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Abstract: A one-dimensional two-phase Stefan problem for the melting of a semi-infinite material
with a power-type temperature-dependent thermal conductivity was considered. The assumption of
taking thermal parameters as functions of temperature found its basis in physical and industries
applications, allowing for a more precise and realistic description of phase change processes. By
imposing a Dirichlet condition at the fixed face, a theoretical and approximate study was developed.
Through a similarity transformation, an equivalent ordinary differential problem was obtained from
which an integral problem was deduced. The existence of at least one analytical solution was
guaranteed by using the Banach fixed point theorem. Due the unavailability of an analytical solution,
a heat balance integral method was applied, assuming a quadratic temperature profile in space, to
simulate temperature variations and the location of the interface during the melting process. For
constant thermal conductivity, results can be compared with the exact solution available in the literature
to check the accuracy of the approximate method.
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1. Introduction

In the classical formulation of Stefan’s problem, certain assumptions are made about the physical
factors involved in the phase change process to simplify the model description. One of these
assumptions is that the thermal conductivity k, the specific heat c, the latent heat `, and the density
of the material ρ are considered positive constants. However, various arguments from thermodynamics
motivate the solution of Stefan’s problems with variable thermal coefficients.
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In engineering calculations, it is common to measure thermal coefficients phenomenologically, but
for some materials, the values obtained in tables are not adequate to predict those thermal coefficients
with satisfactory precision since they depend on other factors.

In the last years, several studies have shown that modeling thermal parameters as functions of
temperature can describe phase change processes with greater precision and realism and can be more
useful for physical and industrial applications. For instance, in [1], a Stefan type problem that models
the glaciation of the outer surface of a cylindrical gas pipeline in seawater was studied, considering
that the latent heat and the thermal diffusivity depend on the radial distance. Approximate solutions to
one-phase Stefan-like problems with space-dependent latent heat were obtained in [2].

In [3], explicit solutions of similarity-type were obtained for a model conduction heat transfer with
phase change into a semi-infinite slab, where the thermal conductivities and specific heats of both
phases are a linear function of the temperature. A similar analysis for the nonclassical Stefan problem
was carried out in [4]. In [5], the existence and uniqueness of approximate solutions of a nonlinear
boundary value problem arising from a two-phase Stefan problem, where the thermal conductivities
and specific heats of both phases were assumed to be a linear function of the temperature, was proved.

Some generalizations considering power-type thermal coefficients are available in the literature.
For example, in [6] a one-dimensional Stefan problem for a semi-infinite material with temperature-
dependent thermal coefficients was considered, and the existence and uniqueness of solutions were
obtained imposing a Dirichlet, a Neumann, or a Robin type condition at fixed face. In [7], the p-
generalized modified error function was defined as the solution to a second order nonlinear ordinary
differential equation with a Robin type boundary condition at the fixed face which arises from a one-
phase Stefan problem. In [8], an exact solution for a nonclassical one-phase Stefan problem with two
different heat source terms were examined. Furthermore, a nonclassical Stefan problem with nonlinear
thermal parameters of general order and heat source term was presented in [9]. Approximate solutions
using the shifted Chebyshev Tau method for a one-dimensional Stefan problem considering different
power-type temperature dependent specific heat and thermal conductivity were studied assuming a
Robin and a Dirichlet boundary condition at the fixed face in [10] and [11], respectively.

Other references that deal with free boundary problems with variable thermal coefficients can
be found in the following references. In [12], a thermal conductivity that depends not only
on the temperature but also on time was considered. [13] addresses Stefan problems for the
diffusion–convection equation with temperature-dependent thermal coefficients. In [14], a model for
the contact melting of a block of phase change material on a flat, heated surface was introduced
where the block and melt have linear temperature-dependent thermal conductivity and viscosity. [15]
discussed a Stefan problem that includes a moving phase change material and a size-dependent thermal
conductivity. Additionally, [16] considered a mathematical model of an initial stage of electrical
contact closure involving a metallic vaporization after instantaneous exploding of contact due to arc
ignition where the temperature field in the liquid region of such kind of material was modeled by a
Stefan problem for the generalized heat equation. Similarly, in [17] the existence and uniqueness of
a one-phase spherical Stefan problem with nonlinear thermal coefficients and heat flux condition was
studied.

The following previous works motivate the idea of taking a variable thermal conductivity. In [18],
a two-phase phase Stefan problem with a linear temperature-dependent thermal conductivity and a
Dirichlet boundary condition at the fixed face was studied. The one-phase Stefan problem with a Robin
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boundary condition at the fixed face was considered in [19], assuming that the thermal conductivity
varies linearly with temperature. Recently, in [10, 11], approximate solutions by the Tau method for
a one-phase Stefan problem were obtained considering a power-type temperature-dependent thermal
conductivity and specific heat. In [6], existence and uniqueness of solutions to the same problem for
the particular case taking the same power was proved.

Based on the bibliography mentioned above, it is quite natural from a mathematical point of view to
define a one-dimensional two-phase Stefan problem with a power type temperature-dependent thermal
conductivity. The problem models the melting of a semi-infinite material x ≥ 0 imposing a Dirichlet
type condition T0 > 0 at the fixed face x = 0, which is initially at temperature−Tr < 0 with a null phase-
change temperature. This free boundary problem consists of finding the temperature T1 = T1(x, t) of
the liquid region i = 1, the temperature T2 = T2(x, t) of the solid region i = 2, and the position of the
interface x = s(t), t ≥ 0. This problem can be formulated mathematically in the following way:

∂

∂x

(
k1(T1)

∂T1

∂x

)
= ρc1

∂T1

∂t
, 0 < x < s(t), t > 0, (1.1)

∂

∂x

(
k2(T2)

∂T2

∂x

)
= ρc2

∂T2

∂t
, x > s(t), t > 0, (1.2)

T1(0, t) = T0, t > 0, (1.3)
T1(s(t), t) = T2(s(t), t) = 0, t > 0, (1.4)
T2(+∞, t) = T2(x, 0) = −Tr, x > s(t), t > 0, (1.5)

k2(T2(s(t), t))
∂T2

∂x
(s(t), t) − k1(T1(s(t), t))

∂T1

∂x
(s(t), t) = ρ` ṡ(t), t > 0, (1.6)

s(0) = 0, (1.7)

where ` > 0 is the latent heat of fusion by unit of mass, ρ > 0 is the mass density, and ci > 0 is the
specific heat of each region i = 1, 2. The thermal conductivity coefficients depend on temperature by
the expressions:

k1(T1(x, t)) = k0
1

[
1 + δ1

(
T1
T0

)p1
]
, (1.8)

k2(T2(x, t)) = k0
2

[
1 + δ2

(
−

T2
Tr

)p2
]
, (1.9)

with δi ≥ 0 and pi ≥ 1, where k0
i > 0 is the reference thermal conductivity for i = 1, 2. We denote by

ai =

√
k0

i

ρci
, (1.10)

for i = 1, 2, being ai the square root of the thermal diffusivity at the liquid phase and solid phase,
respectively.

In Section 2, we prove existence of a solution to problem (1.1)–(1.7). First, we obtain an
equivalence between the Stefan problem and two coupled ordinary differential problems through a
suitable convenient change of variables. Second, we show that these problems are equivalent to finding
the fixed point of certain contracting operators.
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Since the Stefan’s problems are characterized as nonlinear, finding an exact solution to them
presents formidable mathematical difficulties. We will focus on the heat balance integral method
introduced by Goodman [20]. This method consists of the transformation of the heat equation into an
ordinary differential equation in time assuming a quadratic temperature profile in the spatial variable.

One of the mechanisms of heat conduction is diffusion, the excitation at the fixed boundary x = 0,
for example, a temperature condition does not immediately propagate to the entire material x > 0
but rather its effect is perceived in a limited interval (0, δ(t)), for each time t > 0, outside of which
the temperature remains equal to the initial temperature. The integral balance method postulates the
existence of a function δ = δ(t) that measures the thermal layer, that is, the distance to which heat
penetrates. In phase change problems, this thermal layer is assumed to be the free boundary, that is,
δ(t) = s(t).

For one phase Stefan’s problems, a variant of the heat balance integral method, known as the
modified integral balance, was introduced by Wood [21]. It simply involves integrating the heat
equation, leaving the other conditions of the problem the same. In Section 3, we will generalize this
method to a two-phase Stefan’s problem, proposing two quadratic temperature profiles for each of the
phases.

Although the integral balance method may not always be as accurate as other solution
approximation techniques such as numerical methods, perturbation solutions, etc., it remains a popular
choice due to its simplicity and the fact that it produces analytical solutions for a wide range of
problems and parameter values. That is why for several decades, articles have been published that have
used this approximation method and variants of it have emerged and been applied to a wide variety
of thermal and free boundary problems, assuming different temperature profiles. Some references
assuming a quadratic temperature profile can be found in [22], where approximate solutions to a
one-phase Stefan problem with nonlinear temperature-dependent thermal conductivity was developed.
Moreover, two different Stefan problems for a semi-infinite material for a nonclassical heat equation
with a source that depends on the heat flux at the fixed face were approximated in [23]. Heat balance
integral methods applied to a one-phase Stefan problem with a convective boundary condition at the
fixed face were discussed in [24]. Furthermore, the determination of one or two unknown thermal
coefficients in a one phase Stefan problem using the heat balance integral method was explored in [25].
Variants of the heat balance integral method were studied in [26] for a one-phase Stefan problem
with time-dependent boundary conditions and in [27] for heat conduction problems with absorption.
In [28, 29], a cubic temperature profile was chosen, while an exponential temperature profile was
considered in [30]. Generalizations with a parabolic temperature profile with an unspecified exponent
were studied in [31]. The reference [32] implemented the idea of an entropy generation approach in
optimal profile determination as a measure of approximation error to solutions through the heat balance
integral method with the specific parabolic profile in question. For a nonlinear diffusion model of
wood impregnation by methacrylatea, approximate integral-balance solutions were developed in [33].
The combined integral method was applied to a simple one-dimensional ablation problem in [34]
and a nonclassical two-phase Stefan problem with delayed onset of phase change in [35]. The study
in [36] examined approximate solutions through a heat balance integral method to a one-dimensional
Stefan problem describing the sorption of a finite amount of swelling solvent in a glassy polymer. An
improvement to the heat balance integral method was applied to thermal problems with time-dependent
boundary conditions in [37]. The employment of the heat balance integral method to solve various
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thermal and phase change problems in a multitude of industrial contexts can be found in [38]. Similar
analyses were discussed in [39] for a free boundary problem involving the sorption of a finite amount
of solvent into a glassy polymer.

In Section 4, we test the accuracy of this heat balance integral method for the two-phase Stefan
problem with constant thermal conductivity and we obtain a good accuracy with respect to the explicit
solution given in paragraph 4.1 for small times. Moreover, we present numerical results when power-
type temperature-dependent thermal conductivities are given. Finally, in Section 5, we provide some
conclusions.

2. Existence of solution to the two-phase free boundary problem with a Dirichlet type condition

In this section we will prove the existence of the solution of similarity type to the two-phase free
boundary problem with a Dirichlet type condition defined by (1.1)–(1.7) using a the Banach fixed point
theorem.

The temperatures T1 = T1(x, t) and T2 = T2(x, t) depend on the similarity variable given by

η =
x

2a1
√

t
, (2.1)

where a1 is defined by (1.10). Through the following change of variables:

y1(η) =
T1(x, t)

T0
≥ 0 and y2(η) =

T2(x, t)
Tr

≤ 0, (2.2)

the phase front moves as
s(t) = 2a1λ

√
t, (2.3)

where λ > 0 must be determined, and, thus, we have the following result:

Theorem 1. Let pi ≥ 1, δi ≥ 0 for i = 1, 2. The Stefan problem (1.1)–(1.7) has a similarity solution
(T1,T2, s) given by:

T1(x, t) = T0 y1 (η) , 0 < x < s(t), t > 0, (2.4)

T2(x, t) = Tr y2 (η) , x > s(t), t > 0, (2.5)

s(t) = 2a1λ
√

t, t > 0, (2.6)

if, and only if, the functions y1 = y1(η) ∈ C2(0, λ), y2 = y2(η) ∈ C2(λ,+∞) and the parameter λ > 0
satisfy the following ordinary differential problems:(

(1 + δ1yp1
1 (η))y′1(η)

)′
+ 2η y′1(η) = 0, 0 < η < λ, (2.7)

y1(0) = 1, (2.8)
y1(λ) = 0, (2.9)

and

a2
2

a2
1

(
(1 + δ1(−y2)p2(η))y′2(η)

)′
+ 2η y′2(η) = 0, η > λ, (2.10)

AIMS Mathematics Volume 9, Issue 8, 21189–21211.



21194

y2(λ) = 0, (2.11)
y2(+∞) = −1, (2.12)

coupled through the following condition:

a2
2

a2
1
Ste2 y′2(λ) − Ste1 y′1(λ) = 2λ, λ > 0, (2.13)

where Ste1 = c1T0
`
> 0 , Ste2 = c2Tr

`
> 0 are the Stefan numbers.

Proof. It follows by simple computations, recalling that the similarity variable η is given by (2.1).
�

First, we will analyze for a fixed λ > 0 the existence and uniqueness of the solution to the ordinary
differential problems (2.7)–(2.9) and (2.10)–(2.12). For this purpose, we will show that solving these
problems is equivalent to finding the fixed point of certain operators that will be defined later in the
following theorems.

Theorem 2. Let us assume δ1 ≥ 0 and p1 ≥ 1.

a) For each λ > 0, the function y1 ∈ K1 is a solution to the problem (2.7)–(2.9) if, and only if, y1 is a
fixed point of the operator F1 : K1 → K1 given by:

F1(y1)(η) = 1 −
Py1(η)
Py1(λ)

, (2.14)

where

K1 = {y1 ∈ C[0, λ] / 0 ≤ y1 ≤ 1, y1(0) = 1, y1(λ) = 0} , (2.15)

Py1(η) =

∫ η

0

fy1(w)
Ψy1(w)

dw, 0 ≤ η ≤ λ, (2.16)

fy1(η) = exp
(
−2

∫ η

0

ξ

Ψy1(ξ)
dξ

)
, 0 ≤ η ≤ λ, (2.17)

Ψy1(η) = 1 + δ1yp1
1 (η), 0 ≤ η ≤ λ. (2.18)

b) For each λ > 0, y1, y1 ∈ K1, we have that

|F1(y1)(η) − F1(y1)(η)| ≤ ε1(λ)||y1 − y1||∗, 0 ≤ η ≤ λ, (2.19)

where ε1(λ) is given by

ε1(λ) =
p1
√
π
δ1 (1 + δ1)3/2

[
−2 (1 + δ1) H

(
λ

√
1+δ1

)
+
√
π (3 + δ1)

]
, (2.20)

with

erf(η) = 2
√
π

∫ η

0
exp(−ξ2) dξ, H(η) =

η exp(−η2)
erf(η) , η ≥ 0, (2.21)

and we define ‖·‖∗ by the following expression:

||y||∗ = sup
0≤η≤λ

|y(η)|.
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c) For each λ > 0, if we assume
(1 + δ1)3/2 p1δ1(3 + δ1) < 1, (2.22)

then there exists a unique fixed point ŷ1 ∈ K1 of the operator F1 defined by (2.14).

Proof.

a) Notice that for each y1 ∈ K1, we have that

0 ≤ Py1(η) ≤ Py1(λ), 0 ≤ η ≤ λ,

then
0 ≤ 1 −

Py1(η)
Py1(λ)

≤ 1, 0 ≤ η ≤ λ,

that is, 0 ≤ F1(y1)(η) ≤ 1 for every 0 ≤ η ≤ λ. Moreover, it is clear that F1(y1)(0) = 1 and
F1(y1)(λ) = 0. Therefore, F1(y1) ∈ K1.

If we define v1 = y′1, taking into account that Ψy1 is given by (2.18), the ordinary differential
equation (2.7) becomes [

Ψy1(η)v1(η)
]′

+ 2ηv1(η) = 0,

which is equivalent to

−
Ψy′1

(η) + 2η

Ψy1(η)
=

v′1(η)
v1(η)

.

We integrate the previous equation:

v1(η) =
c0

Ψy1(η)
exp

(
−2

∫ η

0

ξ

Ψy1(ξ)
dξ

)
,

with c0 ∈ R. From v1 = y′1 and taking into account (2.8), we get that

y1(η) = 1 + c0

∫ η

0

fy1(w)
Ψy1(w)

dw.

Then, from (2.9) it follows that:

c0 = −

(∫ λ

0

fy1(w)
Ψy1(w)

dw
)−1

. (2.23)

Therefore,

y1(η) = 1 −
Py1(η)
Py1(λ)

, 0 ≤ η ≤ λ. (2.24)

Therefore, if y1 ∈ K1 is a solution to the problem (2.7)–(2.9), then y1 is a fixed point of the
operator F1 : K1 → K1, i.e.,

y1(η) = F1(y1)(η), 0 ≤ η ≤ λ.

Reciprocally, if y1 = y1(η) given by (2.24) is a fixed point of the operator F1, we immediately
obtain that conditions (2.8) and (2.9) hold. In addition, if we derive (2.24) with respect to η, (2.7)
holds, and then y1 = y1(η) is a solution to the ordinary differential problem (2.7)–(2.9).
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b) Let us consider y1, y1 ∈ K1. Notice that for each w ∈ [0, λ]:

1 ≤ Ψy1(w) ≤ 1 + δ1, exp(−w2) ≤ fy1(w) ≤ exp(− w2

1+δ1
), (2.25)

then √
π

2(1 + δ1)
erf(w) ≤ Py1(w) ≤

√
π

2

√
1 + δ1 erf( w

√
1+δ1

). (2.26)

Applying the mean value theorem, we deduce the following inequality:

|Ψy1
(w) − Ψy1(w)| = δ1 p1 |̃y1|

p1−1 (w)|y1(w) − y1(w)|,

where ỹ1 is a function between y1 and y1. As a consequence, ỹ1 ∈ K1 and, therefore,

|Ψy1
(w) − Ψy1(w)| ≤ δ1 p1||y1 − y1||∗. (2.27)

Moreover, if we apply the mean value theorem again, and taking into account (2.25) and (2.27),
we have that

| fy1(w) − fy1
(w)| =

∣∣∣∣∣∣exp
(
−2

∫ w

0

ξ

Ψy1 (ξ)dξ
)
− exp

(
−2

∫ w

0

ξ

Ψy1 (ξ)dξ
)∣∣∣∣∣∣

≤ 2 exp
(
− w2

1+δ1

) ∫ w

0

∣∣∣∣ ξ

Ψy1 (ξ) −
ξ

Ψy1 (ξ)

∣∣∣∣ dξ
≤ exp

(
− w2

1+δ1

)
δ1 p1w2‖y1 − y1‖∗. (2.28)

In addition, inequalities (2.25), (2.27), and (2.28) yield to

|Py1(η) − Py1
(η)| ≤

∫ η

0

∣∣∣∣∣ fy1 (w)(Ψy1 (w)−Ψy1 (w))+Ψy1 (w)( fy1 (w)− fy1 (w))
Ψy1 (w)Ψy1 (w)

∣∣∣∣∣ dw

≤

[∫ η

0
exp

(
− w2

1+δ1

)
δ1 p1dw +

∫ η

0
exp

(
− w2

1+δ1

)
δ1 p1w2dw

]
||y1 − y1||∗

=
δ1 p1

4

√
1 + δ1 erf

(
η

√
1+δ1

) [
−2 (1 + δ1) H

(
η

√
1+δ1

)
+
√
π (3 + δ1)

]
‖y1 − y1‖∗, (2.29)

where H is given by (2.21).
Therefore, from (2.26) and (2.47), we have that

|F1(y1)(η) − F1(y1)(η)| =

∣∣∣∣∣∣Py1
(η)

Py1
(λ)
−

Py1(η)
Py1(λ)

∣∣∣∣∣∣ ≤ 1
Py1(λ)

(
|Py1(λ) − Py1

(λ)| + |Py1(η) − Py1
(η)|

)
≤

p1
√
π
δ1 (1 + δ1)3/2

erf
(

λ√
1+δ1

)
erf(λ)

[
−2 (1 + δ1) H

(
λ

√
1+δ1

)
+
√
π (3 + δ1)

]
‖y1 − y1‖∗

≤
p1
√
π
δ1 (1 + δ1)3/2

[
−2 (1 + δ1) H

(
λ

√
1+δ1

)
+
√
π (3 + δ1)

]
‖y1 − y1‖∗

= ε1(λ)‖y1 − y1‖∗, (2.30)

where ε1(λ) is given by (2.20).
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c) First, notice that K1 is a closed subset of the Banach space of the continuous functions C0 [0, λ]
endowed with the supremum norm ‖·‖∗.
In addition, from [40], H given by (2.21) is a decreasing function that satisfies H(0) =

√
π

2 and
H(+∞) = 0. Then, ε1(λ) defined by (2.20) is an increasing function that satisfies

ε1(0) = 2(1 + δ1)3/2 p1δ1,

and
ε1(+∞) = (1 + δ1)3/2 p1δ1(3 + δ1).

Assuming (2.22) yields to ε1(+∞) < 1, the operator F1 becomes a contraction. The fixed point
Banach theorem assures the existence and uniqueness of a fixed point ŷ1 ∈ K1 of F1 for each
λ > 0.

�

Theorem 3. Let us assume δ2 ≥ 0 and p2 ≥ 1.

a) For each λ > 0, the function y2 ∈ K2 is a solution to the problem (2.10)–(2.12) if, and only if, y2

is a fixed point of the operator F2 : K2 → K2 given by:

F2(y2)(η) = −
Qy2(η)

Qy2(+∞)
, (2.31)

where

K2 = {y2 ∈ Cb[λ,+∞) / − 1 ≤ y2 ≤ 0, y2(λ) = 0, y2(+∞) = −1} , (2.32)

Qy2(η) =

∫ η

λ

gy2(w)
Φy2(w)

dw, η ≥ λ, (2.33)

gy2(η) = exp
(
−2a2

1
a2

2

∫ η

λ

ξ

Φy2(ξ)
dξ

)
, η ≥ λ, (2.34)

Φy2(η) = 1 + δ2(−y2)p2(η), η ≥ λ. (2.35)

b) For each λ > 0, y2, y2 ∈ K2, we have that

|F2(y2)(η) − F2(y2)(η)| ≤ ε2(λ)||y2 − y2||∗∗, η ≥ λ, (2.36)

where ε2(λ) is given by

ε2(λ) =
δ2 p2(1+δ2)
√
π

G
(

a1λ
a2

) [
2(1 + δ2) a1

a2
λ +
√
π
√

1 + δ2 (3 + δ2) exp
(

a2
1λ

2

a2
2(1+δ2)

)]
, (2.37)

with

erfc(η) = 1 − 2
√
π

∫ η

0
exp(−ξ2) dξ, G(η) =

exp(−η2)
erfc(η)

, η ≥ 0, (2.38)

and we define || · ||∗∗ by the following expression:

||y||∗∗ = sup
η≥λ

|y(η)|.

AIMS Mathematics Volume 9, Issue 8, 21189–21211.



21198

c) For each 0 < λ < L, with
L = ε−1

2 (1), (2.39)

if we assume
δ2 p2(1 + δ2)3/2(3 + δ2) < 1, (2.40)

then there exists a unique fixed point ŷ2 ∈ K2 of the operator F2 defined by (2.31).

Proof.

a) First of all, notice that for each w ∈ [λ,+∞) and y2 ∈ K2, the following inequalities hold:

1 ≤ Φy2(w) ≤ 1 + δ2, exp
(
−

a2
1

a2
2
(w2 − λ2)

)
≤ gy2(w) ≤ exp

(
−

a2
1

a2
2

(w2−λ2)
(1+δ2)

)
, (2.41)

then

Qy2(η) ≥ a2
a1

√
π exp

 a2
1λ

2

a2
2


2(1+δ2)

(
erf

(
a1
a2
η
)
− erf

(
a1
a2
λ
))
,

Qy2(η) ≤ a2
a1

exp
(

a2
1λ

2

a2
2(1+δ2)

) √
1 + δ2

√
π

2

(
erf

(
a1
a2

η
√

1+δ2

)
− erf

(
a1
a2

λ
√

1+δ2

))
.

(2.42)

As a consequence,

a2
a1

√
π

2(1+δ2)

erfc
(

a1
a2
λ
)

exp
(
−

a2
1λ

2

a2
2

) ≤ Qy2(+∞) ≤ a2
a1

√
1 + δ2

√
π

2

erfc
(

a1
a2

λ
√

1+δ2

)
exp

(
−

a2
1λ

2

a2
2(1+δ2)

) . (2.43)

In addition, from (2.31) and (2.33), we can easily check that F2(y2) ∈ K2, i.e.,

F2(y2)(λ) = 0, F2(y2)(+∞) = −1, −1 ≤ F2(y2)(η) ≤ 0, η ≥ λ,

and by (2.43), we can conclude that F2(y2) is well-defined.
If we define v2 = y′2, taking into account that Φy2 is given by (2.35), the ordinary differential
equation (2.7) becomes

a2
2

a2
1

[
Φy2(η)v2(η)

]′
+ 2ηv2(η) = 0.

By a similar argument to the Theorem 2, we obtain that

y2(η) = −
Qy2(η)

Qy2(+∞)
, η ≥ λ. (2.44)

As a consequence, if y2 ∈ K2 is a solution to the problem (2.10)–(2.12), then y2 is a fixed point to
the operator F2 : K2 → K2, i.e.,

y2(η) = F2(y2)(η), η ≥ λ.

Reciprocally, if y2 = y2(η) given by (2.44) is a fixed point of the operator F2, we
immediately obtain that conditions (2.11) and (2.12) hold. In addition, if we derive (2.44)
with respect to η, (2.10) holds, and then y2 = y2(η) is a solution to the ordinary differential
problem (2.10)–(2.12).
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b) Let us consider y2, y2 ∈ K2. If we apply the mean value theorem, we deduce the following
inequality:

|Φy2
(w) − Φy2(w)| = δ2 p2 |̃y2|

p2−1 (w) |y2(w) − y2(w)|,

where ỹ2 is a function between y2 and y2. As a consequence,

|Φy2
(w) − Φy2(w)| ≤ δ2 p2||y2 − y2||∗∗. (2.45)

Moreover, if we apply the mean value theorem again, we have that

|gy2(w) − gy2
(w)| =

∣∣∣∣∣∣exp
(
−2a2

1
a2

2

∫ w

λ

ξ

Φy2 (ξ)dξ
)
− exp

(
−2a2

1
a2

2

∫ w

λ

ξ

Φy2 (ξ)dξ
)∣∣∣∣∣∣

≤ 2a2
1

a2
2

exp
(̃
h2(w)

) ∫ w

λ

∣∣∣∣ ξ

Φy2 (ξ) −
ξ

Φy2 (ξ)

∣∣∣∣ dξ
where h̃2 is a function between −2a2

1
a2

2

∫ w

λ

ξ

Φy2 (ξ)dξ and −2a2
1

a2
2

∫ w

λ

ξ

Φy2 (ξ)dξ.
From (2.41), we obtain that

h̃2(w) ≤ −a2
1

a2
2

(w2−λ2)
(1+δ2) .

Then, using (2.45), it results that

|gy2(w) − gy2
(w)| ≤ 2a2

1
a2

2
exp

(
−

a2
1

a2
2

(w2−λ2)
(1+δ2)

) ∫ w

λ

∣∣∣∣Φy2 (ξ)−Φy2 (ξ)
Φy2 (ξ)Φy2 (ξ)

∣∣∣∣ ξ dξ

≤
a2

1
a2

2
δ2 p2 exp

(
−

a2
1

a2
2

(w2−λ2)
(1+δ2)

)
(w2 − λ2)‖y2 − y2‖∗∗. (2.46)

In addition, inequalities (2.41), (2.45), and (2.46) yield to

|Qy2(η) − Qy2
(η)| ≤

∫ η

λ

∣∣∣∣∣∣∣∣
gy2(w)

(
Φy2

(w) − Φy2(w)
)

+ Φy2(w)
(
gy2(w) − gy2

(w)
)

Φy2(w)Φy2
(w)

∣∣∣∣∣∣∣∣ dw

≤ δ2 p2

[∫ η

λ

exp
(
−

a2
1

a2
2

(w2−λ2)
(1+δ2)

)
dw +

a2
1

a2
2

∫ η

λ

(
w2 − λ2

)
exp

(
−

a2
1

a2
2

(w2−λ2)
(1+δ2)

)
dw

]
‖y2 − y2‖∗∗

≤
a2
a1

δ2 p2
4 exp

(
a2

1λ
2

a2
2(1+δ2)

) [
2(1 + δ2) a1

a2
λ exp

(
−

a2
1λ

2

(1+δ2)a2
2

)
+
√
π
√

1 + δ2 (3 + δ2)
]
‖y2 − y2‖∗∗. (2.47)

Therefore, from (2.42)–(2.46), we have that

|F2(y2)(η) − F2(y2)(η)| =

∣∣∣∣∣∣ Qy2
(η)

Qy2
(+∞)

−
Qy2(η)

Qy2(+∞)

∣∣∣∣∣∣
≤

1
Qy2

(+∞)

(
|Qy2

(+∞) − Qy2
(+∞)| + |Qy2(η) − Qy2

(η)|
)

≤
δ2 p2(1+δ2)
√
π

G
(

a1λ
a2

) [
2(1 + δ2)a1

a2
λ +
√
π
√

1 + δ2 (3 + δ2) exp
(

a2
1λ

2

a2
2(1+δ2)

)]
‖y2 − y2‖∗∗

= ε2(λ)‖y2 − y2‖∗∗, (2.48)

where ε2(λ) is given by (2.37) and G is defined by (2.38).
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c) First, notice that K2 is a closed subset of the Banach space of the continuous and bounded
functions on [λ,+∞) given by Cb[λ,+∞) endowed with the supremum norm ‖ · ‖∗∗ (see [41–43]).
In addition, from [40] we know that G is an increasing function that satisfies G(0) = 1 and
G(+∞) = +∞. Then, it is clear that ε2(λ) given by (2.37) is an increasing function that satisfies

ε2(0) = δ2 p2(1 + δ2)3/2(3 + δ2),

and
ε2(+∞) = +∞.

The assumption (2.40) implies that ε2(0) < 1, therefore there exists a unique L = ε−1
2 (1) such

that ε2(λ) < 1 for all 0 < λ < L. As a consequence, the operator F2 becomes a contraction, and
applying the fixed point Banach theorem, we conclude the existence and uniqueness of a fixed
point ŷ2 ∈ K2 of F2 for each 0 < λ < L.

�

The following result is a direct consequence of the Theorems 2 and 3.

Corollary 4. Suppose that (2.22) and (2.40) hold, then for each 0 < λ < L there exists a unique
solution ŷ1 ∈ K1, ŷ2 ∈ K2 to the ordinary differential problems (2.7)–(2.9) and (2.10)–(2.12),
respectively, where L is given by (2.39), K1 by (2.15), and K2 is defined by (2.32).

Now, we will provide the existence of the solution to the ordinary differential problems (2.7)–(2.9)
and (2.10)–(2.12) coupled with (2.13). Taking into account Corollary 4, it remains to analyze the
existence of the solution to Eq (2.13), which can be rewritten as

V(λ) = 2λ, 0 < λ < L, (2.49)

where

V(λ) = Ste1
fy∗1

(λ)

Ψy∗1
(λ)Py∗1

(λ)
−

a2
2

a2
1

Ste2
gy∗2

(λ)

Φy∗2
(λ)Qy∗2

(+∞)
. (2.50)

Lemma 5. Suppose that (2.22) and (2.40) hold. For each 0 < λ < L, where L is given by (2.39), the
following inequalities hold:

V1(λ) ≤ V(λ) ≤ V2(λ), (2.51)

where

V1(λ) = 2
√
π

 Ste1
(1+δ1)3/2

exp(−λ2)

erf
(

λ
√

1+δ1

) − a2
a1

Ste2(1 + δ2)G
(

a1λ
a2

) , (2.52)

V2(λ) = 2
√
π

Ste1(1 + δ1)
exp

(
−

λ2

1+δ1

)
erf(λ) −

a2
a1

Ste2
(1+δ2)3/2 G

(
a1λ

a2
√

1+δ2

) , (2.53)

with G given by (2.38).

Proof. The proof is straightforward. �

Remark 6. Notice that the functionsV1 andV2 do not depend on ŷ1, ŷ2.
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Lemma 7. If we assume (2.22), (2.40), and

Ste1 <
(√
πL + a2

a1

Ste2
(1+δ2)3/2 G

(
a1L

a2
√

1+δ2

)) exp
(

L2

1+δ1

)
erf(L)

1+δ1
, (2.54)

where L is given by (2.39) and G is defined by (2.38), then there exists at least one solution λ̂ ∈ (0, L)
to the Eq (2.49).

Proof. Let us define W(λ) = V(λ) − 2λ, λ ∈ (0, L) where V is defined by (2.50). According to
Lemma 5, we have that

W(0) ≥ V1(0) = +∞,

and
W(L) ≤ V2(L) − 2L,

whereV1 andV2 are given by (2.52) and (2.53), respectively.
Notice that assumption (2.54) impliesW(L) < 0. Then, there exists at least one root λ̂ ∈ (0, L) of

the functionW, i.e., λ̂ is a solution to Eq (2.49). �

From Corollary 4 and Lemma 7, we can conclude the following main result:

Theorem 8. If (2.22), (2.40), and (2.54) hold, then there exists at least one solution ŷ1 ∈ K1, ŷ2 ∈ K2,
and λ̂ ∈ (0, L) to the ordinary differential problems (2.7)–(2.9) and (2.10)–(2.12) coupled with (2.13),
where L is given by (2.39), K1 by (2.15), and K2 is defined by (2.32), and λ̂ is one solution to Eq (2.49).

As a consequence, taking into account Theorem 1, we obtain the existence of solution to the Stefan
problem.

Theorem 9. If (2.22), (2.40), and (2.54) hold, then there exists at least one solution to the two-phase
Stefan problem (1.1)–(1.7) given by

T1(x, t) = T0 ŷ1

(
x

2a1
√

t

)
, 0 < x < s(t), t > 0, (2.55)

T2(x, t) = Tr ŷ2

(
x

2a1
√

t

)
, x > s(t), t > 0, (2.56)

s(t) = 2a1λ̂
√

t, t > 0, (2.57)

where ŷ1, ŷ2, and λ̂ are defined in Theorem 8.

3. Approximate solution to the two-phase Stefan problem applying a balance integral method

In this section, we are going to obtain an approximate solution to the two-phase Stefan
problem (1.1)–(1.7), applying a heat balance integral method described in the introduction.

In the liquid phase, taking an average of Eq (1.1) leads to the following equality:∫ s(t)

0

(
ρc1

∂T1

∂t
−
∂

∂x

(
k1(T1)

∂T1

∂x

))
dx = 0, (3.1)
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which, from condition (1.4), can be rewritten as

d
dt

∫ s(t)

0
T1(x, t)dx = a2

1

(
∂T1

∂x
(s(t), t) − (1 + δ1)

∂T1

∂x
(0, t)

)
. (3.2)

In the solid phase, for practical purposes, the method assumes the existence of a heat penetration
depth r(t) > s(t), called the thermal layer, beyond which there is no heat transfer. This is equivalent to
assume that for each x > r(t), the slab is at an equilibrium temperature, and so

∂T2

∂x
(r(t), t) = 0, (3.3)

therefore, condition (1.5) is replaced by condition

T2(r(t), t) = −Tr. (3.4)

If we integrate Eq (1.2) in the domain (s(t), r(t)), it results that∫ r(t)

s(t)

(
ρc2

∂T2

∂t
−
∂

∂x

(
k2(T2)

∂T2

∂x

))
dx = 0, (3.5)

which, according to conditions (1.4), (3.3), and (3.4), it is equivalent to

d
dt

∫ r(t)

s(t)
T2(x, t)dx = −a2

2
∂T2

∂x
(s(t), t) − Trṙ(t). (3.6)

The heat balance integral method suggests solving an approximate problem that involves Eqs (3.2)
and (3.6), making the heat equations (1.1) and (1.2) be satisfied only on the average. In addition, it
requires to choose approximate functions for each phase. In our problem, we settle an approximate
function T̃1 for the liquid phase, which adopts a quadratic profile in space given by

T̃1(x, t) = T0

A1

(
1 −

x
s̃(t)

)
+ B1

(
1 −

x
s̃(t)

)2

+ C1

 , 0 < x < s̃(t), t > 0, (3.7)

where A1, B1, and C1 are unknown constants. In the same manner, an approximate quadratic function
in space T̃2 is taken for the solid phase given by

T̃2(x, t) = Tr

A2

(
r(t) − x

r(t) − s̃(t)

)
+ B2

(
r(t) − x

r(t) − s̃(t)

)2

+ C2

 , s̃(t) < x < r(t), t > 0. (3.8)

Therefore, this heat balance integral method consists of solving an approximate problem P̃ that can
be stated as follows:

Find T̃1 of the form (3.7), T̃2 of the form (3.8), and s̃ = s̃(t) and r = r(t) that satisfy the average
heat equations (3.2), (3.6), and all the rest of the conditions of the two-phase Stefan problem. That
is to say: The Dirichlet boundary condition at x = 0 given by (1.3), the boundary condition at the
free boundary (1.4), the Stefan condition (1.6), the initial condition for the free boundary (1.7), and
conditions (3.3) and (3.4) on r(t).
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Theorem 10. There exists a unique solution to the problem P̃ given by

T̃1(x, t) = T0

A1

(
1 −

x
s̃(t)

)
+ (1 − A1)

(
1 −

x
s̃(t)

)2 , 0 < x < s̃(t), t > 0, (3.9)

T̃2(x, t) = Tr

( r(t) − x
r(t) − s̃(t)

)2

− 1
 , s̃(t) < x < r(t), t > 0, (3.10)

s̃(t) = 2a1λ̃
√

t, t > 0, (3.11)

r(t) = 2a1µ
√

t, t > 0, (3.12)

where

A1 =
6(1 + δ1) − 2λ̃2

λ̃2 + 3(2 + δ1)
, (3.13)

µ = R(̃λ) + λ̃, (3.14)

and λ̃ is the unique solution to the equation

3
a2

2

a2
1

= R(̃λ)
(
R(̃λ) + 3λ̃

)
, 0 < λ̃ < L̃, (3.15)

with

R(̃λ) =
a2

2

a2
1

2Ste2λ̃(
Ste1A1 − 2λ̃2

) , (3.16)

L̃ =

(
(C2 + 4D)1/2 −C

2

)1/2

, (3.17)

C = Ste1 + 3(2 + δ1), D = 3Ste1(1 + δ1). (3.18)

Proof. If T̃1 is given by (3.7), from conditions (1.3) and (1.4), we get that

B1 = 1 − A1, C1 = 0.

Therefore, T̃1 is given by (3.9).
In the same manner, taking into account that T̃2 is given by (3.8), by conditions (1.4), (3.3),

and (3.4), it follows that
A2 = 0, B2 = 1, C2 = −1.

Then, T̃2 adopts the form (3.10).
Substituting the profile for the liquid phase (3.9) into Eq (3.2) leads to the following ordinary

differential equation for s̃: (
1
3

+
A1

6

)
s̃(t)˙̃s(t) = a2

1 [−A1 + (1 + δ1)(2 − A1)] , (3.19)

which together with the initial condition s̃(0) = 0 allow us to deduce that s̃ is given by (3.11) with
λ̃ > 0 being an unknown constant to be determined. Therefore, from (3.19), we obtain that A1 is given
by (3.13).
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According to (3.9) and (3.10), the Stefan condition becomes equivalent to

−2Trk0
2 s̃(t)

ρ` ˙̃s(t)s̃(t) − k0
1A1T0

+ s̃(t) = r(t), (3.20)

from where we deduce that r is given by (3.12) and µ is an unknown coefficient to be determined. As
a consequence, we obtain that (3.20) implies that µ is given by (3.14).

Notice that, according to the statement of the problem, we need µ > λ̃. This means that R(̃λ) > 0,
or, equivalently, Ste1A1 − 2λ̃2 > 0. Taking into account that A1 is given by (3.13), this restriction can
be rewritten as p(̃λ) > 0 with p defined by

p(̃λ) = −λ̃4 − (Ste1 + 3(2 + δ1)) λ̃2 + Ste13(1 + δ1). (3.21)

Then, it is clear that there exists a unique L̃ = p−1(0) given by (3.17) that satisfies p(̃λ) > 0 for all
0 < λ̃ < L̃. Therefore, the restriction µ > λ̃ is satisfied if, and only if, 0 < λ̃ < L̃.

Finally, taking into account that the profile for T̃2 is given by (3.10), and from formulas (3.11)
and (3.12) for s̃ and r, respectively, the Eq (3.6) transforms into

−
2
3

(µ − λ̃2) + µ(µ + λ̃) =
a2

2

a2
1

, (3.22)

which implies that λ̃ must be a solution to the Eq (3.15) in the interval (0, L̃).
Defining the right hand side of Eq (3.15) by g, we immediately get that g(0) = 0 and g(L̃) = +∞.

Taking into account that A1 is a decreasing function on λ̃, it follows that R is an increasing function and
so it is the function g. Therefore, there exists a unique solution λ̃ in the interval (0, L̃) to the Eq (3.15).

�

Corollary 11. For constant thermal coefficients, i.e., δ1 = δ2 = 0, there exists a unique solution to the
problem P̃ given by (3.9)–(3.12) where

A1 =
6 − 2λ̃2

λ̃2 + 6
, (3.23)

µ is given by (3.14), and λ̃ is the unique solution to Eq (3.15) in (0, L̃) with

L̃ =

(
((Ste1 + 6)2 + 12Ste1)1/2 − (Ste1 + 6)

2

)1/2

, (3.24)

4. Numerical results

4.1. Constant thermal conductivity

First, we are going to test the accuracy of the heat balance integral method for the particular case
of constant thermal conductivity, taking into account that the exact solution to the classical two-phase
Stefan problem is available in the literature.

The exact solution to the two-phase Stefan problem (1.1)–(1.7) for k1 = k0
1, k2 = k0

2, i.e., δ1 = δ2 = 0,
is given by

T1(x, t) = T0

1 − erf
(

x
2a1
√

t

)
erf(λ)

 , 0 < x < s(t), t > 0, (4.1)
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T2(x, t) = Tr

erfc
(

x
2a1
√

t

)
erfc(λ)

− 1

 , x > s(t), t > 0, (4.2)

s(t) = 2a1λ
√

t, t > 0, (4.3)

where λ > 0 is the unique solution to the following equation:

Ste1
exp(−λ2)

erf(λ)
−

a2
2

a2
1

Ste2
exp(−λ2)
erfc(λ)

= λ
√
π, (4.4)

where Ste1 = c1T0
`
> 0 and Ste2 = c2Tr

`
> 0 are the Stefan numbers in each phase.

In Figures 1 and 2, we compare the exact and the approximate solutions to the classical two-phase
Stefan problem when Ste1 = 0.1, Ste2 = 0.9, a2

a1
= 1.1, T0 = 3◦C, and Tr = 1◦C. Figure 1 shows

the approximate free boundary x = s̃(t) given by (3.11) and the exact free boundary x = s(t) obtained
in (4.3) for t ∈ (0, 10). Figure 2 gives the approximate temperature T̃ given by (3.9) and (3.10) and the
exact temperature T given by (4.1) and (4.2) at t = 10s for x ∈ (0, 10). As it was expected, the exact
and the approximate temperatures have a discontinuous heat flux at their free boundaries.

Figure 1. Exact and approximate free boundary for Ste1 = 0.1, Ste2 = 0.9, a2
a1

= 1.1,
T0 = 3◦C, and Tr = 1◦C.
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Figure 2. Exact and approximate temperature at t = 10s for Ste1 = 0.1, Ste2 = 0.9, a2
a1

= 1.1,
T0 = 3◦C, and Tr = 1◦C.

4.2. Variable thermal conductivity

Notice first that from Theorem 9 for the existence of at least one solution to the two-phase Stefan
problem (1.1)–(1.7), we will need the following assumptions: (2.22), (2.40), and (2.54). However, note
that, from Theorem 10, we do not have any requirements to prove that there exists a unique solution to
the approximate two-phase Stefan problem P̃ that arises when we apply a heat balance integral method.

In this way, taking into account that the case δi = 0 was presented in the previous subsection,
we focus now on the case δi > 0 (i = 1, 2). Notice from Theorem 10 that the approximate solution
to the two-phase Stefan problem does not depend on the coefficients that characterize the thermal
conductivity of the solid region, that is, p2 and δ2. Bearing in mind (2.22) and (2.40), we choose p1, δ1

that guarantee the assumption:

1 ≤ p1 <
1

δ1(1 + δ1)3/2(3 + δ1)
, (4.5)

and Ste1 > 0 such as (2.54) holds.

In Figures 3 and 4, we set p1 = 1, Ste1 = 0.1, Ste2 = 0.9, a2
a1

= 1.1, T0 = 3◦C, and Tr = 1◦C.
Figure 3 shows the approximate free boundary x = s̃(t) defined by (3.11) for t ∈ (0, 6) varying δ1.
Figure 4 displays the approximate temperature T̃ given by (3.7) and (3.8) for x ∈ (0, 2) when t = 5s,
δ1 = 0.1, and δ1 = 0.2.
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Figure 3. Approximate free boundary varying δ1 for Ste1 = 0.1, p1 = 1, Ste2 = 0.9, a2
a1

= 1.1.

Figure 4. Approximate temperature at t = 5s varying δ1, for p1 = 1, Ste1 = 0.1, Ste2 = 0.9,
a2
a1

= 1.1, T0 = 3◦C, and Tr = 1◦C.
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5. Conclusions

A one-dimensional two-phase Stefan problem for the melting of a semi-infinite material with a
power-type temperature-dependent thermal conductivity imposing a Dirichlet condition at the fixed
face was considered. An equivalent ordinary differential problem was obtained through a similarity
transformation. Then, an integral problem was deduced and the existence of at least one analytical
solution was proved by using the Banach fixed point theorem. Moreover, approximate solutions
applying a heat balance integral method assuming a quadratic temperature profile in space were found.
The accuracy of this method was verified using the exact solution for the particular case with constant
thermal conductivity. Some numerical simulations were provided. Future works will involve a deeper
analysis with a more realistic boundary condition at the fixed face, specifically, a Robin type condition.
Additionally, other numerical methods can be developed in order to discuss the accuracy of the heat
balance integral method.
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