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1. Introduction and preliminaries

Let D denote the unit disc in C, and let X be a complex Banach space. Let By :={z € X : ||z|| < 1} be
the unit ball of X, and H(By) be the algebra of holomorphic functions from By into C. Let H(By, Bx)
denote the class of holomorphic mappings from By into By.

We shall consider one class of Banach spaces, 8,,(Bx), defined in [29], which is defined as follows:

The natural Bloch space 8B,,,(By) is defined to be the space of all f € H(By) for which

[ fllnar 2= sup{(1 = lIP)IIf' @)l : z € Bx} < oo,

where f'(z) = Df(z) € X" (the dual space of X) denotes the Fréchet derivative of f at the point
z. Endowed with the norm || f||,ar—siocn = 1f(O)] + ||fllzar» the natural Bloch space B,,,(Bx) becomes
a Banach space. When X = C and By = D, 8,,(Bx) is the classical Bloch space B(D) defined
in [1,32]. If X is a Hilbert space H, we have that the spaces B,.,,(By), B(Br), Br(Br), Bea(Br),
and 8;,,(By) defined in [4] coincide. One has studied the Bloch space on some homogeneous domains
of C" in [3,4,46,51]. The definition of a complex-valued Bloch function on the infinite-dimensional
bounded symmetric domains was later given in [5,9].
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The weighted-type space H_(Bx) [47] consists of all functions f € H(Byx) such that ||f]l, . =
sup{w(2)|f(z)| : z € By} is finite, and the little weighted-type space H  (By) (the closed subspace
of HY(By)) consists of all functions f € H (Bx) with limy; w(z)|f(z)] = 0. It is clear that both
H} (Bx) and HZZO(B x) are Banach spaces with the norm || - ||, where w denotes a normal function on
[0, 1) [35], and w can be extended to a function on By by w(z) = w(||z])).

Given € H(By) and ¢ € H(Bx,Bx). The weighted composition operator with symbols ¢ and ¢
is defined, for f € H(Bx), by W, ,f = ¥(f o ¢) (see [47]). The operator with symbol ¢ is defined,
f € HBx), by M, f = ¢ f, usually called the multiplication operator, and the operator with symbol ¢
is defined, f € H(Byx), by C,f = f o ¢, usually called the composition operator. W, , is a product-type
operator, as Wy , = M,,C,.

An extensive study concerning the theory of weighted composition operators on Banach and Hilbert
spaces of holomorphic functions has been established during the past four decades. It plays a central
role in the study of the isometries on several spaces of holomorphic functions. The study of the
weighted composition operators on B(D) began with the work of Ohno and Zhao in [31]. They
characterized the weighted composition operators between spaces B(D). More results on weighted
composition operators in various settings can be found in [6, 8, 10,20,24,27,28,30] and the references
therein. Product-type operators on some spaces of analytic functions on D or B"” have become a subject
of increasing interest in the last twenty years (see, e.g., [15,16,21-23,34,36-38,42-45,49,50,52] and
the related references therein). On a sum of more complex product-type operators from Bloch-type
spaces to the weighted-type spaces, Huang and Jiang in [18] completely characterized the boundedness
and compactness of the sum operator from Bloch-type spaces to weighted-type spaces on B" (also
see [17,19,39-41,48] and the related references therein).

F. Colonna and M. Tjani [7] characterized the bounded weighted composition operators from
a large class of Banach spaces of analytic functions on D into weighted Banach spaces. H.
Hamada [13] characterized the bounded weighted composition operator W, , from the space of
bounded holomorphic functions H*(By) into the Bloch space B(By) of infinite-dimensional bounded
symmetric domains. Some studies have also been devoted to the situation when By is the open unit
ball of a Banach space X (see, e.g., [2,11,12,14,26,33,47]). There has been a huge interest in the
operators on subspaces of H(By). The radial derivative operator on H(By) is defined as follows:

Rf(z) = Df(2)z, z € By.

Motivated by some of the above-mentioned investigations, and using some modifications of the
methods and ideas therein, the primary purpose of this paper is to bring the current results on the
boundedness of the product of R and W, , from the natural Bloch spaces 8,,(Bx) (or the little
Bloch-type spaces 8B,,,0(Bx)) into the weighted-type space H;, (Bx) (or the little weighted-type space
H7,(Bx)). There are still many open questions on this topic. Thus, our hope is that our study will
inspire more work in this area. Before we formulate the main theorem, we need the following auxiliary
result [25].

Lemma 1.1. Let f € B,,(By). Then

|f(2)] < Clog 1/ War-Biochs for z € Bx,

1 — izl

where C is a positive constant independent of f € B,,(Bx).
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2. The boundedness of the product-type operator RW, , : 8,,(Bx) — H, (Bx)

In this section, we consider the boundedness of the product of the radial derivative operator and

the weighted composition operator RW,, , : B,.,(Bx) — H; (Bx) and obtain a necessary and sufficient
condition. For x € Bx\{0}, let the set

T(x) = {x € X" : £x(x) = lIxll, 16l = 1},
then 7'(x) is nonempty by the Hahn—Banach theorem.

Theorem 2.1. Suppose y € H(Bx) and ¢ € H(By, By).

) If
WO QI
00, 2.1
T e @1
and
@V ()2l log ——— < oo 22)
supw@WeRllos T < '

then RWy,, : B,.(Bx) — H_ (Bx) is bounded.

(2) If sup g, o) (¢ (@2) | = ll¢'(a)ll, for a € Bx with p(a) € Bx\{0} and RW;, : B,.(Bx) —
H; (Bx) is bounded, then (2.2) holds and

WU Gl
oo, 2.3
temmiboi< 1= @I 2:3)

forre(0,1).

Proof. (1) First, assume (2.1) and (2.2). Using the chain rule, it is easy to see that for f € H(By),
z7 € By

W(IRWy o f (D] = 0(ID(Wy . f)(2)z] = 0@l f o ) (2)z
< W@ o @) @zl + W@ f (eI (2)z

= W@ (@@)¢ @zl + W@ f (eI (2)z

< w@QWEIIF @)l @I + W@ f (@)Y (2)z].

Let f € 8,,(Bx). Then, by Lemma 1.1, we get

[RW o], = sup @(@IRWy.f2)
ZEDY

< sup (w@W @I (@@)lle" @I + w@)l f (@)Y (2)z])

z€Bx

W@ @)llle" @)l

< su 1l
S g

2
+C sup w(Z)W’ (Z)Zl log —2||f||nat—Bloch
zeBy 1 = lle@l
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W@ @)lll¢" @)
up

”f”na —Bloch
wny 1= lle@I? '

+C sup Q)(Z)ll//’ (Z)Zl log ”f”nat—Blach- (24)

2By 1= lle@II?

By conditions (2.1), (2.2), and (2.4), it follows that the operator RW,, : B,,(Bx) — H, (Byx) is
bounded.

(2) Now suppose that RW,, , : 8,,(Bx) — H, (By) is bounded. Then there is a positive constant C,
for which

”RWI//,Lpf”w,oo < CHf”nat—Bl()cha
for all f € B,,(Bx). Choose f(z) = 1, then f € B,,(Bx) and || fll,ar—Biocr = 1, from which we get

sup W@ (2)z] = IRWy 4 fllweco < Cllfllnar-proch = C < 0. 2.5

z€By

To prove (2.3) holds, fix a € By; if ¢(a) € Bx\{0}, let w = ¢(a) and ¢,, € T'(w) be fixed. Set

a = , By. 2.6
1@ = @it € P 0
Then
, (@)l ,
= r.(2),
1@ = T e@itn@r @
and
, le@Il(e@)  llp@llts
= = . 2.7
J@la) = T @P? ~ U= le@IP? @7
Thus,
@) 1
12N < <
L < @@ = (= Ie@ll)?
1 1

< 2
— (= lle@)lD (1 = [lzIl)

which implies that f, € B,,,(By) with || fu|la: < l—lli(a)ll < 1_”;(“)”2.
(2.6) and (2.7), we have that

Hence, using the triangle inequality,

4
(1 ¥ W) IRWyl| 2 W fullwr-stocn [RWas|

Z ”RWw,wfa oo Sel]lgp w(2) |(Ww,90fa)’ (Z)Z'

= sup W@ (2)(fa © ©)'(@Dz + (fu 0 )@Y (2)z]

2€Byx

> w(@)ly(a)(fa © @) (@)a + wa)(fa © @)@ (a)dl
> w(@)ly(a)(fa © ) (@)al — w(@)|(fa 0 @)@ (@)al
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= W@W@If @) @l — W@ ful@@)IW (@l
_ 0@W@Ilp@llty @l w@ly/ @l
(1 - llg(@IP)’ 1 =lle@ll?
W@ @lle(@l] , (@l (@)l
= fw [ A —
(le@py 2l @l - T
W@V @@y @I w@ly @a

(1 - llg(@IP)’ 1—llp@I?

From (2.5) and (2.8), we easily get for r € (0, 1)

(2.8)

W@ @Il @Il
(ceByr<le@i<ty 1 — @I
1 w@)lle@I@llle’ )l
sup

S —
T (zeBxir<llpll<1} 1 = lle)I?

1
- ((5—r2)||RWW||+ sup w(z)l@l/(z)zl)

{zeBx:r<llp(2)ll<1}

(<5 =) |[RWufl| + sup w(z)llﬁ’(z)zl)

that is, (2.3) holds.
Next, we will prove (2.2). For given a € By if ¢(a) € Bx\{0}, consider the function

84(z) =2log 1 = llp(@)1pa)(2)

2 2 2
—11 1 , i By. 2.9
(°g1—||<,o<a>||f¢(a)(z>) / T @ TS (29)

Then

8.(2)
Ae@lit,y@ 2108 T2 @I,
1 = [le(a)|[€pay(2) log m 1 = llp(a)|[€pay(2)

2
e i | Gl
L-le@lln@  log 2 1= le@lba()’

for z € By, (2.10)

so that

lg.(0)] < 3log?2, (2.11)

2
g.(p(a)) = 6 (null operator) and g,(¢(a)) = log :

— 2.12
= llg(aI? (212
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On the other hand, we have

2| |€ga(a) ”
1 - |€cp(a) (Z)l

2| |€go(a) ”
1 - |5¢(a) (Z)l

gz (Il <

S T
2l0g e e
2
log =@

2 s

2 f(log\Wwam +3)
- ~ —2
T=lell ™ (1 =zl log =257

4 b
2 4(log Te@r T E)
STl (1= el log 2

2 T
L2 +4(21°gw+5)
T=1ll ™ (1= [l log 12a

2 4 ( bis )
< + 2+
=1zl 1-1ll 2log2

for z € By,

< -,
1=l

hence g, € B,(Bx) for ¢(a) € Bx\{0} and  sup ||galluer < C. By (2.11) and (2.12), we obtain

P(a)eBx \{0}

2
W@ @dlog T s

< w@W(2)g(e(2)¢' (2)z + g(p(Y (2)Z
< sup w(2) ‘(ngz)/ (z)z‘

z€Bx

< sup w(z2) |RW¢,¢gZ(Z)|

2€Bx

= ”RWI//,t,Dgz”w,oo < ”wa,np””gz”nat—Bloch

= [[RWy gl lIgzllnar +18:(0)])
< IRWy Il (C +31og2) < oo

for all ||o(2)|| > r > 0. If [le(2)|| < r < 1, using (2.5), we have

w(2)lY' (2)z] log 1 - lle@)IP?

W@ (2)z

<log

1-172

2
< log 75 sup W@ (2)z] < oo,
z€Bx

which, together with (2.13), proves that the condition in (2.2) is necessary.
Remark 2.2. For A € 0By, set ¢(z) = %(z — A1), Vz € Bx. Then ¢ € H(By, Bx), ¢'(z) = %Id, and

) 1 1 1,
sup [lyw) (¢'(@)2) | = 5 sup [y (2) | = Ellfw(a)ll =5= lle (@),

z€Bx 2 7€Bx

for a € By.

(2.13)
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Corollary 2.3. Suppose ¢ € HBy) and ¢ € H(By, By). If sup_g; ) (¢ (@)2) | = ll¢'(a)ll, for a € Bx
with ¢(a) € Bx\{0} and for r € (0, 1),

sup w@W @' @I < C < oo,

lp(z)<r

then RW,,, : B,.(Bx) — H_ (Bx) is bounded if and only if

! log— <
sup Wizl (@)ellog 3=y s <

and

b W@l @Il _
By 1= lle@IP

Since taking ¢(z) = z, sup,g; 6w (¢’ (@2)| = 1 = |l¢’'(a)ll, for w = p(a) € Bx\{0}, we have the
following result:

Corollary 2.4. Suppose y € H(Bx). Then the operator RM,, : B,,(Bx) — H; (By) is bounded if and
only if

sup w(z)lY' (z)z| log 2 o (2.14)

ceBy 1 =izl

and

up w(D)Y(2)] c o

(2.15)
z€Bx 1- ||Z||2

Proof. Necessity. Assume that RM,, : 8,,(Bx) — H; (Byx) is bounded. By Theorem 2.1, we have
, 2
sup w(2)ly’'(2)z| log T—E =

z€Bx

and for r € (0, 1)

WO _ (.
eByr<lei<ty 1=zl
So
sup YL W@ (2)| N W@ (2)|
z€Bx e = {zeBx:llzll<r} 1 - ”lez {zeBx:r<|lzll<1} 1 - ”Z”2
max, o w(r
< L’]z() sup  [y(2)l +C
L=r" eByiaien
< 00,
that is, (2.15) holds.
Sufficiency. It is clear. O
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When X = C and By = D, we find

Sup [y (¢ (@2) | = " (@llllewl = 1€ (@),

7€D

for a € D with ¢(a) € D\{0}. Let D, = {z € D : |p(z)] < r} (0 < r < 1) and h(z) = w@)W(2)|l¢'(2)|. By
the fact that the derivative of an analytic function is itself analytic, we have 4 is a continuous function
on the compact subset D, of D. Thus

sup w()Y(2)ll¢’ ()] < C < co.

ZGDr
So we have the following corollary:

Corollary 2.5. Let y € H(D) and ¢ : D — D be an analytic self-map. Then RW,, : B(D) — H_ (D)
is a bounded operator if and only if

Szlelﬂg) w()Y' (2)z|log W < o0

and

L e@UEIPEI
o 1- )P

Example. Suppose w(z) = 1 — ||z]|. We will give an example of a holomorphic mapping ¥ from By
into C and a holomorphic mapping ¢ from By into By such that RW,, , is bounded from 8,,,,(By) into
H; (By), but the operator RM,, is not bounded from 8,,,,(Bx) into H;(Bx). Let a € Bx\{0} and define
the function ¥(z) = log #(Z) and ¢(z) = %(a —z) for z € Bx. Then ¥ € H(By) and ¢ € H(By, Bx). The
operator RM,, is not bounded from 8,,,(By) into H; (Bx) by Corollary 2.4 since y ¢ H*(By). On the
other hand, it is straightforward to verify that

sup w(2)y¥'(z)z| log

e - le@IP
= sup w(z) L@ 2
T T el e
< su lo
Tl P a—qla-P
<2lo .

&1 il

Additionally, we have
. W@ @)llle’ @)l

By 1= lle@)I?

3 ‘IOg =

_ la—z]?
1 7

< sup
2€Bx
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(loglﬁa(z)l + g)

< su

T

1 V.4
< sup —(log m i E)
= P T Tl
C

< .

1= Jlal

Therefore, the operator RW,,, : 8,,(Bx) — H, (Bx) is bounded by Theorem 2.1.
3. The boundedness of the product-type operator RW, , : 8, 0(Bx) — H\(Bx)

The classical Bloch space 8(D) plays an important role in geometric function theory, and it has been
studied by many authors. In this section, we will also be interested in the generalization of the little
Bloch space By(D) consisting of functions f in B(D) with limy_,;(1 - 1Z1)|f"(z)] = 0. Thus, we first
introduce the little Bloch-type space 8, 0(Bx). Then we study the boundedness of the product-type
operator RWy,, : B, 0(Bx) — HXO(BX)'

Definition 3.1. The little Bloch-type space 8,,0(Bx) (the subspace of 8B,,(Bx)) consists of all
functions f € 8B,,,(Bx) for which
|\£ﬁrf1(1 — I @Il = 0.

Next, we formulate and prove several auxiliary results.
Lemma 3.2. If f € B,,,0(Bx), then
N 69

=0.
=1 log =

Proof. If f € B,,0(Bx), then Ve > 0, there is a 6 > 0 such that

€
I @I < s7—— (3.1)
SO 30 )
and
0)| + log 2|| fllna
O+ 1og Al _ £ 52)
log e
for all z with ¢ < ||z|]| < 1. Using the following limit again:
1
lim ——— =0,
llzll—1 log W
there is a 7 € (6, 1) such that
1
c (3.3)

< )
log l—ﬁzllz 3 log ﬁ”f”nal
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for all z with 7 < ||z|| < 1. By (3.1-3.3), we have
1
|f (2] < 1£(0)] +f ILf" E)lllzlld

=|f(0)|+fI [ (tz)IIIIZIIdHf I/ @)zl

||f||,m, L el

1 1 + ||z|| e
< IF(O) + 510 || o +
2 €
< |f(0)| + lo na =
O+ Tog =51/l + 108 773
1 2 € ol 2 € 1 2 €
(0] — (0] — (0] —
T T e R T T i S T TER
1 2
=lo €,
ST
for all z with T < ||z]| < 1, that is
£

lim

—— =0.
Izl—=1log ﬁ

Proposition 3.3. The little Bloch-type space B, 0(Byx) is a closed subspace of B,,;(Bx).

Proof. Let {f;} ;e be a sequence in B, 0(Bx) with
]h_)rg ”fj - f”nat—Bloch = 0, for f € Bnat(BX)~

Ve > 0, there is a j € N such that

€
||fj — fllwar-Biocn < 5,

for all j with j > jo. Since fj, € B,.0(Bx), there exists a 6 > 0 such that
(1 = llzIP)IIf, @Il < g for 6 < |lz]l < 1.
Thus, we get
(1 = 1lz2P)IIf @l

< (L=1ldPIf @) = f7, @I+ (L= 1dPIf @
< sup(1 = [l /(@) = £, @Il + (1 = lIAPIIf, @)

ZeBX

< fjo = Fllnar-piocn + (1 = IS @I

<e ford <zl <1,

that is f € B,u0(Bx).

O
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The following theorem describes the boundedness of the product-type operator RW,
Bnat,O(BX) - HZi()(BX)

Theorem 3.4. Suppose y € H(Bx) and ¢ € H(By, By).

(O If
Iéﬁgll w2z =0, (3.4)
||£ﬁr—r>11 w@W @' @I = 0, (3.5)
M = fel]lg]z w@)W' (2)z] log ETE < oo (3.6)
and
I = W@’ @) <o, 3.7)

By 1= llp@)IP

then RWy, , : Baro(Bx) — HEO(BX) is bounded.

(2) If sup_g; o) (9" (@2) | = ll¢'(@)ll, for a € Bx with p(a) € Bx\{0} and RWy, @ Buo(Bx) —
HZO(B x) is bounded, then (3.4), (3.6) holds and

w@W e’ @)
2 < 00,
(zeBx:r<llp@)lI<1} 1 =l

(3.8)

forre(0,1).

Proof. (1) First, assume that (3.4)—(3.7) holds. By Theorem 2.1, we know that RW,, , : 8,,(Bx) —
H;'(By) is bounded. Since B,,0(Bx) C B,.(Bx), RW,, : B,uoBx) — H;(Bx) is bounded.
Therefore, from the closed graph theorem, we only need to prove that RW,,f € HJ(Bx) for all
f € B,u0(By). For an arbitrarily small positive number €, if f € B,,,0(Bx), by Lemma 3.2, there exists
a0 < 6; <1 such that

P £
(4= lllDNF @M < 57

2 ! €
1 =
for all z with 6; < ||z]| < 1. If |l(2)|| > ¢, it from (3.6) and (3.7) follows that

w(@) [RWy o )@ = 0@) |(Wy o f) (2)2]

< w@WQEIIF (@)Y @zl + W@ f (@)Y ()]

_ WEWEIY @l | @I @dlog gy

= 2L(1 - [le@)IP) 2M

<€, 3.9
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for all z with 6; < ||zl < 1. Choose a constant K; such that |f(z)] < K; for all ||z]| < ¢;. Since for
f € Brao(Bx) C Buu(Bx), we have || fllua = sup{(1 = llZIPIf' @)l : z € By} < oo, therefore

a1l
- eP = 1-6

I/ @Il <

for all ||z]| £ ;. Choose a constant K = max {Kl, %} then |f(z)] < K and ||f'(z)|| < K for all ||z]| < d;.
1

Using (3.4) and (3.5), there is a 0, € (91, 1) such that

€
! — 1
W@ (2)z] < 7K (3.10)
and
€
’ — 11
w@Y @' (@) < 7K (3.11)
for all z with 0, < ||z|| < 1. If ||e(2)|| < 61, using (3.10) and (3.11), we have

w(@) [RWy . 1))

< w@WIIF (@)Y’ @)zl + W@ f (@)Y @)z

< Ko@WIle @Il + Ko@) (2)2,

<€, (3.12)

for all z with 9, < ||z|]| < 1. From (3.9) and (3.12), we conclude that
lim (@) [RWye (@) = 0.

Hence RW, . f € Hzo(BX) for all f € B, 0(Bx). S0 RW,, 1 Buaro(Bx) — Hzio(BX) 1s bounded.
(2) Suppose RWy,, : B, 0(Bx) — H?,(By) is bounded. That means that RWyof € H\(Bx) for all
f € BuuoBx). If we choose f(z) = 1 € B,u0(Bx), we have

sup w(@Y (@)z] = IRWy. o fllwco < Cllfllar-piocn = C < 0. (3.13)

z€By

and

lim W@ (2)zl = lim w(@)|RW,,.f@)| = 0,

llzll—1 llzll—1

that is, (3.4) holds.
To prove (3.8) holds, fix a € By; if p(a) € Bx\{0}, let w = ¢(a) and ¢,, € T(w) be fixed. We take

f. : Bx = C (see (2.6)). Then
llp(a)ll )

,(2),

1@ = T e@itn@r ™

therefore,

ll(a)ll 1
Ifa@Il - < < ;
Juts 11 = llp@lit @~ (1 = lle@I)?
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SO fu € Braro(Bx) with || fllnar < 1_”5(0)” < 1—||;(a)||2' Hence, using the triangle inequality and (2.6)—(2.8),
we get for 0 < r < [|lp(a)|| < 1

4
1+ ————|I[RW,
( 1 IIsO(a)IIZ) R

> “fa”nat—Bloch RWw,np Braro(Bx)—>H (Bx) > ||RW1//90f;l
7’
= sup w(z) '(WW fa) (2)z
z€Bx

= sup w(@W(2)(fa 0 @) (2)z + (fa 0 @)Y (2)z]

z€By

_ w@@lle@llle' @all _ w@ly' (@l
- (1 - llp(@)P)’ 1 - llg@IP?

Braro(Bx)—>Hg (Bx)

w,00

(3.14)

From (3.13) and (3.14), we have

W@ )l¢’' (2)zll
o<t 1= llp@@)II?
< 1 sup w@lle@ly @l (@)l
T i< 1= [le@)II?

1
< - ((5 =) |RW,,

’
BunEo-H3E0 T S W@ (Z)Zl)

1 ) /
< ; ((5 =) ||RW'WP BraroBx)—Hg (Bx) * ZS;IIBP; W@ (Z)Zl) ’
that is, (3.8) holds.

Next, we will prove (3.6). For given a € By if ¢(a) € Bx\{0}, consider the function g, given
by (2.9). Using (2.10), we have for z € By

2
IO < T + szglmm B
—ll(a)ll
5 ) 4(10g ’W + %)
ST Te@I (1= llp(@l) log 2o
2 4 (log i + 5)

< + 2
I =lle@Il (1 - llp@IDlog =mp

therefore, g, € B,u0Bx) for p(a) € Bx\{0} and sup |lglliw < C. By (2.11) and (2.12), we
(a)eBx\{0}
conclude that

2
W@ @dlog T "G

< W@ (2)g.(e(2)¢' (2)z + g(p(W (2)z
< sup w(z) '(RWWgZ) (Z)‘

z€Bx
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= ”ﬂwangHw,oo < ||RW¢/,¢||Bna1,0(Bx)—>H2j’(]B%x)”gz”nat—Bloch
< NRWygllg 0@ 0-Hs @0 (C +3l0g2) < oo (3.15)

for all ¢(z) € Bx\{0}. If ¢(z) = 0, using (3.13) and B,,,0(Bx) C B,.(Bx), we have

2
! log ————
W@y’ (2)z] log = le@IP
= log 2w(2)ly/'(2)z] < log 2 sup w(2)ly'(z)z] < oo,

2€Byx
which and (3.15) prove that the condition in (3.6) is necessary, finishing the proof of the theorem. O

Corollary 3.5. Suppose ¢ € H(Bx). Then RMy : Buuo(Bx) — H,,((Bx) is bounded if and only if
W € HEo(By),

“gr_r}] w@W (2)z] = 0, (3.16)
J := sup w(2)lY'(z)z] log 2 5 < 0o, (3.17)
2€By 1 —lz|
and
QWL _ (3.18)

ey 1 =12l

Proof. Sufficiency. It is clear.
Necessity. Assume that RM,, : B,,,,0(Bx) — H(Bx) is bounded. Then ¢ € H(Bx), (3.17) holds
and

WEWE) _

wesyr<ldli<yy 1 — Izl

b

for r € (0, 1). From which we get

w@W ()| W)Y (2)] W)Y (2)]

Sup,.g TR S
5 (zeBx:llzll<r} 1- ||Z||2 {zeBx:r<|lzll<1} 1 - ||Z||2

wW(2)Y(2)|

+C < 00,
eyl 1= Izl

that is condition (3.18) holds. Moreover,

1 ,
w@W' @)z < ——F—sup w(@)Y’'(2)z|log >
lOg e 7€Bx I - ”Z”
J
=——— -0, (lzl = D),
log

1-lIzP?

that is, (3.16) holds. O
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When X = C and By = D, we have the following corollary:

Corollary 3.6. Let ¢ € H(D) and ¢ be an analytic self-map of D. Then RW, , : By(D) — H (D) is
bounded if and only if ' € H, (D)

lim W@ ¢’ (@) = 0, (3.19)

2
sup w()Y (2)z] log ———— < oo,
bWl rllos T o

and
u W@ @)|l¢’ (@)l c o
e 1=l

Proof. By Theorem 3.4, we only need to prove that if RW, , : By(D) — H;’ZO(D) is bounded, (3.19)
holds. Taking f(z) = z, we have f € By(D), so RW, . f € HZO,O(D)- In addition, we have for every z € D

w(@) [RWy, f2)] = 0@ |(Wyef) 2)7]
w(2) W' (e(2)z + Y(2)¢' (2)z]
W@ ()¢’ (2)z] = W@ (2)p(2)zl.

\%

From ¢y’ € HKO(D) it follows that
w(2) [P () ¢’ (2)z]

< W@|(RWyuf) | + 0@l @llpz
< 0@|(RWyef) | + 0@ @)
= 0(d— 1),
that is, (3.19) holds. |

4. Conclusions

There has been huge interest in the operators on subspaces of H(By). Up to now, there have been
fewer results on the product of the weighted composition operator and the radial derivative operator
on subspaces of H(By). Thus, our hope is that this exposition will inspire more work in this area. In
this study, our aim is to investigate the boundedness of the product of the radial derivative operator and
the weighted composition operator from the natural Bloch spaces 8B,,,(Bx) (or the little Bloch spaces
B,a.0(Bx)) into the weighted-type spaces H;, (By) (or the little weighted-type spaces HEO(BX)). This
provides a good starting point for discussion and further research. Of course, working with operators
on the unit ball of Banach spaces X has some difficulties compared to the product of operators on the
subspace of all holomorphic functions on the open unit disc or the unit ball. Mainly because the test
function in the natural Bloch space 8,,,(Byx) or 8,,.0(Bx) is not easy to obtain. Just because of this,

this is an interesting topic for future work.
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