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Abstract: In this paper, we propose a minimization-based image denoising model for the removal of
mixed stripe and Gaussian noise. The objective function includes the prior information from both the
stripe noise and image. Specifically, we adopted a unidirectional regularization term and a nonconvex
group sparsity term for the stripe noise component, while we utilized a nonconvex fractional order
total variation (FTV) regularization for the image component. The priors for stripes enable adequate
extraction of periodic or non-periodic stripes from an image in the presence of high levels of Gaussian
noise. Moreover, the nonconvex FTV facilitates image restoration with less staircase artifacts and
well-preserved edges and textures. To solve the nonconvex problem, we employed an iteratively
reweighted ℓ1 algorithm, and then the alternating direction method of multipliers was adopted for
solving subproblems. This led to an efficient iterative algorithm, and its global convergence was
proven. Numerical results show that the proposed model provides better denoising performance than
existing models with respect to visual features and image quality evaluations.
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1. Introduction

Remote sensing images have been extensively used in various applications such as urban planning,
military operations, and environment monitoring [1,2]. However, during the image acquisition process,
remote sensing images are inevitably polluted by stripe noise, mainly due to the difference in the
responses of the detectors and the calibration error. On the other hand, Gaussian noise is typically
caused by the temperature of the sensor and the level of illumination in the environment that corrupts
every pixel. The stripe noise is usually mixed with random Gaussian noise. This mixture of noise not
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only degrades the image quality but also hampers the subsequent processing such as classification [3],
object segmentation [4], target detection [5], and image unmixing [6]. Therefore, removing this mixed
noise is an essential preprocessing step for remote sensing images. In this work, we focus on restoring
a remote sensing image in the presence of mixed stripes and Gaussian noise.

The removal of stripe noise in an image can be categorized as filtering-based methods, statistics-
based methods, and optimization-based methods. Filtering-based methods eliminate stripe noise by
truncating the stripe component in the transformed domain such as the Fourier transform [7], wavelet
domain [8], and the combined domain [9]. These algorithms are simple but they assume that the stripe
noise is periodic and identifiable in the power spectrum. Statistics-based methods such as moment
matching [10] and histogram matching [11] assume that the statistical features of each sensor are the
same. These methods have a low computational cost, but their performance is greatly affected by a
predetermined reference moment or histogram.

Optimization-based models consider an ill-posed inverse problem for the stripe noise removal and
utilize prior knowledge of the ideal image or the stripe noise as regularization [12–34]. For example,
Bouali and Ladjal [13] proposed a unidirectional total variation (UTV) model for MODIS image
destriping, by exploiting the direction feature of stripes. Several studies have developed the UTV
model using various regularizations [14–17]. Despite the satisfactory performance of these UTV-
based models, they directly restore the image without considering the characteristics of stripes, which
generates a loss of image details along with the stripes. To overcome this shortcoming, various works
make use of the structural property of stripes. In particular, in [18, 24], the ℓ0-norm was used to
constrain the global sparse distribution of stripes, but this assumption does not apply when the stripes
are very dense. Chang et al. [19] proposed an image decomposition model by employing a low-
rankness prior for stripes and TV regularization [35] for the image. They adopted the nuclear norm to
express the global redundancy of stripes. Meanwhile, Yang et al. [27] exploited the Schatten 1/2-
norm to characterize the low-rankness of stripes and unidirectional high-order TV for the image.
In [20, 22, 25, 34], the ℓ2,1-norm of stripes was suggested to promote the group sparsity of stripes.
These destriping methods perform well when the stripes satisfy the low-rankness or group sparsity
assumptions. However, these assumptions may be violated when the stripes are complex. To deal with
complex stripes such as irregular or partial stripes, Wang et al. [26] suggested a reweighted ℓ2,1-norm
regularization for stripes. However, this model only consider the features of stripes without prior image
information, hence it cannot capture a clean image in the presence of Gaussian noise. In this work, we
introduce a destriping model that enables restoring a clean image by simultaneously suppressing stripes
and Gaussian noise, by utilizing the group sparsity characteristic and directional feature of stripes.

TV regularization has been widely used in various image restoration problems because of its
edge-preserving advantage. However, TV tends to generate staircase artifacts in reconstructed
images as it pursues piecewise-constant solutions. To mitigate the staircase effect, higher-order TV
has been suggested; for example, second-order TV [36, 37], total generalized variation [38], and
hybrid TV [39, 40]. Different from this type of high-order TV, fractional-order TV (FTV) uses
derivatives with order greater than or equal to one, bringing a compact discrete form and thus yielding
computational advantage. FTV regularization takes neighboring pixel values into account, so it
preserves local geometric characteristics and thereby textures. Therefore, it has been adopted for
various image processing problems, such as image denoising [41–48], texture enhancement [49], and
super-resolution [50]. FTV has been empirically proven to suppress staircasing artifacts and improve
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the effectiveness of texture preservation. On the other hand, nonconvex regularization has attracted
attention because nonconvex regularizers have advantages over convex regularizers in maintaining
edges and details [51–53]. In various works [54–57], nonconvex higher-order TV has been developed,
which contributes to edges conservation and the reduction of the staircase effect. Also, many
efficient algorithms have been developed for solving nonconvex minimization problems. In particular,
iteratively convex majorization-minimization methods for solving nonsmooth nonconvex minimization
problems with convergence analysis have been proposed in [58], which are generalizations of the
iteratively reweighted ℓ1 algorithm (IRL1) proposed for compressive sensing [59]. In the present
work, we apply a nonconvex FTV regularziation to the image component to benefit from both FTV
and nonconvex regularization. Besides, we employ IRL1 to solve the proposed model, along with a
convergence analysis.

In this article, we introduce a novel image denoising model in the presence of a mixture of stripe and
Gaussian noises. In this work, we consider a relatively high level of Gaussian noise, unlike previous
works that consider a low level of Gaussian noise. To effectively remove the mixed noise and recover a
clean image, the proposed model exploits prior knowledge of both stripe noise and image components.
In particular, the group sparsity feature and directional property of stripes are utilized to extract stripe
noise. Besides, a nonconvex FTV is used for the image component to recover its smooth regions with
less staircase artifacts while preserving edges. To solve the proposed nonconvex model, we employ
the IRL1 algorithm and alternating direction method of multipliers [60–62] and provide a convergence
analysis.

The remainder of this article is organized as follows. In Section 2, we recall several optimization-
based destriping models and review the FTV. Section 3 introduces the proposed model for the removal
of stripes and Gaussian noise. An optimization algorithm for solving the proposed model is also
provided, and its convergence is proven. Section 4 presents the experimental results of the proposed
model, comparing it with several existing models. Finally, in Section 5, we summarize our work and
provide some remarks.

2. Background

2.1. Optimization-based destriping models

This section reviews several optimization-based models for stripe noise removal. In remote sensing
images, stripe noise typically includes additive and multiplicative noise components [12]. The
multiplicative noise can be described as additive noise by a logarithmic operation [63], thus stripe
noise can be regarded as additive noise. Therefore, the degradation model for the removal of stripe
noise is usually given by

f = u + s + n,

where f, u, s, and n : Ω → R, where Ω = {(x1, x2) : x1 = 1, 2, · · · ,M, x2 = 1, 2, · · · ,N} (M and
N denote the number of columns and rows of the 2D gray-scale image, respectively), represent the
observed image, the desired clear image, stipe noise, and additive Gaussian white noise, respectively.
Stripes are generally assumed to be vertical (x2-direction). If the stripes are horizontal, one can rotate
them to make the stripes vertical.
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First, Chang et al. [19] introduced an image decomposition model that simultaneously models the
characteristics of stripe and image components. Specifically, they utilized a low-rank constraint for
stripes and TV regularization for the image, which led to the following model:

min
u,s

1
2
∥f − u − s∥22 + λ1∥∇u∥1 + λ2∥s∥∗,

where λi (i = 1, 2) are regularization parameters. Here, ∥∇u∥1 is the anisotropic TV such as ∥∇u∥1 =
∥∇x1u∥1 + ∥∇x2u∥1, where ∇u = (∇x1u,∇x2u)T with ∇x1 and ∇x2 denoting the horizontal and vertical
derivative operators, respectively. ∥A∥∗ represents the nuclear norm of the matrix A, defined as the sum
of its singular values, i.e., ∥A∥∗ =

∑
i σi(A). This model performs well for handling vertical stripes, but

is not explicitly applicable to oblique stripes.
Wang et al. [25] proposed a novel unified destriping model to effectively exploit the low-rankness

and group sparsity of the oblique stripe noise:

min
u,s

1
2
∥f − u − s∥22 + λ1∥∇x1u∥1 + λ2∥τ ◦ s∥∗ + λ3∥τ ◦ s∥2,1,

where λi > 0 (i = 1, 2, 3) are parameters, and τ is the shear operator to transform the oblique stripe
noise vertically, which does not include rotation and filling up. ∥s∥2,1 =

∑
i ∥[s]i∥2 represents the group

sparsity, where [s]i is the i-th column of s. This model attains excellent performance on thin and regular
stripes, but it cannot effectively remove agglomerated, banded, and irregular stripes while generating
the staircase effect in restored images.

To overcome these drawbacks, the authors in [27] utilized a unidirectional higher-order TV
regularization for the image, and the Schatten 1/2-norm to characterize the low-rankness of stripes:

min
u,s

1
2
∥f − u − s∥22 + λ1∥∇x1u∥1 + λ2∥∇

2
x1 x1

u∥1 + λ3∥s∥1/2s1/2
,

where λi > 0 (i = 1, 2, 3) are parameters, ∇2
x1 x1

is the second-order gradient operator across the
horizontal direction, and ∥ · ∥1/2s1/2 is the Schatten 1/2-norm defined as ∥s∥1/2s1/2 =

∑
i σ

1/2
i with all singular

values σi of s. Despite the phenomenal destriping performance of the aforementioned models, the
low-rank prior for stripe noise may be violated in remote sensing images, such as the stripes with small
fragment cases.

On the other hand, there are various works [20, 21, 23, 24] that utilize the directional property of
stripes, i.e., unidirectional gradient sparsity regularization of s. Among them, the authors in [20]
proposed an image decomposition model that can handle both stripes and Gaussian noise:

min
u,s

1
2
∥f − u − s∥22 + λ1∥∇x1u∥1 + λ2∥∇x2u∥1 + λ3∥∇x2s∥1 + λ4∥s∥2,1,

where λi > 0 (i = 1, 2, 3, 4) are parameters. The term ∥∇x2s∥1 enforces that the stripe component has
good smoothness in vertical direction.

2.2. Fractional-order total variation

This subsection recalls fractional-order derivatives and FTV. Fractional-order derivatives are seen
as a generalization of the integer-order derivatives. Three well-known definitions of fractional-
order derivatives are the Riemann-Liouville, Grünwald-Letnikov, and Caputo definitions [64–66]. In
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particular, the Grünwald–Letnikov (GL) fractional-order derivative is based on the finite difference
method and is easy to implement. For one-dimensional signals f (x), x ∈ [a, x], the GL fractional
α-order derivative is defined as

Dα f (x) =
dα f (x)

dxα
= lim

h→0

1
hα

[ x−a
h ]∑

j=0

(−1) j

(
α

j

)
f (x − jh),

where α > 0, [b] is the integer such that b − 1 < [b] ≤ b, and
(
α
j

)
=

α(α−1)···(α− j+1)
j! is the combination

parameter.
For a function u : Ω → R, where Ω ⊂ R2 is an open and bounded set with compact support, let

∇αxi
u = ∂αu

∂xαi
(i = 1, 2) be the fractional α-order derivative Dαu of u along the xi-direction. Then, the

anisotropic fractional α-order TV is defined as∫
Ω

| ∇αu | dx =
∫
Ω

| ∇αx1
u | + | ∇αx2

u | dx, (2.1)

while its isotropic version is given by
∫
Ω

√
(∇αx1

u)2 + (∇αx2
u)2 dx.

If Ω = {(x1, x2) : x1 = 1, 2, · · · ,M, x2 = 1, 2, · · · ,N} is a discretized domain, then an image
u defined on Ω can be represented as a matrix in RN×M, and ui, j denotes the (i, j)-th element of u
(i = 1, ...,M, j = 1, ...,N). Then, its discrete fractional-order derivatives ∇αx1

u and ∇αx2
u are given by

(∇αx1
u)i, j =

K−1∑
k=0

(−1)kCα
k ui−k, j, (∇αx2

u)i, j =

K−1∑
k=0

(−1)kCα
k ui, j−k,

where K is the number of neighboring pixels used in computation of the fractional-order derivatives
at each pixel, and Cα

k denotes the generalized binomial coefficients as Cα
k =

Γ(α+1)
Γ(k+1)Γ(α−k+1) , with Γ(·)

denoting the Gamma function. For fixed α, the coefficients Cα
k rapidly tend to zero as k increases.

Then, the discretized version of FTV in (2.1) is given by ∥∇αu∥1 =
∑

i, j

| (∇αx1
u)i, j | + | (∇αx2

u)i, j | .

According to [43], the high-pass capability becomes stronger with larger α, so more texture regions
are preserved when α increases. The experimental results in the literature [41–48] show that FTV
performs well in terms of removing the staircase effect while preserving textures.

3. Proposed model and algorithm

In this section, we introduce a denoising model to remove both stripe noise and Gaussian noise. We
also present an optimization algorithm for solving the proposed model.

3.1. Proposed denoising model

We assume that the observed noisy image f : Ω→ R is degraded by both stripe noise and Gaussian
noise as follows:

f(x1, x2) = u(x1, x2) + s(x1, x2) + n(x1, x2), (3.1)
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where Ω = {(x1, x2) : x1 = 1, 2, · · · ,M, x2 = 1, 2, · · · ,N}. Here, u is the clean image, s represents
the periodic or non-periodic stripes that are vertical (x2-direction), and n represents the Gaussian noise
following the normal distribution, N(0, σ2), with a standard deviation σ.

In this work, unlike in previous works, the Gaussian noise level is considered to be relatively
high, hence we intend to restore the image u by eliminating both stripe noise and Gaussian noise
simultaneously. To effectively retrieve u from the data f in (3.1), we propose the following image
decomposition model:

min
u,s

1
2
∥f − u − s∥22 + λ1⟨ϕ(| ∇αx1

u |), 1⟩ + λ2⟨ϕ(| ∇αx2
u |), 1⟩ + λ3∥∇x2s∥1 + λ4

∑
x1

ψ(∥s(x1, ·)∥2), (3.2)

where ⟨·, ·⟩ denotes the inner product, λi > 0 (i = 1, 2, 3, 4) are regularization parameters, 1 < α < 2,
and ∥s(x1, ·)∥2 =

√∑
x2

s(x1, x2)2. Moreover, ϕ and ψ are given by the following nonconvex functions

ϕ(v) =
1
ρ

log(1 + ρv), ψ(w) = log(β + w),

where ρ > 0 controls the nonconvexity of FTV, and β > 0 is a small parameter.
The first term in (3.2) is a data-fidelity term that estimates the discrepancy between f and u+ s. The

second and third terms control the smoothness of u, which is a nonconvex version of the anisotropic
FTV. This FTV alleviates the staircase effect that is commonly seen in restored images from TV-based
models. The nonconvex function ϕ does not penalize the formulation with strong gradients of u, thus
protecting large details and textures in the image. On the other hand, at near-zero points (v → 0+),
it is preferable for ϕ(v) to have the same behavior as the linear function, v, so that u can be better
smoothed in homogeneous regions of the image. That is, the nonconvex function ϕ further enforces
the preservation of edges or discontinuties, so the use of the nonconvex FTV (NFTV) leads to higher
PSNR and SSIM values than using FTV, as shown in Figure 1. In fact, there are more choices for the
nonconvex function ϕ such as v q (0 < q < 1) and v

1+ρ v . However, it is hard to solve the minimization
problem involving the nonconvex q-norm regularizer because finding a limiting-supergradient of ∥ · ∥q
at zero is difficult. Besides, the fractional nonconvex function is more proper for the reconstruction
of piecewise-constant images since limv→∞ ϕ(v) = c (c is constant), while the logarithmic function is
suitable for the reconstruction of images that are no longer piecewise-constant since limv→∞ ϕ(v) = ∞,
as explained in [67]. There are many real synthetic aperture radar (SAR) images that are not piecewise-
constant; thus, we utilize the logarithmic function as our nonconvex function ϕ. The regularization
parameters λ1 and λ2 may be different. For example, when the Gaussian noise level is low, λ1 may be
chosen to be larger than λ2. However, as the Gaussian noise level increases, smoothing of u along the
x2-direction is also necessary, so λ2 must be close to λ1. In practice, we consider two Gaussian noise
levels, σ = 10 or 20, which are relatively high, so we set the values of λ1 and λ2 be the same.

The last two terms in (3.2) exploit the directional characteristics and group sparsity of stripe noise.
In particular, the fourth term is a unidirectional TV regularization of the stripe component that imposes
the sparsity of its vertical derivatives. Furthermore, the stripe component is composed of stripe lines
and stripe-free lines, and each line can be viewed as a group. Thus,

∑
x1
∥s(x1, ·)∥2 enforces the group

sparsity (GS) of stripes. However, ℓ2,1-norm is not able to effectively promote the group sparsity of
stripes in many cases [26, 59]. As a result, we characterize the intrinsic structure of stripes using a
nonconvex function ψ for ∥s(x1, ·)∥2. Likewise, w p (0 < p < 1) or w

β+w could be other options for the
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nonconvex function ψ. Figure 1 shows a comparison of the proposed model (3.2) with a model (3.2)
that includes the GS term,

∑
x1
∥s(x1, ·)∥2, instead of the nonconvex GS (NGS) term. The model (3.2)

with the GS term fails to properly extract the stripe noise, resulting in some traces of stripes in the
restored images. This can also be seen more clearly in the difference images in the second and forth
rows of Figure 1. Meanwhile, the proposed model (3.2), which includes the NGS term, more suitably
extracts the stripe noise from the images. This also leads to the restored images with better conserved
details and edges.

Original u∗ & f (a) FTV+NGS (b) NFTV+GS (c) NFTV+NGS

Figure 1. Restored images of the proposed model with (a) FTV and NGS terms, (b)
NFTV and GS terms, (c) NFTV and NGS terms. Data f with non-periodic stripes with
(r,m) = (70, 100) and Gaussian noise with σ = 10. First and third rows: original u∗ and
restored u, second and fourth rows: data f and u − u∗. PSNR/SSIM: (top) (a) 27.67/0.8767,
(b) 24.92/0.8530, (c) 27.98/0.8813, (bottom) (a) 27.41/0.8779, (b) 25.84/0.8666, (c)
27.83/0.8849.

3.2. Optimization algorithms for solving model (3.2)

In this section, we present an optimization algorithm for solving the proposed model in (3.2). Given
the matrix f ∈ RN×M, model (3.2) can be rewritten as

min
u,s

1
2
∥f − u − s∥22 + λ1⟨ϕ(| ∇αx1

u |), 1⟩ + λ2⟨ϕ(| ∇αx2
u |), 1⟩ + λ3∥∇x2s∥1 + λ4

∑
i

log(β + ∥[s]i∥2), (3.3)
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where [s]i is the i-th column of s, with i = 1, 2, ...M.
To solve the nonconvex problem (3.3), we first employ the IRL1 proposed in [58] for solving a

nonconvex minimization problem. Let us consider the following nonconvex minimization problem:
minz E1(z)+E2(G(z)),where E1 is a proper, lower semicontinuous and convex function, E2 is a concave
and coordinatewise nondecreasing function, and G is a coordinatewise convex function. Applying
IRL1 to this problem leads to the following iterative algorithm:

wℓ+1 ∈ ∂̄E2(G(zℓ)),

zℓ+1 := arg min
z

E1(z) + ⟨wℓ+1,G(z)⟩,
(3.4)

where ∂̄E2 := −∂(−E2) denotes the superdifferential of the function E2. For the global convergence
of IRL1, it is required that E1(z) + ⟨wℓ+1,G(z)⟩ is strongly convex with a constant independent of ℓ.
Thus, the authors in [58] suggest a modified version of IRL1 by adding a proximal term δ

2∥z − zℓ∥22 to
the convex surrogate problem in (3.4) with arbitrarily small δ > 0.

To apply IRL1 to model (3.3), we can set up as follows:

E1(u, s) =
1
2
∥f − u − s∥22 + λ3∥∇x2s∥1,

E2(v1, v2, t) = λ1⟨ϕ(v1), 1⟩ + λ2⟨ϕ(v2), 1⟩ + λ4

∑
i

log(β + ti), (3.5)

G(u, s) = (| ∇αx1
u |, | ∇αx2

u |, ∥[s]1∥2, ∥[s]2∥2, ..., ∥[s]M∥2),

where t = (t1, t2, ..., tM).
Then, we adopt the modified IRL1 in [58], which is obtained by adding two proximal terms, δ

2∥u −
uℓ∥22 and δ

2∥s − sℓ∥22:

wℓ+1
1 =

1
1 + ρ | ∇αx1

uℓ |
, wℓ+1

2 =
1

1 + ρ | ∇αx2
uℓ |

, (wℓ+1
3 )i =

1
β + ∥[sℓ]i∥2

, i = 1, · · · ,M

(uℓ+1, sℓ+1) := arg min
u,s

1
2
∥f − u − s∥22 + λ3∥∇x2s∥1 + λ1⟨wℓ+1

1 , | ∇αx1
u |⟩ + λ2⟨wℓ+1

2 , | ∇αx2
u |⟩

+λ4

∑
i

(wℓ+1
3 )i∥[s]i∥2 +

δ

2
∥u − uℓ∥22 +

δ

2
∥s − sℓ∥22,

(3.6)

where (λ1w1, λ2w2, λ4w3)T ∈ ∂̄E2(G(u, s)) with ∂̄E2 = ∇E2, and δ > 0 is a small parameter.
Based on the convergence of IRL1 in [58], we prove the global convergence of IRL1 (3.6) as

follows:

Theorem 1. Let {(uℓ, sℓ)} be the sequence generated by the IRL1 (3.6). Then, {(uℓ, sℓ)} converges to
(u∗, s∗) as ℓ → ∞, where (u∗, s∗) is a critical point of (3.3). Furthermore, the sequence {(uℓ, sℓ)} has
finite length:

∑∞
ℓ=0 ∥uℓ − uℓ+1∥2 + ∥sℓ − sℓ+1∥2 < ∞.

Proof. We need to check the assumptions in Theorem 2 in [58]. First, the objective function in (3.3)
(or E(u, s) = E1(u, s) + E2(G(u, s)) from (3.5)) is clearly coercive and bounded below. In addition,
due to the proximal terms, δ

2∥u − uℓ∥22 and δ
2∥s − sℓ∥22, the objective function of the convex subproblem

in (3.6) is strongly convex with a constant independent of ℓ. Next, we show that the following three
assumptions are satisfied:
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(a) The objective function E(u, s) has the Kurdyka–Łojasiewicz (KL) property at a cluster point.
(b) E2(v1, v2, t) has locally Lipschitz continuous gradients on a compact set containing all the points

G(uℓ, sℓ).
(c) The convex function z 7→ ⟨wℓ+1, z⟩ for all ℓ, where z = (v1, v2, t)T and w = (w1,w2,w3)T , has a

globally Lipschitz continuous gradient with a common Lipschitz constant.

a) A function is called a KL function if the function is lower semicontinuous and KL inequality
holds for every point in the domain. According to [68], polynomials, indicator function, ∥ · ∥1, and ∥ · ∥2
are KL functions. Moreover, the log and exponential functions are also KL functions. Indeed, they
are included in the log–exp structure [69], and the functions that are definable in such an o-minimal
structure have the KL property. Hence, the objective function in (3.3) is a KL function.

b) The gradient and Hessian of E2 are given by

∇E2(v1, v2, t) =
(

λ1

1 + ρv1
,

λ2

1 + ρv2
,
λ4

β + t 1
, ...,

λ4

β + t M

)T

,

∇2E2(v1, v2, t) =



−
λ1ρ

(1+ρv1)2 0 0 · · · 0
0 −

λ2ρ

(1+ρv2)2 0 · · · 0
0 0 −

λ4
(β+t1)2 · · · 0

...
...

...
. . .

...

0 0 0 · · · −
λ4

(β+tM)2


.

Hence, ∥∇2E2∥∞ ≤ max(λ1ρ, λ2ρ, λ4/β
2) on the image of G. Thus, E2 has a Lipschitz continuous

gradient.
c) Trivially, z 7→ ⟨wℓ+1, z⟩ has a globally Lipschitz continuous gradient with a common Lipschitz

constant 0.
Therefore, all the assumptions of Theorem 2 in [58] are satisfied, so the theorem is proved. □

Now we solve the (u, s)-subproblem in IRL1 (3.6). This subproblem is convex, but it involves
non-differentiable terms. To resolve this problem, numerous efficient convex optimization algorithms
have been suggested, such as [60–62, 70, 71]. In particular, we adopt the alternating direction method
of multipliers (ADMM) in [60–62]. The ADMM is a widely-known algorithm for solving linearly
constrained convex optimization problems, with its convergence proven in [61, 62].

First, we introduce auxiliary variables pi (i = 1, 2, 3, 4), based on the variable splitting technique.
Hence, the (u, s)-subproblem in (3.6) can be converted into the following constrained minimization
problem:

min
u,s,p1,p2,p3,p4

1
2
∥f − u − s∥22 + λ1⟨wℓ+1

1 , | p1 |⟩ + λ2⟨wℓ+1
2 , | p2 |⟩

+λ3∥p3∥1 + λ4

∑
i

(wℓ+1
3 )i∥[p4]i∥2 +

δ

2
∥u − uℓ∥22 +

δ

2
∥s − sℓ∥22,

subject to: p1 = ∇
α
x1

u, p2 = ∇
α
x2

u, p3 = ∇x2s, p4 = s. (3.7)

The augmented Lagrangian function of problem (3.7) is given by

AIMS Mathematics Volume 9, Issue 8, 21094–21124.



21103

Lµ(u, s, p⃗, h⃗) =
1
2
∥f − u − s∥22 + λ1⟨wℓ+1

1 , | p1 |⟩ + λ2⟨wℓ+1
2 , | p2 |⟩

+λ3∥p3∥1 + λ4

∑
i

(wℓ+1
3 )i∥[p4]i∥2 +

δ

2
∥u − uℓ∥22 +

δ

2
∥s − sℓ∥22

−⟨h1,p1 − ∇
α
x1

u⟩ +
µ

2
∥p1 − ∇

α
x1

u∥22 − ⟨h2,p2 − ∇
α
x2

u⟩ +
µ

2
∥p2 − ∇

α
x2

u∥22

−⟨h3,p3 − ∇x2s⟩ +
µ

2
∥p3 − ∇x2s∥

2
2 − ⟨h4,p4 − s⟩ +

µ

2
∥p4 − s∥22,

where p⃗ = (p1,p2,p3,p4)T , h⃗ = (h1,h2,h3,h4)T , where hi ∈ R
N×M×2 (i = 1, 2, 3) and h4 ∈ R

N×M are the
Lagrangian multipliers, and µ > 0 is a penalty parameter.

Then, the ADMM applied to (3.7) brings the following iterative algorithm:

(uk+1, sk+1) := arg min
u,s
Lµ(u, s, p⃗

k
, h⃗

k
)

p⃗k+1 := arg min
p⃗
Lµ(uk+1, sk+1, p⃗, h⃗

k
),

hk+1
1 = hk

1 − γµ(pk+1
1 − ∇αx1

uk+1),
hk+1

2 = hk
2 − γµ(pk+1

2 − ∇αx2
uk+1),

hk+1
3 = hk

3 − γµ(pk+1
3 − ∇x2sk+1),

hk+1
4 = hk

4 − γµ(pk+1
4 − sk+1),

(3.8)

where γ ∈ (0,
√

5+1
2 ). We can attain the following convergence results according to the convergence

in [61]:

Theorem 2. If the sequence {(uk, sk, p⃗k
, h⃗

k
)} is generated by ADMM in (3.8) and γ ∈ (0,

√
5+1
2 ), then

{(uk, sk, p⃗k)} strongly converges to a limit point (u∗, s∗, p⃗∗), {h⃗
k+1
− h⃗

k
} converges to 0, and {h⃗

k
} is

bounded. Moreover, if h⃗∗ is a weak cluster point of h⃗
k
, then (u∗, s∗, p⃗∗, h⃗∗) is a saddle point of the

augmented Lagrangian Lµ.

Now we solve the (u, s)-subproblem in ADMM (3.8). This subproblem can be reformulated as the
following least squares problem:

(uk+1, sk+1) := arg min
u,s

1
2
∥f − u − s∥22 +

δ

2
∥u − uℓ∥22 +

δ

2
∥s − sℓ∥22

+
µ

2
∥∇αx1

u − pk
1 + hk

1/µ∥
2
2 +

µ

2
∥∇αx2

u − pk
2 + hk

2/µ∥
2
2

+
µ

2
∥∇x2s − pk

3 + hk
3/µ∥

2
2 +

µ

2
∥s − pk

4 + hk
4/µ∥

2
2.

The first-order optimality condition leads to the following normal equation:[
B1 I
I B2

] [
u
s

]
=

[
RHS u

RHS s

]
, (3.9)

where B1, B2, RHS u, and RHS s are given by

B1 = (1 + δ)I + µ(∇αx1
)T∇αx1

+ µ(∇αx2
)T∇αx2

,
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B2 = (1 + δ + µ)I + µ(∇x2)
T∇x2 ,

RHS u = f + δuℓ + µ(∇αx1
)T (pk

1 − hk
1/µ) + µ(∇αx2

)T (pk
2 − hk

2/µ),
RHS s = f + δsℓ + µ(∇x2)

T (pk
3 − hk

3/µ) + µ(pk
4 − hk

4/µ).

Here, (∇α)T = (−1)αdivα, where divαq ∈ RN×M for q = (q1,q2) ∈ RN×M×2 is the discrete fractional-
order divergence defined as

(divαq)i, j = (∇αx1
q1)i, j + (∇αx2

q2)i, j.

The elements B1, B2, and I in Eq (3.9) can be diagonalized by the 2-dimensional fast Fourier transform
(FFT2) under the periodic boundary condition. Thus, the block matrix in the left-hand side of Eq (3.9)
can be diagonalized by using FFT2. Therefore, the solution (uℓ+1, sℓ+1) can be obtained exactly using
the inversion formula of the block matrix.

Next, we solve the p⃗-subproblem in ADMM (3.8). The variables pi are independent of each other,
so we can solve the subproblem for each pi:

pk+1
1 := arg min

p1

λ1⟨wℓ+1
1 , | p1 |⟩ +

µ

2
∥p1 − ∇

α
x1

uk+1 − hk
1/µ∥

2
2,

pk+1
2 := arg min

p2

λ2⟨wℓ+1
2 , | p2 |⟩ +

µ

2
∥p2 − ∇

α
x2

uk+1 − hk
2/µ∥

2
2,

pk+1
3 := arg min

p3

λ3∥p3∥1 +
µ

2
∥p3 − ∇x2s

k+1 − hk
3/µ∥

2
2, (3.10)

pk+1
4 := arg min

p4

λ4

∑
i

(wℓ+1
3 )i∥[p4]i∥2 +

µ

2
∥p4 − sk+1 − hk

4/µ∥
2
2.

The p1-subproblem in (3.10) has the closed form solution as

pk+1
1 = shrink

(
∇αx1

uk+1 + hk
1/µ, λ1wℓ+1

1 /µ
)
, (3.11)

where shrink is the soft-thresholding operator defined as

shrink(a,b)t =
at

| at |
·max(| at | −bt, 0), t ∈ Ω.

Similarly, pk+1
2 , pk+1

3 , and pk+1
4 are explicitly achieved as

pk+1
2 = shrink

(
∇αx2

uk+1 + hk
2/µ, λ2wℓ+1

2 /µ
)
,

pk+1
3 = shrink

(
∇x2s

k+1 + hk
3/µ, λ3/µ

)
, (3.12)

[pk+1
4 ]i =

[p̃k
4]i

∥[p̃k
4]i∥2

·max
(
∥[p̃k

4]i∥2 − λ4(wℓ+1
3 )i/µ, 0

)
,

with p̃k
4 = sk+1 + hk

4/µ and i = 1, ...,M.
Consequently, the proposed algorithm is summarized in Algorithm 1.
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Algorithm 1 IRL1 for solving model (3.2).

1: Input: choose the parameters λi (i = 1, 2, 3, 4), α, β, ρ, δ, µ > 0, γ ∈ (0,
√

5+1
2 ) and the maximum

numbers of iterations Nout, Nin.
2: Initialization: u0 = f, s0 = 0, p0

i = 0, h0
i = 0 (i = 1, 2, 3, 4).

3: for k = 0, 1, 2, · · ·Nout do
4: Compute wℓ+1

i (i = 1, 2, 3) using (3.6),
5: for k = 0, 1, 2, · · · ,Nin do
6: Compute (uk+1, sk+1) by solving Eq (3.9) using FFT2,
7: Compute pk+1

i (i = 1, 2, 3, 4) using (3.11) and (3.12),
8: Update hk+1

i (i = 1, 2, 3, 4) using (3.8),
9: end for

10: end for
11: Output: restored image u.

4. Numerical experiments

This section presents numerical results for the removal of mixed stripe and Gaussian noise. We
compare the performance of the proposed model with existing image decomposition models such as
LRSID [19], LRGS [25], TVGS [20], Schatten [27], and ELRTV [30]. In the LRGS, Schatten, and
ELRTV models, they use a unidirectional TV for the image component and thus fail to adequately
remove the Gaussian noise in the presence of a high level of Gaussian noise. Thus, after removing
the stripe noise by adopting these models, we utilize the TV denoising model [35] as a postprocessing
step to remove the Gaussian noise. We call these models LRGS+TV, Schatten+TV, and ELRTV+TV,
respectively. All numerical results are available in the material at the following link: https://han.
gl/ouTofQ.

4.1. Experimental setting

The original remote sensing images are given in Figure 2, and the range of intensity values in the
original images is assumed to be [0, 1]. We consider two types of stripe noise such as periodic or non-
periodic stripe noise and assume that the stripes are vertical. Specifically, we randomly select columns
of the image to add stripes. In the case of periodic stripes, initial stripes are randomly selected from the
first 32 (period=32) columns, and these stripes are periodically added to the original images. On the
other hand, non-periodic stripes are randomly selected from the entire columns. The amount of stripe
noise is determined by the percentage of degraded region, r, and the intensity of the added stripes, m.
In our experiments, we select r ∈ {30, 50, 70} and m ∈ {50, 100}. Moreover, the Gaussian noise level,
σ, is set to 10 or 20. The numerical experiments were implemented using MATLAB R2020b on a
64-bit Windows 10 operating system using an Intel Xeon Silver CPU at 2.40 GHz and 64 GB memory.

To estimate the quality of the restored images, we compute the peak-signal-to-noise-ratio (PSNR)
value, which is defined as

PSNR(u,u∗) = 10 log10

(
MN

∥u − u∗∥22

)
,
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where u and u∗ represent the recovered image and the original image, respectively, and MN is the size
of the image. We also calculate the structure similarity (SSIM) index [72], which is a perception-based
measure that carries visual information about the structure of the objects.

(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Figure 2. Original images. (a) MODIS-BAND20 (512×512), (b) BAND20 (512×512),
(c) Original band30 (307×307), (d) ikonos rio (512×512), (e) ikonos rio1 (512×512), (f)
ikonos helliniko (512×512), (g) ikonos helliniko1 (512×512), (h) vatican (512×512), (i)
image02162021 (502×616), (j) image02172021 (512×512).

The stopping criterion of the proposed model is given by

∥uℓ − uℓ−1∥2

∥uℓ∥2
< tol or ℓ >MaxIter,

where tol is a given tolerance number, and MaxIter is a given maximum iteration number. For our
outer loop, we set tol = 10−4 and Nout = 400, and for our inner loop, Nin = 1. We use the stopping
conditions given in their own works for existing models.

The parameters are tuned to achieve the best visual quality of restored image. The parameter settings
of the proposed model are as follows. First, we set the same values for the regularization parameters
λ1 and λ2, which depend on the level of Gaussian noise. When σ = 10, λ1 and λ2 are chosen from
{0.02, 0.03}, and when σ = 20, they are chosen from {0.04, 0.05, 0.06}. Meanwhile, the parameter λ3

and λ4 are the regularization parameters for the stripe noise component. λ3 is fixed at 0.6, while λ4 is
chosen more carefully than λ3. Specifically, for periodic stripes, λ4 ∈ {0.05, 0.08, 0.1, 0.2, 0.4, 0.6, 0.8},
while for non-periodic strips, λ4 ∈ {0.01, 0.03, 0.05, 0.08, 0.1, 0.2, 0.4} when r = 30 or 50, and λ4 ∈

{0.005, 0.01, 0.03, 0.05, 0.08} when r = 70. The values of λ1 and λ4 are presented in each figure. The
parameter β in the NGS term is set to 10−15, and the parameter ρ in the NFTV terms is set to 1. The
derivative order α in the FTV terms is set to 1.3 or 1.5, and K is set to 20. The parameter δ in IRL1 is
fixed at 0.0001. The parameters µ and γ in the ADMM algorithm are set to 0.1 and 1.618, respectively.

4.2. Denoising results with periodic stripes and Gaussian noise

In this section, we present the denoising results in the presence of periodic stripe noise and Gaussian
noise.
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First, Figure 3 presents the data images of a natural image in the presence of periodic stripe noise
with r = 50 or 70 and m = 100 and Gaussian noise with σ = 20, while Figures 4 and 5 present the
denoising results. The difference images between the restored and original images are also presented
to effectively show the denoising results. First, it can be seen that LRSID, LRGS+TV, Schatten+TV,
and ELRTV+TV models fail to correctly decompose the stripe and image components. This leads
to the leftover of some stripes or loss of details in the restored images, which are clearly visible
in the difference images. Meanwhile, our model and TVGS better extract the stripe noise than the
aforementioned models that utilize the low-rankness of stripes. This is due to the use of a directional
term and a group sparsity term for the stripes. Comparing our model with TVGS, their restored
images look very similar, but we can see from the difference images that our model removes the
stripe noise better than TVGS. This shows the effectiveness of our nonconvex group sparsity term for
stripes extraction. Moreover, our FTV regularization helps mitigate the staircase artifacts found in
the restored images of TVGS. Besides, our nonconvex FTV regularization allows the conservation of
finer features and details, so the difference images of our model include much fewer image structures
than other models. All these observations result in higher PSNR and SSIM values for our model than
TVGS. As a result, these examples show better denoising performance of the proposed model than
other models, by effectively removing both stripes and Gaussian noise in a natural image. Since we
focus on denoising of SAR images in this work, we put more denoising results for natural images in
the supplementary file at the following link: https://url.kr/6wj8n7.

u∗ f (r = 50) f (r = 70)

Figure 3. Original image u∗ and data images with periodic stripes with r = 50 or 70 and
m = 100 and Gaussian noise with σ = 20.

(a) 23.19/0.7139 (b) 27.45/0.8463 (c) 24.77/0.8431 (d) 24.59/0.8381 (e) 23.56/0.8177 (f) 29.34/0.8887

Figure 4. Destriping results of periodic stripes when (r,m) = (50, 100) and σ = 20.
First row: restored u, second row: u − u∗. (a) LRSID, (b) TVGS, (c) LRGS+TV, (d)
Schatten+TV, (e) ELRTV+TV, (f) Proposed. PSNR/SSIM of u are presented. Parameter
(λ1, λ4): (0.05, 0.4).
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(a) 23.24/0.7240 (b) 26.14/0.8396 (c) 22.96/0.7974 (d) 24.37/0.8354 (e) 23.05/0.8054 (f) 28.79/0.8893

Figure 5. Destriping results of periodic stripes when (r,m) = (70, 100) and σ = 20. First
row: restored u, second row: u−u∗. (a) LRSID, (b) TVGS, (c) LRGS+TV, (d) Schatten+TV,
(e) ELRTV+TV, (f) Proposed. PSNR/SSIM of u are presented. Data f is given in Figure 3.
Parameter (λ1, λ4): (0.05, 0.2).

Figures 6 and 7 present the denoising results tested on real SAR images in the presence of periodic
stripe noise with r = 30, 50, or 70 and m = 50 and Gaussian noise with σ = 20. Similar to the previous
results, the LRSID, LRGS+TV, Schatten+TV, and ELRTV+TV models struggle to properly extract
stripes from the images compared with our model and TVGS. Also, while TVGS appears to provide
similar restored images to our model, our model separates the stripe and image components better than
TVGS, which can be seen more clearly in the difference images. Thus, these also show the effective
denoising performance of the proposed model for SAR images.

u∗ and f (r = 30) u∗ and f (r = 50) u∗ and f (r = 70)

(a) 26.30/0.7053 (b) 26.77/0.7053 (c) 26.76/0.7057 (d) 26.13/0.6872 (e) 26.06/0.7115 (f) 26.95/0.7113

Figure 6. Destriping results of periodic stripes when (r,m) = (30, 50) and σ = 20. Second
row: restored u, third row: u−u∗. (a) LRSID, (b) TVGS, (c) LRGS+TV, (d) Schatten+TV, (e)
ELRTV+TV, (f) Proposed. PSNR/SSIM of u are presented. Parameter (λ1, λ4): (0.05, 0.6).
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(a) 26.15/0.6642 (b) 26.90/0.6979 (c) 26.14/0.6959 (d) 25.66/0.6824 (e) 25.73/0.6963 (f) 27.23/0.7133

(a) 25.56/0.7768 (b) 25.83/0.7836 (c) 24.94/0.7795 (d) 24.82/0.7708 (e) 24.72/0.7824 (f) 26.12/0.7936

Figure 7. Destriping results of periodic stripes when r = 50 (first and second rows), r =
70 (third and fourth rows), while m = 50 and σ = 20. First and third rows: restored u,
second and fourth rows: u − u∗. (a) LRSID, (b) TVGS, (c) LRGS+TV, (d) Schatten+TV, (e)
ELRTV+TV, (f) Proposed. PSNR/SSIM of u are presented. Data f are given in Figure 6.
Parameter (λ1, λ4): (top) (0.04, 0.2), (bottom) (0.04, 0.2).

In Figure 8, we present the denoising results of our model with different values of m (m = 50 or
100), while r = 50 and σ = 20 are fixed, and we compare our model with TVGS. We can see that our
model separates stripes with image structures better than TVGS and that our difference images have
much fewer streaks and image edges. On the other hand, despite the use of different intensity values for
the stripes, both models supply similar visual quality in the restored images, leading to similar PSNR
and SSIM values. Indeed, throughout the experiments, the denoising results of our model are similar
when m = 50 and m = 100, in terms of visual quality of restored images and PSNR and SSIM values.

Table 1 presents the mean PSNR and SSIM values of all methods tested on all images in Figure 2,
in the presence of periodic stripe noise and Gaussian noise. The PSNR and SSIM values for all image
cases are given in the material at the following link: https://han.gl/ouTofQ. As the noise levels
σ or r increase, the PSNR and SSIM values decrease. In all cases, the proposed model provides the
highest average PSNR and SSIM values. This also verifies the superior denoising performance of our
model over other models when both periodic stripes and Gaussian noise exist.
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(a) m = 50 (b) TVGS: 25.33/0.7734 (c) Proposed: 26.00/0.7947

(a) m = 100 (b) TVGS: 25.23/0.7693 (c) Proposed: 25.98/0.7943

Figure 8. Destriping results of periodic stripes with different m = 50 (top), m = 100
(bottom), while r = 50 and σ = 20. Second and fourth columns: restored u, third and
fifth columns: u − u∗. PSNR/SSIM of u are presented. Parameter (λ1, λ4): (top) (0.04, 0.2),
(bottom) (0.04, 0.4).

Table 1. Average PSNR and SSIM values of all models for periodic stripe noise with (r,m)
and Gaussian noise with σ.

r 30 50 70

m 50 100 50 100 50 100

σ = 10

LRSID 28.20/0.8760 27.27/0.8640 27.86/0.8733 27.35/0.8665 28.02/0.8749 27.41/0.8664
TVGS 29.06/0.8849 29.02/0.8848 28.78/0.8809 28.74/0.8807 28.59/0.8784 28.51/0.8775
LRGS 26.94/0.8075 26.93/0.8073 26.86/0.8070 26.84/0.8071 26.72/0.8062 26.70/0.8060

LRGS+TV 27.09/0.8599 27.09/0.8600 27.01/0.8588 26.98/0.8586 26.85/0.8575 26.83/0.8574
Shatten 26.69/0.7945 26.31/0.7919 26.43/0.7920 26.59/0.7943 26.56/0.7941 26.44/0.7923

Shatten+TV 27.51/0.8688 27.04/0.8656 27.09/0.8594 27.37/0.8678 27.34/0.7941 27.11/0.7923
ELRTV 25.73/0.7918 25.51/0.7896 25.77/0.7923 25.74/0.7921 25.78/0.7923 25.75/0.7921

ELRTV+TV 25.94/0.8456 25.71/0.8433 25.99/0.8458 25.96/0.8455 25.99/0.8459 25.97/0.8458
Our 29.26/0.8878 29.26/ 0.8879 29.06/0.8847 29.07/0.8849 28.90/ 0.8825 28.87/0.8822

σ = 20

LRSID 25.01/0.7595 24.43/0.7480 24.92/0.7595 24.50/0.7525 25.05/0.7614 24.65/0.7552
TVGS 25.60/0.7783 25.57/0.7784 25.42/0.7742 25.38/0.7732 25.28/0.7702 25.21/0.7695
LRGS 22.33/0.6149 22.31/0.6147 22.29/0.6148 22.29/0.6146 22.24/0.6145 22.23/0.6139

LRGS+TV 24.83/0.7625 24.81/0.7630 24.75/0.7619 24.76/0.7619 24.67/0.7607 24.66/0.7608
Shatten 21.86/0.6022 21.73/0.6001 21.84/0.6024 21.80/0.6010 21.83/0.6016 21.81/0.6015

Shatten+TV 24.72/0.7564 24.49/0.7547 24.67/0.7566 24.63/0.7566 24.71/0.7570 24.64/0.7566
ELRTV 21.92/0.6064 21.81/0.6047 21.93/0.6066 21.91/0.6060 21.93/0.6066 21.90/0.6062

ELRTV+TV 24.29/0.7572 24.11/0.7551 24.30/0.7573 24.27/0.7567 24.30/0.7569 24.27/0.7570
Our 25.79/0.7861 25.78/0.7864 25.63/0.7820 25.62/0.7817 25.41/0.7766 25.45/0.7775

In Figure 9, we present the denoising results of our model at different periods, such as P = 16, 32,
and 64. We can observe that our model provides similar denoising performance despite the change of
P. In Table 2, we present the PSNR and SSIM values of all models tested on three different images,
when P = 16, 32, and 64. In the case of LRGS+TV, P = 32 provides higher PSNR values than other
cases. LRSID and TVGS supply the lowest PSNR values when P = 64, whereas Schtten+TV and
ELRTV+TV provide the lowest PSNR values when P = 16. However, our model provides similar
PSNR and SSIM values for different values of P, and our PSNR values are higher than other models
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for all cases. This indicates that our model is not sensitive to the value of P in contrast to other models.

u∗ (a) P = 16 (b) P = 32 (c) P = 64

(a) 25.24/0.8095 (P = 16) (b) 25.20/0.8076 (P = 32) (c) 25.21/0.8092 (P = 64)

Figure 9. Destriping results of periodic stripes with different periods P = 16, 32, 64, when
(r,m) = (70, 100) and σ = 20. First, third, and fifth columns: restored u. Second, fourth, and
sixth columns: u − u∗. PSNR/SSIM of u are presented. Parameter (λ1, λ4): (a) (0.04, 0.2),
(b) (0.04, 0.4), (c) (0.04, 0.1).

Table 2. PSNR and SSIM values of all models for periodic stripe noise with (r,m) =
(70, 100) and different periods P and Gaussian noise with σ = 20.

Image P LRSID TVGS LRGS+TV Shatten+TV ELRTV+TV Our

(a)
16 24.80/0.6388 26.72/0.6921 25.69/0.6921 24.81/0.6635 24.81/0.6774 27.15/0.7072
32 25.38/0.6660 26.43/0.6919 25.99/0.6966 25.69/0.6843 25.69/0.6984 27.07/0.7088
64 23.54/0.6157 26.32/0.6628 25.81/0.6876 25.60/0.6801 25.57/0.6905 27.04/0.7066

(b)
16 25.35/0.6999 26.45/0.6963 26.34/0.7034 25.08/0.6797 25.09/0.7084 26.77/0.7032
32 26.23/0.7042 26.41/0.6944 26.64/0.7038 25.83/0.6826 26.04/0.7109 26.70/0.7028
64 23.10/0.6851 26.00/0.6926 26.32/0.7031 25.95/0.6834 25.76/0.7096 26.70/0.7029

(g)
16 23.91/0.7935 25.05/0.8025 24.67/0.8044 24.04/0.7968 24.09/0.8066 25.24/0.8095
32 24.00/0.7805 25.01/0.8014 24.93/0.7780 24.69/0.7972 24.81/0.8069 25.20/0.8076
64 21.40/0.7714 24.92/0.8016 24.85/0.8045 24.70/0.7982 24.77/0.8082 25.21/0.8092

Lastly, Figure 10 depicts the impact of parameters λ1, α, λ3, and λ4. As mentioned earlier, we set the
same values for λ1 and λ2. First, λ1 and α control the smoothness of the recovered images. Specifically,
as the value of λ1 increases, the restored image becomes smoother. Although λ1 = 0.03 provides the
highest PSNR value, the restored image with λ1 = 0.03 retains some Gaussian noise. Thus, we choose
the restored image with λ1 = 0.04 as the best image. In the whole test, we selected the best restored
images, considering both their visual quality and PSNR and SSIM values. Second, as the value of α
increases, the staircase effect, which occurs when α = 1, becomes alleviated, but the restored images
becomes smoother, which also leads to a loss of details. In this case, we choose the restored image
with α = 1.3 as the best image since it provides the highest PSNR value. Throughout the experiments,
we select α = 1.3 or 1.5. Finally, λ3 and λ4 control the separation of stripes from the image. For λ3,
we test four different values, such as 0.05, 0.1, 0.6, 1. If the value of λ3 is too small, the stripes are not
extracted properly and the restored image is over-smoothed. But a large enough value of λ3 enables
a successful extraction of stripes. Indeed, for λ3 = 0.6 or higher, the denoising results do not change
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much, so we fix the value of λ3 to 0.6 throughout the experiment. For λ4, we test four values, such
as 0.01, 0.05, 0.2, 0.4. It can be observed that using λ1 = 0.01 or 0.4 fails to properly extract stripes
from the image, while using λ4 = 0.05 or 0.2 provides better decomposition of the stripe and image
components than the others. Besides, λ4 = 0.05 and 0.2 provide very similar PSNR values. Although
the parameter λ4 is more sensitive than the other parameters, λ4 is selected from {0.05, 0.08, 0.2, 0.4}
in many cases.

data f (a) λ1 = 0.02 (b) λ1 = 0.03 (c) λ1 = 0.04 (d) λ1 = 0.05
(25.72/0.7555) (26.43/0.7951) (26.36/0.7992) (25.84/0.7815)

data f (a) α = 1.1 (b) α = 1.3 (c) α = 1.5 (d) α = 1.8
(27.30/0.7140) (27.36/0.7161) (27.32/0.7137) (27.21/0.7043)

data f (a) λ3 = 0.05 (b) λ3 = 0.1 (c) λ3 = 0.6 (d) λ3 = 1
(20.16/0.5314) (24.11/0.7098) (25.36/0.7538) (25.36/0.7538)

data f (a) λ4 = 0.01 (b) λ4 = 0.05 (c) λ4 = 0.2 (d) λ4 = 0.4
(23.23/0.816) (23.51/0.8222) (23.57/0.8231) (23.33/0.8171)

Figure 10. Effect of parameters λ1, α, λ3, and λ4 in the proposed model in the presence of
periodic stripes and Gaussian noise. First and second rows: (r,m) = (30, 50) and σ = 20,
third and fourth rows: (r,m) = (70, 100) and σ = 20, fifth and sixth rows : (r,m) = (70, 50)
and σ = 20. PSNR/SSIM of u are presented. Parameter: (top to bottom) λ4 = 0.4, (λ1, λ4) =
(0.04, 0.2), (λ1, λ4) = (0.05, 0.4), λ1 = 0.4.
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4.3. Denoising results with non-periodic stripes and Gaussian noise

This section presents the denoising results in the presence of non-periodic stripe noise and Gaussian
noise.

First, Figure 11 presents the denoising results tested on the vatican image in the presence of non-
periodic stripes with r = 50 or 70, m = 100, and Gaussian noise with σ = 10. The noisy data images
are provided in the first row. We can see that all the models except our model fail to properly separate
the stripes from the image, which leads to some traces of stripes in the restored images. This is also
visible in the difference images between u and u∗. For all cases, our model effectively eliminates both
stripes and Gaussian noise, resulting in the highest PSNR and SSIM values. These show the efficiency
of our directional term and nonconvex group sparsity term of stripes to extract non-periodic stripes in
the presence of Gaussian noise.

u∗ f (r = 50) f (r = 70)

(a) 22.53/0.7754 (b) 27.26/0.8824 (c) 24.40/0.8415 (d) 25.64/0.8537 (e) 21.99/0.8104 (f) 28.20/0.8896

(a) 21.73/0.7642 (b) 24.54/0.8630 (c) 23.25/0.8305 (d) 24.48/0.8306 (e) 21.50/0.8055 (f) 27.83/0.8849

Figure 11. Destriping results of non-periodic stripes when r = 50 (second and third rows),
r = 70 (fourth and fifth rows), while m = 100 and σ = 10. Second and fourth rows: restored
u, third and fifth rows: u − u∗. (a) LRSID, (b) TVGS, (c) LRGS+TV, (d) Schatten+TV,
(e) ELRTV+TV, (f) Proposed. PSNR/SSIM of u are presented. Parameter (λ1, λ4): (top)
(0.02, 0.1), (bottom) (0.02, 0.05).
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In Figure 12, we present the denoising results tested on two other different images in the presence
of non-periodic stripes with r = 50 or 70, m = 50, and Gaussian noise with σ = 20. Similarly, TVGS
eliminates stripes from the images better than LRSID, LRGS+TV, Schatten+TV, and ELRTV+TV,
bringing better denoised images. But there are traces of steaks in both the restored and difference
images of TVGS. In contrast, our model removes both stripe noise and Gaussian noise sufficiently,
yielding cleaner restored images than other models. Furthermore, our model mitigates the staircase
artifacts that appeared in the restored images of TVGS. Therefore, these examples also confirm the
effectiveness of the proposed model for removing both non-periodic stripes and Gaussian noise.

u∗ and f (r = 50) u∗ and f (r = 70)

(a) 25.18/0.6504 (b) 26.23/0.6898 (c) 25.87/0.6949 (d) 25.08/0.6760 (e) 25.29/0.6925 (f) 27.02/0.7129

(a) 24.19/0.7279 (b) 24.85/0.7452 (c) 24.53/0.7280 (d) 23.95/0.6988 (e) 24.24/0.7336 (f) 25.20/0.7523

Figure 12. Destriping results of non-periodic stripes when r = 50 (second and third rows),
r = 70 (fourth and fifth rows), while m = 50 and σ = 20. Second and fourth rows: restored
u, third and fifth rows: u − u∗. (a) LRSID, (b) TVGS, (c) LRGS+TV, (d) Schatten+TV,
(e) ELRTV+TV, (f) Proposed. PSNR/SSIM of u are presented. Parameter (λ1, λ4): (top)
(0.04, 0.1), (bottom) (0.05, 0.1).

Figure 13 shows the column mean cross-track profiles of the restored images (blue curve) in
Figure 12 and original images (red curve). The horizontal axis represents the column number, and
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the vertical axis represents the mean value of the intensities in each column. It can be seen that the
curves of our model are similar to the original ones. Meanwhile, there are large gaps between the
curves of the other models and the original ones. Hence, these examples also show better denoising
performance of our model than the others.
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Figure 13. Column mean cross-track profiles of Figure 12. (top) MODIS-BAND20 image,
(bottom) image02172021 image. (a) LRSID, (b) TVGS, (c) LRGS+TV, (d) Schatten+TV,
(e) ELRTV+TV, (f) Proposed. Red curves: original images, blue curves: restored images.

In Table 3, we record the average of the PSNR and SSIM values of all methods tested on all images
in Figure 2, in the presence of non-periodic stripes and Gaussin noise. We can see that the proposed
model supplies the highest PSNR and SSIM values for all cases. The quantitative assessment is also
consistent with visual results. This illustrates that the proposed model is superior to the existing models
in terms of visual quality and image quality evaluation.

Table 3. Average PSNR and SSIM values of all models for non-periodic stripe noise with
(r,m) and Gaussian noise with σ.

r 30 50 70

m 50 100 50 100 50 100

σ = 10

LRSID 25.17/0.7666 23.60/0.7457 24.76/0.7612 22.86/0.7367 24.38/0.7590 21.94/0.7245
TVGS 28.93/0.8831 28.87/0.8827 28.45/0.8782 28.23/0.8764 27.50/0.8704 25.96/0.8613
LRGS 26.93/0.8077 26.74/0.8065 26.63/0.8058 26.08/0.8005 25.95/0.8010 24.51/0.7914

LRGS+TV 27.08/0.8598 26.89/0.8586 26.78/0.8578 26.21/0.8490 26.07/0.8514 24.59/0.8371
Shatten 26.51/0.7940 25.97/0.7919 26.02/0.7904 25.57/0.7824 26.13/0.7911 24.14/0.7403

Shatten+TV 27.28/0.8674 26.69/0.8643 26.63/0.8576 26.33/0.8561 26.83/0.8634 25.06/0.8218
ELRTV 25.59/0.7918 24.90/0.8375 25.34/0.7902 24.55/0.7822 25.11/0.7880 21.73/0.7775

ELRTV+TV 25.79/0.8450 25.08/0.8375 25.54/0.8433 24.69/0.8305 25.29/0.8405 23.83/0.8245
Our 29.19/0.8867 29.19/0.8869 29.01/0.8843 28.89/0.8828 28.40/0.8788 28.54/0.8798

σ = 20

LRSID 24.57/0.7557 23.11/0.7343 24.13/0.7498 22.49/0.7246 24.05/0.7495 21.52/0.7146
TVGS 25.53/0.7770 25.45/0.7763 25.05/0.7692 25.06/0.7683 24.58/0.7613 24.15/0.7484
LRGS 22.33/0.6149 22.31/0.6147 22.29/0.6148 22.29/0.6146 22.24/0.6145 22.23/0.6139

LRGS+TV 24.83/0.7625 24.81/0.7630 24.75/0.7619 24.76/0.7619 24.67/0.7607 24.66/0.7608
Shatten 21.73/0.6000 21.73/0.6001 21.41/0.5992 21.11/0.5885 21.58/0.5994 20.61/0.5624

Shatten+TV 24.52/0.7545 24.49/0.7547 24.01/0.7525 23.78/0.7453 24.24/0.7528 23.55/0.7350
ELRTV 21.92/0.6064 21.81/0.6047 21.93/0.6066 21.91/0.6060 21.93/0.6066 21.90/0.6062

ELRTV+TV 24.29/0.7572 24.11/0.7551 24.30/0.7573 24.27/0.7567 24.30/0.7569 24.27/0.7570
Our 25.75/0.7851 25.74/0.7851 25.29/0.7771 25.46/0.7794 25.05/0.7717 25.08/0.7633

Table 4 presents the computing time of all models, in the case of the non-periodic stripe noise

AIMS Mathematics Volume 9, Issue 8, 21094–21124.



21116

with (r,m) = (70, 50) and Gaussian noise with σ = 20. It can be observed that LRSID, TVGS,
LRGS(+TV), and ELRTV(+TV) models are faster than Schatten(+TV) and our model. Despite the
high computational cost, the proposed model provides better restoration results than other models.

Table 4. Computing time (in seconds) of all models for non-periodic stripe noise with
(r,m) = (70, 100) and Gaussian noise σ = 20.

Image LRSID TVGS LRGS (+TV) Shatten (+TV) ELRTV (+TV) Our

MODISBAND20 17.36 20.24 24.37 (25.06) 24.62 (25.47) 17.51 (18.31) 26.96
BAND20 15.54 19.34 20.40 (20.94) 28.48 (28.95) 17.97 (18.59) 26.95

Original band30 7.17 7.05 10.11 (10.40) 10.54 (10.82) 8.78 (9.15) 9.54
rio 15.36 19.25 21.12 (21.67) 29.06 (29.51) 17.35 (17.98) 26.79
rio1 15.47 17.20 25.48 (26.18) 30.18 (30.88) 19.55 (20.18) 28.14

helliniko 16.17 19.45 22.15 (22.68) 32.24 (32.87) 17.98 (18.56) 25.83
helliniko1 16.82 19.29 20.70 (21.26) 23.74 (24.17) 17.60 (18.17) 26.54

vatican 16.64 20.21 19.69 (20.21) 29.50 (30.14) 18.14 (18.72) 27.13
image02162021 19.38 23.84 25.81 (26.73) 32.28 (33.29) 20.18 (21.26) 32.89
image02172021 16.85 17.56 17.11 (17.71) 30.54 (31.25) 16.85 (17.55) 26.65

Figure 14 presents the plots of the PSNR and energy functional values of our model via the outer
iteration number. As the outer iteration number increases, we can see that the PSNR values gradually
increase and converge to some constant values, while the energy values gradually decrease. These
plots justify the numerical convergence of the proposed algorithm.

100 200 300 400
10

15

20

25

30

BAND20

ikonos helliniko

image02172021

0 100 200 300 400

14

16

18

20

22

24

26

28

BAND20

ikonos helliniko

image02172021

0 100 200 300 400
10

15

20

25

30

BAND20

ikonos helliniko

image02172021

0 100 200 300 400

10
3

10
4

BAND20

ikonos helliniko

image02172021

100 200 300 400
10

3

10
4

BAND20

ikonos helliniko

image02172021

0 100 200 300

10
3

10
4

BAND20

ikonos helliniko

image02172021

(a) (b) (c)

Figure 14. Plots of PSNR and energy functional values of the proposed model via outer
iteration number ℓ. (top) PSNR; (bottom) Energy functional value. (a) periodic stripes with
(r,m) = (50, 50) and σ = 10, (b) periodic stripes with (r,m) = (50, 50) and σ = 20, (c)
non-periodic stripes with (r,m) = (50, 50) and σ = 10.

In Figure 15, we present the extracted stripe noise components, s, of all models from Figures 6,
7, 11, and 12. We also record the PSNR and SSIM values between the extracted stripe noise and the
originally added stripe noise. It can be observed that the extracted stripes of our model are very close to
the originally added stripes, which contributes the highest PSNR and SSIM values of our stripe noise
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component. This confirms the effectiveness of our model for extracting stripe noise in the presence of
Gaussian noise.
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Figure 15. Extracted stripe component s of all models. (First column) MODIS-BAND20 in
Figure 6, (second column) ikonos helliniko in Figure 7, (third column) vatican (r = 50) in
Figure 11, (fourth column) image02172021 in Figure 12. PSNR/SSIM of s are presented.
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Finally, in Figure 16, we present the denoising results for color SAR images in the presence of
non-periodic stripes with (r,m) = (70, 100) and Gaussian noise with σ = 20. Stripes and Gaussian
noise are added to each color channel independently, and all models are applied to each channel. We
can see that our model not only appropriately separates the stripes from the images but also preserves
edges and details well compared with other models. These examples also validate the effectiveness
of the proposed model on color SAR images with a mixture of stripes and Gaussian noise. More
experimental results on color SAR images can be found in the material at the following link: https:
//url.kr/kdgrcz.

u∗ and f (r = 70) u∗ and f (r = 70)

(a) 22.61/0.7127 (b) 25.58/0.7383 (c) 24.64/0.7376 (d) 24.50/0.7218 (e) 24.19/0.7314 (f) 26.14/0.7488

(a) 22.48/0.7001 (b) 26.66/0.7594 (c) 25.69/0.7616 (d) 25.91/0.7591 (e) 25.25/0.7567 (f) 28.14/0.7803

Figure 16. Destriping results of non-periodic stripes when (r,m) = (70, 100) and σ = 20,
tested on color SAR images. Second and fourth rows: restored u, third and fifth rows:
u−u∗. (a) LRSID, (b) TVGS, (c) LRGS+TV, (d) Schatten+TV, (e) ELRTV+TV, (f) Proposed.
PSNR/SSIM of u are presented. Parameter (λ1, λ4): (top) (0.05, 0.2), (bottom) (0.05, 0.1).

5. Conclusions

In this paper, we introduce an image decomposition model to extract stripe noise and image
components from a noisy image that is corrupted by a mixture of stripe noise and Gaussian noise. We
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considered various types of periodic or non-periodic stripe noise and also assumed a relatively high
level of Gaussian noise unlike the previous works. For the stripe noise component, a unidirectional
TV and a nonconvex group sparsity term were exploited, and they enabled the proper separation of
periodic or non-periodic stripes from images with high levels of Gaussian noise. Furthermore, for the
image component, we made use of a nonconvex FTV regularization, which not only ameliorated the
staircase effect appearing in images recovered from TV-based models but also enabled the conservation
of edges and details. To handle the nonconvex and nonsmooth problem, we adopted IRL1 and ADMM.
This led to an efficient iterative algorithm capable of satisfactorily solving the proposed model, and we
also proved its global convergence. The numerical results validated that the proposed model generated
superior denoising results than other existing models in terms of visual and image quality assessments.
Despite the effective performance of the proposed model, issues remain regarding high computational
time and many parameters, which need to be investigated in future work.
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