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Abstract: R. Lyons, R. Pemantle and Y. Peres (Ann. Probab. 24 (4), 1996, 1993-2006) conjectured
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on groups, Chaper 9, 2024) sheds light on the intricate relationship between the spectral radius of the
graph and the speed of the biased random walk. Here, we focus on an example of a Cayley graph,
a free product of complete graphs. In this paper, we establish the continuity of the spectral radius of
biased random walks with respect to the bias parameter in this class of Cayley graphs. Our method
relies on the Kesten-Cheeger-Dodziuk-Mohar theorem and the analysis of generating functions.
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1. Introduction

Consider an infinite, locally finite, and connected graph G = (V(G), E(G), 0), where V(G) denotes
the vertex set, E(G) the edge set, and o is a designated root. Consider Markov chain. There is a
stationary measure m(-) such that for any two adjacent vertices x and y, 7(x)p(x, y) = n(y)p(y, x), where
p(x,y) is the transition probability. For the edge joining vertices x and y, assign a weight

c(x,y) = m(x)p(x, y).

Now we call the weights of the edges conductance and their reciprocals resistance. In this paper, we
study the spectral radius of irreducible Markov chains on weighted graphs. More precisely, we focus
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on the spectral radius of a biased random walk, which is defined as follows:

Fix a root o in a graph G. Let |x| be the graph distance between x and o for any vertex x of G.
Write N for the set of natural numbers, and let Z, = N U {0}. For any n € Z,, we define two subsets
of vertices:

The ball of radius n centered at o is denoted by Bg(n) = {x € V(G) : |x| < n}.

The boundary of this ball is dBs(n) = {x € V(G) : |x|] = n}. Fix any 4 € [0, ). If edge e is
at distance n from o, then let its conductance be A™". Denote by RW, the random walk associated
the above conductances, and we call RW, a biased random walk. Recall that a random walk on an
infinite connected network is transient iff the effective conductance from any of its vertices to infinity
is positive [19].

The motivation for introducing RW), is to design a Monte-Carlo algorithm for self-avoiding walks by
Berretti and Sokal [5]. See [13,20,21] for refinements of this idea. Due to interesting phenomenology
and similarities to concrete physical systems ( [7,9, 10, 12, 23-25]), biased random walks and
biased diffusions in disordered media have attracted much attention in the mathematical and physics
communities since the 1980s.

In the following, we assume G is transitive. Let M,, = |0Bg(n)| be the cardinality of dBg(n) for any
n € Z,. Define the growth rate of G as

gr(G) = liminf \/M,,.

Since the sequence {M,}>  is submultiplicative, the limit gr(G) = li_)m /M, exists indeed. R.
Lyons [15] showed that the critical parameter for RW, on a general trene ;os exactly the exponent of
the Hausdorft dimension of the tree boundary. Moreover, R. Lyons [16] proved that for Cayley graphs
and degree-bounded transitive graphs, the growth rate is exactly the critical parameter of the RW,.

Let d be the vertex degree of G. For any vertex v of G except o, denote by d; the number of edges
connecting v to dBg(|[v| — 1). For the definition of RW, (X,,);", starting at o, the transition probability
from v to an adjacent vertex u is

1/d ifv=o,
p(v, u) = m if ue€ dBg(lv|—1)and v # o,
m otherwise.

Note that RW, is just a simple random walk on G.
We write

p(x,y) = pP(x,y,4) = Pu(X, = y).

The Green function is defined by

G(x,y) = " p" (x5, )2, x, y € V(G), z€C.
n=0
Define
Ty = Ty(/l) = 1nf{n > 11X, = y}’ f(n)(x’ y) = Px(Ty =n),
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the associated generating function

Uyl = " 7602, x, y € V(G), ze C.

n=1

Given any function g(z), let us denote the radius of convergence by R,. By the Cauchy-

Hadamard criterion,
1

limsup, .., v/p"(x,y)

Recall [19, Exercise 1.2] that R is independent of x and y due to its irreducibility. Define

Rg = Rg(1) =

1 ) 0
p = ps(l) =p) = R = lim sup +/p"(x, x).
G n—o0
p 1s called the spectral radius of the biased random walk. The reason for this name we can refer
to [14, 19] for more information on the spectral radius. Moreover,

o = lim sup +/p"(0, 0).

Define the speed of RW,, (X,)>, as the limit of ')i—' as n — oo, if it exists almost surely (or
in probability).

There are many deep and important questions related to how the spectral radius and the speed
depend on the bias parameter A (see [14], Chapter 9). In [17, p.2005 Questions], R. Lyons, R. Pemantle,
and Y. Peres raised the Lyons-Pemantle-Peres monotonicity problem. For a Cayley graph G with
gr(G) > 1, does the speed of RW, exist and be positive for all A € (1, gr(G))? For more information,
readers can refer to [1,4].

Moreover, R. Lyons, R. Pemantle and Y. Peres [18] conjectured that the speed of RW, on the
supercritical Galton-Watson tree without leaves is strictly decreasing. The conjecture has been
confirmed for A lying in some regions (see [2,4,26]). For Galton-Watson trees without leaves, the
Lyons-Pemantle-Peres monotonicity problem was answered positively for 4 < 7% by Ben Arous,
Fribergh and Sidoravicius [4], where m,; is the minimal degree of the Galton-Watson tree. And
Aidékon [1] improved the just-mentioned result to 4 < % by a completely different approach. In [3],
Ben Arous, Hu, Olla, and Zeitouni obtained the Einstein relation for RW, on Galton-Watson trees,
which implies the conjecture holds in a neighborhood of m.

We are interested in the continuity of the spectral radius of RW,. For A4 > gr(G), RW), is recurrent,
o = 1. When A = 0 RW), is not irreducible.

Problem 1.1. For a Cayley graph G, is the spectral radius of RW, continuous for all 1 € (0, gr(G)]?

In this paper, our focus is centered on addressing Problem 1.1 within the realm of a distinctive class
of block-free product groups. To ensure a comprehensive understanding, the precise definition and
pertinent details regarding free products will be meticulously introduced in Section 2.

Theorem 1.2. Let graph G be a free product of complete graphs. Then the spectral radius p(1) of RW),
on G is continuous in A € (0, gr(G)].
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To prove Theorem 1.2, the primary technical obstacle lies in establishing the generating function
and subsequently demonstrating that the Cheeger constant is indeed positive.

Theorem 1.2 affirmatively resolves Problem 1.1, specifically for the scenario involving the free
product of complete graphs. A key observation here is that the d-regular tree T, represents a particular
instance of such free products of complete graphs. Consequently, it is deduced from the theorem that
the spectral radius, p(1) of RW, defined on T, exhibits a characteristic of continuity over the interval
(0,gr(T,)], where gr(T,) signifies the growth rate of the d-regular tree. This finding underscores the
robustness of the spectral property with respect to variations in the parameter A.

2. Proof of Theorem 1.2

2.1. Free product of graphs and growth rate

Intuitively, a “free product” of finite Cayley graphs G; is a rule to construct a new Cayley graph G
by gluing these m cells at “common vertices” without edge intersection, step by step. Concretely, we
construct the Cayley graph G of H, = H, *- - -« H, by the following steps: Here, * denotes a free product.
Step 1. Glue each i-cell (1 < i < r) at a common vertex o such that any two of the r cells only have
one common vertex o. View o as the birth root of these m cells. Usually o is chosen to be the identity
element 1. Denote the obtained graph as GV, and mark any vertex x in the j-cell as [].

Step 2. For any x € G"\{o}, it must be in some cell, say an i-cell, then we glue each j-cell (1 < j #
i < r) at x such that any of the » — 1 cells has only one common vertex x with G’ and any two of the
r — 1 cells only have one common vertex x. View x as the birth root of just added r — 1 cells. For any
distinctive two vertices x and y of G'V\{0}, we require that any cell glued at x is disjoint from any cell
glued at y. Let G® be the resulting graph. And for any 1 < j < r, also mark a vertex x of GP\G in
the j-cell as [J].

Step 3. For all x € GP\GY, according to (x), we can determine which type of cell x belongs to, and
glue other type cells as Step 2. And then mark all new added vertices y and define (y) and [y] as Step 2.
Denote by G the obtained graph. And so on, we obtain G with a type function [-] in its vertices,
where for convenience we let [o] = O.

2.2. Spectral radius: Free product of complete graphs

Now let G be the Cayley graph of H, * H, * - - - * H, with root 0, where each H; (1 < i < r) is a finite
group whose Cayley graph is the complete graph K, ., on m; + 1 vertices. Let }._, m; = m. Thus, the
transition probability from v to an adjacent vertex u is

1/m ifv=o,
pv,u) =3 —A— ifue€dBs(v|—1)andv # o,
L otherwise.

m+A—1

Let fl.(")(o, o) (i = 1,2,---,r) be the probability of the biased random walk on G starting at o0 and
7, = n, which does visit a vertex of K, ;. Define

Uio,0l) = ) [ (x,92".
n=1
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Hence,

U(o, olz) = Z Ui(o, 0lz). 2.1)

Note the tree-like structure of G. To compute fl.(”)(o, 0), a biased random walk must reach an edge in
K,,;+1 from o and return o by an edge in K, at last step. Each vertex of K,,, ;1 glues a copy of K11
(j # i). By the symmetry of K,,.;, we can regard K, ,; as an edge with a cycle and glue the same
structure as in G. Thus

Uio,0le) =~z zi(z M) + Mi(2) + Z M(2))".

n=0 j=0 k=i+1

Here M (z) denotes the generating function associated with the hitting probability of Km +1, which starts
ata vertex of K, .11 (j # i). Note that the probability from o to verteices of K,,, 41 18 7! Zi and from a vertex
of K,,,+1 to the vertices of K,,,,1 is — . And the other steps obey the same law as U i(0,0lz). Thus

m+/l 1°
m m; — 1
M) = ———U, Miz) = ———
i) = = Uj(0.0k). Miz) = ————z
Therefore, in the domain {z € C| |z] < Ry},
/lmi 1
Ui(o,0l2) = -1 222 - —
(m+ =127 | — (2 37 Uj(o,0l0) - =2 Ui(o, 0l2) + Mi(2))
= Z .
(m+A-12%" 1_ (m+/l -U(0,0[2) — —B=U(0,0lz) + M(Z))
Hence,
Ui(o,0l2)
_—(m+A-1)-mU(o,0[z) — (m; — 1) 2)
B 2m (2.2)
. V(m+ A= 1) —=mU(0,0lz) — (m; — 1) 2)* + 4Am;z>
2m '

Drawing upon the results established in Eqs 2.1 and 2.2, we are able to deduce that

_ Zrl —(m+A-1)-mU(o,0lz) — (m; — 1))

2m

"y (m+ A= 1) = mU(o,0l2) — (m; — 1) 2)* + 4Am; 2
* ,Z; 2m
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Let
0Bg,(n) = {x € V(G)) : |x| = n}.

Define
$i2) = ) 10Bg ("

n>1

Lemma 2.1. [§]
1
gr(G) =
s
where zg is the unique real number with

Sizs)  _ 2.3)
£i1+S,(zs)

In the work of E. Candellero, L. A. Gilch, and S. Miiller [8], they derive an upper bound for the
upper box-counting dimension and a complementary lower bound for the Hausdorft dimension of the
geometric endpoint boundary of the trace. This analysis is instrumental in establishing Lemma 2.1.
Our approach subsequently leverages Lemma 2.1 as a pivotal step to demonstrate that the growth rate
of the free product of complete graphs is indeed positive.

Since the Cayley graph of H; (1 <i < r) is a complete graph on m; + 1 vertices,

Si(z) = m;z.
Recall Lemma 2.1,
1
gr(G) = —,
ls

where zg is the unique real positive number with

m;Zs
P 1+ m;Zs

=1.

LetI'; = (V;, E;) generated by the vertex set
Vi = {x € V(G), the geodesic between o and x starting at o to visit K, .1}

Clearly, foranyne Z,, 1 <i<r,
|Br,(m)| = m; ) |Br(n = D).
J#i
Hence, for n large enoughand 1 <i# j<r,

|0Br, ()| ~ |0Br,(n)| ~ gr(G)".

To continue, we introduce some preliminaries about the Cheeger constant. For a weighted graph
H (with weight c(x, y) for the edge joining vertices x and y), we say that H satisfies the isoperimetric
inequality, briefly /P, if there exists a k > 0 such that C(0g(S)) > «C(S) for any finite connected
subset S. Here C(S) = X5 Cx and C(9p(S)) = X es, ygs €(x,y), where C, = 3, c(x,y). The largest
possible « is the: Kesten-Cheeger-Dodziuk-Mohar theorem, see [14] Chapter 7, Theorem 7.3. A
weighted graph can also be regarded as a network. Readers can refer to [19] for details.
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Theorem 2.2. For any connected infinite network H, the following are equivalent:
(1) H satisfies 1P, with k > 0.

(2)0<p< 1.

Infact, K*/2<1-p < k.

In the subsequent discussion, we will undertake the task of proving that the Cheeger constant of G is
indeed positive. This assertion is facilitated by invoking the Kesten-Cheeger-Dodziuk-Mohar theorem
(Theorem 2.2), which leads us directly to the derivation of the following lemma.

Lemma 2.3. For any A € (0, gr(G)), 0 < p(1) < 1.

Proof. To return o, a path can hit a vertex x of type [i] with probability i, then move to another
neighbour of x with type [j] with probability ,ﬁ;_ll . Until the n — th step, the random walk runs away
from o. From the (n + 1) — th until the 2n — th the random walk returns o with probability —4— for

m+A-1
every step. Hence, for any n > 2

r

1 m; A
(2’1) > _ 1 1 n—1 n
p (0’0)_;m(g}£m+ﬂ— 1) (m+/l— 1) '
Thus
A
p(1) > min L > 0.

I<isrm+A-—1
Let S be any connected, finite subgraph of G. Assume that S is between dBg(n) and dBg(n + m).
Note that

n

§ = VUILNS NOBg()) = VLS, IS =108 +1S°l,

where § ; denotes S N dB¢(j) and S denotes the interior points of S.
For any x € §,,, denote the subgraph of x as S, = (V(S,), E(G)). Here

V(S,) ={y € V(G), the geodesic between y and o visits x},
E(S ) = {xy € E(G), x,y € V(S
S(n) ={y € V(S,) : the graph distance of x and y < n}.
Given any fixed € > 0, from the definition of gr(G), there exists n, such that, for any k > n,
10Bg(k)| > (gr(G) — e).

Define
n, = inf{k > n, there exists y € S N S (k — n)},
which means that at dS ,(k — n), we can find at least one vertex belonging to dS. Hence,

C@S, NS (n —n)) . A i Anm
CS.(n—n) ~—m(m+A1-—DAI" mh(m+1-1)

If ny — n < ng, then
COS.NS . (n —n)) S A7

> > 0.
C(S (n —n)) mom+A-1)
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Now assume that, n; — n > ny. Notice that every vertex x # o has m — m; neighbors in Bs(|x]| + 1) and
only one neighbour in Bs(|x| — 1) if x € [i]. Let V; be the set of all vertices of type [i]in §° N §;. Itis
easy to see that

D= m)IVI 1S il
i=1

Notice that }/_,(m — m,~)|V§| denotes the growth way of SN § ;. Since n; —n > ny, forny < j < n; —n,
IS? NS (NIgr(G) —€) < Z(m —m)|Vi| <108 (j + D).
i=1
Write ¢ = gr(G) — €. Hence, for any ny < j < n; —n,
1SN 3S ()

1 1 1
< =08 (j+ DI ==ISNIS,(j+ DI+ —10S NaS.(j+ 1)
c c c

1(1 1 1
< - (EIS" NS, +2)|+ 710 N 9S.(j + 2)|) +-10S 198 (j + 1)
2

2
:(%) |s0masx(j+2)|+(l) 05 N IS .(j +2)

¢
ni—n—j nj—n-j
< (—) IS°N IS (n, —n)| + (—) [0S N AS (n; —n)|.
c c
In the case when |0S N 3S (n; — n)| > €|0S (n; — n)|,
1—
S9N 8S () — )] < (1 — OlFS (11 — )| < —<18S MBS (my — n)!.
€
Therefore, for any ny < j <n; —n,

1 ny—n—j
1SN S (I < p (E) 10S N AS .(ny — n)l.

Notice that every vertex in §° N S () has weight A~/(m + A — 1). Therefore,

m+A—11 (1)
C(SO N an(I’l() + 1)) < WZ (E) |8S N an(l’ll — I’l)|,
, m4A—11(1\""™2
CS°NaS (ng+2)) < W; E |0S N aS (ny —n)|,
m+A-111

C(SOOBSx(nl -—n-— 1)) < EZI@S ﬂan(l’ll —I’l)l

An -1
Combining with that

ny—n

CS* NS (ny —n)) = Z C(S? NS (i),
i=1
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ny—n

C@OS NS (n, —n)) = Z C(AS N S (i),
i=0

we have that
M e A= 1 Ay
C(S° NS (n; —n)) <C(S° N S (no)) + mtA- (—) A0S 1 8S (1 — n).
€
=1
Since A < gr(G) — €,
ny—n—nop—1 /l A
- i < c
(c )< 1-— %

Hence, we obtain that,
+4-1
<1708 NS (ny —n).

C(S”ﬂSx(nl—n))SC(SoﬂSx(no))+m - 1

Notice that
A7MAS NOS (n; —n)| <COS . NS (m —n)\ S (ng)).

Thus,
COS NS (n —n))

C(S «(ny —n))
C(S7 N S(ng)) + C(S N (S(ny —n) \ S(no))

C(9S NS «(ng)) + C(AS N (S x(n1 —n) \ S1(no))
A7 L oo

> min{ , -
mom+A—1) mtA-l ¢ 4 |
e 1-4

Notice that the left case is [0S N IS ((n; — n)| < €0S (n; —n)|. However, we will discuss the case in the

following ways. If n; — n < ny, for x; € 95 ((n;), define
ny(x;) = inf{k > n;, there exists y € S N S, (k — ny)}.

Then, similar to the proof of S ,(n; — n), we can discuss the case of S ,,(n, — n;). If ny —n > ny, define

ny = inf{ny(y), y € 88 (n;) N S°}.

Moreover, if [0S N dS (n, — n)| > €98 (ny — n)|, then for n; < j < ny,

1SN AS (NI(gr(G) - 2e) < Z(m —m)|Vil <108 .(j + D).

i=1

Similarly, as above, we have
COS NS (n, — Pl 1
( (2 — 1)) > min{ , - } > 0.
C(S+(np —n)) mom+A=1" peacr 4, 4
€ 1—_41

Volume 9, Issue 7, 19529-19545.

AIMS Mathematics



19538

Here ¢; = gr(G) — 2e. The left case is |0S N IS x(n; — n)| < €0S (n; — n)| and [0S N IS (ny — ny)| <
€l0S «(n, — ny)|. Notice that S is a finite graph; then there exists K > 0 such that ng = n + m. And

0S NS (nxg —n) =05 NIS ,(m) = 3S (ng — n).

Hence,
[0S N OS (ng — n)| > €|dS (ng — n)|.

Whatever, from the above discussion, we can divide S, into several parts. S )‘C, Si, -+ such that every

part satisfies C(gfsqb;f") > 0 (i € N). Therefore,

C@OS Nasy) . AT 1

C@s) > min{

, } > 0.
mom+A—=1) o1 Hg

1
¢ -5

+1

Here cx_1 = gr(G) — Ke. Hence, for 4 € (0, gr(G) — Ke),

C(S) S
C(S)

Note that K is decreasing as € | 0. Thus, we prove that G is a positive Cheeger constant for 4 €
(0, gr(G)), which completes the proof by Theorem 2.2.

Lemma 2.4. G(0,0|R;) < o0, U(0,0|Rg) < 1, and Rg = Ry.

Proof. Note that for any z > 0
Go.0k) = 1+ ) (U(o.0))".

i=1
It is easy to see that Rz < Ry, and in |z| < Rg.

1

Glo.ok) = T o

So U(o,0|Rg) < 1.

Recall the following: Pringsheim’s Theorem: If f(z) = }',> a,Z" with a,, > 0, then the radius of the
convergence is the smallest positive singularity of f(z).

Hence, the smallest positive singularity Rs of G(0,0|z) is either one of the radius of convergence
Ry of U(o, 0|z) or the smallest positive number z; with U(o, 0|z;) = 1. Whatever, notice that U(o, 0|z)
is strictly increasing for z. Therefore, z; is the unique positive number satisfying U(o, 0|z) = 1. Thus,
to prove the theorem, we only need to prove U(o, 0|Rg) < 1.

Assume that U(o, 0|Rz) = 1. We exclude the trivial case where m; = 1 for 1 < i < r . Notice that
Rg > 1. If Rg = 1, then U(o, 0|1) < 1 by transience. So the left-case is R; > 1. Firstly, let us consider
the case of 0 < 4 < 1. Recall that

Uo,0l) = ) Ui(o,0l)
i=1

_ Z —((m+ A =1) = mU(0,0l2) — (m; — 1)2)
- i=1 2m
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.\ V((m+A1=1) = mU(o,0lz) — (m; — 1) 2)* + 4Am;22
2m '

Thus

ro=(@-1)=(m;— DRg) + \/((/1 — 1) - (m; — ) RG)* + 4Am;R%,
2m

i=1

F (1= Q)+ (m— ) R) + \/((1 — )+ (m; — 1) Rg)* + 4Um;R%

. 2m
i=1

Notice (1 — ) + (m; — 1)Rg > (1 — ) + (m; — 1). Since there is at least one m; > 1, which implies
(1= +@m—1DRsz>({1—-2)+(m; — 1), we have

S (1= + (mi = D) + V(= D)+ (m; — D)+ dam,
1> Zl .

:Zrlmi_/l-i_mi-i_/l:l-

. 2m
i=1

It is a contradiction. That is for0 < A < 1, U(o, 0|Rg) < 1.
Consider the case when A > 1. Notice that
[A—1—@m;— Dz)* +4amz? = [A— 1 + (m; + Dz]? + 4Am;2% — 4miz> — 44 — Dz
ForA>1,
4Am;R% — 4m;R% — 4(A — D)m;R¢

=4R;(AmRg — miRg — (1 — 1)m;)

=4Rc((1 — )miRg — (1 — 1)m;)

:4RG(/1 - 1)m,(RG - 1) > 0.
Since R; > 1, we have

4Am;RE — 4m;R;, — 4(A — 1)m;Rs > 0.

Thus, we get the following contradiction:

"= (A=D1 —-0m—DRe) + \/((/1 — 1) = (mi = 1) Re)* + 4Am;R},

=)
i=1

_ 2 —((@=1)—=(mi —1DRg)

2m

2m

i=1

£ (= D) = (m + D Re) + AAmRE — AR% +4(A ~ miRg

+; 2m

AIMS Mathematics Volume 9, Issue 7, 19529-19545.
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r

S Z —((@-1—-0m—DRg)+((A-1) + (m + DRg)

2m

i=1
=Rs;>1.

Hence, for 4 > 1, U(o,0|Rg) < 1.
Suppose that Rg < Ry. There exists 7 with Rg <7 < Ry such that U(o, 0[z) < 1 since U(o, 0|Rg) < 1.
Therefore, G(o, 0[z) < co. It is in contradiction with R, which is the convergence radius of G(o, 0|z).
Therefore, we complete the proof.

Lemma 2.5. For any Ay € (0, gr(G)), /lhrgl Rs(A) = Rg(Ay).
—A0

Proof. We will employ proof by contradiction to establish the aforementioned theorem.
Fix a sequence {A;}i>; With 4z T Ap. Suppose lim sup Rg(1) > Rs(Ay) = z.. Then we can find a

/l—)ﬂo

subsequence n; with ]}im Rs(A,,) > z.. Without loss of generality, we can assume 7’ = %irn Ro(Ap) > z..

For a large enough «,

o0

1> URG(), ) = Z F™(0, 0, )Rc(A)".
n=0

Applying Fatou’s lemma,

(o)

1M%yw&WMWﬂgg;ﬁ%@@mmm:Eﬁ%@@wzm

It is a contradiction. Hence, lim sup R;(1) < R;(Ap), and especially liﬁn %nf o) < p(Ao).
A—- Ay —40
Specially limsup Rg(1) < Rs(gr(G)) = 1. Notice that for any A, Rs(1) > 1. So R lirr(lc) Rs(1) =
A—gr(G) —8r

Rs(gr(G)) = 1.
Here we use (1) to denote £ (0, 0) and U(o, 0, A) to U(o, 0z). Let

I1,, = { all the paths with length n and 7, = n}.

Thus
FOW) = ) Py, A).

yell,
Here P(y, 1) = [1iLg pP(Wi, wis1) for y = wow, - - - w,,. Note that
1/m ifv=o,
1

pv,u)y =3 —= ifu€dBs(lv|—1)andv # o,
! otherwise.

m+A—1

Given A € (0, gr(G)) and z. For any € > 0, Rg(1), R(Ap), 7 < zo With |z — 70> + |1 — Ao|* < €, there
exists a 0 < § < /e such that P(y, 1) < (1 + 6)"P(y, Ap). Hence, f™(1) < (1 +6)"f™(Ay). And there
exists a ; > 0 such that

R
1+6)5 <1 +6) <2
20 20
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Therefore,
U(0,0,2) = T2, f(D)7" < Z20(1 +6,)" f™(Ag)z < oo.

If lim sup Rg(1) < Rs(Ay). We can find a subsequence n; such that ﬂlim/1 Rz(1) < Rg(Ap). Thus for
A- ng =40
any € > 0, let z = R, — 5. Since }m} Rs(A) < Rg(Ayp),

—AQ

U(o,0,7) = oo.

It is impossible. It means that }11’51 Rc(A) = Rg(Ap).
—A0

3. Concluding of some open problems

For any vertex set A and Z, let 74 = inf{n > 0| X,, € A}. If RW, starts at a vertex in A, then 74 = 0.
Write 7; = inf{n > 0| X, € A}. 7} is different from 7, only when RW), starts in A. Consider the
probability of a RW), starting at a vertex x that visits A before its visit Z :

P(A = Z,A) = P17 < T)).

For 4 € [0, 4.], define (1) = P,(7}(1) < o0). Clearly, 6(1) = U(o,0|1) = Y2, f™(0,0, 1), and
6(0) = 0. Suppose A = {o} and (G,),>; be any sequence of finite subgraphs of G that exhaust G. That
is G, € G,y; and G = |JG,. And let Z, be the set of vertices in G \ G,. So limP,(0 — Z,, 1)

is the probability of never returning to 0. And lim P,(0 — Z,, 4) is independent of (Z,),>; see [19]

Exercise 2.4. We may regard the entire circuit between o and Z, as a single conductor of effective
conductance %.(o0 < Z,). Recall [19] Chapter 2.2, €.(0 < Z,) = n(0)P,(0 — Z,, 1). Hence,

0 =1-1mP,(0o = Z,, ).

Recall the following: Rayleigh’s monotonicity principle.

Theorem 3.1. Let H be a finite graph and A and Z be two disjoint subsets of its vertices. If ¢ and ¢’
are two assignments of conductances on H with ¢ < ¢/, then 6.(A < Z) < 6.(A © 7).

Notice that c(x,y) = c(x,y, A) is the edge weight of edge xy. And recall the definition of RW,, c(x,y)
is decreasing of A. By Theorem 3.1, for 4; < A5,

Cean(0 © Z,) 2 G0 © Z,).

Whatever, for o, (o) can be any positive constant that is independent of A. In fact, for any vertex x € G,
we can choose 7(x) = X, c(x,y). Therefore, for 4; < A,

lim P,(0 — Z,,4;) > lim P,(0 — Z,, 1,).

And
0(1;) < 0(A,).
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The number of visits to vertex o prior to escape is modeled by a geometric random variable, which has
an expected value or mean (1 — 6(1))"!. Note that the mean of 7}(1),

[ee)

B, (t; () = > nf*(0,0, ).

n=1

Recall the Varopoulos-Carne bound ( [19] Chapter 13.2, Theorem 13.4) of n-step transition probability.
For any x, y,

P (x,y, D) < 2/ (x)p".
Clearly, if p < 1, then

(o)

B, (ts() = Y nf"(0,0,1) < co.

n=1

Hence, for large enough n, by the Strong Law of Large Numbers,

n

#{the number of visits o before time n} ~ ———.
Eo(73()

Problem 3.2. Is E, (1, (1)) increasing for A € [0, gr(G)] ?

1
lim sup p® (0, 0, 1) = Po(7}(1) < 00) %@ ?

n—oo

If both problems have a positive answer, then the spectral radius p is increasing with 4. And for
A € [0, gr(G)), if E,(17(1)) < oo, thenp < 1.
Moreover,

Problem 3.3. For RW, on the free product of complete graphs with A € [0, A.], is 6(1) continuous and
strictly increasing?

Recall the following result: [19] Chapter 6, Proposition 6.6.

Proposition 3.4. Consider a graph H with an upper exponent growth rate b > 1. For a reversible
Markov chain (X,,),so Starting at o on its vertex set with reversible measure n(-) is bounded and n(o) > 0
and p < 1. Then, in the graph metric,

. X Inp
1 f > ——,
151110})1 n Inb

Hence, for RW, on G with p < 1, liminf,_, ');”' > 0. So the key, to answer Lyons-Pemantle-Peres

monotonicity problem, is to prove the existence of the speed. Furthermore, R. Lyons, R. Pemantle, and
Y. Peres [17] proved that on the lamplighter group Z < Y, Z,, which has a growth rate of (1 + V5)/2,

X€Z
the speed of RW, is 0 at A = 1, and is strictly positive when 1 < A < (1 + V5)/2. We wonder whether
the spectral radius p has a similar property or not. That is

Problem 3.5. For A € (0,1],p(1) =1 ? And for 1 <A< (1 + \/5)/2, o) <1?
Moreover, does a similar result hold for amenable groups with exponential growth?
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Citing Chapter 9 of [14], it is demonstrated that the n-step transition probability is governed by the
spectral radius p(1), with the following upper bound holding:

Py <24 "D
(x)

This inequality underscores the influence of the spectral radius; as the spectral radius decreases, the
probability of transition between any two states x and y after n steps becomes more restricted. Given
that the speed, a measure of how rapidly the random walk explores the graph, is inherently tied to the
transition probabilities, a positive speed necessitates that p™(x,y) decreases over time, implicating a
requirement for p(A) to be sufficiently small. Based on these considerations, we posit that the existence
of a positive speed aligns with the premise that the spectral radius p(1) must be adequately restrained.

4. Conclusions

In the paper, we establish the continuity of the spectral radius p(4) of RW, on the free product of
complete graphs, as a function of the parameter A within the interval (0, gr(G)].
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