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Abstract: In 2002 Mauduit and Sarkozy started to study finite sequences of k£ symbols
EN = (617625“ ' ’eN) € ﬂNa

where
A = {Cll,az,"' ,ak}, (keN,k22)

is a finite set of k symbols. Bérczi estimated the pseudorandom measures for a truly random sequence
Ey of k symbol. In this paper, we shall study the minimal values of correlation measures for the
sequences of k symbols, developing the methods similar to those introduced by Alon, Anantharam,
Gyarmati, and Schmidt, among others.
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1. Introduction

The need for pseudorandom sequences arises in cryptographic applications and many papers have
been written on this subject. In [1], Mauduit and Sarkozy introduced the following measures of
pseudorandomness for finite pseudorandom binary sequences:

EN = (61’625' o ’eN) € {_1,+1}N-

The well-distribution measure of Ey is defined by

t—1

Z €a+jb

J=0

b

W(Ey) = mgx
a,n,t
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where the maximum is taken over all a, b, t € N with
1<a<a+(@-1)b<N.

The correlation measure of order | of Ey is defined as

M

§ €n+d1 e en+d[

n=1

b

C,;(Ey) = max
M.D

where the maximum is taken over all
D = (dla‘“ ’dl)

and M with
0<d <---<d;sN-M.

The sequence Ey can be considered as a “good” pseudorandom sequence if both W (Ey) and
C,;(Ey) (at least for small /) are “small” in terms of N. Cassaigne et al. [2, 3] studied the
well-distribution measures and correlation measures for the Liouville function. Fouvry et al. [4]
examined pseudorandomness measures of Kloosterman sums’ signs. Goubin et al. [5] introduced a
construction related to the Legendre symbol for binary sequences. Gyarmati [6] utilized the concept
of an index discrete logarithm to construct binary sequences with strong pseudorandom properties.
Gyarmati [7] studied the psedorandom properties of the power generator, which includes the RSA
generator and the Blum-Blum-Shub generator. Liu et al. [8-10] explored pseudorandom binary
sequences via multiplicative inverse, Gowers norm, and the Legendre symbol. Louboutin et al. [11]
also obtained the quantitative results on the pseudorandomness of the sequence (—1)"""*. Mauduit
et al. [12] presented a new construction utilizing properties of additive characters. Mauduit
et al. [1, 13] investigated a Champernowne-type sequence, the Rudin-Shapiro sequence and the
Thue-Morse sequence, extending the approach that involved Legendre symbols. The
pseudorandomness of binary sequences over elliptic curves was analyzed in [14, 15]. Séarkozy
et al. [16-18] studied binary sequences with strong pseudorandom properties, and utilized character
sum estimates by Eichenauer-Hermann and Niederreiter. Cassaigne et al. [19] estimated W(Ey) and
C/(Ey) for a truly random binary lattice.

Proposition 1.1. [19] For all € > 0, there are numbers
No = No(e)

and
0 =06(e) >0,

such that for N > Ny and a random sequence Ey € {—1, +1}, we have
P(W(Ey) > oN?) > 1 - ¢, P(W(EN) > 6(NlogN)5) <e
Proposition 1.2. [19] Foralll € N, | > 2 and € > 0, there are numbers
Ny = No(e, )
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and

0 =0d(e, 1) >0,

such that for N > Ny and a random sequence Ey € {—1, +1}V, we have
P(Cz(EN) > 5N%) >1—¢€, P(C,(EN) >5 (lNlogN)é) <e

Alon et al. extended Propositions 1.1 and 1.2 in [20] and provided the lower bound of Cy(Ey) for
general sequence Ey € {—1, +1}V in [21].

Proposition 1.3. [21] For any integers | and N such that

and any Ey € {—1,1}", we have

NJ.

1
> —
CaulEn) 2 4[5 {21 +1

Proposition 1.4. [21] There is an absolute constant ¢ > 0 such that, for any positive integers m and N

with
|3
m < —
3

max {C2(Ey), C4(En), - -, Con(EN)} = ¢ VmN

and

forall Ey € {-1,+1}".
Proposition 1.5. [21] Let [ and N be positive integers with

If N is large enough, then
1|N
max {Cy-2(En), Ca(En)} 2 3 {gJ

forall Ey € {-1,+1}".
Gyarmati [22] provided lower bound for Cy,,11(En)Cy(Ey) with 2m + 1 > 2.

Proposition 1.6. [22] If (m,[) € N?, 2m + 1 > 2, and N € N, then for any Ey € {—1,+1}", we have
Comt1(EN)Coy(EN) > Nl‘ﬁ_

Anantharam [23] improved Proposition 1.6 in the case m = [ = 1.

Proposition 1.7. [23] For any N € N big enough and Ey € {-1,+1}", we have

2
> —N.
Cg(EN)Cz(EN) = 25N
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Gyarmati and Mauduit [24] generalized the results from [22,23].

Proposition 1.8. [24] For any positive integers m,l and N, and any Ey € {—1,1}", we have
Comr1 (En)Ca(Ey) > N,

where the implied constant depends on m and [, where

1, if m>1,
,D=11 2m+1
c(m, ) : m4l Cfm<l

Additionally, they provided the following example showing that Proposition 1.8 is optimal:

Example 1.1. For
Ey={+1,-1,+1,-1,+1,-1,---},

we have

Coms1(Ey) =1

and
CQ[(EN) =N-2[+1.

Aistleitner [25] provided a tail characterisation of the limiting distribution of W(Ey)/ VN.
Schmidt [26] proved that the limiting distribution of

N
Ci(Ex)/ | [2N log (l 3 1)

exists, and provided simple proofs of Propositions 1.3 and 1.4. Moreover, Schmidt [26] obtained
explicit constants for Proposition 1.4.

Proposition 1.9. [26] There exists a sequence of real numbers c,, ¢, > é foreachr > 3 and

1
¢, > — =0.2476. ..
Voée

as r — oo, such that for all positive integers m and N with

ms|3)
<13
we have
max {Cy(Ey), C4(En), -+, Con(En)} = cy VmN

forall Ey € {—1,+1}".
In 2002, Mauduit and Sarkozy [27] started to study finite sequences of k symbols

N
EN = (619625”' 9eN) eA s
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where
ﬂ: {al,aZ,”' ’ak}, (keN,kZz)

is a finite set of k symbols. Let
E=A{e, &, &l

be the set of the k-th roots of unity eﬁ, j=1,2,--- k. Let ¥ denote the set of bijections ¢: A «— &.
The E-well-distribution measure of Ey is defined by

—

—

A(Ey) = makx

@,a,0,t

¥ (€u+ jb)

2

J

I
[«

where the maximum is taken over all ¢ € ¥ and a, b, t € N with
1<a<a+(@-1b<N.

The E-correlation measure of order | of Ey is defined as

)

M
D €1 (ena) @1 (ensa)
n=1

I (En) = max

where the maximum is taken over all

¢:(901"”’901)€7:la D:(dla"'9dl)

and M with
0<dy<---<d<N-M.

The sequences of k symbol are considered as “good” pseudorandom sequences if both A (Ey) and
I'; (Ey) (at least for small /) are “small” in terms of N (in particular, both are o(N) as N — oo, and ideally
it is N2*). Ahlswede et al. [28,29] devised “many”, “good”, PR sequences on k symbols by using
multiplicative character and irreducible polynomials. Gomez and Winterhof [30] derived results on the
pseudorandomness k symbols sequences of the Fermat quotients modulo p. Two families of sequences
of k symbols were constructed using the integers modulo pg for distinct odd primes p and ¢ in [31].
Mak [32] utilized rational functions and multiplicative inverses to construct several pseudorandom
sequences of k symbols. Mauduit and Sarkozy [27] asked us to say something about the “average” size
of the measures. Bérczi [33] estimated A (Ey) and I'; (Ey) for a truly random sequences of k symbol.

Proposition 1.10. [33] For all € > 0O, there are numbers
No = Ny(e€)

and
0=0(e)>0

such that for N > Ny and a random sequence Ey € AN, we have
P(AEY) > ok 3NT) > 1 -, P(A(EN) > 41% (N log N)i) <e
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Proposition 1.11. [33] Forall k e N, k > 2 and € > 0, there are numbers
Ny = Ny(e)

and
0=0(e)>0

such that for N > Ny and a random sequence Ey € A", we have
P(Ti(Ey) > 6K3N?) > 1 - €.
Proposition 1.12. [33] For all even k € N, | € N and € > 0, there are numbers
No = No(e,k, 1)

such that for N > Ny and a random sequence Ey € A", we have
P(F,(EN) > 10 (kIN log N)i) <e

In this paper we shall develop the previous research methods to study the correlation measures of
sequences of k symbols. Based on the research method of [21,23,26], we prove Theorems 1.1-1.4.
Inspired by the work of Gyarmati and Mauduit [22,24], we formulate Problem 1.1. Our results are the
following:

Theorem 1.1. For any integers [ and N with

15145J
2

and any Ey € AV, we have

1| N
Ty(En) > +f= .
2u(En) 2 2{21+1J

Theorem 1.2. Let the sequence {c,} be defined as in Proposition 1.9. Then, for any positive integers
m and N with
3]
ms< |+

3
and for any Ey € A", we have

max {I2(Ey), [4(Ey), -+ ,I'n(En)} > cy VmN.

Theorem 1.3. Let [ and N be positive integers with

IN
21 4=
I )

If N is large enough, then for all Ey € A", we have
1N
max {I'y-2(En), Tu(En)} 2 3 [gJ
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Theorem 1.4. For any N € N large enough and Ey € A", we have
1
[3(EN(EN) 2 EN'

Proposition 1.8 and our theorems inspire the following problem:

Problem 1.1. Let m and | be positive integers. Is it true that for large enough N and every Ey € A",
we have

Lot (En)T2(Ey) >, N.

The rest of this paper is organized as follows. We shall introduce Welch’s bound and prove
Theorems 1.1-1.3 in Section 2, and we will prove Theorem 1.4 in Section 3.

2. Welch’s bound and proof of Theorems 1.1-1.3

Schmidt [26] provided simple proofs for Propositions 1.3 and 1.4 by using Welch’s bound on the
maximal non-trivial scalar products over a set of vectors.

Lemma 2.1. [34] Let M and L > 2 be positive integers, and let vy, --- ,v; be elements of CM. For
Vi = (Vi1 Vim)

and
Vi = (Vj,l, T ,Vj,M),

we define the scalar product
M

<Vi,Vj>: § VinVjns

n=1

where the bar means complex conjugation. Suppose that
wiviy =M
for each i. Then, for all integers r > 1, we have

1
M2r L 2r
ST

r

Lemma 2.2. [21, Lemma 2.6] Let [ and n be positive integers with

1
lSE\/ﬁ.

If n is large enough, then there is a family L of I-element subsets of {1,2,--- ,n} with |L| = n and such
that
ILNL|<1

for all distinct Land L' € L.
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Now we use Lemma 2.1 to prove Theorems 1.1-1.3. Let
Ey= (e, e, ,ey) € A

be given and let M be an integer with
I<M<N-1.

We write
N =N-M.

Next, we fix a family £ of subsets of the set {1,2,---, N’}. Let ¢ be a bijection in ¥ . For

1<i<|L
and L, € L, L; # 0, we define the vector
Vv, = (Vi,la > Vi M)
by
Vin = 1_[ @ (en+x)
xeL;
Clearly
vi,viy =M
and for i # j, we have
M —
(virvy) = Z H p(ensx) H P(ensy)-
n=1 XGL,'\(L,'ﬁLj) yGLj\(LiﬁLj)

Let LOL’ be the symmetric difference of the sets L and L’, and let

L9 ={06eLr: L L'eL,L+L},
K:{|S|: S e£®}.

We get
max{I[(Ey): [ € K} > max{l <v,-,v‘,->| L, Lie Li# j}.

Then, from Lemma 2.1, we have for all integers r > 1,
1

2l )

max {I(Ey): [ € K} >

2.1
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2.1. Proof of Theorem 1.1

We write

N , N’
_{2I+IJ’ N =N-M and t—{7|.

Clearly, ]| < N <N -1 and

- N'| {N - MJ
L]l
- N
> 2[+1
|
| 2N
S 20+1
2|37
20+1
=2M. (2.2)
We take for £ a set system of
t= N
11
pairwise disjoint /-element subsets Li,---, L, of {1,2,---,N’}. Noting that L; N L; is empty for i # j,
and K = {2/}. By (2.1) and (2.2), we get
M? [t
e = (2 (L -
2u(EN) (t Vi )
M
> \/M — 2 \/
t
~Valz+il
~V2l20+1
This proves Theorem 1.1.
2.2. Proof of Theorem 1.2
Proof. Let m and N with
N
< —=.
"3
Write
M = {—J and NN =N-M.
we get
N > 2N
3

We take for L the set system of all m-element subsets of {0, 1,--- , N'}. Hence,

={IS1: § € L%} =(2.4,--- .2m}.

AIMS Mathematics Volume 9, Issue 8, 21455-21470.
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By (2.1) we get

1

1Ll -1

M+m—1
m

M2m 2m
max (To(Ex), Ty(Ex)s - - Can(Ex)) z( [ ( £l )—1]] |

Then, repeating the proof of Theorem 1.3 in [26]. Write

N=3M+6
for some 6 € {0, 1,2},
MmO\ [ pg2m
(ILI - 1) ( | L] )
mN\?
(%)

Define f: {1,2,--- ,[%J} — Q by

(N M+1)
()

A standard calculation shows that f is monotonically increasing for

Jm) =

m< (N-2M+2)/2,
and is monotonically decreasing for
m>(N—-2M +2)/2.
Therefore, the minimum value of f(m) is either f(1) or
N
(5] = rom.

Moreover, we readily verify that (1) > 2 and

%) 2em+1) g

f(M)z(%_l)_ S
Hence,
£ S
((M+m—1) - 1] 2%
Finally,

max {I'2(En), T4(Ey), -+ ,Ton(En)} 2 cy VmN.
This completes the proof of Theorem 1.2.

O
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2.3. Proof of Theorem 1.3
Proof. Let [ and N be positive integers with

Write
M:{—J and N'=N-M,
we get
2
N’:N—M2§N22M
and

PN E N

By Lemma 2.2, we obtain a family £ of /-element subsets of {1,2,---,N’} with
|[£L|=N" and |[LNL'|<1

for any two distinct L, L” € L. Then, from (2.1), we have

M2 %
max {['y_»(En), I'y(En)} > ( (@ - 1))

L -1\ M
M2
M- —
1L

which proves Theorem 1.3.

3. Proof of Theorem 1.4

Proof. Let Ey € AN be given and let ¢ be a bijection in . Let L, M € N with L + M < N. We get

2

3

=2, [Z ¢ (ena) ¢ (€n+d2))

AIMS Mathematics Volume 9, Issue 8, 21455-21470.
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3

=§12MmMWMJ Z}jZ¢@mwm%ﬂ

d=1 \n= Ldy
dy#dy
—ME+Z§jZ¢mwwmwﬂ
1d.
d]#dzz
> ML — M(M - DI, (Ey)’. (3.1)

On the other hand, we also get
D)
ni=1ny=1n3=

:62

1<ni<ny<n3<L

+ Z
1<ny,no,n3<L
except forny <np <nz,---,n3 <np <n

2

D@ (Cnd) @ (€nyia) @ (€nsea)

d=1

LM“

2

D # (nsd) ¢ (€nia) ¢ (enssa)

d=1

2

M
< L(L = 1)(L = T3 (Ey) + (L = LIL = 1YL =2)) | > ¢ (€nra) ¢ (en+a) ¢ (€ny1a)

d=1
< L(L-1)(L-2)5(Ey)* + LBL-2)M>. (3.2)
Combining (3.1) and (3.2), we get
ML = M(M — DI (Ey)® < A < L(L-1)(L-2)5(Ex)* + L3L — 2)M?, (3.3)

where

Z @ (en1+d) Y (en2+d) Y (en3+d)

d=1

L L L
A=2.0.0
ni=1ny=1n3=1

Switch elements on both sides of the inequality

LT (Ey)* + MT, (Ey)® = ML? = 3L*M>. (3.4)
Case I. Assume that {
T, (Ey) < 5N%.
Taking
L= 6N
17
and .
M- {—N|
7
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in (3.4), we get
1 |
I'5(Ey) > —=N2.
3 (Ly V5

Then, from Theorem 1.1, we immediately have

1 i 1IN 1
(Ey) T (Ey) > —N2 - —{—JZ—N. 3.5
3(Ex) T2 (Ey) N 513 0 (3.5)
Case II. Suppose that
1
T, (Ey) > §N%.
If
I'3(Ey) > N3,
then
1 1
T3 (Ex)Ts (Ey) = N5 - 7N% = =N. (3.6)
While if
I'3(Ey) < N3,
then we take
N
e[y
2

and
M = 4T3 (Ey)’|

in (3.4). Hence, for large enough N, we get
M°T, (Ey)’ > ML — L’T5 (Ey)”.

Then,
3

N
1613 (Ey)* Ty (Ey)’ > 313 (Ey)* - 3

Therefore,
3

N
I3 (Ey)’ Ty (Ey) 2 7
Note that I'; (Eyy) > 1. Thus, we get
T3 (Ey)’ T2 (Ey)’ =T3(Ey) - T3 (Ey) T2 (Ey)’

> T3 (Ey)* T2 (Ey)’

N3
> —.
64
So, we have
N
I3 (Ey) 2 (Ey) 2 T (3.7)
Now combining (3.5)—(3.7), we get
1
[ (En) T2 (En) 2 I_ON'
This completes the proof of Theorem 1.4. O

AIMS Mathematics Volume 9, Issue 8, 21455-21470.
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4. Conclusions

In this paper, our focus centered on exploring the lower bounds of correlation measures of sequences
composed of k symbols. This research contributes to a deeper understanding of the sequence properties
essential for various applications in mathematics and cryptography.
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