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Abstract: As an effective means to improve system reliability, cold standby redundancy design has
been applied in many fields. Studies on the reliability of systems with retrial mechanisms mainly
focus on the assumption of continuous time, but for some engineering systems whose states cannot
be continuously monitored, it is of great theoretical and practical value to establish and analyze
the reliability model of the discrete-time cold standby repairable retrial system. In this paper, the
lifetime, repair time, and retrial time of each component were described by geometric distribution,
and the reliability and optimal design models of a discrete-time cold standby retrial system were
developed. Two different models were proposed based on two types of priority rules. According to
the discrete-time Markov process theory, the transition probability matrix of the system states was
given. The availability, reliability function, mean time to first failure (MTTFF) of the system, and
other performance measures were obtained using the iterative algorithm of the difference equation,
and the generative function method, algorithms for calculating stationary probability, and transient
probability of the system were designed. The particle swarm optimization (PSO) algorithm was used
to determine the optimal values of the repair rate and retrial rate corresponding to the minimum value
of the cost-benefit ratio. Moreover, numerical analysis was performed to show the influence of each
parameter on the system reliability and the cost-benefit ratio. The reliability measures of the systems
with and without retrial mechanism were analytically compared.
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1. Introduction

System reliability and availability have been extensively used in numerous fields, such as industry,
power, aviation, computers and networks, etc. With the increasing demand for the reliability of the
system, system designers and managers adopt various methods to improve the system’s reliability.
Redundant standby design is a simple and effective way to improve system reliability, which is widely
used in a variety of practical systems, such as, mission-critical systems, including hospital emergency
care systems, power supply systems, and flight control systems. Based on the failure characteristics
of the standby period, the types of standby can be classified into hot standby, warm standby, and cold
standby. We consider a discrete-time stochastic model of the system with retrial and cold standbys.

The reliability model for repairable retrial system is a kind of stochastic model developed based
on retrial queueing theory in recent years. Early studies of retrial queueing systems can be seen in
[2, 6, 10, 11, 33]. Retrial mechanism is widely used in modeling many practical problems such as call
centers, computer networks and communication networks. The retrial mechanism is a feature that some
automation systems need to consider during the design phase. The retrial mechanism of a repairable
system means that if the repair equipment is idle when the failed component gets to the maintenance
station, the repair equipment repairs it immediately. Otherwise, the component failure information is
automatically stored in the failure information repository (retrial orbit), and the maintenance request
is repeatedly sent after some time. Given the fully automated characteristics of some future system
equipment, it is sometimes necessary to consider the retrial mechanism of failed components when
designing, modeling and analyzing the system reliability. Continuous-time warm standby repairable
retrial systems with N-policy have been researched by Chen and Wang [9]. Yang and Tsao [42] studied
a continuous-time standby retrial system with multiple vacations using the matrix-analytic and Laplace
transform methods. Yen et al. [43] considered machine repair problems for systems with retrial and
working breakdowns based on the F-policy.

In recent years, scholars have realized that retrial mechanism has certain potential application value
in some repairable system reliability model designs, so the research on retrial mechanism has been
investigated in some reliability models [14, 17, 18, 38, 44]. Due to the repair equipment will inevitably
fail in engineering practice, Gao and Wang [12] analyzed a continuous-time model for retrial systems
with unreliable repair equipment. Wu et al. [39] analytically compared the stationary availability
and cost-benefit ratio of four warm standby retrial systems with general repair times and imperfect
coverage. Li et al. [20] studied a circular consecutive k-out-of-n: F system with retrial and analyzed
some critical system reliability measures. Wang et al. [37] studied linear consecutive k-out-of-n: F
systems with retrial and two maintenance activities using the Laplace transform and Runge- Kutta
methods. In general, the running time, repair time, and inspection time for some components are
measured in discrete time. In view of this situation, we propose a discrete-time model of the system
with retrial and cold standbys. Compared with the above literature, the similarity is that the retrial
mechanism is considered. The difference is that the above research works focus on continuous-time
system models, while this paper focuses on discrete-time system models, and multiple events can
occur simultaneously.

Compared with continuous-time reliability models, discrete-time reliability models have been
studied relatively late. Early studies of reliability models for discrete-time systems can be seen
in [24, 25, 32, 34, 41]. Since then, the research of discrete-time reliability models has attracted
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extensive attention from plentiful scholars. Bracquemond and Gaudoin [7] dealt with discrete lifetime
distributions for non-repairable systems. Liu and Kapur [22] investigated discrete-time models for
non-repairable systems with multi-state. Habib et al. [15] studied a discrete-time Markov consecutive
r-out-of-n: F system model. In engineering practice, managers often through repair method to improve
the reliability of the system. Studies on discrete time reliability models for repairable systems have
been paid more and more attention by scholars. The discrete-time 2-out-of-(N+1): F repairable
system model was investigated by Bruning [8]. Alfa and Castro [1] studied the discrete-time repairable
machine reliability and obtained the optimal time to replace the machine. The discrete-time models for
systems with repair and cold standbys were studied by Ruiz-Castro et al. [31] based on the matrix-
analytic method. Ruiz-Castro et al. [29] utilized matrices with low order to calculate reliability
measures for discrete-time cold standby repairable systems by using the RG-factorization method.
Subsequently, Ruiz-Castro et al. [30] proposed discrete-time models for repairable systems with
external and internal failures. Ruiz-Castro and Fernández-Villodre [27] studied a discrete-time model
for repairable systems with warm standbys and provided the cost-benefit analysis of the system. In
addition, Li et al. [21] conducted a discrete-time model for repairable systems with multi-state. Kan and
Eryilmaz [16] evaluated the reliability and hazard rate functions for discrete-time models for repairable
systems with cold standbys. Ruiz-Castro and Li [28] introduced several types of failure into a discrete-
time model for k-out-of-n: G repairable system with multiple repairmen. Ruiz-Castro [26] investigated
discrete-time models for systems with multi-state, warm standbys and preventive maintenance.

The research on discrete-time reliability for repairable systems rarely considers the retrial of
failed components. The research on discrete-time models for retrial systems mainly focuses on
queueing performance measures. Atencia and Moreno [4] studied a discrete-time model for Geo/G/1
retrial queueing systems. Atencia and Moreno [5] studied a discrete-time single-server model for
the Geo/Geo/1 queue with negative arrivals. Artalejo et al. [3] analyzed a discrete-time model for
Geo[X]/G/1 retrial queueing systems with batch arrivals. Wu et al. [40] studied a discrete-time model
for Geo/G/1 retrial queue subject to preferred and impatient customers. Considering the inevitable
failure of servers in practical engineering systems, the discrete-time models for queueing systems
with unreliable servers have also been considered in [13, 19, 23, 35, 36]. It can be noticed that the
discrete-time models for retrial queueing systems in queueing theory have been thoroughly studied
by scholars. In view of the correlation between repairable system reliability and queueing theory, the
retrial mechanism is considered in the reliability model for a discrete-time cold standby repairable
system in this paper.

Based on the above literature review, it can be observed that massive works have investigated
continuous-time reliability models for repairable systems, but there are relatively few studies on the
discrete-time reliability models for repairable systems. Although discrete-time reliability models for
repairable systems have been studied by some researchers, the retrial mechanism of failed components
in discrete-time repairable systems has not been studied. The running time, repair time, and inspection
time of some repairable systems in engineering practice are measured in discrete time, and the failure
information of system components is not successfully sent to the repair equipment in some cases.
Therefore, the retrial mechanism is introduced into the reliability model of a discrete-time system with
repair and cold standbys for modeling and evaluating the system reliability in this paper. The reliability
measures of the system with retrial and cold standbys are obtained using the discrete-time Markov
process theory, the iterative algorithm of the difference equation, and generating function method.
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In this work, it is assumed that the lifetime of each component, the repair time and the retrial time
of each failed component are distributed geometrically. The geometric distribution in discrete time
and the exponential distribution in continuous time have similar effects in stochastic modeling and
analysis of the system. Therefore, using geometric distribution to describe random variables related to
components will be more conducive to mathematical processing and analysis. In addition, the failure
rate, repair rate, and retrial rate are approximately constant during the stable operation of the system,
so the geometric distribution can be used to model the reliability of the discrete-time system.

The design of a discrete-time standby retrial system model can be applied in the field of
communication. We show a potential application of the developed model in cloud data processing. In
this application, the cloud data processing center contains one operating virtual machine and multiple
cold standby virtual machines. The Cloudstack cloud management tool is installed as a virtual machine
repair server. The repair server has a storage system for storing failure signals of the virtual machine.
When the operating virtual machine fails, the cold standby virtual machine immediately substitutes
the failed one and becomes the operating virtual machine. The super supervisor sends the failure
signal to the virtual machine repair server or saves it to the storage system on the virtual machine
repair server. If the virtual machine repair server is idle, it will repair the failed virtual machine
immediately. Otherwise, the storage system continuously sends repair requests to the virtual machine
repair server. Through the modeling of practical engineering application problems, this paper makes
a certain contribution to the extended research of discrete-time cold standby systems. The Major
contributions of this paper are as follows:

• A new discrete-time model for reliability systems with retrial and cold standbys is proposed based
on geometric distribution.
• The priority order of simultaneous occurrence of multiple events is defined for the case in which

multiple events can occur simultaneously at the same time in the discrete-time system model.
• Based on the system’s reliability measures and other performance measures, the expected cost

function and cost-benefit ratio function of the system are formulated.
• An algorithm is designed to calculate the stationary and transient probabilities of the system,

and the steps for solving the cost-benefit ratio optimization model based on the PSO algorithm
are given.

The remainder of this paper is structured as follows. In Section 2, the system model is given. In
Section 3, we provide crucial reliability measures derivation from the system model. In Section 4,
we provide system cost-benefit ratio function construction and optimization. Numerical analysis is
provided to demonstrate the influence of each parameter on system reliability, the cost-benefit ratio,
and the system measures with and without retrial mechanism in Section 5. Finally, in Section 6, we
provide the findings and presents future research directions.

2. The model

2.1. Description and assumptions

We consider a cold standby n-system with one operating component and n− 1 cold standbys. There
is only one repair equipment. When the operating component fails, the cold standby one (if there is
a cold standby) immediately substitutes the failed one and becomes the operating one. If the repair
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equipment is idle when the failed component arrives, the repair equipment repairs it immediately.
Otherwise, the failed one enters the retrial orbit and tries again after a time until it is repaired (first
come, first out). Specific model assumptions are established as

(1) The operating component’s lifetime, X, is distributed geometrically with parameter p, given by

P {X = k} = p̄k−1 p, k = 1, 2, · · · ,

where 0 < p < 1, p̄ = 1 − p.
(2) Each failed component’s repair time, Y , is distributed geometrically with parameter δ, given by

P {Y = k} = δ̄k−1δ, k = 1, 2, · · · ,

where 0 < δ < 1, δ̄ = 1 − δ.
(3) Each failed component’s retrial time, Z, is distributed geometrically with parameter r, given by

P {Z = k} = r̄k−1r, k = 1, 2, · · · ,

where 0 < r < 1, r̄ = 1 − r.
(4) All events occur at the time point, when events occur at the same time, the priority order of

simultaneous occurrence of multiple events is defined, including the following two models:
Model A: Repair of failed component, failure of operating component and retrial of

failed component.
Model B: Failure of operating component, retrial of failed component and repair of

failed component.
(5) At the initial moment, all components are brand new, the operating component is working,

and the repair equipment is idle. Switch time between an operating component and a cold standby
component can be neglected.

(6) All of the failed components are repaired as new. The operation time, repair time and retrial
time for all components are mutually independent.

2.2. Model state analysis

At time k, let J(k) represent the state of the repair equipment, and I(k) be the number of failed
components in orbit. Here, J(k) = 1 means that the repair equipment is busy, and J(k) = 0 means
that the repair equipment is idle. The value of I(k) is 0, 1, · · · , n − 1. System state can be expressed as
D(k) = {J(k), I(k), k = 0, 1, 2, · · · }. Apparently, D(k) is a discrete-time Markov chain with state space
Ω including working states set W and failed states set F, where, Ω = {( j, i), j = 0, 1, i = 0, 1, · · · , n−1},
W = {( j, i), j = 0, 1, i = 0, 1, · · · , n − 2} ∪ {(0, n − 1)}, and F = {(1, n − 1)}.

Two state transition diagrams of models A and B are depicted in Figures 1 and 2, respectively.
The states in the ellipse and rectangle are the system working states and failure states, respectively.
According to the system state definitions and the relevant model assumptions, all the transitions
between different states are determined. Taking model A as an example, six types of transition
probabilities are described (see Appendix).
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Figure 1. State transition of discrete-time cold standby repairable system with retrial
mechanism (model A).
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Figure 2. State transition of discrete-time cold standby repairable system with retrial
mechanism (model B).

2.3. Transition probability matrix

• The transition probability matrix Q of model A

Q =



p p 0 0 0 0 · · · 0 0 0 0
pδ pδ + pδ 0 pδ 0 0 · · · 0 0 0 0
0 pr pr p 0 0 · · · 0 0 0 0
0 pδr pδr pδ + pδ 0 pδ · · · 0 0 0 0
0 0 0 pr pr p · · · 0 0 0 0
0 0 0 pδr pδr pδ + pδ · · · 0 0 0 0
...

...
...

...
...

...
. . .

...
...

...
...

0 0 0 0 0 0 · · · pr p 0 0
0 0 0 0 0 0 · · · pδr pδ + pδ 0 pδ
0 0 0 0 0 0 · · · 0 pr pr p
0 0 0 0 0 0 · · · 0 δr δr δ



.

• The transition probability matrix Q′ of model B
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Q′ =



p p 0 0 0 0 · · · 0 0 0 0
pδ pδ pδ pδ 0 0 · · · 0 0 0 0
0 pr pr p 0 0 · · · 0 0 0 0
0 0 pδ pδ pδ pδ · · · 0 0 0 0
0 0 0 pr pr p · · · 0 0 0 0
0 0 0 0 pδ pδ · · · 0 0 0 0
...

...
...

...
...

...
. . .

...
...

...
...

0 0 0 0 0 0 · · · pr p 0 0
0 0 0 0 0 0 · · · pδ pδ pδ pδ
0 0 0 0 0 0 · · · 0 pr pr p
0 0 0 0 0 0 · · · 0 0 δ δ



.

3. Model reliability analysis

Taking model A as an example, this section presents the derivation process of several
reliability indices.

3.1. Availability

• Transient availability

At time k, let P j,i(k) ( j = 0, 1, i = 0, 1, · · · , n − 1) represent the probability of the system in the state
( j, i), and the system state probability vector is denoted as

P(k) =
(
P(0,0) (k) , P(1,0) (k) , P(0,1) (k) , P(1,1) (k) , · · · , P(0,n−1) (k) , P(1,n−1) (k)

)
.

Based on the discrete-time Markov process theory, the system state probability equation is given by

P(k) = P(k − 1)Q, (3.1)

and the initial distribution of the system state probability is

P(0) =
(
1, 01×(2n−1)

)
. (3.2)

Based on the iterative algorithm of the difference equation, using Eqs (3.1) and (3.2), we have

P(k) = P(0)Qk. (3.3)

Thus, the system state probability P( j,i) (k) is obtained.
Once P( j,i) (k) is determined, the system transient availability, denoted by A (k), can be expressed as

A (k) =
n−2∑
i=0

1∑
j=0

P( j,i) (k) + P(0,n−1) (k) = 1 − P(1,n−1) (k)

=
2n−1∑
u=1

P(0)Qkcu = 1 − P(0)Qkc2n,

(3.4)

where cu is a 2n dimensional column vector whose u-th row element is equal to 1 and the others are
equal to 0. c2n is a 2n dimensional column vector whose 2n-th row element is equal to 1 and the others
are equal to 0.
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• Stationary availability

The system will enter a stable state after a long period of operation. When the system is in a steady
state, the probability that each state stops in each state during the process of mutual transfer is defined
as the stationary probability. According to Figure 1, all state probabilities of the system satisfy the
following stationary probability equations

π(0,0) p + π(1,0) pδ = π(0,0),

π(0,i) pr + π(1,i) pδr = π(0,i), i = 1, 2, · · · , n − 2,

π(0,n−1) pr + π(1,n−1)δr = π(0,n−1),

π(0,0) p + π(1,0)

(
pδ + pδ

)
+ π(0,1) pr + π(1,1) pδr = π(1,0),

π(1,i−1) pδ + π(0,i) p + π(1,i)

(
pδ + pδ

)
+ π(0,i+1) pr + π(1,i+1) pδr = π(1,i), i = 1, 2, · · · , n − 3,

π(1,n−3) pδ + π(0,n−2) p + π(1,n−2)

(
pδ + pδ

)
+ π(0,n−1) pr + π(1,n−1)δr = π(1,n−2),

π(1,n−2) pδ + π(0,n−1) p + π(1,n−1)δ = π(1,n−1).

The above equations for the stationary probability π( j,i) can also be expressed as a matrix for the
stationary probability vector π, π =

(
π(0,0), π(1,0), π(0,1), π(1,1), · · · , π(0,n−1), π(1,n−1)

)
, and then combined

with the normalization condition, The linear system of π is obtained as

{
πQ = π,
πe2n = 1,

(3.5)

where e2n is a 2n dimensional column vector with whole elements being 1. The system stationary
probability π( j,i), ( j, i) ∈ Ω is obtained by solving Eq (3.5).

Hence, the stationary availability A (∞) can be written as

A (∞) =

n−2∑
i=0

1∑
j=0

π( j,i) + π(0,n−1) = 1 − π(1,n−1). (3.6)

The calculation of the stationary and transient probability of the system can be realized by
programming, as shown in Table 1.
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Table 1. System state probability algorithm.

For calculating the stationary and transient probability.
Step 1. Input parameters p, δ, r, k and n.
Step 2. Input the one-step transition probability matrix Q.

Q = zeros (2 ∗ n) ;
for $ = 1 : 2 ∗ n do

if (mod($, 2) = κ, κ = 0, 1)
if ($ == Y) then

Q ($,ϑ) = π($,ϑ);
elseif (O <= $&&$ <= Z) then

Q ($,ϑ) = π($,ϑ);
elseif ($ == R) then

Q ($,ϑ) = π($,ϑ);
end
end

end
Step 3. Calculate stationary probability π( j,i) using Eq (3.5)

I = eye(2 ∗ n); T = ones (1, 2 ∗ n);
Step 4. Using Eq (3.5) to solve the basic solution set X of the linear equations (Q − I)T πT = 0T.
Step 5. Solve the rank of a matrix

r = rank (Q − I)T; X = null
(
(Q − I)T , r

)
;

Step 6. Solve the nonhomogeneous equations TTXTS = 1.
Step 7. Output stationary probability π = STXT.
Step 8. Using Eq (3.3) to calculate the transient probability of the system π( j,i) (k)

V = eye(2 ∗ n); U = zeros (1, 2 ∗ n) ; U (1, 1) = 1; E = U ∗ Qk;
Step 9. for $ = 0 : 2 ∗ n − 1 do

p$ = E ∗ V (:, $ + 1);
end

Step 10. Output transient probability π( j,i) (k).

3.2. Conditional probability of failure

At time k, the conditional probability of failure of the operating component (system) is defined as
the probability of the component (system) operating normally at time k−1 and failure at time k. Based
on Eq (3.3), the following two performance measures can be obtained as

• The conditional probability of the operating component failure at time k is

V (k) =

(
n−2∑
i=0

1∑
j=0

P( j,i) (k − 1) + P(0,n−1) (k − 1)
)

p =
(
1 − P(1,n−1) (k − 1)

)
p

=

(
2n−1∑
u=1

P(0)Qk−1cu

)
p =

(
1 − P(0)Qk−1c2n

)
p.

(3.7)

• The conditional probability of the system failure at time k is

AIMS Mathematics Volume 9, Issue 7, 19692–19717.



19701

Vs (k) = P(1,n−2) (k − 1) pδ + P(0,n−1) (k − 1) p
= P(0)Qk−1c2n−2 pδ + P(0)Qk−1c2n−1 p,

(3.8)

where c2n−2 is a 2n dimensional column vector whose (2n − 2)-th row element is equal to 1 and the
others are equal to 0. c2n−1 is a 2n dimensional column vector whose (2n − 1)-th row element is equal
to 1 and the others are equal to 0.

In the stationary situation, the above two performance measures can be expressed by the following
Eqs (3.9) and (3.10) according to Eq (3.5), respectively.

• The stationary conditional probability of the operating component failure is

V =

 n−2∑
i=0

1∑
j=0

π( j,i) + π(0,n−1)

 p. (3.9)

• The stationary conditional probability of the system failure is

Vs = π(1,n−2) pδ + π(0,n−1) p. (3.10)

3.3. Reliability function and MTTFF

For analyzing the system reliability function R (k), suppose the system failure state be the absorption
state of the Markov process, then a new Markov chain D̃ (k) =

{
J̃ (k) , Ĩ (k) , k = 0, 1, 2, · · ·

}
can be

obtained. Let S ( j,i) (k) = P
{
D̃ (k) = ( j, i)

}
, ( j, i) ∈ Ω. Under the newly defined Markov chain, at time k,

the system probability vector in working states can be written as

SW(k) =
(
S (0,0) (k) , S (1,0) (k) , S (0,1) (k) , S (1,1) (k) , · · · , S (0,n−1) (k)

)
.

The system transition probability matrix from working states to working states is

B =



p p 0 0 0 0 · · · 0 0 0
pδ pδ + pδ 0 pδ 0 0 · · · 0 0 0
0 pr pr p 0 0 · · · 0 0 0
0 pδr pδr pδ + pδ 0 pδ · · · 0 0 0
0 0 0 pr pr p · · · 0 0 0
0 0 0 pδr pδr pδ + pδ · · · 0 0 0
...

...
...

...
...

...
. . .

...
...

...

0 0 0 0 0 0 · · · pr p 0
0 0 0 0 0 0 · · · pδr pδ + pδ 0
0 0 0 0 0 0 · · · 0 pr pr



.

The system transition probability matrix from working states to failure states is

C =


0(2n−3)×1

pδ
p

 .
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According to Eq (3.1), the following matrix equation can be obtained as

(
SW(k), S (1,n−1) (k)

)
=

(
SW(k − 1), S (1,n−1) (k − 1)

) ( B C
0 1

)
. (3.11)

From Eq (3.11), we have {
SW (k) = SW (k − 1) B,
SW (0) =

(
1, 01×(2n−2)

)
.

(3.12)

According to Eq (3.12), SW(k) = SW(0)Bk can be obtained by the iterative algorithm of the difference
equation, that is, the system reliability function is

R (k) = SW(k)e2n−1 = SW(0)Bke2n−1, (3.13)

where e2n−1 is a 2n − 1 dimensional column vector with whole elements being 1.
Since B is the transition probability matrix of the system from working states to working states, it

has its spectral radius ρ (B) ≤ 1. When s < 1, ρ (sB) < 1, then matrix I2n−1 − sB is reversible. By using
Eq (3.12), the probability generating function for each working state of the new Markov chain can be
given by S∗W (s) = SW (0) (I2n−1 − sB)−1, where I2n−1 is a 2n − 1 order identity matrix.

By calculating the generating function at both ends of Eq (3.13), we can obtain

R∗ (s) = S∗W (s) e2n−1 = SW (0) (I2n−1 − sB)−1 e2n−1. (3.14)

From MTTFF = R∗ (1) = lim
s→1

R∗ (s), MTTFF can be written as

MTTFF = SW (0) (I2n−1 − B)−1 e2n−1. (3.15)

4. Cost-benefit ratio analysis

In this section, model A is taken as an example to give the construction and optimization of the
system cost-benefit ratio function.

4.1. System cost-benefit ratio function construction

According to the system state probability, the following stationary state performance measures are
obtained as

• The probability of the repair equipment being free, denoted by P f can be written as

P f =

n−1∑
i=0

π(0,i). (4.1)

• The probability of the repair equipment being busy, denoted by Pb can be written as

Pb =

n−1∑
i=0

π(1,i). (4.2)
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Let E [N] be the expected number of components in the retrial orbit, πi is the stationary probability
vector corresponding to the i number of failed components in the system retrial orbit, where πi =(
π(0,i), π(1,i)

)
(i = 0, 1, · · · , n − 1), e2 is a 2-dimensional column vector with whole elements being 1,

then we have

E [N] =

n−1∑
i=0

iπie2. (4.3)

The stationary busy cycle Tc is defined as the interval from the time when whole components are
normal and the repair equipment is idle to the time when whole components are normal and the repair
equipment is idle again. Suppose T(0,0) be the interval length for repair equipment idle and no failed
component in orbit. In the stationary E

[
T(0,0)

]
= 1

p , according to the alternating renewal process,

the stationary probability of the system in state (0, 0) is determined as π(0,0) =
E[T(0,0)]

E[Tc] , and stationary
expected busy cycle can be written as

E [Tc] =
E

[
T(0,0)

]
π(0,0)

=
1

pπ(0,0)
. (4.4)

The improvement of system reliability often requires higher cost input, so the system managers will
be more concerned about the optimization of the cost-benefit ratio (CBR). The cost-benefit ratio can
be defined as the cost per unit time of expected total (TC) and A (∞) ratio in the stationary situation.
In order to establish an optimization model about CBR, cost elements can be defined as:

C0 ≡ cost per unit time of per failed component in the retrial orbit,
C1 ≡ cost per unit time of the repair equipment is free,
C2 ≡ cost per unit time of per failed component to be repaired at a repair rate δ,
C3 ≡ cost per unit time of per failed component successfully retried at a retrial rate r,
Cs ≡ setup cost per cycle.
Based on the above definition of cost elements and the corresponding performance measures of the

system, take δ and r as variables to construct the following cost per unit time of expected total function
and the system cost-benefit ratio function, respectively:

TC (δ, r) = C0E [N] + C1P f + δC2 + rC3 +
Cs

E [Tc]
, (4.5)

CBR (δ, r) =
TC (δ, r)

A (∞)
=

C0E [N] + C1P f + δC2 + rC3 + Cs
E[Tc]

1 − π(1,n−1)
. (4.6)

4.2. CBR optimization

Compared with other intelligent optimization algorithms, the PSO algorithm is easier to implement,
so it is commoner in practical applications. In this section, we aim to search for the optimal values of
repair rate δ∗ and retrial rate r∗, and minimize the value of CBR by using the PSO algorithm. The steps
are as follows:
Step 1. Initialization of (δ, r) scheme set.

The (δ, r) scheme set corresponding to the CBR minimization question min(δ,r)CBR (δ, r) contains
the number of (δ, r) scheme is D, among which 0 < δ, r < 1. The initial (δ, r) scheme set is denoted as
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ϑ0 =
(
ψ1

0,ψ
2
0, · · · ,ψ

D
0

)
, and the ιth (δ, r) scheme in ϑ0 is denoted as vector ψι0 =

(
δι0, r

ι
0

)
. The velocity

vector corresponding to ψι0 is denoted as vι0 =
(
vι01, v

ι
02

)
, and the initial velocity set corresponding to ϑ0

is denoted by v0 =
(
v1

0, v
2
0, · · · , v

D
0

)
.

Step 2. Calculation of fitness.
Equation (4.6) is used to calculate the fitness of each (δ, r) scheme ψικ (fitness refers to the value of

Eq (4.6) in this paper), denoted by F ι
κ, F ι

κ = CBRι
κ

(
δικ, r

ι
κ

)
.

Step 3. Update of optimal (δ, r) scheme of the individual and the κth generation.
The fitness F ι

κ is compared with the fitness F ι
OP of the ιth (δ, r) scheme ψιOP, which is the best in

the first κ − 1 (δ, r) schemes set. If the fitness F ι
κ is lower, then the ψιOP is updated to ψικ, that is, the

fitness F ι
OP = min

{
F ι

0, F
ι
1, · · · , F

ι
κ

}
corresponding to ψιOP. The fitness of all (δ, r) schemes in individual

optimal (δ, r) scheme set ψOP =
(
ψ1

OP,ψ
2
OP, · · · ,ψ

D
OP

)
is compared, and the (δ, r) scheme corresponding

to the lowest fitness is defined as the κth generation optimal (δ, r) scheme ψκbest.
Step 4. Update of (δ, r) scheme and velocity.

The ιth (δ, r) scheme will update the content and velocity of the scheme by tracking the ψιOP and
ψκbest. The updated formula is

vι
κ+1

= wvι
κ
+ q1 × rand

(
ψιOP − ψ

ι
κ

)
+ q2 × rand

(
ψκbest − ψ

ι
κ

)
,ψι

κ+1
= ψι

κ
+ vι

κ+1
,

where, w is the inertia factor, w = wmax − (wmax − wmin) × `/`max, ` represents the number of iterations,
q1 and q2 are the learning factors, and rand (χ − η) represents generating a random number between χ
and η. If the generated vι

κ+1
or ψι

κ+1
is not within the value range, the vι

κ+1
or ψι

κ+1
that meet the conditions

is randomly generated anew.
Step 5. Termination of update.

The update terminates until the (δ, r) scheme set has been updated `max times. The optimal (δ, r)
configuration scheme is ψ∗ = (δ∗, r∗).

5. Numerical analysis

In this section, we take a 3-component system as an example to illustrate the numerical results of
the obtained performance indices. Let p = 0.3, δ = 0.8 and r = 0.5 be the basic parameters of the
system. Model A is taken as an example to illustrate the numerical analysis.

5.1. Reliability measures

Figures 3–5 show the change of the system transient availability A (k) with time k under different
parameters. The transient availability curve decreases sharply in the time interval [0, 15] and decreases
slowly in the time interval [15, 30]. After time k = 30, the availability curve gradually becomes steady,
and the stationary value is the stationary availability of the system. The parameters p and δ have a
substantial impact on A (k), while parameter r has a relatively small impact on A (k).

The impact of the parameter p on A (∞) for different parameters δ and r are respectively given in
Figures 6 and 7. A (∞) decreases as p increases, and increases as δ or r increases. That is, the smaller
the rate p, the longer the normal operating time of the system. The higher the rate δ, the shorter the
component’s repair time in repair state, and the more the normal components. The higher the rate r,
the shorter the failed component’s retrial time.
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Figure 3. A (k) affected by p.
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Figure 4. A (k) affected by δ.
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Figure 5. A (k) affected by r.
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Figure 6. The impact of p on A (∞) for
different δ.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
p

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

A
(

)

r=0.3
r=0.5
r=0.7
r=0.9

Figure 7. The impact of p on A (∞) for
different r.
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Figures 8–10 and Figures 11–13 show the change of conditional failure probability of the operating
component and system under different parameters with time k, respectively. The numerical results in
Figure 8 show that V (k) does not change significantly with time k, and the curve becomes steady soon.
The corresponding stationary value is the conditional probability of operating component failure when
the operating component is in the stationary situation, and the change of the parameter p has a great
influence on V (k). Figures 9 and 10 show that V (k) first decreases with time k, and then the curve
gradually becomes stable. When the parameter δ or r is relatively small, the corresponding value
V (k) is smaller. Figures 11–13 show that Vs (k) first increases sharply with time k and then increases
slowly, and then the curve gradually becomes stable. The corresponding stationary value is Vs when
the system is in the stationary situation. Parameter p has a significant impact on Vs (k), parameter δ
has a moderate impact on Vs (k), and parameter r has a relatively small impact on Vs (k).
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Figure 8. The impact of p on V (k).
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Figure 9. The impact of δ on V (k).
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Figure 10. The impact of r on V (k).
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Figure 11. The impact of p on Vs (k).
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Figure 12. The impact of δ on Vs (k).
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Figure 13. The impact of r on Vs (k).

Figures 14 and 15 show the variations of V with parameters δ and r respectively when parameter p
is different. Figure 14 presents the impact of parameter δ on V for different p. As can be seen from the
numerical results in Figure 14, with the increase of parameter δ, the curve of V first increases sharply,
then increases slowly, and finally the curve of V gradually becomes stable. The smaller the failure rate
of components, the smaller the stable value can be reached when the value of the δ is relatively small,
and the smaller the corresponding stable value will be. Figure 15 presents the impact of parameter
r on V for different p. As can be seen from the numerical results in Figure 15, with the increase of
parameter r, the curve of V first increases sharply, then increases slowly, and finally the curve of V
gradually becomes stable. The smaller the parameter p, the smaller the stationary value is reached
when the parameter r is relatively small, and the smaller the corresponding stationary value will be. In
addition, it can be observed from Figures 14 and 15 that V increases as p increases. When the parameter
δ is small relative to the parameter p, V is not obvious to the change of the parameter p. When the
parameter δ is large relative to the parameter p, the parameter p has a significant influenceon V .
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Figure 14. The impact of δ on V for
different p.
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Figure 15. The impact of r on V for
different p.
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Figure 16 presents the impact of parameter δ on Vs for different p. From Figure 16, Vs increases as
p increases. When parameter δ is small, Vs increases as δ increases. When parameter δ is relatively
large, Vs decreases as δ increases. Figure 17 presents the impact of parameter r on Vs for different
p. From Figure 17, as r increases, the curve first sharply decreases and then slowly decreases, then
gradually becomes stable. The smaller the failure rate p is, the stable value will be reached when the
value of r is relatively small, and the smaller the corresponding stable value will be.
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Figure 16. The impact of δ on Vs for
different p.
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Figure 17. The impact of r on Vs for
different p.

Figures 18–20 respectively show the change of R (k) with time k under different parameters p, δ
and r. It can be seen that parameters p and δ significantly affect R (k), and R (k) decreases as p increases
and increases as δ increases, because the less likely the operating component is to fail and the less time
it takes to repair the failed component, the higher the system reliability. R (k) is not sensitive to the
change of the parameter r, and R (k) increases as r increases, because the easier the failed component
is to retry in the retrial orbit, the less time the failed component has to wait for repair, and the higher
the reliability of the system.
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Figure 18. The impact of different p
on R (k).
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Figure 19. The impact of different δ
on R (k).
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Figure 20. The impact of different r on R (k).

To better show the impact of the number of system components on a series of system performance
indices, we adjust the system parameters to p = 0.39, δ = 0.6, r = 0.5 in this section. Table 2 shows
the major reliability measures for different numbers of components. The numerical results show that
A (∞), MTTFF of the systems, and V increase with the number of components climbs up. However, Vs

decreases as the number of components climbs up. The reason is that with the increase of the number
of system components, that is, the number of cold standby components increases, and the system is in
the working state for a longer time. By analyzing the change of system reliability measures with the
number of system components, we get that system reliability can improve by increasing the number of
system components.

Table 2. Reliability measures for different numbers of components.

n A (∞) MTTFF Vs V
3 0.9285 44.0619 0.04290 0.3621
6 0.9877 390.4551 0.00740 0.3852
9 0.9975 2190.6596 0.00150 0.3890

12 0.9995 10981.7647 0.00031 0.3898
15 0.9999 53389.8099 0.00006 0.3899

The impact of parameters p, δ and r on MTTFF are given in Tables 3 and 4. Since MTTFF is most
sensitive to the parameter p, we consider the parameter p in each table. From Tables 3 and 4, MTTFF
increases as δ or r increases. As the value of δ or r climbs up, the repair time and waiting time of
failed components become shorter, that is, there will be sufficient cold standby components to replace
the failed components when the operating component fails. MTTFF decreases as the rate p climbs up.
It decreases fastly for the smaller value of p, however, MTTFF decreases slowly for the larger value
of p. To sum up, MTTFF is significantly influenced by parameter p, while parameters δ and r have
relatively little influence.
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Table 3. The impact of p and δ on MTTFF.

p δ = 0.4 δ = 0.5 δ = 0.6 δ = 0.7 δ = 0.8
0.1 526.9697 1048.2000 2170.9000 4951.2000 13921.0000
0.2 85.3704 148.3333 277.5000 585.3704 1548.3000
0.3 33.6784 52.1652 88.2051 170.4305 417.9772
0.4 18.8095 26.6964 41.3170 73.1250 164.6429
0.5 12.5185 16.6667 24.0000 39.1852 80.6667
0.6 9.2181 11.7130 15.9375 24.2644 45.7407
0.7 7.2355 8.8818 11.5658 16.6106 28.8441
0.8 5.9298 7.0920 8.9258 12.2232 19.7222
0.9 5.0115 5.8747 7.1995 9.4877 14.3650

Table 4. The impact of p and r on MTTFF.

p r = 0.4 r = 0.5 r = 0.6 r = 0.7 r = 0.8
0.1 13352.0000 13921.0000 14330.0000 14638.0000 14879.0000
0.2 1445.8000 1548.3000 1626.8000 1688.7000 1738.8000
0.3 384.9681 417.9772 444.5679 466.4463 484.7631
0.4 151.2500 164.6429 175.9211 185.5488 193.8636
0.5 74.5714 80.6667 86.0000 90.7059 94.8889
0.6 42.8168 45.7407 48.3862 50.7912 52.9871
0.7 27.4387 28.8441 30.1537 31.3770 32.5222
0.8 19.0909 19.7222 20.3261 20.9043 21.4583
0.9 14.1438 14.3650 14.5816 14.7937 15.0015

5.2. Comparative analysis of some transient reliability indices of two models

Several system transient reliability indices of models A and B are contrast displayed. By observing
Table 5, it can be found that the reliability index values of models A and B have almost no difference,
that is, changing the priority order of multiple events hardly affects the reliability of the system studied
in this paper.

Table 5. Transient reliability indices between models A and B.

Time k
A (k) R (k) Vs (k) V (k)

model A model B model A model B model A model B model A model B
2 1.0000 1.0000 1.0000 1.0000 0.0000 0.0000 0.3000 0.3000

10 0.9961 0.9762 0.9844 0.9338 0.0031 0.0196 0.2989 0.2937
30 0.9956 0.9567 0.9381 0.6821 0.0035 0.0347 0.2987 0.2871
50 0.9956 0.9552 0.8939 0.4946 0.0035 0.0358 0.2987 0.2866

100 0.9956 0.9551 0.7922 0.2214 0.0035 0.0359 0.2987 0.2865
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5.3. Comparison of system measures with and without retrial mechanism

The number of components in the systems with and without retrial mechanism is set to 3, and the
reliability and availability of the two systems are compared. Figures 21 and 22 show that the two
systems are highly reliable. The stationary availability is greater than 0.995, and the reliability is still
close to 0.9 when the systems operate to time k = 50.
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Figure 21. A (k) varies with and
without retrial.
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Figure 22. R (k) varies with and
without retrial.

5.4. Cost-benefit ratio analysis

Let C0 = 8,C1 = 15,C2 = 30,C3 = 30 and Cs = 180 be the basic values of the parameters.
The numerical results in Figure 23 show that CBR (δ, r) shifts with parameters δ and r at the same
time. By observing the numerical results in Figure 23, it is found that, on the one hand, when the
parameter r is fixed, the CBR first decreases and then increases with the increase of the parameter δ;
on the other hand, when the parameter δ is fixed, the CBR first decreases and then increases with the
increase of the parameter r. As can be seen from the general trend in Figure 23, it is found that with
the increase of parameters δ and r, the surface of the graph demonstrates a trend of first decreasing
and then ascending, and the graph has a lowest point. Based on the PSO algorithm in Section 4.2,
let D = 200, `max = 200, q1 = 0.4, q2 = 0.3,wmax = 0.8,wmin = 0.6, vmax = 0.6 and vmin = −0.6.
We can obtain the optimal value (δ∗, r∗) = (0.4671, 0.2362) and the corresponding minimum value of
cost-benefit ratio CBR (δ∗, r∗) = 50.9226.
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Figure 23. The impact of δ and r on CBR.

6. Conclusions

Based on the discrete-time Markov process theory, two reliability models for systems with retrial
and cold standbys are investigated in this study. To begin with, some reliability measures of the system
such as availability, reliability function, MTTFF and other performance measures are obtained. In
addition, the impact of failure rate, repair rate, and retrial rate on system critical reliability measures
is performed. Then, the impact of parameters δ and r on the CBR of the system is analyzed, and
the two values of the repair rate δ∗ and retrial rate r∗ corresponding to the minimum value of CBR
are obtained using the PSO algorithm. Moreover, the system transient reliability measures with
and without retrial mechanism are analytically compared. Furthermore, the design of the system
state probability algorithm can improve the calculation efficiency of system performance measures,
especially when the number of system components is large. Last, this work is aimed at the situation of
complete reliability of repair equipment. In the future, the unreliability situation of repair equipment
or the vacation strategy of repairmen can be introduced into the discrete-time cold standby repairable
retrial system.

Appendix

Six types of transition probabilities of model A are described as follows.
(1) ( j, i)→ ( j, i)
The one-step transition probability of (0, 0) → (0, 0) is p. The operating component is normal and

the repair equipment remains idle at the next time.
The one-step transition probability of (1, i) → (1, i) , (i = 0, 1, · · · , n − 2) is pδ + pδ. The first item

of the sum indicates that the operating component is normal and the repair equipment is still repairing
the failed component at the next time. When there are failed components in the retrial orbit, the failed
component may or may not retry in the retrial orbit. The second item of the sum indicates that the
repair equipment completed the repair of the failed component and the operating component failed.
When there are failed components in the retrial orbit, the failed component may or may not retry in the
retrial orbit.
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The one-step transition probability of (0, i) → (0, i) , (i = 1, 2, · · · , n − 1) is pr. The operating
component is normal and the failed component in the retrial orbit does not retry.

The one-step transition probability of (1, n − 1) → (1, n − 1) is δ. System failure and the repair
equipment is still repairing the failed components at the next time, and the failed component may or
may not retry in the retrial orbit.

(2) (0, i)→ (1, i)

The one-step transition probability of (0, i) → (1, i) , (i = 0, 1, · · · , n − 1) is p. Failure of operating
component, repair equipment priority repair of failed components. When there are failed components
in the retrial orbit, the failed component may or may not retry in the retrial orbit.

(3) (1, i)→ (1, i + 1)

The one-step transition probability of (1, i) → (1, i + 1) , (i = 0, 1, · · · n − 2) is pδ. The repair
equipment is repairing a previously failed component when the operating component fails and enters
retrial orbit. When there are failed components in the retrial orbit, the failed component may or may
not retry in the retrial orbit.

(4) (0, i)→ (1, i − 1)

The one-step transition probability of (0, i) → (1, i − 1) , (i = 1, 2, · · · , n − 1) is pr. The operating
component is normal and the failed component in the retrial orbit retries successfully at the next time.

(5) (1, i)→ (0, i)

The one-step transition probability of (1, 0)→ (0, 0) is pδ. The operating component is normal and
the repair equipment completes the repair of the failed component at the next time.

The one-step transition probability of (1, i) → (0, i) , (i = 1, 2, · · · , n − 2) is pδr. The operating
component is normal and the repair equipment completes the repair of the failed component at the next
time, the failed component in the retrial orbit does not retry.

The one-step transition probability of (1, n − 1)→ (0, n − 1) is δr. The repair equipment completes
the repair of the failed component and the failed component in the retrial orbit does not retry. The
system starts to operate normally.

(6) (1, i)→ (1, i − 1)

The one-step transition probability of (1, i) → (1, i − 1) , (i = 1, 2, · · · , n − 2) is pδr. The operating
component is normal and the repair equipment completes the repair of the failed component at the next
time, the failed component in the retrial orbit retries successfully.

The one-step transition probability of (1, n − 1) → (1, n − 2) is δr. System failure and the repair
equipment completes the repair of the failed component and the failed component in the retrial orbit
retries successfully at the next time, the system starts to operate normally.
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