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1. Introduction

In [1], S. Omri and L. T. Rachdi define the Gauss-Weierstrass transform Wν,t associated with the
Hankel transform as follows:

Wν,t( f )(x) =
1

22ν+1Γ(µ + 1)

∫ ∞

0

e−
x2+y2

4t

tν+1 Jν(i
xy
2t

) f (y)y2ν+1 dy, (1.1)

where Jν(·) is the normalized Bessel function defined in (2.2). This integral transform, which
generalizes the usual Weierstrass transform [2–4], is used to solve the heat equation problem:∂tu(x, t) = Bν(u)(x, t),

u(x, 0) = f (x),

where the Bessel differential operator is given by

Bν :=
d2

dx2 +
2ν + 1

x
d
dx
, ν ≥ −

1
2
. (1.2)
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The authors in [1] established practical, real inversion formulas for Hankel-type heat diffusion, building
on the ideas of Saitoh, Matsuura, Fujiwara, and Yamada [2–6], and utilizing the theory of reproducing
kernels [2–4].

Recently, many researchers have adapted and applied this same method to various types of Gauss-
Weierstrass integral transforms associated with several kinds of differential and difference-differential
operators. For instance, Soltani pioneered the exploration of Lp-Fourier multipliers for the Dunkl
operator on the real line [7], extremal functions on Sobolev-Dunkl spaces [8], multiplier operators and
extremal functions related to the dual Dunkl-Sonine operator [9], and extremal functions on Sturm-
Liouville hypergroups [10]. More recently, the same authors examined Dunkl-Weinstein multiplier
operators [11]. Additional research was conducted by Dziri and Kroumi [12], as well as by Ghobber
and Mejjaoli [13]. For further work related to existing results on inverse problems, some important
findings can be found in [14–16].

In this work, we consider the space-fractional diffusion equation associated with the Bessel
operator, which is given by{

∂tu(x, t) + (−Bν)α/2u(x, t) = 0, x ≥ 0, t > 0,
u(x, 0) = φ(x), t > 0,

(1.3)

where the parameters ν and α are restricted by the condition ν ≥ −1
2 , 1 ≤ α ≤ 2, and the space-fractional

Bessel operator (−Bν)α/2, which is defined pointwise by the principal value integral [17],

(−Bν)α/2φ(x) = cα,ν lim
ε→0+

∫ ∞

ε

φ(x) − τξνφ(ξ)
ξα+1 dξ, (1.4)

here, the normalization constant cν,α is given by

cν,α =
2α+νΓ

(
ν + α

2 + 1
)

Γ(ν + 1)|Γ
(
−α2

)
|
.

In this work, we introduce the generalized Gauss-Weierstrass transform associated with the Bessel
operator by

(Wα,ν,tφ)(y) =

∫ ∞

0
S α,ν(x, y, t)φ(x)σν(dx),

where S α,ν(x, y, t) is the fractional heat kernel, which will be defined later. For α = 2, this integral
transform simplifies to the Gauss-Weierstrass transform defined in (2.3). Thus, it can be considered
a one-parameter extension of the transform (2.3). The principal motivation for considering the
generalized Gauss-Weierstrass integral transform is that for ν = n

2 − 1, it reduces to the ordinary
Gauss-Weierstrass transform for radial functions on the Euclidean space Rn. Since the Bessel operator
coincides with the radial part of the Laplace operator ∆ =

∑m
i=1 ∂

2
i , this transform provides a significant

extension. For more details, the reader is referred to the paper [18]. By using the properties of the
Fourier-Bessel transform Fν and its connection with the ∗-convolution product (see Section 2), we
first show that the transform Wα,ν,t is a one-to-one bounded linear operator from a Sobolev space H s

ν

into L2
ν(0,∞). By the same argument as the standard Gauss-Weierstrass transform, we can assume that

the operator W −1
α,ν,t is unbounded or that its range is not closed, which causes the ill-posed problem in

solving the operator equation
Wα,ν,tφ = ψ.
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Then, for stable reconstruction of φ, some regularization techniques are necessary. The
Tikhonov regularization techniques are widely applicable (e.g., Bakushinsky and Goncharsky [19],
Baumeister [20], Tikhonov and Arsenin [21], Tikhonov et al. [22]). In our case, the Tikhonov
regularization can be stated as follows: For given data ψ ∈ L2

ν(0,∞), we search for a minimizer of
a functional given by

Jγ(φ) =
1
2
‖Wα,ν,tφ − ψ‖

2
L2
ν(0,∞) +

γ

2
‖φ‖2

H s
ν
, φ ∈ H s

ν ,

with a parameter γ > 0, which is called a regularizing parameter. We show that the above variational
problem has a unique solution denoted by Rγ,ψ and called the regularized solution; it is also referred to
as the extremal solution by Soltani [7]. The following theorem is the main result of the paper, which
provides a real inversion of the generalized Gauss-Weierstrass transform.

Theorem 1.1. Let s > ν + 1. For every φ ∈ H s
ν and ψ = Wα,ν,t(φ), we have:

lim
γ→0+
‖Rγ,ψ − φ‖H (s)

ν
= 0.

Moreover, the set {Rγ,ψ}γ>0 converges uniformly to φ as γ → 0+.

Our paper is organized as follows:

• Section 2 serves as an introductory section that provides an overview of fundamental concepts.
Topics covered include the Fourier-Bessel transform, generalized translation, generalized
convolution, fractional Bessel operator, and the space-fractional Bessel diffusion equation, setting
the stage for understanding subsequent content.
• Section 3 is devoted to introducing the generalized Gauss-Weierstrass transform and establishing

its principal properties.
• Section 4 states the main results of the paper and provides their proofs.

2. Preliminaries

Before revealing our main results, it is essential to establish the groundwork by introducing key
notations and collecting pertinent facts about the Bessel operator. This section serves as a primer,
elucidating the significance of the Fourier-Bessel transform and the Delsarte translation, which will be
pivotal for the subsequent analysis.

2.1. Fourier-Bessel transform

The normalized Bessel function is defined as follows:

Jν(x) := Γ(ν + 1) (2/x)ν Jν(x), ν > −1, (2.1)

where Γ(·) is the Gamma function [23] and Jν(·) is the Bessel function of the first kind, see [23,
(10.16.9)]. Then

Jν(x) =

∞∑
k=0

(−1
4 x2)k

(ν + 1)k k!
. (2.2)
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The normalized Bessel function arises as the unique solution to the eigenvalue problem related to the
Bessel equation. More precisely, the functions defined as x →Jν(λx) stand as the unique solution to
the eigenvalue problem [23, (10.13.5)] Bνφ(x) = −λ2φ(x),

φ(0) = 1, φ′(0) = 0.

The function Jν(·) is an entire analytic function with even symmetry. Notably, there are
straightforward special cases that hold:

J−1/2(x) = cos x, J1/2(x) =
sin x

x
.

We introduce the following notation:

• Lp
ν (0,∞) (1 ≤ p) represents the Lebesgue space associated with the measure

σν(dx) =
x2ν+1

2νΓ(ν + 1)
dx. (2.3)

The norm ‖φ‖Lp
ν (0,∞) is the conventional norm given by

‖φ‖Lp
ν (0,∞) =

( ∫ ∞

0
|φ(x)|p σν(dx)

)1/p
.

• S ∗(R) signifies the space of even functions on R that are infinitely differentiable and decrease
rapidly, along with all their derivatives.

For ν ≥ −1/2, the Fourier-Bessel transform Fνφ of φ ∈ L1
ν(0,∞) is defined as:

Fνφ(x) :=
∫ ∞

0
φ(t)Jν(tx)σν(dx), ν ≥ −1/2. (2.4)

This integral transform can be extended to establish an isometry of L2
ν(0,∞). For any function φ

belonging to L1
ν(0,∞) ∩ L2

ν(0,∞), the following relationships hold [24, Prop. 5.III.2]∫ ∞

0
|φ(x)|2 σν(dx) =

∫ ∞

0
|Fνφ(t)|2 σν(dt). (2.5)

Furthermore, its inverse is expressed as:

φ(x) =

∫ ∞

0
Fνφ(t) Jν(tx)σν(dt). (2.6)

Moving forward, our focus shifts to the exploration of the generalized translation operator linked to
the Bessel operator. This operator is symbolized as τx

ν and operates on functions belonging to L1
ν(0, ∞)

according to the following expression [25, §3.4.1]:

τx
νφ(y) =


∫ π

0
φ(

√
x2 + y2 + 2xy cos θ) sin2ν θ dθ, if ν > −1/2,

1
2 (φ(x + y) + φ(x − y)), if ν = −1/2.

(2.7)
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With the help of this translation operator, one defines the convolution of φ ∈ L1
ν(0,∞) and ψ ∈ Lp

ν (0,∞)
for p ∈ [1, ∞) as the element f ∗ν g of Lp

ν (0, ∞) given by

(φ ∗ν ψ)(x) :=
∫ ∞

0
(τx
νφ)(y)ψ(y)σν(dy), ν ≥ −1/2. (2.8)

The following properties are obvious.

• Fν(τx
νφ)(t) = Jν(xt)Fνφ(t),

• Fν(φ ∗ν ψ)(x) = Fνφ(x)Fνψ(x).

2.2. Space-fractional diffusion equation

In this section, we consider the space-fractional Bessel diffusion equation [17, 18]{
∂tu(x, t) + (−Bν)α/2u(x, t) = 0, x ≥ 0, t > 0,
u(x, 0) = φ(x), u(∞, t) = 0, t > 0,

(2.9)

where the parameters ν and α are restricted by the condition ν ≥ −1
2 , 1 ≤ α ≤ 2, and the space-fractional

Bessel operator (−Bν)α/2, which is defined pointwise by the principal value integral [17],

(−Bν)α/2φ(x) = cα,ν lim
ε→0+

∫ ∞

ε

φ(x) − τξνφ(ξ)
ξα+1 dξ, (2.10)

here, the normalization constant cν,α is given by

cν,α =
2α+νΓ

(
ν + α

2 + 1
)

Γ(ν + 1)|Γ
(
−α2

)
|
.

Moreover, the Fourier-Bessel transform of the fractional Bessel operator is given by [17]

Fν

(
(−Bν)α/2φ

)
(ξ) = ξαFνφ(ξ). (2.11)

Let us denote the Fourier-Bessel transform of a function u(x, t) with respect to x as û(ξ, t), where ξ ≥ 0.
Applying the Fourier-Bessel transform to both sides of the equation in (2.9), we obtain:{

∂t̂u(ξ, t) = −ξαû(ξ, t),
û(ξ, t) = φ̂(ξ).

Then
û(ξ, t) = φ̂(ξ)e−ξ

αt.

Therefore,
u(x, t) = (G α,ν

t ∗ φ)(x),

where

G α,ν
t (x) = G α,ν(x, t) =

∫ ∞

0
e−ξ

αtJν(ξx)σν(dξ). (2.12)
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Using the following scaling rules for the Fourier-Bessel transform:∫ ∞

0
f (ax)Jν(λx)σν(dx) =

1
a2ν+2

∫ ∞

0
f (x)Jν(λx/a)σν(dx), a > 0,

we obtain the following scaling property of the kernel G α,ν(x, t)

G α,ν(x, t) = t−2(ν+1)/αG α,ν(xt−1/α, 1), t > 0, x ≥ 0.

Consequently by introducing the similarity variable x/tα, we can write

G α,ν(x, t) = t−2(ν+1)/αKα,ν(xt−1/α),

where
Kα,ν(x) =

∫ ∞

0
e−ξ

α

Jν(ξx)σν(dξ). (2.13)

Particular cases of the density K α,ν are the following [26]:

• The density K2,ν(x), where ν ≥ −1
2 , corresponds to the Gaussian density kernel:

K2,ν(x) =
e−

x2
4

2ν+1 . (2.14)

• The density K1,ν, where ν ≥ −1
2 , corresponds to the Poisson density:

K1,ν(x) =
2ν+1Γ(ν + 3

2 )
√
π

1

(1 + x2)ν+
3
2

. (2.15)

More generally, for 1 < α < 2, we have [17, Proposition 4.1]:

Kα,ν(x) =
1
α2ν

∞∑
n=0

(−1)n

n!
Γ( 2

α
(n + ν + 1))

Γ(ν + 1 + n)

(
x2

4

)n

. (2.16)

Definition 2.1. For ν ≥ −1
2 and 0 < α < 2, the generalized heat kernel is defined as:

G α,ν(x, y, t) =

∫ ∞

0
e−tξαJν(xξ)Jν(yξ)σν(dξ), x, y ∈ [0,∞). (2.17)

Lemma 2.1. The heat kernel G α,ν(x, y, t) possesses the following properties:

i) G α,ν(x, y, t) = τ
y
νG

α,ν(x, t).
ii) G α,ν(x, y, t) = G α,ν(y, x, t).

iii) G α,ν(x, y, t) > 0.
iv) ‖G α,ν(x, y, t)‖L1

ν(0,∞) = 1.
v) G α,ν(x, y, t) = t−2(ν+1)/αG α,ν(xt−1/α, yt−1/α, 1).

vi) Fν(G α,ν(·, y, t))(ξ) = e−tξαJν(yξ).

Proof. The proofs for properties i), ii), v), and vi) are straightforward. Property iii) follows from [18,
Theorem 7] and the positivity of the generalized translation operator τy

ν. The proof for property iv) is
derived by setting ξ = 0 in the formula from property vi. �
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3. The generalized Weierstrass transform

Definition 3.1. The generalized Weierstrass transform associated with the fractional Bessel operator,
denoted as Wα,ν,t, is defined on L2(dσν) by the following expression:

(Wα,ν,tφ)(y) = (S α,ν
t ∗ν φ)(y) =

∫ ∞

0
S α,ν(x, y, t)φ(x)σν(dx),

where S s,ν(x, y, t) is the generalized heat defined in (2.17).

Let s > ν + 1. We define the spaceH (s)
ν as follows [1]:

H (s)
ν := {φ ∈ L2

ν(0,∞) : (1 + ξ2)s/2Fν(φ)(ξ) ∈ L2
ν(0,∞)}. (3.1)

This space is equipped with an inner product defined by:

〈φ, ψ〉
H

(s)
ν

=

∫ ∞

0
(1 + ξ2)sFν(φ)(ξ)Fν(ψ)(ξ)σν(dξ),

and a norm:
‖φ‖

H
(s)
ν

=
√
〈φ, φ〉

H
(s)
ν
.

The spaceH (s)
ν features a reproducing kernel, which is defined by:

Ks(x, y) =

∫ ∞

0

Jν(ξx)Jν(ξy)
(1 + ξ2)s σν(dξ), for (x, y) ∈ [0,∞) × [0,∞). (3.2)

Additionally, this space satisfies the following inclusions:

H (s)
ν ⊂ L2

ν(0,∞), Fν(H (s)
ν ) ⊂ L1

ν(0,∞) ∩ L2
ν(0,∞).

For further details concerning the spaceH (s)
ν , readers are referred to the paper [1].

Theorem 3.1. i) Let φ ∈ C0(R) ∩ L2
ν(0,∞). For t > 0 and x ∈ [0,∞), the function Wα,µ,tφ(x) solves

the following heat equation.
∂tu(x, t) = −(−∆ν)γ/2u(x, t),

with the initial condition
lim
t→0+

Wα,ν,tφ = φ in L2
ν(0,∞).

ii) The integral transform Wα,ν,t, for t > 0, is a one-to-one bounded linear operator from H (s)
ν into

L2
ν(0,∞), and we have:

‖Wα,ν,tφ‖L2
ν(0,∞) ≤ ‖φ‖H (s)

ν
, φ ∈ H (s)

ν .

Proof. The claim i) follows from [17, Theorem 4.5]. From Lemma 2.1, for all φ ∈ L2
ν(0,∞), we have:

‖Wα,ν,tφ‖L2
ν(0,∞) = ‖(S α,ν

t ∗ν φ)‖L2
ν(0,∞)

≤ ‖S α,ν
t ‖L1

ν(0,∞)‖φ‖L2
ν(0,∞)

= ‖φ‖L2
ν(0,∞) = ‖Fνφ‖L2

ν(0,∞) ≤ ‖φ‖H (s)
ν
.
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This inequality shows that the transform Wα,ν,t is indeed bounded. To complete the proof of ii), it
remains to show that this transform is one-to-one. Let φ ∈ H (s)

ν such that Wα,ν,tφ = 0. Then

Fν(Wα,ν,tφ)(ξ) = e−tξαFνφ(ξ) = 0,

from the injectivity of the Fourier-Bessel transform, we get φ = 0. This shows that Wα,ν,t is
one-to-one. �

We denote byH (s)
ν,α,γ, the spaceH (s)

ν equipped with the inner product

〈φ|ψ〉
H

(s)
ν,α,γ

= γ〈φ|ψ〉
H

(s)
ν

+ 〈Wα,ν,tφ|Wα,ν,tψ〉L2
ν(0,∞),

and the norm
‖φ‖

H
(s)
ν,α,γ

=
(
γ‖φ‖2

H
(s)
ν

+ ‖W ν
s,tφ‖

2
L2
ν(0,∞)

)1/2
.

Then, we have the following main result:

Theorem 3.2. Let ξ, t > 0 and s > ν + 1. Then the Hilbert space H (s)
ν,α,γ admits the following

reproducing kernel:

Kν,s,α,γ(x, y) =

∫ ∞

0

Jν(xξ)Jν(yξ)
γ(1 + ξ2)s + e−2tξασν(dξ),

that is

(i) For all x ∈ [0,∞), the function y 7→ Kν,s,α,γ(x, y) belongs toH (s)
ν,α,γ.

(ii) For all φ ∈ H (s)
ν,α,γ and any y ∈ [0,∞).

〈φ,Kν,s,α,γ(·, y)〉
H

(s)
ν,α,γ

= φ(y).

Proof. For all x ∈ [0,∞), consider the function

ξ 7→
Jν(ξx)

γ(1 + ξ2)s + e−2tξα ,

which belongs to both L1
ν(0,∞) and L2

ν(0,∞). Then, by the Plancherel theorem for the Fourier-Bessel
transform, the function

Kν,s,α,γ(x, y) = Fν

(
Jν(ξx)

γ(1 + ξ2)s + e−2tξα

)
(y), (3.3)

is well-defined. Following this,

ξ 7→ (1 + ξ2)s/2Fν(Kν,s,α,γ(·, y))(ξ),

is a member of L2
ν(0,∞). This demonstrates that for all y ≥ 0, the function Kν,s,α,γ(·, y) belongs toH (s)

ν .
This establishes part (i) of the theorem.

Let φ ∈ H (s)
ν and y ∈ [0,∞). By Eq (3.3), we have

〈φ,Kν,s,α,γ(·, y)〉
H

(s)
ν

=

∫ ∞

0

(1 + ξ2)sJν(ξy)
γ(1 + ξ2)s + e−2tξα Fνφ(ξ)σν(dξ). (3.4)
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From the relation
Wα,ν,tφ = F −1

ν

(
e−tξαFν(φ)

)
,

the action of Wα,ν,t on the kernel Kν,s,α,γ(·, y) is then:

Wα,ν,t(Kν,s,α,γ(·, y)) = S ν
s,t ∗Kν,s,α,γ(·, y)

= F −1
ν

(
Fν(S ν

s,t) ·Fν(Kν,s,α,γ(·, y))
)

= F −1
ν

(
e−tξαJν(ξy)

γ(1 + ξ2)s + e−2tξα

)
.

Therefore

〈Wα,ν,tφ,Wα,ν,tKν,s,α,γ(·, y)〉L2
ν(0,∞) =

∫ ∞

0

e−2tξαJν(ξy)
γ(1 + ξ2)s + e−2tξα σν(dξ). (3.5)

Combining Eqs (3.4) and (3.5), we get

〈φ,Kν,s,α,γ(·, y)〉
H

(s)
ν,α,γ

= γ

∫ ∞

0

(1 + ξ2)sJν(ξy)
γ(1 + ξ2)s + e−2tξα Fνφ(ξ)σν(dξ)

+

∫ ∞

0

e−2tξαJν(ξy)
γ(1 + ξ2)s + e−2tξα Fνφ(ξ)σν(dξ)

=

∫ ∞

0
Jν(ξy)Fνφ(ξ)σν(dξ)

= φ(y).

This confirms the reproducing property (ii). �

4. Tikhonov regularized method

We now consider the variational functional associated with the generalized Weierstrass integral
transform Wα,ν,t, defined as

Jγ(φ) =
1
2
‖Wα,ν,tφ − ψ‖

2
L2
ν(0,∞) +

γ

2
‖φ‖2

H
(s)
ν
, φ ∈ H (s)

ν . (4.1)

For γ > 0, the functional Jγ is strictly convex and Jγ(φ) ≥ γ

2‖φ‖ν. Hence, Jγ has a unique minimizer,
which can be characterized by the first-order condition

〈J′γ(φ), ϕ〉 = 0, for all ϕ ∈ H (s)
ν , (4.2)

where J′γ(φ) is the Fréchet differential of Jγ.
We denote by Rγ,ψ the regularized solution of the Eq (4.2), that is,

Rγ,ψ = min
φ∈H s

ν

Jγ(φ). (4.3)

The following theorem is our second main result.

AIMS Mathematics Volume 9, Issue 8, 20826–20842.
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Theorem 4.1. For ν ≥ −1/2, γ > 0, and ψ ∈ L2
ν(0, ∞). Then there is a unique function Rγ,ψ ∈ H

(s)
ν ,

where the infimum of the functional Jγ, defined by

Jγ(φ) =
1
2
‖Wα,ν,tφ − ψ‖

2
L2
ν(0,∞) +

γ

2
‖φ‖2

H
(s)
ν
, φ ∈ H s

ν , (4.4)

is attained. Furthermore, the regularized function Rγ,ψ is given by

Rγ,ψ(x) =

∫ ∞

0
Nν,s,α,γ(x, y)ψ(y)σν(dy), (4.5)

where

Nν,s,α,γ(x, y) =

∫ ∞

0

e−tξαJν(xξ)Jν(yξ)
γ(1 + ξ2)s + e−2tξα σν(dξ).

Proof. Observe that

Jγ(φ + ε∆φ) − Jγ(φ) =
1
2

{
‖Wα,ν,t(φ + ε∆φ) − ψ‖2L2

ν(0,∞) − ‖Wα,ν,tφ − ψ‖
2
L2
ν(0,∞)

}
+
γ

2

{
‖φ + ε∆φ‖2

H
(s)
ν
− ‖φ‖2

H
(s)
ν

}
,

where ∆φ denotes the increment.
Since,

(FνWα,ν,tφ)(ξ) = e−tξα(Fνφ)(ξ). (4.6)

Taking into account Eq (4.6) and using the Plancheral formula for the Fourier-Bessel transform to get

Jγ(φ + ε∆φ) − Jγ(φ) =
1
2

{
‖e−tξαFν(φ + ε∆φ)(ξ) −Fνψ(ξ)‖2L2

ν(0,∞)

− ‖e−tξαFνφ(ξ) − Fνψ(ξ)‖2L2
ν(0,∞)

}
+
γ

2

{
‖
(
φ + ε∆φ‖2

H
s,γ
ν,α
− ‖φ‖2

H
(s)
ν

}
= ε

{
Re〈e−tξαFνφ(ξ) −Fνψ(ξ), e−tξαFν∆φ(ξ)〉L2

ν(0,∞)

+ γRe〈(1 + ξ2)sFνφ(ξ),Fν∆φ〉L2
ν(0,∞)

}
+
ε2

2

{
‖e−tξαFν∆φ(ξ)‖2L2

ν(0,∞)

+ γ‖(1 + ξ2)sFν∆φ(ξ)‖2
H

(s)
ν

}
.

Hence, the Fréchet differential of Jγ can be written as

〈J′γ(φ), ∆φ〉L2
ν(0,∞) = 〈e−2tξαFνφ(ξ) − e−tξαFνψ(ξ) + γ(1 + ξ2)sFνφ, Fν∆φ〉L2

ν(0,∞).

By the Perseval formula for the Fourier-Bessel transform, it follows that the regularized solutionRγ,ψ(ξ)
is given by

e−2tξαFνRγ,ψ(ξ) − e−tξαFνψ(ξ) + γ(1 + ξ2)sFνRγ,ψ(ξ) = 0.

Therefore

FνRγ,ψ(ξ) =
e−tξα

γ(1 + ξ2)s + e−2tξα Fνψ(ξ).
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It is easy to see that

ξ →
e−tξα

γ(1 + ξ2)s + e−2tξα Fνψ(ξ) ∈ L1
ν(0,∞) ∩ L2

ν(0,∞).

By the inversion formula for the Fourier-Bessel transform, we have

Rγ,ψ(x) = F −1
ν

( e−tξαFνψ(ξ)
γ(1 + ξ2)s + e−2tξα

)
(x).

We have

Rγ,ψ(x) = F −1
ν

( e−tξαFνψ(ξ)
γ(1 + ξ2)s + e−2tξα

)
(x)

=

∫ ∞

0

e−tξαFνψ(ξ)
γ(1 + ξ2)s + e−2tξα Jν(xξ)σν(dξ)

=

∫ ∞

0

∫ ∞

0

e−tξαψ(y)
γ(1 + ξ2)s + e−2tξα Jν(xξ)Jν(yξ)σν(dy)σν(dξ)

=

∫ ∞

0

( ∫ ∞

0

e−tξαJν(xξ)Jν(yξ)
γ(1 + ξ2)s + e−2tξα σν(dξ)

)
ψ(y)σν(dy)

=

∫ ∞

0
Nν,s,α,γ(x, y)ψ(y)σν(dy),

where

Nν,s,α,γ(x, y) =

∫ ∞

0

e−tξαJν(xξ)Jν(yξ)
γ(1 + ξ2)s + e−2tξα σν(dξ)

= Fν(
e−tξαJν(xξ)

γ(1 + ξ2)s + e−2tξα )(y).

�

In the following theorem, we will provide an error estimate for the inversion formula.

Theorem 4.2. Let s > ν + 1. For all ψ1, ψ2 ∈ L2
ν(0,∞), the following inequality holds:

‖Rγ,ψ1 −Rγ,ψ2‖H (s)
ν
≤

1
4γ1/2 ‖ψ1 − ψ2‖L2

ν(0,∞).

Proof. Consider any ψ1, ψ2 ∈ L2
ν(0,∞). The squared norm of the difference between the operators

Rγ,ψ1 and Rγ,ψ2 in the spaceH (s)
ν are given by:

‖Rγ,ψ1 −Rγ,ψ2‖
2
H

(s)
ν

=

∫ ∞

0
(1 + ξ2)s|Fν(Rγ,ψ1)(ξ) −Fν(Rγ,ψ2)(ξ)|

2σν(dξ).

Using the formula for the Fourier-Bessel transform of the extremal function Rγ,ψi:

Fν(Rγ,ψi)(ξ) =
e−tξα

γ(1 + ξ2)s + e−2tξαFν(ψi)(ξ) for i = 1, 2,
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we can express the integral as:

‖Rγ,ψ1 −Rγ,ψ2‖
2
H

(s)
ν

=

∫ ∞

0

(1 + ξ2)se−2tξα(
γ(1 + ξ2)s + e−2tξα)2 |Fν(ψ1)(ξ) −Fν(ψ2)(ξ)|2σν(dξ).

By using the inequality
(1 + ξ2)se−2tξα(

γ(1 + ξ2)s + e−2tξα)2 ≤
1

4γ
,

we can further estimate:

‖Rγ,ψ1 −Rγ,ψ2‖
2
H

(s)
ν
≤

1
4γ

∫ ∞

0
|Fν(ψ1)(ξ) −Fν(ψ2)(ξ)|2σν(dξ)

=
1

4γ
‖ψ1 − ψ2‖

2
L2
ν(0,∞).

This completes the proof. �

Proposition 4.1. Let s > ν + 1, γ > 0, and ψ ∈ L2
ν(0,∞). We have the following estimate:∫ ∞

0
|Rγ,ψ(ξ)|2σν(dξ) ≤

aν,α
γ

∫ ∞

0
eξ

α

|ψ(ξ)|2σν(dξ).

where

aν,α =
Γ
(

2(ν+1)
α

)
Γ(s − ν − 1)

α22ν+3Γ(s)Γ(ν + 1)
.

Proof. From (4.9) and applying the Cauchy-Schwarz inequality, we have:

|Rγ,ψ(ξ)|2 ≤
(∫ ∞

0
|Nν,s,α,γ(x, y)ψ(y)|σν(dy)

)2

≤

∫ ∞

0
e−yα/2σν(dy)

∫ ∞

0
eyα |Nν,s,α,γ(x, y)|2|ψ(y)|2σν(dy).

Integrating over [0,∞) with respect to the measure σν(dx), we obtain:

‖Rγ,ψ(ξ)‖2L2
ν(0,∞) ≤

(∫ ∞

0
|Nν,s,α,γ(x, y)ψ(y)|σν(dy)

)2

≤

∫ ∞

0
e−yα/2σν(dy)

∫ ∞

0
eyα‖Nν,s,α,γ(x, y)‖2L2

ν(0,∞)|ψ(y)|2σν(dy).

However,

Nν,s,α,γ(x, y) = Fν

(
e−tξαJν(xξ)

γ(1 + ξ2)s + e−2tξα

)
(y),

it follows that

‖Nν,s,α,γ(x, y)‖2L2
ν(0,∞) =

∫ ∞

0

e−2tξα |Jν(xξ)|2

(γ(1 + ξ2)s + e−2tξα)2σν(dξ)
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≤
1

4γ

∫ ∞

0

1
(1 + ξ2)sσν(dξ).

Therefore,

‖Rγ,ψ(ξ)‖2L2
ν(0,∞) ≤

∫ ∞

0
e−yα/2σν(dy)

1
4γ

∫ ∞

0

1
(1 + ξ2)sσν(dξ)

∫ ∞

0
eyα |ψ(y)|2σν(dy). (4.7)

We complete the proof by using the relation (4.7) and the fact that:∫ ∞

0
e−yασν(dy) =

Γ
(

2(ν+1)
α

)
α2νΓ(ν + 1)

,

and ∫ ∞

0

σν(dξ)
(1 + ξ2)s =

Γ(s − ν − 1)
2ν+1Γ(s)

.

�

Theorem 4.3. Let s > ν + 1. For every φ ∈ H (s)
ν and ψ = Wα,ν,t(φ), we have:

lim
γ→0+
‖Rγ,ψ − φ‖H (s)

ν
= 0. (4.8)

Moreover, the set {Rγ,ψ}γ>0 converges uniformly to φ as γ → 0+.

Proof. Let φ ∈ H (s)
ν and ψ = Wα,ν,t(φ). Utilizing the formula given in Eq (4.6), the Fourier-Bessel

transform of the extremal function Rγ,ψ takes the form:

Fν(Rγ,ψ)(ξ) =
e−tξα

γ(1 + ξ2)s + e−2tξαFν(ψ)(ξ)

=
e−2tξα

γ(1 + ξ2)s + e−2tξαFν(φ)(ξ).

We can express the norm of the difference between Rγ,ψ and φ inH (s)
ν as:

‖Rγ,ψ − φ‖
2
H

(s)
ν

=

∫ ∞

0
(1 + ξ2)s

∣∣∣∣∣∣ e−2tξα

γ(1 + ξ2)s + e−2tξα − 1

∣∣∣∣∣∣2 |Fν(φ)(ξ)|2σν(dξ)

=

∫ ∞

0

γ2(1 + ξ2)3s(
γ(1 + ξ2)s + e−2tξα)2 |Fν(φ)(ξ)|2σν(dξ).

Using the dominated convergence theorem and observing that

γ2(1 + ξ2)3s(
γ(1 + ξ2)s + e−2tξα)2 |Fν(φ)(ξ)|2 ≤ (1 + ξ2)s|Fν(φ)(ξ)|2,

and given that φ ∈ H (s)
ν , we deduce that

lim
γ→0+
‖Rγ,ψ − φ‖H (s)

ν
= 0.
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The function Fν(φ) belongs to both L1
ν(0, ∞) and L2

ν(0, ∞). Applying the inversion formula for
the Fourier-Bessel transform, we compute the deviation of the function φ under the operator Rγ,ψ

as follows:

(Rγ,ψ − φ)(ξ) = −

∫ ∞

0

γ(1 + ξ2)s

γ(1 + ξ2)s + e−2tξαFν(φ)(ξ)σν(ξ)dξ.

Thus, for all ξ ∈ [0,+∞[, the magnitude of the deviation is bounded by:

∣∣∣(Rγ,ψ − φ)(ξ)
∣∣∣ ≤ ∫ ∞

0

γ(1 + ξ2)s

γ(1 + ξ2)s + e−2tξα |Fν(φ)(ξ)|σν(ξ)dξ.

Employing the dominated convergence theorem and noting that:

γ(1 + ξ2)s

γ(1 + ξ2)s + e−2tξα |Fν(φ)(ξ)| ≤ |Fν(φ)(ξ)|,

we deduce that the supremum over all ξ ≥ 0 of the deviation approaches zero as γ tends towards zero

sup
ξ∈[0,+∞[

∣∣∣(Rγ,ψ − φ)(ξ)
∣∣∣→ 0, as γ → 0.

This completes the proof of convergence in theH (s)
ν norm and uniform convergence as γ → 0+. �

Example 4.1. As an illustrative example, consider the fractional heat equation on (0,∞) × (0,∞)

∂tu(x, t) = −
(
− ∂xx

)1/2u(x, t),

with the initial condition
lim
t↘0
‖u(·, t) − φ‖2,ν = 0.

To apply the Tikhonov regularization method to this fractional heat equation, we consider the integral
operator W1,−1/2,t : H

(1)
−1/2 → L2(0,∞) defined by

(W1,−1/2,tφ)(y) =
1
√

8π

∫ ∞

0

φ(x + y) + φ(x − y)
x2 + t2 x dx,

where the Sobolev spaceH (1)
−1/2 is realized by the reproducing kernel Hilbert space K1(x, y) given by

K1(x, y) =
1
√

2π

∫ ∞

0

cos(xu) cos(yu)
u2 + 1

du =

√
π

32
(
exp (−|x − y|) + exp (−x − y)

)
,

where x, y ≥ 0.
We now consider the following best approximation problem, that is, the Tikhonov functional. For

any ψ ∈ L2(0,∞) and γ > 0, we aim to solve

inf
φ∈H (1)

−1/2

{
γ

2
‖φ‖2

H
(1)
−1/2

+
1
2
‖W1,−1/2,tφ − ψ‖

2
L2(0,∞)

}
.
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Then for the RKHSH (s)
−1/2,1,γ consisting of all the members ofH (1)

−1/2 with the norm

‖φ‖
H

(1)
−1/2

=

√
γ‖φ‖2

H
(1)
−1/2

+ ‖W1,−1/2,tφ‖
2
L2(0,∞),

the reproducing kernel N−1/2,1,1,γ(x, y) can be calculated directly using the Fourier integrals as follows:

N−1/2,1,1,γ(x, y) =
1
√

2π

∫ ∞

0

exp(−tu) cos(xu) cos(yu)
γ(1 + u2) + exp(−2tu)

du.

Hence, the unique member of H (1)
−1/2 with the minimum H (1)

−1/2 norm—the function Rγ,ψ which attains
the infimum—is given by

Rγ,ψ(x) =
1
√

2π

∫ ∞

0
N−1/2,1,1,γ(x, y)ψ(y) dy. (4.9)

For φ ∈ H (1)
−1/2 and for ψ = W1,−1/2,tφ, we have the formula

lim
γ→0

Rγ,ψ(x) = φ(x),

uniformly on (0,∞).

5. Conclusions

In this paper, we have explored the generalized Gauss-Weierstrass integral transform associated
with the Bessel operator, emphasizing its application to space-fractional diffusion equations. This
extension is significant because the Bessel operator coincides with the radial part of the Laplace
operator, thereby broadening the scope of the classical transform.

We utilized the properties of the Fourier-Bessel transform and its connection with the ∗-
convolution product to demonstrate that the transform Wα,ν,t is a one-to-one bounded linear operator
from the Sobolev space H s

ν into L2
ν(0,∞). Given the ill-posed nature of the inverse problem, we

applied Tikhonov regularization techniques to achieve stable reconstruction of functions. Our main
theorem established the convergence of the regularized solution Rγ,ψ to the original function φ as the
regularization parameter γ approaches zero.

The implications of our findings extend beyond theoretical interest, offering potential applications
in solving inverse problems associated with fractional diffusion equations. Future research could
further investigate the numerical implementation of the regularized inversion process and explore other
types of fractional differential operators within this framework.

Overall, our work provides a robust foundation for the generalized Gauss-Weierstrass transform’s
utility in fractional calculus and opens avenues for further investigation into its applications in various
mathematical contexts.
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