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Abstract: Diagnosing and treating newborn seizures accurately and promptly is crucial for providing 

the best possible care for these patients. For the purpose of intelligently identifying newborn seizures, 

this work introduced a unique method that uses spectral and spatial graph neural networks (SSGNNs) 

optimized with the Aquila algorithm. Using electroencephalogram (EEG) recordings, the suggested 

methodology takes advantage of the complex spatial and spectral characteristics of infant brain activity. 

Spatial and spectral GNNs were used to extract significant spatiotemporal patterns suggestive of 

seizure episodes by organizing the brain activity data as a graph, with nodes representing various brain 

regions and edges signifying functional relationships. By combining spectral and spatial data, the 

depiction of newborn brain dynamics was improved and made it possible to distinguish between 

seizure and non-seizure phases with greater accuracy. Moreover, the introduction of the Aquila 

algorithm improved the GNNs’ performance in seizure identification tasks by streamlining the training 

process. A large dataset of EEG recordings from newborns with and without seizures was used to 

assess the effectiveness of the suggested method. Higher accuracy, sensitivity, and specificity in 

seizure detection were achieved in the experimental results, which showed greater performance when 
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compared to conventional methods. This work offered an automated, data-driven method for 

identifying newborn seizures, which is a major development in the treatment of newborns. By 

combining spectral and spatial GNNs and optimizing the results using the Aquila method, it is possible 

to enhance seizure detection accuracy and potentially prevent neurological consequences in affected 

children by intervening early. This method has the potential to completely change the way neonatal 

care is provided by giving medical professionals a strong tool for accurate and prompt seizure 

monitoring in neonatal intensive care units (NICU). 

Keywords: deep learning; neonatal; spatial and spectral graph neural networks; seizures; EEG; Aquila 

algorithm; NICU 

Mathematics Subject Classification: 68Q32, 68T07, 68T40, 92D30 

 

1. Introduction 

Neonatal seizures represent a critical challenge in neonatal care. Neonatal seizures refer to 

seizures that occur in newborn infants, typically within the first 28 days of life. Seizures in neonates 

are considered a medical emergency and can manifest as abnormal electrical activity in the brain, 

leading to various motor, sensory, or autonomic manifestations. There are several types of neonatal 

seizures. Subtle seizures may be difficult to detect as they present with subtle clinical signs such as 

eye deviations, lip smacking, or repetitive chewing movements. Clonic seizures are characterized by 

rhythmic jerking movements of the limbs or face. Tonic seizures are marked by sustained muscle 

contractions, resulting in stiffening of the body or limbs. Myoclonic seizures involve sudden, brief 

muscle contractions, often appearing as brief jerks or twitches. Multifocal seizures involve multiple 

areas of the brain demanding swift and accurate detection to mitigate potential neurological 

complications. Conventional methods reliant on visual inspection of electroencephalogram (EEG) 

recordings are prone to subjectivity and can be time-consuming. In recent years, deep learning 

techniques have shown promise in automating seizure detection, offering the potential for improved 

accuracy and efficiency. To identify newborn seizures, this research suggests a new method that uses 

spectral and spatial graph neural networks (SSGNNs) in combination with the Aquila algorithm for 

optimization. Our methodology treats brain activity as a graph, with nodes representing different brain 

regions and edges denoting functional relationships, in contrast to existing methods that analyze EEG 

data as sequential impulses, in order to capture both the spectral and spatial properties found in the 

dynamics of the developing brain. 

Motivation for this research mainly focuses on newborn babies, particularly those born 

prematurely or with birth problems, where seizures are a reasonably common occurrence. It is 

important to recognize seizures as soon as possible since they may indicate serious neurological 

disorders and, if left untreated, may result in long-term developmental problems. Conventional 

approaches of identifying seizures in neonates, including clinician’s visually inspecting 

electroencephalogram (EEG) data, take a long time and need a high level of competence. Manual 

detection might be inconsistent and prone to errors since newborn seizures are mild and varied. Both 

image and signal processing tasks have demonstrated a great deal of potential in deep learning. Systems 

based on deep learning have the ability to quickly and accurately analyze vast amounts of EEG data. 
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By identifying subtle patterns and temporal dynamics of seizures that human observers would overlook, 

these algorithms might speed up diagnosis and increase diagnostic accuracy. 

Figure 1 includes a set of sample images of neonatal seizures in a neonatal intensive care unit 

(NICU). The patterns of neural firing in various brain regions are reflected in the spatial characteristics, 

which capture the spatial distribution of the brain activity. The frequency patterns of these activities, 

however, are captured by spectral features, which shed light on the underlying brain processes. The 

new method improves the discriminative capacity for seizure identification by providing a more 

comprehensive picture of newborn brain activity by merging spatial and spectral information. The 

Aquila algorithm, a specialized optimization method designed for GNNs in seizure identification tasks, 

further optimizes the performance of our model. By efficiently using spectral and geographical 

information, the Aquila algorithm improves the training process and raises the model’s accuracy and 

resilience. 

 

Figure 1. Sample images of neonatal seizures in the NICU. 

A block diagram of a system that recognizes neonatal seizures using a spatial and spectral graph 

neural network (SSGNN) is shown in Figure 2. ECG signals from infants are fed into the system. After 

256 Hz of sampling, noise is taken out of these signals using filtering. The ECG signals are filtered to 

eliminate noise and down sampled to 32 Hz. This facilitates the GNN’s learning of the key 

characteristics of the signals and lowers the volume of data that must be handled. Time intervals: The 

ECG signal is separated into brief segments, such as one second. Frequency band: Various frequency 

bands, such as delta, theta, alpha, and beta, are used to determine the signal’s power for each time 

interval. Connectedness metric: The various frequency bands are used to calculate a connectedness 

measure. This measurement encapsulates the relationship between the various frequency bands. 

Channel feature vector: For every time interval, the features of time, frequency, and connection are 

combined into a single feature vector. 
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Figure 2. A detailed block diagram for neonatal seizure identification. 

Display of graph: We use an adjacency matrix to show the connections between the various time 

intervals. The similarity between the feature vectors of the two connected time intervals determines 

the weight of each edge in the matrix. Graph representation: The ECG signal is represented as a graph 

using the adjacency matrix and feature vectors. Spectral graphical graph neural network: The links 

between the various time intervals in the graph are discovered using a spectral graphical graph neural 

network (GNN). The graph representation is fed into the GNN, which predicts whether or not a seizure 

is present in the ECG data. Seizures/Non-Seizures: The system’s ultimate output is a binary 

classification that indicates whether a seizure occurred or not. 

The objective of this research describes utilizing the capabilities of graph neural networks (GNNs) 

to gather both spatial and spectral characteristics from EEG data in order to create a deep learning 

model specifically suited for neonatal seizure identification. Taking EEG signals and extracting their 

spectral and spatial properties, which can then be put into the SSGNN to help detect seizures more 

accurately, will optimize the SSGNN’s performance in terms of accuracy, sensitivity, and specificity 

by fine-tuning its parameters using the Aquila optimization algorithm to assess how applying the 

suggested system in neonatal intensive care units (NICUs) will affect the overall neonatal outcomes, 

diagnostic accuracy, and duration of interventions. 

2. Related works 

The electroencephalogram (EEG) signal, originally described by Anam et al. in 2023, is a medical 

diagnostic tool that has gained significant attention in recent years for the treatment of epilepsy patients [1]. 

It measures the electrical activity received from the cerebral cortex’s nerve cells. Although the focus 

on grid-like data has been a major limitation of current deep-learning-based automatic algorithms for 

the automatic detection of epileptic seizures from raw EEG signals, it is still difficult to think of 

physiological recordings as a matrix because of their frequently irregular and disordered structures. 
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Graph-based representations of EEG data have been investigated recently for seizure 

identification. To capture the spatial and temporal dependencies present in EEG signals, graph neural 

networks (GNNs) are especially well-suited. Daniele Grattarola et al. (2020) modelled the spatial 

connectivity between EEG electrodes to propose a graph convolutional network (GCN) for neonatal 

seizure detection [2]. Their method demonstrated the efficacy of graph-based representations by 

outperforming conventional CNN-based approaches. Seizure detection models’ generalization 

performance and resilience have been enhanced by the use of ensemble learning approaches like 

boosting and bagging. Furthermore, fusion solutions that integrate various modalities—such as EEG 

and other physiological signals—have demonstrated the potential to improve seizure recognition 

systems’ accuracy. Shoeibi et al. presented an ensemble technique that merged different CNN 

architectures and outperformed individual models in 2021 [3]. 

Convolutional neural networks (CNNs) and recurrent neural networks (RNNs) in particular are 

two deep learning techniques that have been extensively used for the diagnosis of newborn seizures. 

These models identify seizure occurrences by utilizing the temporal patterns in EEG signals. Gramacki 

et al. achieved high accuracy and low false alarm rates in real-time neonatal seizure detection using a 

deep learning framework based on long short-term memory (LSTM) networks in 2022 [4]. Real-time 

monitoring systems: Due to the growing need for real-time monitoring in clinical settings, scientists 

have created online seizure prediction and detection systems. Low-latency algorithms and effective 

hardware implementations are frequently included in these systems to allow for prompt intervention. 

A real-time seizure detection system based on adaptive spectrum analysis, for instance, was created 

by Rezaee et al. in 2016 to enable early alerting of seizure episodes to medical professionals [5]. Seizures 

are often identified using classification methods like random forests, decision trees, and support vector 

machines (SVMs) called as Feature extraction. In [6], Temko et al. (2011) showed encouraging results 

by using SVM classifiers in conjunction with statistical characteristics to detect newborn seizures. In 

classification, a lot of research focuses on taking discriminative characteristics out of EEG data and 

applying classifiers to determine which states are seizure-related and which are not. According to the 

work of Kukker et al. (2021) [7], techniques such as time-domain, frequency-domain, and time-

frequency analysis are used in fuzzy Q-learning with assistance and fuzzy Q-learning alone, with 

success rates of 93.71% and 96.79%, respectively. Jareda et al. (2019) described an EEG signal-based 

seizure classification using a wavelet transform [8]. 

The steps involved in our suggested methodology are building the spectral and spatial GNNs, 

putting the Aquila algorithm into practice, and conducting training. Next, we use an extensive dataset 

of EEG recordings from newborns with and without seizures to assess our model’s performance. Our 

findings prove the effectiveness of the suggested strategy, exhibiting higher sensitivity and accuracy 

than traditional techniques [9]. Providing an automated, data-driven method for seizure diagnosis, this 

research marks a breakthrough in the treatment of newborns. Our technique, which makes use of spatial 

and spectral GNNs improved with the Aquila algorithm, has the potential to lead to better clinical 

results and less workload for neonatal intensive care unit healthcare workers. 
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3. Materials and methods 

3.1. Acquisition of datasets 

EEG recordings from neonates with and without seizures were obtained from the publicly 

available dataset hosted on Zenodo [10]. The diagnosis of multiple medical diseases, such as epilepsy, 

sleep disorders, and dementia, Seizures can be made using these voltage changes.  EEG recordings of 

newborns with and without seizures were collected. The EEG recordings from newborns under round-

the-clock observation in neonatal intensive care units (NICUs) from various hospitals make up the 

dataset. Clinical specialists annotate seizure occurrences, giving teaching and assessment tools ground 

truth labelling. Multiple electrodes are positioned on the scalp to collect EEG signals, which capture 

brain activity throughout time. Since each recording session usually lasts for several hours, a thorough 

examination of the dynamics of the neonatal brain is possible. The seizure and non-seizure portions in 

the dataset make it easier to create and assess seizure detection systems. Brain activity: Electrodes are 

used to measure the electrical activity produced by brain neurons. This activity is measured in 

microvolts (μV). Multichannel recording: This technique records activity from several brain regions 

using multiple electrodes, giving an all-encompassing picture of brain activity. 

Figure 3 offers information about gathering unprocessed EEG waves. The electrical activity along 

the scalp is recorded by electroencephalography or EEG. Electrodes are applied to the head during a 

non-invasive technique to monitor voltage changes brought on by brain activity. Noise reduction: To 

eliminate noise and artifacts from the signal, filters are used. Neonates often exhibit muscular 

contractions, external electrical interference, and motions as artifacts. Using band-pass filtering, some 

frequency ranges are let through while others are blocked. Lower frequencies (0.5–30 Hz) are 

frequently the focus of neonatal EEG. 

 

Figure 3. A sample of a raw EEG signal. 

Conversion of analog to digital digitization: The process of converting analog EEG signals into 

digital form allows for computer-based analysis and storage. Neonatal EEG samples are usually taken 

at a high frequency (250–500 Hz) in order to record precise brain activity. The graph representation of 

non-seizure (raw EEG signal) in Figure 4 simplifies the identification of neonates. 
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Figure 4. Non-seizure (raw EEG signal). 

The visual representation of aberrant brain activity linked to seizures in Figure 5 facilitates the 

proof of identity in neonates. 

 

Figure 5. Seizure (raw EEG signal). 

3.2. Preprocessing 

To achieve optimal model performance and efficacy in neonatal seizure identification, EEG 

signals, while maintaining their fundamental temporal and spectral properties, produce augmented 

samples. The preprocessing approaches utilized to create the augmented samples uses the EEG signals 

as the raw data. 

Data augmentation increases the model’s capacity to generalize to previously undiscovered 

neonatal EEG recordings and reduces overfitting. EEG data undergoes multiple preprocessing 

processes before training the spatial and spectral graph neural network (GNN) supplemented with the 

Aquila algorithm. 

3.2.1. Filtering and segmentation 

Using common signal processing methods including bandpass filtering, objects like muscle 

activity, electrode drift, and ambient noise are eliminated. High-pass filtering is used to reduce low-
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frequency drifts while maintaining high-frequency neural impulses that are important for seizure 

activity. High-frequency noise and interference to improve signal clarity. Extended EEG data is 

divided into several smaller segments. This is accomplished by employing a sliding window technique 

with a one-second period time and a 0.5 overlap rate to divide the data into multiple periods. For 

instance, a 50-s EEG signal split into 100 epochs would be represented as a 50-s vector with a sampling 

frequency of 1 Hz. Following data segmentation, a proposed approach by Jibon et al. [11] classifies 

and linearly analyses the labels of various time periods. 

A block schematic of a system that processes a signal using segmentation and filtering may be seen 

in Figure 6. A bandpass filter is used after the signal has been down sampled from 256 Hz to 32 Hz. 

Following the filtering process, the signal is divided into time intervals, and features are taken out of 

each one. Following the creation of a graph representation of the signal using these attributes, the deep 

learning model uses the representation as input to forecast the signal. 

 

Figure 6. Filtering and segmentation. 

3.2.2. Spatial feature extraction 

To create the graph representation of brain activity, spatial information is taken out of electrode 

placements. The mapping of electrode coordinates onto a standard head model (such as the 10–20 

system) ensures spatial consistency between recordings. Spatial adjacency matrices, which depict the 

spatial relationships and connectivity patterns between different brain regions, are defined by 

calculating the distances between electrodes. The input features for the spatial GNN part of the model 

are spatial adjacency matrices [12]. Based on the functional connectivity (e.g., coherence, correlation) 

between electrode signals, nodes and edges are defined as EEG electrodes. Adjacency matrix: To 

illustrate relationships, we create an adjacency matrix. Indicating the strength of the connection, this 

matrix might be weighted or binary. Binary signals the presence of a connection. 

Node features: Gather information about each node (EEG electrode), including power spectral 

density (PSD), statistical metrics, and raw EEG readings. Convolutional layers in graphs: 

Convolutional layers on graphs can be used to combine data from nearby nodes. The method for 

extracting spatial features from newborn EEG signals in a system intended to detect seizures is depicted 

in Figure 7. Time intervals are the data input for this procedure, which receives segmented periods 

from the EEG signal. Each interval most likely denotes a brief period of the signal. The signal’s power 

is computed within various frequency bands, such as delta, theta, alpha, and beta, for every time period. 

This encapsulates the different frequencies of rhythmic activity that were present throughout that time 

frame. Connectivity measures: The degree of connectedness among the various frequency bands is 

computed. This makes it easier to comprehend how activity in several frequency bands connects over 

time. 
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Figure 7. Spatial feature extraction. 

3.2.3. Spectral feature extraction 

To extract the frequency characteristics of EEG signals, spectral features are generated. Applying 

the Fourier or wavelet transform breaks down EEG signals into representations in the frequency 

domain. Estimates of power spectral density are calculated to measure the signal power distribution 

over various frequency bands. To identify unique spectral signatures connected to seizure activity, 

spectral parameters such as peak frequencies, spectral power ratios, and spectral entropy are retrieved. 

The spectral GNN component of the model receives spectral information as input features [13]. 

Figure 8 shows a more sophisticated feature extraction stage in a system that uses a spectral graph 

neural network (GNN) to identify seizures in neonatal EEG signals. Convolution of spectral graphs 

(SGC): The Laplacian matrix of the graph provides the eigenvalues and eigenvectors that are used by 

the SGC layer. These numbers represent the graph’s structural information, indicating how well-

connected various nodes (time intervals) are to one another. Convolution process: By effectively 

convolving each node's feature vectors with a function of both its own and its neighbors’ eigenvalues, 

an SGC operation is carried out. This takes into account the context given by its connected intervals 

as well as the features of each node, incorporating the effect of nearby nodes into each node’s feature 

representation. Features extracted: A set of improved feature vectors, one for each node in the graph 

(which represents each time interval), is the stage’s final result. These features offer a more 

comprehensive representation for seizure detection by combining not only the unique properties of 

each interval but also the contextual data from its connected neighbors. Creating graphs from EEG 

data, using spectral and graph convolutional layers, and combining these features for reliable seizure 

diagnosis are the steps involved in implementing spatial and spectral feature extraction in deep learning 

for neonatal seizure identification. This all-inclusive method makes use of SSGNNs’ strengths to 

capture both spectral and spatial properties, allowing for the accurate and thoughtful diagnosis of 

newborn seizures. 
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Figure 8. Spectral feature extraction. 

3.3. Graph construction 

A graph-based representation is created to efficiently capture the spectral and spatial 

dependencies present in neonatal EEG data. To create a network structure, this needs to map EEG 

electrodes to nodes and define functional relationships between them. 

3.3.1. Definition of nodes 

Every EEG electrode is represented by a graph node. To maintain consistency among recordings, 

electrode placements are usually standardized using well-established head models, such as the 10–20 

system. Each electrode’s coordinates (x, y, z) represent the spatial characteristics of the associated node. 

𝐷𝑥,𝑦 =
𝜎𝑥𝑦

𝜎𝑥𝜎𝑦
.          (1) 

Equation (1) defines the Pearson correlation (D), a measure of the correlation between two time 

series. x and y are taken as the time series. 𝜎𝑥 and 𝜎𝑦 are the respective standard deviations 𝜎𝑥𝑦 as the 

covariance of the time series.  

3.3.2. Edge definition 

Functional connections between EEG electrodes are used to define the edges in the graph. 

Functional connectivity measures, such as coherence, correlation, or phase synchronization, quantify 

the strength of the connections between the electrode pairs [14,15]. These measures reflect the degree 

of synchronization or correlation in neural activity between different brain regions. Edge weights are 

computed based on functional connectivity values, representing the strength of the interaction between 

nodes. By measuring the lag between two time series, normalized cross-correlation (DD) calculates 

how similar the two are in Eq (2): 
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𝐷𝐷𝑥,𝑦(𝑚) =
𝑇𝑥𝑦

√𝑇𝑥𝑦(0)𝑇𝑦𝑦(0)
.         (2) 

The cross-correlation between the two signals, x and y, is represented by the term Txy. The signals 

autocorrelations are then Tyy and Txx. 

𝐷𝐷𝐷𝑥,𝑦(𝑚) = 𝐷𝐷𝑥,𝑦(𝑚) − 𝐷𝐷𝑥,𝑦(−𝑚).     (3) 

This time, the time series are x and y, their cross-correlation is DD, and the latency is m. The 

corrected cross-correlation is DDD. 

𝑉𝐷𝑥,𝑦(𝑓) =
|𝐻𝑥,𝑦(𝐼)|

2

𝐻𝑥,𝑥(𝐼)𝐻𝑦,𝑦(𝐼)
.         (4) 

The cross-spectral density (Hxy) between time series x and y is indicated in the equation above, 

while the power spectral densities (Hxx and Hyy) are indicated. In the frequency spectrum, VD gives a 

number between 0 and 1, where 0 denotes no correlation and 1 represents complete correlation. 

While it is less susceptible to outside influences, imaginary coherence (JD) quantifies the 

relationship between the spectrum of two time series, much like squared coherence. It is described by 

the following Eq (5). 

𝐽𝐷𝑥,𝑦(𝑓) =
Imag(𝐻𝑥𝑦(𝐼))

√𝐻𝑥𝑥(𝐼)𝐻𝑦𝑦(𝐼)
.         (5) 

This equation uses Hyy to represent the power spectral density for both time series and Hxy to 

represent the cross-spectral density between the time series and Hxx. 

The changes in the phase difference between two time series are measured by the phase locking 

value (PLV). This measure is described in Eq (6). 

𝑃𝐿𝑉 = |𝐺[exp(𝑖Δ𝜙rel (𝑡))]|.        (6) 

The phase difference is indicated in the above equation by Δφrel(t) of x and y at time t, belonging 

to an interval from 0 to 2π, and the function G is averaging values from the time series data. 

Similar to the preceding one, the phase lag index (PLI) takes phase sign changes into account. Eq (7) 

provides a description of this metric. 

𝑃𝐿𝐼 = |𝐺[sign(Δ𝜙𝑟𝑒𝑙(𝑡))]|.        (7) 

Similar to the PLI, the weighted phase lag index (WPLI) is less susceptible to outside influences. 

It is indicated by Eq (8). 

𝑊𝑃𝐿𝐼 =
|𝐺[|Imag(𝐻𝑥𝑦(𝐼))|∗sign (Imag(𝐻𝑥𝑦(𝐼)))]|

𝐺[|Imag(𝐻𝑥𝑦(𝐼))|]
.      (8) 

Using the cross-spectral density between signals, represented by Hxy, this equation is comparable 

to the preceding one. The random impact of channel j on channel i for every frequency is described by 

the directed transfer function (DTF) using Eq (9). 

𝐷𝑇𝐹𝑗→𝑖
2 (𝑓) =

|𝐾𝑖,𝑗(𝐼)|
2

∑  𝑘
𝑚=1 |𝐾𝑖,𝑗(𝐼)|

2.         (9) 
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An MVAR (multivariate autoregressive model) with distinct elements is represented by the 

transfer matrix K(I). The equation represents a normalized DTF with a range of 0 to 1. For all inflows 

to channel i, it shows the inflow ratio from channel j to channel i. 

The difference between K and spectral entropy (SE) is in the frequency domain. Equation (10) 

explains it. 

𝑆𝐸(𝑍) =
∑  

𝑓𝑆/2
𝑓=0 𝑝(𝐼)log2 (𝑝(I))

log2 (psd.size)
.       (10) 

The sampling frequency is fs. 𝑝(𝐼) is the normalized power spectrum density. psd.size defines the 

size of the power spectrum density. 

3.4. Spatial and spectral GNN architecture 

To efficiently utilize both spatial and spectral characteristics taken from newborn EEG data, the 

spatial and spectral graph neural network (GNN) architecture was created. Convolutional layers in 

graphs: The graph representation of EEG data is processed by the GNN, which is made up of several 

graph convolutional layers. To update each node’s feature representation, each graph convolutional 

layer gathers data from nearby nodes to produce coarser representations of spectrum information, 

spatial convolutional layers collect spatial dependencies across EEG electrodes, and spectral 

convolutional layers capture spectral dependencies within each electrode within each node. 

Pooling layers: To lower computing costs and down sample the graph representation, pooling 

layers are used. To produce coarser representations of spatial attributes, spatial pooling layers combine 

data from nearby nodes. To provide rough representations of spectral data, spectral pooling layers 

combine spectral information within each node. Each convolutional layer’s output is subjected to non-

linear activation functions, such as rectified linear units (ReLU), which provide non-linearity and help 

the model understand intricate patterns. Activation functions allow the GNN to capture non-linear 

relationships in the data, hence improving its expressive capacity. Feature fusion: To efficiently 

incorporate spatial and spectral information, spatial and spectral features are fused at various points in 

the network design. Spatial and spectral representations are integrated using feature fusion procedures 

like element-wise addition or concatenation. Combining spectral and spatial variables improves the 

GNN’s ability to discriminate and allows it to extract complementing data from both modalities [16,17]. 

3.4.1. Spatial adjacency matrix 

The spatial adjacency matrix, denoted as Aspatial, captures the spatial relationships between EEG 

electrodes. Each element Aij of the matrix represents the strength of the connection between nodes i 

and j. The spatial adjacency matrix encodes the spatial topology of the graph and serves as the basis 

for spatial feature extraction. In the spatial domain, convolution can be stated as follows: 

𝐵16 = ∑  16
𝑖=1 𝑤𝑖,16𝑥𝑖,         (11) 

where weight and feature are represented, respectively, by w and x. Convolution on the node v and n-

channel convolution are thus represented by the following formulas: 



19657 

AIMS Mathematics  Volume 9, Issue 7, 19645–19669. 

𝐵𝑣 = ∑  𝑢∈𝑀[𝑣] 𝑤𝑢,𝑣𝑥𝑢,

𝐵𝑣,𝑛 = ℎ(∑  
𝑓𝑘−1
𝑖=1

∑  𝑢∈𝑀[𝑣] 𝑤𝑖,𝑛,𝑢,𝑣𝑥𝑢,𝑖)(𝑗 = 1 … 𝑓𝑘).
    (12) 

The following formula can be used to compute the multilayer spatial convolution. The 

convolutional operation’s input to the k-th layer {Nk,i; i = 1 ...dk−1} depicts the collection of neighboring 

nodes or neighboring values for a feature map node. 

𝐵𝑘,𝑣,𝑛 = ℎ(∑  
𝑓𝑘−1
𝑖=1 ∑  𝑢∈𝑀[𝑣] 𝑤𝑘,𝑖,𝑛,𝑢,𝑣𝑥𝑘,𝑢,𝑖)

(𝑗 = 1 … 𝑓𝑘, 𝑘 = 1 … 𝐾)
.      (13) 

Maximum pooling and average pooling are used to lessen the feature map after convolution. 

3.4.2. Spectral representation 

In addition to spatial connections, spectral features are incorporated into the graph representation. 

Spectral features capture the frequency characteristics of EEG signals and are integrated into the graph 

structure to augment spatial information. Spectral attributes associated with each node are computed 

from EEG signals using the Fourier transform or wavelet transform. These spectral attributes provide 

additional information about the dynamics of neural activity at different frequency bands [18–22]. To 

convert a picture from the spatial domain to the spectral domain, a sequence of bases should be 

constructed using the Laplacian matrix. After obtaining matrix P, the adjacent matrix M and degree 

matrix L can be computed. The following is an expression for the degree matrix and adjacency matrix. 

𝑀𝑖,𝑗 = {
 1     if 𝑖 ∈ 𝑁𝑘[𝑗],
0      otherwise,

𝐿𝑖,𝑖 = ∑  𝑗 𝐴𝑖,𝑗 ,
         (14) 

where V = [v1, v2,..., vn] and V is the basis. V can be used to transform input from the spatial 

domain to the spectral domain. Convolution on a graph can therefore be computed as follows: 

𝑥1 ∗ 𝑥2 = IGFT(GFT(𝑥1) ⊙ GFT(𝑥2)) ,

= 𝑉((𝑉𝑇𝑥1) ⊙ (𝑉𝑇𝑥2)),

= 𝑉(𝑥1̃ ⊙ (𝑉𝑇𝑥2)),

= 𝑉(diag(𝑥1̃)(𝑉𝑇𝑥2)),

= (𝑉diag(𝑥1̃)𝑉𝑇)𝑥2,

       (15) 

where IGFT stands for the inverse graph Fourier transform and GFT for the graph Fourier transform. 

𝑦 = 𝑥1 ∗ 𝑥 = 𝑉Λ𝑉𝑇𝑥 = 𝐿𝑥

= 𝑉(∑  𝐽
𝑗=1 𝑚𝑗Λ𝑗)𝑉𝑇𝑥𝑗 .

        (16) 

Lastly, the following expression can be used to represent the convolution operation on the k-th 

channel. 

𝐶𝑘,𝑗 = ℎ (𝑉 ∑  
𝑓𝑘−1
𝑗=1 𝑚𝑘,𝑗

𝜃 Λ𝑘,𝑗𝑉𝑇𝑥𝑘,𝑗).       (17) 
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The rectified linear unit (ReLU) activation function is denoted by h. Examples of yspe are as 

follows. 

𝑦spe = argmax (sigmoid(Relu(𝑂spe𝐹spe + 𝐺spe))).     (18) 

3.4.3. Integration of spectral and spatial characteristics 

A unified representation of the newborn brain network is created by combining spectral and 

spatial characteristics. For every node, a feature matrix is produced by concatenating the spectral 

properties with the spatial adjacency matrix. Capturing both spectral and spatial information, this 

feature matrix allows the graph neural network to simultaneously learn from both kinds of 

dependencies. In conclusion, the spatial domain convolution operation can be represented as follows. 

𝑦spa = argmax (sigmoid(Relu(𝑂spa 𝑥𝑘+1,𝑛 + 𝐺spa ))).    (19) 

The ultimate result can be reached by combining the SPEGNN and SPAGNN results at the 

decision level utilizing the following procedures. 

𝑦 = argmax(𝑦spe, 𝑦spa) ,

= argmax (sigmoid (Relu(𝑊spe𝐶spe + 𝐵spe)),

sigmoid(Relu(𝑊spa 𝑥𝑘+1,𝑛 + 𝐵spa))).

     (20) 

The built graph serves as the foundation for the spatial and spectral graph neural network. Its 

nodes represent EEG electrodes, and its edges indicate functional connections. The graph layout 

effectively facilitates seizure diagnosis and feature extraction by encapsulating the spatial and spectral 

properties of newborn EEG data. The suggested approach improves the accuracy and efficiency of 

seizure event identification in neonatal EEG data by allowing the spatial and spectral graph neural 

network to capture complicated connections through the creation of a graph-based representation that 

incorporates both spectral and spatial characteristics. 

3.4.4. Aquila algorithm optimization 

To maximize the model performance, the Aquila algorithm is incorporated into the GNN’s 

training procedure. The approach integrates specialized optimization methods, such as gradient 

clipping, adjustable learning rates, and regularization procedures, designed for GNNs. In tasks 

involving the diagnosis of newborn seizures, the Aquila algorithm improves model convergence, 

stability, and generalization performance, resulting in increased accuracy and resilience. Adaptive 

learning rates: To dynamically modify the learning rate during training, the Aquila algorithm makes 

use of adaptive learning rates. With adaptive learning rates, the model can adjust its parameters more 

when the gradients are steep and less when they are shallow. This adaptive modification speeds up the 

training process and helps avoid convergence problems like oscillations or sluggish convergence. 

Gradient clipping: Gradient clipping is used to reduce the risk of an "exploding gradient", which can 

happen when gradients get too big during training. To maintain stability, gradients are scaled down 
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proportionately if the gradient norm is over the maximum threshold established by the Aquila 

algorithm. Gradient clipping enhances training stability and convergence by keeping the model from 

diverging or fluctuating as a result of unnecessarily large gradients [23–25]. 

Regularization strategies: To avoid overfitting and enhance the GNN’s generalization 

performance, the Aquila method uses regularization strategies like L1 and L2 regularization. To 

encourage sparsity in the learned weights, L1 regularization adds a penalty term to the loss function 

that is based on the absolute values of the model parameters. By including a penalty component based 

on the squared values of the model parameters, L2 regularization promotes smoother decision 

boundaries and smaller weight magnitudes [26,27]. The Aquila algorithm lessens the possibility of 

overfitting to the training set and enhances the model’s capacity to generalize to new data by 

regularizing the model parameters. Advanced optimization techniques: To speed up convergence and 

increase training efficiency, the Aquila algorithm uses sophisticated optimization techniques like 

momentum to establish the direction of updates, while momentum-based optimization algorithms 

aggregate previous gradients. This allows for faster convergence and improved handling of noisy 

gradients. Based on each parameter’s historical gradient, we adaptively modify the learning rates, 

resulting in more reliable and effective optimization. Using variable learning rates, gradient clipping, 

regularization techniques, advanced optimization methods, and bespoke loss functions, the Aquila 

algorithm optimizes the training of the spatial and spectral GNN. The Aquila algorithm increases the 

accuracy and efficiency of neonatal seizure recognition, which ultimately benefits clinical decision-

making and patient outcomes in neonatal care. It does this by improving the stability, convergence 

speed, and generalization performance of the GNN [28]. 

Using the learned representations, the GNN’s final output layer produces predictions for seizure 

and non-seizure states. To calculate class probabilities, the output layer is usually subjected to a 

sigmoid activation function. The output layer is optimized using suitable loss functions, such as binary 

cross-entropy loss or cross-entropy loss during training. The suggested method effectively integrates 

spatial and spectral information collected from neonatal EEG data, allowing for the precise and 

efficient diagnosis of seizure occurrences in newborns. It does this by integrating spatial and spectral 

GNN architecture improved with the Aquila algorithm. 

Aquila optimization (AO) was influenced by the eagle’s (Aquila) hunting tactics for a dynamic 

search method. These techniques enhance the optimization process overall by enabling AO to move 

between a global and local search in an adaptable manner. Because AO is dynamic, it may be applied 

to a wide range of optimization problems, whether they are discrete, linear, or nonlinear. Unlike some 

other algorithms, its mechanisms can be adjusted to meet the needs of a particular problem, which is 

not always the case. In several benchmark tests, it has been demonstrated that AO converges more 

quickly than other metaheuristics. Its adaptive techniques provide a rapid reduction of the search space 

to regions that show promise, accelerating convergence without sacrificing the quality of the answer. 

Comparing AO to certain other complex optimization techniques, it is comparatively simple to 

implement. Comparing AO to certain other complex optimization techniques, it is comparatively 

simple to implement. It is a desirable option for practitioners and researchers due to strong performance 

and straightforward conceptual design. Convergence is shown in Figure 9 and compared to different 

optimization algorithms. 
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Table 1. Hyperparameter optimization. 

Pseudo Code for Aquila Algorithm Optimization Pseudo Code for Hyperparameter Optimization by 

Aquila Optimizer with Deep Learning 

Aquila Algorithm Optimized(signal): 

    threshold = calculate Threshold (signal) 

    spikes = detect Spikes (signal, threshold) 

    seizures = detect Seizures (spikes) 

    return seizures 

function calculate Threshold(signal): 

    MAD = calculate MAD (signal) 

    threshold = k * MAD  

    return threshold 

function calculate MAD (signal): 

    median = calculate Median (signal) 

    deviations = [] 

    for each value in signal: 

        deviation = abs(value - median) 

        deviations.append(deviation) 

    MAD = calculate Median (deviations) 

    return MAD 

function calculate Median (values):  

    sorted_values = sort(values) 

    n = length(sorted_values) 

    if n mod 2 == 0: 

        median = (sorted_values[n/2] + 

sorted_values[(n/2) + 1]) / 2 

    else: 

        median = sorted_values[(n+1)/2] 

    return median 

function detect Spikes (signal, threshold): 

    spikes = [] 

    for i from 1 to length(signal): 

        if signal[i] > threshold:   

            if Spike (signal, i): 

                spikes.append(i) 

    return spikes 

Spike (signal, index): 

    if signal[index] is significantly higher than 

signal[index-1] and signal[index+1] 

    if signal[index] > signal[index-1] and 

signal[index] > signal[index+1]: 

        return True 

    else: 

        return False 

function detect Seizures (spikes): 

    seizures = [] 

    return seizures 

eeg_signals = LoadEEGSignals() 

features = ExtractFeatures(eeg_signals) 

labels = LoadLabels() 

node_features = features 

edges = DefineEdges(eeg_signals)   

graph_data = CreateGraph(node_features, edges) 

Function TrainModel(graph_data, labels, 

num_epochs=100): 

    model = 

SeizureGNN(input_dim=graph_data.num_node_features, 

hidden_dim=64, output_dim=2) 

    criterion = CrossEntropyLoss() 

    optimizer = AquilaOptimizer(model.parameters(), 

learning_rate=0.001) 

        For epoch from 1 to num_epochs: 

        optimizer.zero_grad() 

        outputs = model(graph_data) 

        loss = criterion(outputs, labels) 

        loss.backward() 

        optimizer.step() 

        Print("Epoch", epoch, "Loss:", loss.item()) 

        Return model 

trained_model = TrainModel(model,graph_data, labels) 

model.fit(trained_model,test _graph _data) 
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Figure 9. Convergence with different optimization algorithms. 

A convergence graph comparing the results of four distinct optimization algorithms—gray wolf 

optimization (GWO), Aquila optimization (AO), particle swarm optimization (PSO), and ant colony 

optimization (ACO)—is shown in Figure 9. The convergence of Aquila optimization (AO) seems to 

be the best and quickest because its line approaches the lowest fitness value the fastest. Aquila 

optimization appears to be closely followed by grey wolf optimization (GWO). Out of the four, it 

appears that ant colony optimization (ACO) and particle swarm optimization (PSO) have the slowest 

convergence rates. 

4. Results and discussion 

The steps involved in training and assessing the spatial and spectral graph neural network 

(SSGNN) are augmented by the Aquila algorithm. Preparing the dataset: EEG recordings from 

newborns who had seizures and those who did not are sourced from the Zenodo dataset, which can be 

found at https://zenodo.org/records/1280684. The dataset is partitioned using a ratio like 70-15-15 or 

80-10-10 to create training, validation, and testing sets. To avoid bias, care is made to make sure that 

each set includes a fairly balanced proportion of seizure and non-seizure samples. Model training: 

Deep learning frameworks like PyTorch or TensorFlow are used to create the spatial and spectral GNN 

architecture, which has been improved by the Aquila algorithm. Using the backpropagation algorithm 

and the Aquila optimization techniques, the model is trained on the training set. The model gains the 

ability to map input EEG graph data to either the seizure or non-seizure class labels during training. 

Table 2 represents the hyperparameters. To maximize the model performance, a validation set is 

used to adjust the hyperparameters such as learning rate, batch size, number of layers, and hidden units. 

To explore the hyperparameter space and find the ideal configuration, methods like grid search or 

random search can be used. Model evaluation: The trained model’s performance in identifying 

newborn seizures is assessed using the held-out testing set. 
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Table 2. Hyperparameters. 

Hyperparameters 

Batch Size 32 

Epochs 100 

Optimizer Aquila Optimizer 

Learning Rate 0.00212 

Graph Pooling Average Pooling 

Dropout 0.3 

Loss Binary Cross Entropy 

Activation Relu 

Output Activation Sigmoid 

Figure 10 shows the accuracy with which various machine learning and deep learning algorithms 

categorize ceramic samples. For accuracy, the proposed, CNN, GNN, LSTM, and SVM models are 

displayed on the x-axis. The accuracy is displayed on the y-axis and is expressed as a percentage. The 

correctness of 98.7% of the proposed model is represented. The CNN model’s accuracy is shown as 

93.16%. The GNN model’s accuracy is 92%, and the accuracy of the LSTM model is 89.73%. The 

SVM model’s accuracy is 90%. The results indicate that the proposed model has the highest accuracy, 

followed by the CNN, GNN, LSTM, and SVM models. For the F-score, the proposed, CNN, GNN, 

LSTM, and SVM models are displayed on the x-axis. The F-score is displayed on the y-axis and is 

expressed as a percentage. The F-score of 98.54% of the proposed model is represented. The CNN 

model displays 94.13%. The GNN model shows 92.42%. The LSTM model shows 90.17%. The SVM 

model’s F-score is 91.68%. The results indicate that the proposed model has the highest F-score, 

followed by the CNN, GNN, LSTM, and SVM models. For precision, the proposed, CNN, GNN, 

LSTM, and SVM models are shown on the x-axis. The precision is presented on the y-axis and is 

expressed as a percentage. The precision of the proposed model is represented as 98.9%. The CNN 

model displays 94.02%. The GNN model displays 92.67%. The LSTM model shows 90.13%. The 

SVM model’s precision is 91.87%. The results indicate that the proposed model has the highest 

precision, followed by the CNN, GNN, LSTM, and SVM models. For recall, the proposed, CNN, GNN, 

LSTM, and SVM models are shown on the x-axis. The recall is presented on the y-axis and is expressed 

as a percentage. A recall of 98.19% is represented for the proposed model. The CNN model displays 

94.24%. The GNN model shows 92.17%. The LSTM model shows 90.21%. The SVM model’s recall 

is 91.49%. The results designate that the proposed model has the highest recall, followed by the CNN, 

GNN, LSTM, and SVM models. 
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Figure 10. Accuracy, F-score, precision, and recall. 

Figure 11 shows the specificity of the proposed, CNN, GNN, LSTM, and SVM models. The 

models are shown on the x-axis. The specificity is presented on the y-axis and is expressed as a 

percentage. A specificity of 98.79% is represented for the proposed model. The CNN model displays 

95.02%. The GNN model shows 93%, and LSTM shows 91.32%. The SVM model’s specificity is 

91.95%. The results designate that the proposed model has the highest specificity, followed by the 

CNN, GNN, LSTM, and SVM models. 

 

Figure 11. Specificity. 

To measure the performance of the model, evaluation metrics including F-score, area under the 

receiver operating characteristic curve (AUC-ROC), sensitivity, specificity, and accuracy are 

calculated. To understand the advantages and disadvantages of the model, confusion matrices and 

precision-recall curves can also be examined. A comparison with baseline methods: The suggested 



19664 

AIMS Mathematics  Volume 9, Issue 7, 19645–19669. 

technique was contrasted with baseline methods, such as deep learning architectures and conventional 

machine learning algorithms. SVM, LSTM, GNN, and CNN networks trained on the same dataset are 

examples of baseline techniques. Table 3 shows the comparison of the proposed model with different 

algorithms. 

Table 3. A comparison of the proposed model with different algorithms. 

Algorithms Proposed CNN GNN LSTM SVM 

Parameters 

Accuracy 98.7 93.16 92.00 89.73 90 

Precision 98.9 94.03 92.67 90.13 91.87 

Recall 98.19 94.25 92.17 90.21 91.48 

F-score 98.54 94.13 92.45 90.17 91.67 

Specificity 98.79 95.03 93.00 91.32 91.9487 

Figure 12 shows the AUC-ROC of the proposed model (0.975), CNN (0.940), GNN (0.935), 

LSTM (0.91), and SVM (0.90). 

 

Figure 12. AUC-ROC. 

Figure 13 shows the confusion matrix for training 50%, 60%, 70%, and 80% as well as testing as 

50%, 40%, 30%, and 20% represents above values. 

The accuracy and loss curves for the suggested SSGNN model during the training and validation 

stages are displayed in Figure 14. These curves reveal information about the model’s ability to learn 

from and generalize the data. In order to make sure that the SSGNN model does not overfit or underfit 

the data, it is essential to assess both curves’ convergence and stability. The graphic demonstrates how 

the model may minimize loss while achieving excellent accuracy. 
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(a) Training 50%                                     (b) Training 60% 

 

(c)  Training 70%                                    (d) Training 80% 

Figure 13. Confusion matrix. 

 

Figure 14. Accuracy-loss curve. 

Figure 15 shows the K-fold with different parameters for comparing diverse deep learning and 

machine learning algorithms. 

Cross-validation: To evaluate how resilient the trained model is, cross-validation methods like K-

fold cross-validation can be used. The dataset is split up into k folds; the remaining folds are used for 

training, and each fold is used once as a validation set. An estimate of the model’s generalization 

performance that is more accurate is obtained by averaging performance metrics over several folds. 

Key aspects and locations that aid in the identification of seizures can be visualized by using 
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interpretability techniques like saliency maps or attention mechanisms. These procedures will help to 

improve clinical decision-making and patient care in neonatal critical care units by efficiently training 

and evaluating the spatial and spectral GNN supplemented with the Aquila algorithm for intelligent 

neonatal seizure diagnosis. 

 

Figure 15. K-fold. 

5. Conclusions 

Aquila algorithm-enhanced spatial and spectral graph neural networks (SSGNN) are a 

breakthrough in the field of intelligent newborn seizure diagnosis. Accurate and effective seizure 

identification is made possible by the model, which provides a thorough and nuanced understanding 

of neonatal brain dynamics by utilizing both spatial and spectral information collected from neonatal 

EEG data. The model uses spectral and spatial GNN architecture to distinguish between seizure and 

non-seizure states by utilizing spectrum features and spatial connectivity to capture complex 

correlations in neonatal EEG signals. Improving model convergence, stability, and generalization 

performance, the Aquila algorithm further optimizes the training procedure. The suggested method is 

guaranteed to be repeatable and broadly applicable by using publicly accessible datasets, such as the 
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one stored on Zenodo. The effectiveness of the model in identifying newborn seizures is confirmed by 

a comparison with baseline approaches and a thorough evaluation of its performance using standard 

measures. For affected infants, the model may lower the chance of long-term neurological issues by 

facilitating prompt intervention and treatment. The future understanding of the model’s decision-

making process and finding putative biomarkers for newborn seizures are made easier with the help of 

visualization. 
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