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Abstract: This paper introduces a novel numerical scheme, the conformable finite difference method 

(CFDM), for solving time-fractional gas dynamics equations. The method was developed by 

integrating the finite difference method with conformable derivatives, offering a unique approach to 

tackle the challenges posed by time-fractional gas dynamics models. The study explores the 

significance of such equations in capturing physical phenomena like explosions, detonation, 

condensation in a moving flow, and combustion. The numerical stability of the proposed scheme is 

rigorously investigated, revealing its conditional stability under certain constraints. A comparative 

analysis is conducted by benchmarking the CFDM against existing methodologies, including the 

quadratic B-spline Galerkin and the trigonometric B-spline functions methods. The comparisons are 

performed using 𝐿2 and 𝐿∞ norms to assess the accuracy and efficiency of the proposed method. To 

demonstrate the effectiveness of the CFDM, several illustrative examples are solved, and the results 

are presented graphically. Through these examples, the paper showcases the capability of the proposed 
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methodology to accurately capture the behavior of time-fractional gas dynamics equations. The 

findings underscore the versatility and computational efficiency of the CFDM in addressing complex 

phenomena. In conclusion, the study affirms that the conformable finite difference method is well-

suited for solving differential equations with time-fractional derivatives arising in the physical model. 

Keywords: conformable fractional derivative; finite difference method; stability; time-fractional gas 

dynamics models 

Mathematics Subject Classification: 26A33, 35R11, 76M20, 76N10 

 

1. Introduction 

Nonlinear differential equations with time-fractional derivatives have emerged as a fundamental 

tool for modeling complex dynamical systems exhibiting anomalous temporal behaviors. Unlike 

classical integer-order differential equations, which assume that time evolves linearly and continuously, 

time-fractional calculus allows for the consideration of non-integer orders of differentiation, enabling 

the description of processes with memory, hereditary properties, and long-range dependencies. 

Including nonlinearity further enriches these equations, capturing intricate dynamics that arise in 

various fields such as physics, biology, finance, and engineering  [1–6]. Recent studies have explored 

numerical techniques for investigating nonlinear time-fractional differential equations, encompassing 

various methodologies. The power series method [7–9], Adomian decomposition and variational 

iteration methods [10], kernel Hilbert space method [11], Taylor wavelet method [12], differential 

transformation method [13], finite difference method [14], Mohand variational iteration transform [15], 

and finite element method [16] represent some of the approaches applied in these investigations. Each 

method offers unique advantages in accuracy, efficiency, and applicability, contributing to the 

advancement of numerical solutions for time-fractional differential equations.   

Gas dynamics is essential for designing equipment, engines, and gas-powered vehicles. 

Understanding forces in gas interactions, including pressure, temperature, friction, and heat movement, 

is aided by this. Combustion, detonation, blast waves, and gas propulsion are all included in gas 

dynamics. Its laws are essential for studying explosions, developing machinery like compressors, 

turbines, and rocket motors, and studying exterior and interior ballistics. Accurately estimating these 

phenomena involves mathematical modeling. Finding solutions of nonlinear time-fractional gas 

dynamics equations presents a formidable challenge due to their inherent complexity, often defying 

traditional solution techniques. However, various numerical methods have been developed to 

approximate these solutions effectively. One approach involves combining the Laplace transformation 

with the power series method, as proposed by [17]. Alternatively, the differential transform method 

offers another avenue for approximation [18]. Other methods include the quadratic b-spline Galerkin 

and the cubic b-spline collection methods [19,20]. Trigonometric B-spline functions have also been 

suggested as a useful tool [21]. Additionally, [22] introduced the integral projected differential 

transform method, while [23] proposed the homotopy analysis transform method. [24] introduced the 

optimal q-homotopy analysis method, and [25] suggested employing Elzaki homotopy perturbation 

and variational iteration methods. In recent years, the utilization of the conformable fractional 

derivative, as defined by Khalil [26], has garnered attention in fractional differential equations. This 

derivative has been integrated into various numerical methodologies and modeling techniques, 
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showcasing its versatility and applicability. Afterward, [27] introduced some fundamental properties 

and definitions of the conformable derivative. For instance, a conformable non-polynomial spline 

method has also been introduced, further expanding the repertoire of techniques leveraging 

conformable fractional derivatives [28]. Additionally, a study on the fractional regularized long Wave 

equation with conformable fractional derivatives highlights the potential of conformable derivatives 

in modeling physical phenomena [29]. Moreover, exploration of the conformable time Korteweg-de 

Vries equation using the finite element method provides insights into the effectiveness of conformable 

fractional derivatives in numerical simulations [30]. These advancements underscore the growing 

significance of conformable fractional derivatives in enhancing the accuracy and efficiency of 

numerical solutions for fractional differential equations, paving the way for further developments in 

this field. The motivation behind this research lies in the inherent complexity of time-fractional gas 

dynamics equations, which often defy traditional solution techniques. These equations are crucial in 

understanding various physical phenomena such as explosions, combustion, detonation, and 

condensation in moving flows. The conformable fractional derivative is a more recent definition that 

preserves several properties of integer-order differentiation, allowing for a simpler formulation and 

interpretation, while the Caputo derivative, a well-established concept in fractional calculus, is 

particularly useful in initial value problems due to its compatibility with classical initial conditions. 

By introducing the CFDM, we aim to address the challenges posed by these equations and provide a 

reliable numerical framework for accurately analyzing and predicting the behavior of gas dynamics 

systems. The development of the CFDM is motivated by the pressing need for efficient and accurate 

numerical methods to facilitate advancements in gas dynamics research and engineering applications.  

This study aims to develop and validate the conformable finite difference method (CFDM) as a 

robust numerical scheme for accurately solving time-fractional gas dynamics equations. Additionally, 

we aim to demonstrate the applicability of the CFDM in solving a broader range of time-fractional 

differential equations encountered in various scientific and engineering fields, thereby showcasing its 

versatility as a general-purpose numerical scheme. The advantage of the conformable fractional 

derivative lies in its simpler formulation and preservation of several properties of integer-order 

differentiation, making it easier to interpret and apply in numerical methods and modeling while 

maintaining accuracy in describing processes with memory and hereditary properties.  

The novelty lies in introducing the CFDM to solve time-fractional gas dynamics equations. This 

method integrates finite difference techniques with conformable derivatives, offering a unique 

approach to address the complexities of these equations. It not only accurately analyzes gas dynamics 

systems, but also showcases versatility for solving various time-fractional differential equations in 

different fields. This study contributes to advancing numerical methods for fractional differential 

equations, facilitating computational studies of dynamic systems. The study highlights the versatility 

and computational efficiency of the CFDM by demonstrating its ability to accurately solve a range of 

time-fractional gas dynamics equations, capturing complex phenomena such as explosions, 

combustion, and detonation. Through rigorous stability analysis and comparative assessments using 

𝐿2 and 𝐿∞ norms against existing methods like trigonometric B-spline functions and the quadratic B-

spline Galerkin method, the study showcases the CFDM's superior accuracy and efficiency. 

Additionally, the successful application of the CFDM to various illustrative examples underscores its 

robustness and adaptability to different problems in time-fractional differential equations. 

The rest of the paper is organized as follows. Section 2 presents a detailed description of the 

conformable finite difference method (CFDM), elucidating its fundamental principles and 
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implementation procedures. Section 3 is dedicated to the stability analysis of the investigated 

numerical scheme, where we rigorously examine the stability properties under various conditions. In 

Section 4, we present the numerical results obtained using the CFDM and comprehensively discuss 

the findings. Through comparative analysis and interpretation of the results, we aim to provide insights 

into the performance and accuracy of the proposed method. Finally, in the last section, we draw 

conclusions based on our study, highlighting the contributions, implications, and potential future 

research directions. 

Consider the conformable time-fractional gas dynamics equations 

𝑇𝜏
𝜉
ℜ(𝜑, 𝜏) − 𝜇ℜ(𝜑, 𝜏)(1 − ℜ(𝜑, 𝜏)) + 𝜀ℜ(𝜑, 𝜏)

𝜕ℜ(𝜑, 𝜏)

𝜕𝜑
= 𝛹(𝜑, 𝜏),    0 < 𝜉 ≤ 1,   𝑎 ≤ 𝜑

≤ 𝑏,   𝜏 ≥ 0, 
(1) 

ℜ(𝜑, 0) = 𝛪(𝜑), 𝜑 ∈ [𝑎, 𝑏], (2) 

ℜ(𝑎, 𝜏) = 𝛣1(𝜏), ℜ(𝑏, 𝜏) = 𝛣2(𝜏), 𝜏 ∈ [0, 𝑇], (3) 

where 𝜇 and 𝜀 are reaction and convection parameters, respectively, ℜ(𝜑, 𝜏) represents the evolution 

of the state across both space and time, 𝛹(𝜑, 𝜏)  is an appropriate predetermined function, and the 

fractional derivative 𝑇𝜏
𝜉
ℜ(𝜑, 𝜏) is expressed in the conformable derivative. 

2. Description of conformable finite difference method 

This section introduces the combined use of conformable derivatives and the finite difference 

method, enhancing numerical analysis capabilities. The conformable derivative accommodates 

functions in diverse domains, while the finite difference method excels in discretization and derivative 

approximation, which is particularly useful for non-analytic functions or discrete datasets.  

Definition 2.1: The conformable time-fractional derivative 𝑇𝜑
𝜉
ℜ(𝜑, 𝜏)  for ℜ: [0,∞] → ℝ, defined by 

[26], is given as follows:  

𝑇𝜏
𝜉
ℜ(𝜏) = 𝑙𝑖𝑚

𝜌→∞

ℜ(𝜏 + 𝜌𝜏1−𝜉) − ℜ(𝜏)

𝜌
,          0 < 𝜉 ≤ 1. (4) 

Lemma 2.1: [26,27] Let 𝜉 ∈ (0,1] and ℜ,ℋ be 𝜉 −differentiable at 𝛼 point 𝜏 > 0. Then: 

(i). 𝑇𝜏
𝜉
 (𝛼ℜ + 𝛽ℋ) = 𝛼𝑇𝜏

𝜉
 ℜ + 𝛽 𝑇𝜏

𝜉
ℋ for 𝛼, 𝛽 ∈ ℝ, 

(ii). 𝑇𝜏
𝜉(𝜏𝛼) = 𝑎𝜏𝛼−𝜉  for all 𝛼 ∈ ℝ, 

(iii). 𝑇𝜏
𝜉
𝑐 = 0 if 𝑐 is constant function. 

(iv). 𝑇𝜏
𝜉
(ℜℋ) = ℜ (𝑇𝜏

𝜉
ℋ) + ℋ (𝑇𝜏

𝜉
ℜ), 

(v). 𝑇𝜏
𝜉
(

ℜ

ℋ
) =

ℋ(𝑇𝜏
𝜉
ℜ)−ℜ(𝑇𝜏

𝜉
ℋ)

ℋ2
, 

(vi). 𝑇𝜏
𝜉
ℜ(𝜏) = 𝜏1−𝜉 𝜕ℜ(𝜏)

𝜕𝜏
, if ℜ(𝜏) is differentiable.  

Corollary 2.1: Let 𝜑 = 𝑗ℎ, 𝑗 = 1,2,⋯ , 𝐿, and 𝜏𝑛 = 𝑛𝑘, 𝑛 = 1,2,⋯ ,𝑁, with uniform spatial step size 

ℎ =
𝑏−𝑎

𝐿
 and temporal step size  𝑘 =

𝑇

𝑁
. In the context of the finite difference scheme, we have 
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𝜕ℜ

𝜕𝜏
≅

ℜ𝑗
𝑛+1 − ℜ𝑗

𝑛

𝑘
,where   ℜ(𝜑, 𝜏) = ℜ𝑗

𝑛, (5) 

and, according to Lemma 1 (vi) and Eq (5), we have 

𝑇𝜑
𝜉
ℜ(𝜑, 𝜏) ≅ 𝜏1−𝜉

𝜕ℜ

𝜕𝜏
= 𝜔

ℜ𝑗
𝑛+1 − ℜ𝑗

𝑛

𝑘
, (6) 

where 𝜔 = 𝜏1−𝜉. Using the Crank-Nicolson finite difference formula, we have 

ℜ(𝜑, 𝜏)(1 − ℜ(𝜑, 𝜏)) ≅
ℜ𝑗

𝑛+1 − ℜ𝑗
𝑛

2
 (1 − ℜ𝑗

𝑛), (7) 

and  

ℜ(𝜑, 𝜏)
𝜕ℜ(𝜑, 𝜏)

𝜕𝜑
≅

ℜ𝑗
𝑛

2
(
ℜ𝑗+1

𝑛+1 − ℜ𝑗−1
𝑛+1

2ℎ
+

ℜ𝑗+1
𝑛 − ℜ𝑗−1

𝑛

2ℎ
). (8) 

Therefore, substituting Eqs (6)–(8) into Eq (1), we obtain 

𝜔
ℜ𝑗

𝑛+1 − ℜ𝑗
𝑛

𝑘
− 𝜇

ℜ𝑗
𝑛+1 − ℜ𝑗

𝑛

2
 (1 − ℜ𝑗

𝑛) + 𝜀
ℜ𝑗

𝑛

2
(
ℜ𝑗+1

𝑛+1 − ℜ𝑗−1
𝑛+1

2ℎ
+

ℜ𝑗+1
𝑛 − ℜ𝑗−1

𝑛

2ℎ
) = 𝛹𝑗

𝑛, (9) 

which implies that 

𝜔

𝑘
ℜ𝑗

𝑛+1 −
𝜔

𝑘
ℜ𝑗

𝑛 −
 𝜇

2
ℜ𝑗

𝑛+1 −
 𝜇

2
ℜ𝑗

𝑛 +
𝜇

2
ℜ𝑗

𝑛ℜ𝑗
𝑛+1 −

𝜇

2
(ℜ𝑗

𝑛)
2
+

𝜀

4ℎ
ℜ𝑗

𝑛ℜ𝑗+1
𝑛+1 −

𝜀

4ℎ
ℜ𝑗

𝑛ℜ𝑗−1
𝑛+1

+
𝜀

4ℎ
ℜ𝑗

𝑛ℜ𝑗+1
𝑛 −

𝜀

4ℎ
ℜ𝑗

𝑛ℜ𝑗−1
𝑛 = 𝛹𝑗

𝑛. 
(10) 

Then, after some simplification, we have 

−
𝜀

4ℎ
ℜ𝑗

𝑛ℜ𝑗−1
𝑛+1 + (

𝜔

𝑘
−

𝜇

2
+

𝜇

2
ℜ𝑗

𝑛)ℜ𝑗
𝑛+1 +

𝜀

4ℎ
ℜ𝑗

𝑛ℜ𝑗+1
𝑛+1

=
𝜀

4ℎ
ℜ𝑗

𝑛ℜ𝑗−1
𝑛 + (

𝜔

𝑘
−

𝜇

2
+

𝜇

2
ℜ𝑗

𝑛)ℜ𝑗
𝑛 −

𝜀

4ℎ
ℜ𝑗

𝑛ℜ𝑗+1
𝑛 + 𝛹𝑗

𝑛. 
(11) 

System (11) has less than or not enough equations (𝑁 –  1) compared to its number of unknowns 

(𝑁 +  1), necessitating two additional equations to achieve a solution. These additional equations are 

derived from the initial and boundary conditions, which are as follows:  

ℳ𝑗
𝑛ℜ𝑗−1

𝑛+1 + ℑ𝑗
𝑛ℜ𝑗

𝑛+1 − ℳ𝑗
𝑛ℜ𝑗+1

𝑛+1 = −ℳ𝑗
𝑛ℜ𝑗−1

𝑛 + ℑ𝑗
𝑛ℜ𝑗

𝑛 + ℳ𝑗
𝑛ℜ𝑗+1

𝑛 + 𝛹𝑗
𝑛, (12) 

where, 

ℳ𝑗
𝑛 = −

𝜀

4ℎ
|ℊ𝑗

𝑛|
2
,          ℑ𝑗

𝑛 =
𝜔

𝑘
−

 𝜇

2
+

𝜇

2
|ℊ𝑗

𝑛|
2
,          and          |ℊ𝑗

𝑛|
2

= ℜ𝑗
𝑛. 

Rewriting Eq (12) in matrix form: 

𝐴ℜ𝑛+1 = 𝐵ℜ𝑛 + 𝛹𝑛. (13) 

Here, 
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𝐴 =

[
 
 
 
 
 
 
ℑ1 −ℳ1 0
ℳ2 ℑ2 −ℳ2

0 ℳ3 ℑ3

0 0 0
0 0 0

−ℳ3 0 0

⋯
⋯
⋯

             
0
0
0
   

⋱
0
0
0

      

⋱
⋯
⋯
⋯

      

⋱
0
0
0

  

⋱
0
0
0

⋱
0
0
0

 

⋱
0

ℳ𝐿−1

0

⋱
0

ℑ𝐿−1

ℳ𝐿 

⋱
0

−ℳ𝐿−1

ℑ𝐿 ]
 
 
 
 
 
 

, 

𝐵 =

[
 
 
 
 
 
 

ℑ1 ℳ1 0
−ℳ2 ℑ2 ℳ2

0 −ℳ3 ℑ3

0 0 0
0 0 0

ℳ3 0 0

⋯
⋯
⋯

             
0
0
0
   

⋱
0
0
0

      

⋱
⋯
⋯
⋯

      

⋱
0
0
0

  

⋱
0
0
0

⋱
0
0
0

 

⋱
0

−ℳ𝐿−1

0

⋱
0

ℑ𝐿−1

−ℳ𝐿 

⋱
0

ℳ𝐿−1

ℑ𝐿 ]
 
 
 
 
 
 

. 

ℜ𝑛 = [ℜ1
𝑛 ℜ2

𝑛    ⋯ ℜ𝑗
𝑛 ℜ𝑗+1

𝑛
]𝑇 , 

ℜ𝑛−1 = [ℜ1
𝑛−1 ℜ2

𝑛−1    ⋯ ℜ𝑗
𝑛−1 ℜ𝑗+1

𝑛−1]𝑇. 

3. Stability analysis for the numerical scheme 

In this section, the stability of the numerical scheme is under scrutiny, assuming, according to the 

Fourier stability principle, that the solution to Eq (12) adheres to a specific structure. This approach 

leverages the principles of Fourier stability to assess the reliability and performance of the numerical 

method in question, offering valuable insights into its stability and accuracy. 

ℜ𝑗
𝑛 = Ω𝑛𝑒𝑖 𝜐 ℎ 𝑗. (14) 

In this context, 𝜐 represents the actual spatial wave number, and 𝑖 is the imaginary unit 𝑖 = √−1. 

By transforming the nonlinear term into a linear form and substituting the expression from Eq (14) 

into Eq (12), we obtain 

ℳ𝑗
𝑛Ω𝑛+1𝑒𝑖𝜐ℎ(𝑗−1) + ℑ𝑗

𝑛Ω𝑛+1𝑒𝑖 𝜐 ℎ 𝑗 − ℳ𝑗
𝑛Ω𝑛+1𝑒𝑖𝜐ℎ(𝑗+1)

= −ℳ𝑗
𝑛Ω𝑛𝑒𝑖𝜐ℎ(𝑗−1) + ℑ𝑗

𝑛Ω𝑛𝑒𝑖 𝜐 ℎ 𝑗 + ℳ𝑗
𝑛Ω𝑛𝑒𝑖𝜐ℎ(𝑗+1), 

(15) 

After dividing both sides by 𝑒𝑖 𝜐 ℎ 𝑗, the resultant expression is 

ℳ𝑗
𝑛Ω𝑛+1𝑒−𝑖 𝜐 ℎ + ℑ𝑗

𝑛Ω𝑛+1 − ℳ𝑗
𝑛Ω𝑛+1𝑒𝑖 𝜐 ℎ = −ℳ𝑗

𝑛Ω𝑛𝑒−𝑖 𝜐 ℎ + ℑ𝑗
𝑛Ω𝑛 + ℳ𝑗

𝑛Ω𝑛𝑒𝑖 𝜐 ℎ, (16) 

Then, implementing specific simplifications and grouping pertinent terms, we have 

Ω =
−ℳ𝑗

𝑛𝑒−𝑖 𝜐 ℎ + ℑ𝑗
𝑛 + ℳ𝑗

𝑛𝑒𝑖 𝜐 ℎ

ℳ𝑗
𝑛𝑒−𝑖 𝜐 ℎ + ℑ𝑗

𝑛 − ℳ𝑗
𝑛𝑒𝑖 𝜐 ℎ

, (17) 

Using the Euler formula in complex analysis, we obtain the following: 
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Ω =
(−ℳ𝑗

𝑛 cos(𝜐ℎ) + 𝑖 ℳ𝑗
𝑛 sin(𝜐ℎ)) + ℑ𝑗

𝑛 + (ℳ𝑗
𝑛 cos(𝜐ℎ) − 𝑖 ℳ𝑗

𝑛 sin(𝜐ℎ))

(ℳ𝑗
𝑛 cos(𝜐ℎ) − 𝑖 ℳ𝑗

𝑛 sin(𝜐ℎ)) + ℑ𝑗
𝑛 − (ℳ𝑗

𝑛 cos(𝜐ℎ) − 𝑖 ℳ𝑗
𝑛 sin(𝜐ℎ))

, (18) 

After some simplification, Eq (17) yields  

|Ω| = |1|. (19) 

In that case, the numerical scheme (12) is unconditionally stable.  

4. Numerical results and discussion  

In this section, the accuracy and effectiveness of the developed numerical scheme are thoroughly 

examined through the investigation of three examples. The obtained numerical results are meticulously 

compared with existing works, and the outcomes are visually presented through 2D and 3D graphs. 

The numerical simulations are conducted utilizing MATLAB R2017b, showcasing the robustness and 

reliability of the implemented scheme. To quantify the accuracy of the proposed scheme, maximum 

and least square error norms are computed using well-defined formulas:  

𝐿∞ = 𝑚𝑎𝑥
1≤𝑗≤𝐿

|ℜ𝑗𝑒𝑥𝑎𝑐𝑡
− ℜ𝑗𝑎𝑝𝑝𝑟𝑜𝑥𝑖𝑚𝑎𝑡𝑖𝑜𝑛

|,   (20) 

𝐿2 = √ℎ ∑|ℜ𝑗𝑒𝑥𝑎𝑐𝑡
− ℜ𝑗𝑎𝑝𝑝𝑟𝑜𝑥𝑖𝑚𝑎𝑡𝑖𝑜𝑛

|
2

𝐿

𝑖=1

. (21) 

Example 4.1. Consider the gas dynamics equation with time-fractional derivative in the following 

form: 

𝑇𝜏
𝜉
ℜ(𝜑, 𝜏) − ℜ(𝜑, 𝜏)(1 − ℜ(𝜑, 𝜏)) + ℜ(𝜑, 𝜏)

𝜕ℜ(𝜑, 𝜏)

𝜕𝜑
= 0,              

 0 < 𝜉 ≤ 1,        𝑎 ≤ 𝜑 ≤ 𝑏, 𝜏 ≥ 0, 

(22) 

ℜ(𝜑, 0) = 𝑒−𝜑, 𝜑 ∈ [0,1], (23) 

ℜ(0, 𝜏) = 𝐸𝜉(𝜏
𝜉), ℜ(1, 𝜏) = 𝑒−1𝐸𝜉(𝜏

𝜉), 𝜏 ∈ [0, 𝑇], (24) 

where the Mittag-Leffler function 𝐸𝜉(𝜑) is defined as    

𝐸𝜉(𝜑) = ∑
𝜑𝑚

𝛤(𝜉𝑚 + 1)

∞

𝑚=0

, (25) 

and the exact solution of the problem is ℜ(𝜑, 𝜏) = 𝑒−𝜑𝐸𝜉(𝜏
𝜉). 
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Figure 1. Three-dimensional 

CFDM plot for Example 1, when 

𝜉 = 0.5. 

Figure 2. The plot of exact and CFD 

methods for Example 1, when 𝜉 =
0.5 and 𝜏 = 0.5. 

  

Figure 3. Effect of time on ℜ(𝜑, 𝜏) 

for Example 1, when 𝜉 = 0.5. 
Figure 4. Effect of fractional 

derivative on ℜ(𝜑, 𝜏) for Example 1, 

when 𝜏 = 0.75. 

 

 

Figure 5. Absolute error between 

CFDM and exact solution for 

ℜ(𝜑, 𝜏)  for Example 1, when 𝜉 =
0.5. 
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Table 1. Comparison of 𝐿∞ and 𝐿2 error norms for Example 1 with previous studies at 

different time knots when 𝑘 = 5 × 10−4 and 𝜉 = 0.5. 

𝜏 CFDM  [21]  [20] 

𝐿∞ 𝐿2  𝐿∞ 𝐿2  𝐿∞ 𝐿2 

0.2 1.9432 × 10−5 0.5321 × 10−5  3.8746 × 10−4 2.3225 × 10−4  0.4616 × 10−3 0.2339 × 10−3 

0.4 1.6476 × 10−5 0.4872 × 10−5  2.0719 × 10−4 1.3005 × 10−4  0.2909 × 10−3 0.1329 × 10−3 

0.6 1.3764 × 10−5 0.4187 × 10−5  1.2682 × 10−4 8.5960 × 10−4  0.2239 × 10−3 0.1044 × 10−3 

0.8 1.2543 × 10−5 0.3923 × 10−5  7.7522 × 10−4 5.2942 × 10−4  0.1968 × 10−3 0.0940 × 10−3 

The presented figures collectively offer valuable insights into the behavior and performance of 

the conformable finite difference method (CFDM) in solving time fractional gas dynamic equations in 

Example 1. Figure 1 provides a visual representation of CFDM in a 3D plot, illustrating how variations 

in parameters such as 𝜑 and 𝜏 within the specified range impact the output. In Figure 2, the comparison 

between the exact and CFDM methods, with both 𝜉 and 𝜏 set to 0.5, demonstrates excellent agreement, 

confirming the accuracy and efficiency of the numerical scheme employed for time fractional gas 

dynamic equations. Figure 3 reveals a direct relationship between time 𝜏 and the magnitude of the 

solution ℜ(𝜑, 𝜏), indicating the temporal influence on system behavior. Finally, Figure 4 highlights 

the converse effect of the fractional order 𝜉  on ℜ(𝜑, 𝜏) , showcasing how increasing 𝜉  leads to a 

decrease in the solution magnitude. Figure 5 shows the comparison between the exact and CFDM 

methods using an absolute error plot.  In addition to the graphical representations provided in the 

figures, Table 1 offers a comparison of the error norms of the presented numerical scheme with that of 

previous approaches utilizing the trigonometric b-spline method [21] and the quadratic b-spline 

Galerkin method [20]. The table presents the error norm values, allowing for a direct assessment of the 

accuracy and performance of each of the methods. The data demonstrate that the solutions obtained 

using the CFDM outperform those achieved through the trigonometric b-spline and quadratic b-spline 

Galerkin methods. This superiority in accuracy further underscores the effectiveness and reliability of 

CFDM in solving time fractional gas dynamic equations. The comparison provided in Table 1 

reinforces the conclusions drawn from the graphical analyses, strengthening the argument for the 

adoption of CFDM as a preferred numerical scheme for such complex fluid dynamic systems. 

Example 4.2. Consider the gas dynamics equation with time-fractional derivative in the following 

form: 

𝑇𝜏
𝜉
ℜ(𝜑, 𝜏) − ℜ(𝜑, 𝜏)(1 − ℜ(𝜑, 𝜏)) + ℜ(𝜑, 𝜏)

𝜕ℜ(𝜑, 𝜏)

𝜕𝜑
= 𝛹(𝜑, 𝜏),

0 < 𝜉 ≤ 1,     𝑎 ≤ 𝜑 ≤ 𝑏,    𝜏 ≥ 0, 
(26) 

ℜ(𝜑, 0) = 0, 𝜑 ∈ [0,1], (27) 

ℜ(0, 𝜏) = 0,            ℜ(1, 𝜏) = 𝜏𝜉 tan(1) ,              𝜏 ∈ [0, 𝑇], (28) 

where  

𝛹(𝜑, 𝜏) = 𝜏2𝜉 tan2 𝜑 − 𝜏𝜉 tan𝜑 + 𝜏2𝜉 tan𝜑 sec2 𝜑 −
𝜋 csc𝜋𝜉

Γ(−𝜉)
tan𝜑, 

and the exact solution of the problem is ℜ(𝜑, 𝜏) = 𝜏𝜉 tan𝜑. 



19852 

AIMS Mathematics  Volume 9, Issue 7, 19843–19858. 

  

Figure 6. Three-dimensional 

CFDM plot for Example 2, when 

𝜉 = 0.5. 

Figure 7. The plot of exact and CFD 

methods for Example 2, when 𝜉 =
0.5 and 𝜏 = 0.5. 

  

Figure 8. Effect of time on ℜ(𝜑, 𝜏) 

for Example 2, when 𝜉 = 0.5. 
Figure 9. Effect of fractional 

derivative on ℜ(𝜑, 𝜏) for Example 2, 

when 𝜏 = 0.75. 

 

 

Figure 10. Absolute error between 

CFDM and exact solution for 

ℜ(𝜑, 𝜏)  for Example 2, when 𝜉 =
0.5. 
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Table 2 provides an error norm comparison between the presented numerical scheme and that of 

a previous approach utilizing the trigonometric b-spline method [21]. Through direct assessment of the 

error norm values, the table reveals that the solutions obtained using the CFDM outperform those 

achieved through the trigonometric b-spline method. This superiority is further evidenced by Figure 6, 

which presents a 3D plot of the CFDM for Example 2, showcasing its behavior when parameters 𝜑 

and 𝜏  vary within the range [0,1] , with 𝜉 = 0.5 . Figure 7 reinforces the efficacy of the CFDM by 

illustrating a comparison between exact solutions and CFDM results for Example 2, where 𝜉 = 𝜏 =

0.5, demonstrating excellent accordance between the two sets of results and confirming the suitability 

and efficiency of the numerical scheme. Additionally, Figure 8 depicts the effect of time (𝜏) on the 

solution ℜ(𝜑, 𝜏)  for Example 2, indicating a direct correlation between ℜ(𝜑, 𝜏)  and increasing 𝜏 . 

Moreover, Figure 9 explores the impact of the fractional order (𝜉)  on the solution ℜ(𝜑, 𝜏)  for 

Example 2, concluding that increasing the fractional order leads to a decrease in the solution magnitude, 

highlighting the sensitivity of the solution to variations in the fractional order parameter within the 

CFDM framework. Figure 10 shows the comparison between exact and CFDM using an absolute error 

plot. Collectively, these findings underscore the robustness, accuracy, and superiority of the CFDM 

approach in accurately modeling and solving Example 2 over alternative numerical methods, providing 

valuable insights into the behavior of the system under consideration. 

Table 2. Comparison of 𝐿∞  and 𝐿2  error norms for Example 2 with other studies at 

different time knots when 𝑘 = 5 × 10−4 and 𝜉 = 0.25. 

𝜏 [21]  CFDM 

𝐿∞ 𝐿2  𝐿∞ 𝐿2 

0.05 8.3597 × 10−4 9.9531 × 10−5  2.4132 × 10−5 3.2238 × 10−6 

0.1 8.4173 × 10−4 1.0151 × 10−4  2.3217 × 10−5 3.2431 × 10−6 

0.5 8.6095 × 10−4 1.2203 × 10−4  2.2619 × 10−5 3.3752 × 10−6 

1.0 8.5040 × 10−4 1.4138 × 10−4  2.1843 × 10−5 3.4212 × 10−6 

Example 4.3. Consider the gas dynamics equation with time-fractional derivative in the following 

form: 

𝑇𝜏
𝜉
ℜ(𝜑, 𝜏) − ℜ(𝜑, 𝜏)(1 − ℜ(𝜑, 𝜏)) + ℜ(𝜑, 𝜏)

𝜕ℜ(𝜑, 𝜏)

𝜕𝜑
= 𝛹(𝜑, 𝜏),                          

0 < 𝜉 ≤ 1,                  𝑎 ≤ 𝜑 ≤ 𝑏,              𝜏 ≥ 0, 

(29) 

ℜ(𝜑, 0) = 0, 𝜑 ∈ [0,1], (30) 

ℜ(0, 𝜏) = 0,            ℜ(1, 𝜏) = 𝜏2+𝜉 sin 𝜋 ,             𝜏 ∈ [0, 𝑇], (31) 

where  

𝛹(𝜑, 𝜏) =
𝜋

2
𝜏4+2𝜉 sin 2𝜋𝜑 − 𝜏2+𝜉 sin 𝜋𝜑 + 𝜏4+2𝜉 sin2 𝜋𝜑 −

𝜋𝜏2 csc 𝜋𝜉

2Γ(−2 − 𝜉)
sin 𝜋𝜑, 

and the exact solution of the problem is ℜ(𝜑, 𝜏) = 𝜏2+𝜉 sin 𝜋𝜑. 
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Figure 11. Three-dimensional CFDM 

plot for Example 3, when 𝜉 = 0.5. 
Figure 12. The plot of exact and CFD 

methods for Example 3, when 𝜉 = 0.5 

and 𝜏 = 0.5. 

  

Figure 13. Effect of time on ℜ(𝜑, 𝜏) 

for Example 3, when 𝜉 = 0.5. 
Figure 14. Effect of fractional 

derivative on ℜ(𝜑, 𝜏)  for Example 3, 

when 𝜏 = 0.75. 

 

 

Figure 15. Absolute error between 

CFDM and exact solution for 

ℜ(𝜑, 𝜏)  for Example 3, when 𝜉 =
0.5. 
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In Figure 11, a 3D plot showcases the application of the CFDM to Example 3, where the 

parameters 𝜏  and 𝜑  range from 0  to 1 , while 𝜉  remains constant at 0.5 . This visualization offers a 

comprehensive view of the CFDM's behavior within the specified parameter space, shedding light on 

the dynamics of the solution. Figure 12 compares exact solutions and CFDM results for Example 3, 

with both 𝜉  and 𝜏  set to 0.5 . The close agreement between the two sets of results indicates the 

suitability and efficiency of the CFDM, confirming its reliability in accurately solving Example 3. In 

Figure 13, the plot illustrates the impact of time (𝜏) on the solution ℜ(𝜑, 𝜏) for Example 3, revealing 

a direct correlation between ℜ(𝜑, 𝜏)R and increasing 𝜏. This observation offers valuable insights into 

the temporal behavior of the system under consideration. Furthermore, Figure 14 investigates the effect 

of the fractional order (𝜉) on the solution ℜ(𝜑, 𝜏)for Example 3, concluding that an increase in the 

fractional order leads to a decrease in the solution magnitude. Figure 15 shows the comparison between 

exact and CFDM using an absolute error plot. This finding underscores the sensitivity of the solution 

to variations in the fractional order parameter within the CFDM framework. Collectively, these results 

highlight the robustness and accuracy of the CFDM approach in modeling and solving Example 3, 

providing valuable insights into the behavior of the system. 

5. Conclusions  

In conclusion, this study has introduced and validated the conformable finite difference method 

(CFDM) as a robust numerical scheme for accurately solving time-fractional gas dynamics equations. 

By integrating the finite difference method with conformable derivatives, the CFDM offers a unique 

approach to tackle the challenges posed by these equations, which are crucial in capturing various 

physical phenomena, such as explosions, combustion, detonation, and condensation in a moving flow. 

Through rigorous stability analysis, we have demonstrated the conditional stability of the proposed 

scheme under certain constraints, validating its reliability in practical applications. Comparative 

analysis against existing methodologies, including trigonometric B-spline functions and the quadratic 

B-spline Galerkin method, using 𝐿2  and 𝐿∞  norms, highlighted the accuracy and efficiency of the 

CFDM. Numerical results obtained using the CFDM were presented and discussed in detail, 

showcasing its capability to accurately capture the behavior of time-fractional gas dynamics equations. 

Furthermore, several illustrative examples were solved, providing concrete evidence of the 

effectiveness of the proposed methodology. Overall, this study underscores the versatility and 

computational efficiency of the CFDM in addressing complex phenomena encountered in time-

fractional differential equations arising in various scientific and engineering fields. In conclusion, the 

CFDM emerges as a promising numerical technique, offering significant potential for advancing 

research in physical modeling and numerical simulations. Future directions may involve further 

refinement of the method and its application to a broader range of problems in different disciplines. 
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