, according to Theorem 5.2,
there are five possibilities to ensure safety (the size of S f is 5). Each monomial r f ,g of p f identifies
each potential configuration S f = {g1, g2, g3, g4, g5} (see Proposition 5.3). These are:

• r f ,g1 = z1,1z4,1z9,1: The color light signals L1 and L4 are set to green and the switch of the turnout
D1 is set to the straight track position. That is to say, we have that:
g1(L1) = g1(L4) = g1(D1) = 1.
• r f ,g2 = z1,1z4,2z9,1: The color light signal L1 is set to green, the color light signal L4 is set to red

and the switch of the turnout D1 is set to the straight track position. That is to say, we have that:
g2(L1) = 1; g2(L4) = 2; g2(D1) = 1.
• r f ,g3 = z1,2z4,1z9,1: The color light signal L1 is set to red, the color light signal L4 is set to green

and the switch of the turnout D1 is set to the straight track position. That is to say, we have that:
g3(L1) = 2; g3(L4) = 1; g3(D1) = 1.
• r f ,g4 = z1,2z4,2z9,1: The color light signals L1 and L4 are set to red and the switch of the turnout

D1 is set to the straight track position. That is to say, we have that:
g4(L1) = 1; g4(L4) = 2; g4(D1) = 1.
• r f ,g5 = z1,2z4,2z9,2: The color light signals L1 and L4 are set to red and the switch of the turnout

D1 is set to the diverted track position. That is to say, we have that:
g5(L2) = g5(L4) = 2; g5(D1) = 2.
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6. Implementation in CoCoA

In this section, we will implement an interlocking system using CoCoA [36], a Computer Algebra
System. The system will not only determine if a given situation poses a danger, but it will also identify
the states of the turnouts and color light signals for undefined configurations to ensure safety. For
illustrative purposes, we will delve into a specific railway station depicted in Figure 1. However, the
principles and methods discussed can be seamlessly applied to any railway system.

6.1. Instructions related to the design of the railway station

In this section, we will provide the instructions in CoCoA related to a railway station. Specifically,
we will define the ring which polynomials and monomials lie, define the list E, declare the rail traffic
control elements, and implement the function that assigns a polynomial to an undefined configuration
in the railway station.

We define the ringA′ for the railway station depicted in Figure 1.

use ZZ/(2)[z[1..10,1..2],l[1..11,1..11], m[1..11,1..11],t[1..11]],lex;

Next, we define the list E for this railway station, in accordance with Definition 5.1.

E:=[l[1,2]*l[2,1]*t[1]+m[1,2]*m[2,1]*t[1]*t[2],

l[1,2]*m[2,1]*t[1]+m[1,2]*m[2,1]*t[1]*t[2],

l[2,9]*l[9,2]*t[2]+m[2,9]*m[9,2]*t[2]*t[9],

l[2,9]*m[9,2]*t[2]+m[2,9]*m[9,2]*t[2]*t[9],

l[9,10]*l[10,9]*t[9]+m[9,10]*m[10,9]*t[9]*t[10],

l[9,10]*m[10,9]*t[9]+m[9,10]*m[10,9]*t[9]*t[10],

l[10,11]*l[11,10]*t[10]+m[10,11]*m[11,10]*t[10]*t[11],

l[10,11]*m[11,10]*t[10]+m[10,11]*m[11,10]*t[10]*t[11],

l[11,6]*l[6,11]*t[11]+m[11,6]*m[6,11]*t[11]*t[6],

l[11,6]*m[6,11]*t[11]+m[11,6]*m[6,11]*t[11]*t[6],

l[2,3]*l[3,2]*t[2]+m[2,3]*m[3,2]*t[2]*t[3],

l[2,3]*m[3,2]*t[2]+m[2,3]*m[3,2]*t[2]*t[3],

l[3,4]*l[4,3]*t[3]+m[3,4]*m[4,3]*t[3]*t[4],

l[3,4]*m[4,3]*t[3]+m[3,4]*m[4,3]*t[3]*t[4],

l[4,5]*l[5,4]*t[4]+m[4,5]*m[5,4]*t[4]*t[5],

l[4,5]*m[5,4]*t[4]+m[4,5]*m[5,4]*t[4]*t[5],

l[5,6]*l[6,5]*t[5]+m[5,6]*m[6,5]*t[5]*t[6],

l[5,6]*m[6,5]*t[5]+m[5,6]*m[6,5]*t[5]*t[6],

l[6,7]*l[7,6]*t[6]+m[6,7]*m[7,6]*t[6]*t[7],

l[6,7]*m[7,6]*t[6]+m[6,7]*m[7,6]*t[6]*t[7],

l[7,8]*l[8,7]*t[7]+m[7,8]*m[8,7]*t[7]*t[8],

l[7,8]*m[8,7]*t[7]+m[7,8]*m[8,7]*t[7]*t[8],

l[2,1]*l[1,2]*t[2]+m[2,1]*m[1,2]*t[2]*t[1],

l[2,1]*m[1,2]*t[2]+m[2,1]*m[1,2]*t[2]*t[1],

l[9,2]*l[2,9]*t[9]+m[9,2]*m[2,9]*t[9]*t[2],
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l[9,2]*m[2,9]*t[9]+m[9,2]*m[2,9]*t[9]*t[2],

l[10,9]*l[9,10]*t[10]+m[10,9]*m[9,10]*t[10]*t[9],

l[10,9]*m[9,10]*t[10]+m[10,9]*m[9,10]*t[10]*t[9],

l[11,10]*l[10,11]*t[11]+m[11,10]*m[10,11]*t[11]*t[10],

l[11,10]*m[10,11]*t[11]+m[11,10]*m[10,11]*t[11]*t[10],

l[6,11]*l[11,6]*t[6]+m[6,11]*m[11,6]*t[6]*t[11],

l[6,11]*m[11,6]*t[6]+m[6,11]*m[11,6]*t[6]*t[11],

l[3,2]*l[2,3]*t[3]+m[3,2]*m[2,3]*t[3]*t[2],

l[3,2]*m[2,3]*t[3]+m[3,2]*m[2,3]*t[3]*t[2],

l[4,3]*l[3,4]*t[4]+m[4,3]*m[3,4]*t[4]*t[3],

l[4,3]*m[3,4]*t[4]+m[4,3]*m[3,4]*t[4]*t[3],

l[5,4]*l[4,5]*t[5]+m[5,4]*m[4,5]*t[5]*t[4],

l[5,4]*m[4,5]*t[5]+m[5,4]*m[4,5]*t[5]*t[4],

l[6,5]*l[5,6]*t[6]+m[6,5]*m[5,6]*t[6]*t[5],

l[6,5]*m[5,6]*t[6]+m[6,5]*m[5,6]*t[6]*t[5],

l[7,6]*l[6,7]*t[7]+m[7,6]*m[6,7]*t[7]*t[6],

l[7,6]*m[6,7]*t[7]+m[7,6]*m[6,7]*t[7]*t[6],

l[8,7]*l[7,8]*t[8]+m[8,7]*m[7,8]*t[8]*t[7],

l[8,7]*m[7,8]*t[8]+m[8,7]*m[7,8]*t[8]*t[7],

t[1]ˆ2, t[2]ˆ2, t[3]ˆ2, t[4]ˆ2, t[5]ˆ2, t[6]ˆ2,

t[7]ˆ2, t[8]ˆ2, t[9]ˆ2, t[10]ˆ2, t[11]ˆ2];

Finally, we define the set of the rail traffic control elements, X, in accordance with Definition 4.2.
This set includes eight color light signals, L1,. . . , L8, and two turnouts, D1 and D2.

L1:=[1,2];

L2:=[4,3];

L3:=[4,5];

L4:=[10,9];

L5:=[10,11];

L6:=[11,10];

L7:=[6,7];

L8:=[8,7];

D1:=[2,3,9];

D2:=[6,5,11];

X:=[L1,L2,L3,L4,L5,L6,L7,L8,D1,D2];

NUM_LIGHTS:=8;

Green:=1; Red:=2;

Straight:=1; Diverted:=2;

Now, we define the monomial pF , the polynomial assigned to each rail traffic control element and
the polynomial assigned to an undefined configuration.

• According to Definition 5.4, the polynomial pF is:
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pF:=l[2,1]*l[3,4]*l[5,4]*l[7,6]*l[7,8]*l[9,10];

• According to Definition 5.3, we implement the function px : {0, 1, 2} → A′ for each control
element x.
However, here we consider two arguments for the implementation of this function p x:

– i referring to the i-th control element in X.
– v referring to the independent variable v in the function px (see Definition 5.3).

Define p_x(i,v)

TopLevel X;

TopLevel l;

TopLevel m;

TopLevel z;

if v=0 then return z[i,1]*p_x(i,1) + z[i,2]*p_x(i,2); endif;

x:=X[i];

if len(x)=2 then

if v=1 then

return l[x[1],x[2]];

else

return m[x[1],x[2]];

endif;

Elif len(x)=3 then

if v=1 then

return l[x[1],x[2]]*l[x[2],x[1]]*m[x[1],x[3]]*m[x[3],x[1]];

else

return m[x[1],x[2]]*m[x[2],x[1]]*l[x[1],x[3]]*l[x[3],x[1]];

endif;

endif;

EndDefine;

• According to Definition 5.5, we define the polynomial p f associated with an undefined
configuration of the railway station:

Define p_f(f)

TopLevel pF;

TopLevel X;

p:=pF;

for i:=1 to len(X) do

p:=p*p_x(i,f[i]);

endfor;

return p;

EndDefine;
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6.2. Instructions related to analyze a situation in the railway station

In this section, we will provide the instructions in CoCoA related to analyze situations in the railway
station.

We will consider the scenario depicted in Figure 2: there are two trains (one in section S1 and
another in section S10); the color light signals L2 and L4 are displaying red, while the rest are
displaying green; the switch of the turnout D1 is set to the diverted track position, and the switch
of the turnout D2 is set to the straight track position. We define q and the determined configuration f :

f:=[Green, Red, Red, Red, Green, Green, Green, Green, Diverted, Straight];

q:=t[1]*t[10];

According to part i) of Theorem 5.2 we can determine whether the situation is safe or dangerous by
calculating NR(p f ( f )q,E). The Computer Algebra System CoCoA includes the internal function NR to
calculate this function NR.

NR(p_f(f)*q,E);

Since the output in CoCoA is 0, the situation dangerous. Consequently, we need to change the state
of some control elements in the railway station to make it safe. We will consider changing the state of
the color light signals L1 and L4 as depicted in Figure 3.

f[1]:=0;

f[4]:=0;

NR(p_f(f)*q,E);

The output is:

z[1,2]*z[4,2]*l[2,1]*l[2,9]*l[3,4]*l[5,4]*l[5,6]*l[6,5]*l[6,7]*l[7,6]*

l[7,8]*l[8,7]*l[9,2]*l[9,10]*m[1,2]*m[2,3]*m[3,2]*m[4,3]*m[4,5]*

m[6,11]*m[10,9]*m[10,11]*m[11,6]*m[11,10]*t[1]*t[10]*t[11]

According to part ii) of Theorem 5.2, since the variables z[1,2] and z[4,2] are present in the output,
we can conclude that the situation will be safe if both L1 and L4 are set to red. Indeed, since the output
polynomial contains only one monomial, this is the only possibility to make the situation safe.

Now, we will consider that we could also change the state of the turnout D1 as depicted in Figure 4.

f[1]:=0;

f[4]:=0;

f[1 + NUM_LIGHTS]:=0;

NR(p_f(f)*q,E);

The output is:

z[1,1]*z[4,1]*z[9,1]*l[5,4]*l[5,6]*l[6,5]*l[6,7]*l[7,6]*l[7,8]*l[8,7]*m[1,2]*

m[2,1]*m[2,3]*m[2,9]*m[3,2]*m[3,4]*m[4,3]*m[4,5]*m[6,11]*m[9,2]*m[9,10]*

m[10,9]*m[10,11]*m[11,6]*m[11,10]*t[1]*t[2]*t[3]*t[4]*t[9]*t[10]*t[11] +

+ z[1,1]*z[4,2]*z[9,1]*l[5,4]*l[5,6]*l[6,5]*l[6,7]*l[7,6]*l[7,8]*l[8,7]*l[9,10]*
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m[1,2]*m[2,1]*m[2,3]*m[2,9]*m[3,2]*m[3,4]*m[4,3]*m[4,5]*m[6,11]*m[9,2]*

m[10,9]*m[10,11]*m[11,6]*m[11,10]*t[1]*t[2]*t[3]*t[4]*t[10]*t[11] +

+ z[1,2]*z[4,1]*z[9,1]*l[2,1]*l[2,3]*l[3,2]*l[3,4]*l[5,4]*l[5,6]*l[6,5]*l[6,7]*

l[7,6]*l[7,8]*l[8,7]*m[1,2]*m[2,9]*m[4,3]*m[4,5]*m[6,11]*m[9,2]*m[9,10]*

m[10,9]*m[10,11]*m[11,6]*m[11,10]*t[1]*t[9]*t[10]*t[11] +

+ z[1,2]*z[4,2]*z[9,1]*l[2,1]*l[2,3]*l[3,2]*l[3,4]*l[5,4]*l[5,6]*l[6,5]*l[6,7]*

l[7,6]*l[7,8]*l[8,7]*l[9,10]*m[1,2]*m[2,9]*m[4,3]*m[4,5]*m[6,11]*m[9,2]*

m[10,9]*m[10,11]*m[11,6]*m[11,10]*t[1]*t[10]*t[11] +

+ z[1,2]*z[4,2]*z[9,2]*l[2,1]*l[2,9]*l[3,4]*l[5,4]*l[5,6]*l[6,5]*l[6,7]*l[7,6]*

l[7,8]*l[8,7]*l[9,2]*l[9,10]*m[1,2]*m[2,3]*m[3,2]*m[4,3]*m[4,5]*m[6,11]*

m[10,9]*m[10,11]*m[11,6]*m[11,10]*t[1]*t[10]*t[11]

According to part ii) of Theorem 5.2, since the output polynomial contains five monomials, there
are five possibilities to make the situation safe.

6.3. Instructions related to interpret p f

The polynomial NR(p f ( f )q,E) might indeed be difficult to interpret because it contains monomials
with many variables of a type other than z. In this section, we will provide an implementation in CoCoA
of a function, PrintAllPotentialConfigurations that outputs a string describing the potential
configurations of f .

We need to first implement some auxiliary functions:

Define PrintDescriptionName(v)

TopLevel NUM_LIGHTS;

num:=IndetSubscripts(v);

if num[1]<=NUM_LIGHTS then

print "L[",num[1],"]:";

if num[2]=1 then print "Green"; else print "Red "; endif;

else

print "D[",num[1]-NUM_LIGHTS,"]:";

if num[2]=1 then print "Straight"; else print "Diverted"; endif;

endif;

EndDefine;

Define PrintOnePotentialConfiguration(m,f)

TopLevel z;

for i:=1 to len(f) do

if f[i]=0 then

r:=z[i,1];

if IsDivisible(m,r) then

PrintDescriptionName(r); print " ";

else

r:=z[i,2];

PrintDescriptionName(r); print " ";
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endif;

endif;

endfor;

println;

EndDefine;

As may be seen, the implementation of the function PrintOnePotentialConfiguration
requires IsDivisible, an internal function of CoCoA (implemented in any computer algebra system)
which determines whether a polynomial m is divisible by r.

The implementation of PrintAllPotentialConfigurations is as follows:

Define PrintAllPotentialConfigurations(f,q)

TopLevel E;

r:=NR(p_f(f)*q,E);

if r=0 then println "The situation is dangerous"; else println "The situation is safe for these cases:"; endif;

while r<>0 do

m:=LT(r);

PrintOnePotentialConfiguration(m,f);

r:=m+r;

EndWhile;

EndDefine;

Now, we can easily identify the possibilities to make the situation safe. For the scenario depicted in
Figure 4, we simply need to input the following into CoCoA:

PrintAllPotentialConfigurations(f,q);

And CoCoA will output the results:

The situation is safe for these cases:

L[1]:Green L[4]:Green D[1]:Straight

L[1]:Green L[4]:Red D[1]:Straight

L[1]:Red L[4]:Green D[1]:Straight

L[1]:Red L[4]:Red D[1]:Straight

L[1]:Red L[4]:Red D[1]:Diverted

These are the five possibilites to turn the situation safe. For example, we can set the color of traffic
lights L1 and L4 to Green and set the switch of the turnout D1 in straight track position to turn the
situation safe.

7. Conclusions

We present an algebraic model for railway interlocking systems, which are crucial safety
components in rail transportation. These systems regulate the transitions between sections of a railway
station using rail traffic control elements and prevent train collisions. The model introduced in this
paper enhances the capabilities of these systems by not only indicating whether a situation is dangerous
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but also providing guidance on how to configure certain rail traffic control elements to ensure safety if
a dangerous situation is detected.

The model represents the railway station and its situations algebraically through polynomials. It
transforms the task of identifying dangerous situations into calculating the residue polynomial of a
monomial division over a set of polynomials. The monomials contained in this residue polynomial
encode all possible configurations that would render the situation safe.

We extend a previous groundbreaking algebraic model that improved the implementation of
interlocking systems by providing a linear algorithm suitable for large-scale railway stations. However,
the previous model determined only whether a situation was dangerous or not and did not provide any
guide on how to configure certain control elements to ensure safety in case of danger. We fill that gap
by extending the model to include this capacity.

In conclusion, this paper contributes significantly to the field of railway interlocking systems by
introducing an enhanced algebraic model that not only identifies dangerous situations but also provides
guidance on how to ensure safety in such situations. This work paves the way for more efficient and
safer rail transportation.
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16. G. Lukács, T. Bartha, Conception of a formal model-based methodology to support railway
engineers in the specification and verification of interlocking systems, in 2022 IEEE 16th
International Symposium on Applied Computational Intelligence and Informatics (SACI), (2022),
000283–000288. https://doi.org/10.1109/SACI55618.2022.9919532

17. M. J. Morley, Modelling British Rail’s Interlocking Logic: Geographic Data Correctness, LFCS,
Department of Computer Science, University of Edinburgh, 1991.

18. K. Nakamatsu, Y. Kiuchi, A. Suzuki, EVALPSN based railway interlocking simulator, in
Knowledge-Based Intelligent Information and Engineering Systems, Berlin - Heidelberg, (2004),
961–967. https://doi.org/10.1007/978-3-540-30133-2 127

AIMS Mathematics Volume 9, Issue 8, 21471–21495.

http://dx.doi.org/https://doi.org/10.1007/s001650050021
http://dx.doi.org/https://doi.org/10.1007/s00165-021-00551-6
http://dx.doi.org/https://doi.org/10.1109/PDP.2017.66
http://dx.doi.org/https://doi.org/10.31449/inf.v46i3.3961
http://dx.doi.org/https://doi.org/10.1007/978-3-031-05814-1_1
http://dx.doi.org/https://doi.org/10.1007/978-3-031-05814-1_1
http://dx.doi.org/https://doi.org/10.1109/SACI55618.2022.9919532
http://dx.doi.org/https://doi.org/10.1007/978-3-540-30133-2_127


21494

19. A. Janota, Using Z specification for railway interlocking safety, Period. Polytech. Transp. Eng., 28
(2000), 39–53. Available from: https://pp.bme.hu/tr/article/view/1963.

20. K. M. Hansen, Formalising railway interlocking systems, in Nordic Seminar on Dependable
Computing Systems, Lyngby, (1994), 83–94.

21. M. Montigel, Modellierung und Gewährleistung von Abhängigkeiten in
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