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that for a Cayley graph G with a growth rate gr(G) > 1, the speed of a biased random walk exists
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on groups, Chaper 9, 2024) sheds light on the intricate relationship between the spectral radius of the
graph and the speed of the biased random walk. Here, we focus on an example of a Cayley graph,
a free product of complete graphs. In this paper, we establish the continuity of the spectral radius of
biased random walks with respect to the bias parameter in this class of Cayley graphs. Our method
relies on the Kesten-Cheeger-Dodziuk-Mohar theorem and the analysis of generating functions.
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1. Introduction

Consider an infinite, locally finite, and connected graph G = (V(G), E(G), o), where V(G) denotes
the vertex set, E(G) the edge set, and o is a designated root. Consider Markov chain. There is a
stationary measure π(·) such that for any two adjacent vertices x and y, π(x)p(x, y) = π(y)p(y, x), where
p(x, y) is the transition probability. For the edge joining vertices x and y, assign a weight

c(x, y) = π(x)p(x, y).

Now we call the weights of the edges conductance and their reciprocals resistance. In this paper, we
study the spectral radius of irreducible Markov chains on weighted graphs. More precisely, we focus
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on the spectral radius of a biased random walk, which is defined as follows:
Fix a root o in a graph G. Let |x| be the graph distance between x and o for any vertex x of G.

Write N for the set of natural numbers, and let Z+ = N ∪ {0}. For any n ∈ Z+, we define two subsets
of vertices:

The ball of radius n centered at o is denoted by BG(n) = {x ∈ V(G) : |x| ≤ n}.
The boundary of this ball is ∂BG(n) = {x ∈ V(G) : |x| = n}. Fix any λ ∈ [0,∞). If edge e is

at distance n from o, then let its conductance be λ−n. Denote by RWλ the random walk associated
the above conductances, and we call RWλ a biased random walk. Recall that a random walk on an
infinite connected network is transient iff the effective conductance from any of its vertices to infinity
is positive [19].

The motivation for introducing RWλ is to design a Monte-Carlo algorithm for self-avoiding walks by
Berretti and Sokal [5]. See [13, 20, 21] for refinements of this idea. Due to interesting phenomenology
and similarities to concrete physical systems ( [7, 9, 10, 12, 23–25]), biased random walks and
biased diffusions in disordered media have attracted much attention in the mathematical and physics
communities since the 1980s.

In the following, we assume G is transitive. Let Mn = |∂BG(n)| be the cardinality of ∂BG(n) for any
n ∈ Z+. Define the growth rate of G as

gr(G) = lim inf
n→∞

n
√

Mn.

Since the sequence {Mn}
∞
n=0 is submultiplicative, the limit gr(G) = lim

n→∞

n√Mn exists indeed. R.
Lyons [15] showed that the critical parameter for RWλ on a general tree is exactly the exponent of
the Hausdorff dimension of the tree boundary. Moreover, R. Lyons [16] proved that for Cayley graphs
and degree-bounded transitive graphs, the growth rate is exactly the critical parameter of the RWλ.

Let d be the vertex degree of G. For any vertex v of G except o, denote by d−v the number of edges
connecting v to ∂BG(|v| − 1). For the definition of RWλ (Xn)∞n=0 starting at o, the transition probability
from v to an adjacent vertex u is

p(v, u) =


1/d if v = o,
λ

d+(λ−1)d−v
if u ∈ ∂BG(|v| − 1) and v , o,

1
d+(λ−1)d−v

otherwise.

Note that RW1 is just a simple random walk on G.
We write

p(n)(x, y) = p(n)(x, y, λ) = Px(Xn = y).

The Green function is defined by

G(x, y|z) =

∞∑
n=0

p(n)(x, y)zn, x, y ∈ V(G), z ∈ C.

Define
τy = τy(λ) = inf{n ≥ 1| Xn = y}, f (n)(x, y) = Px(τy = n),
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the associated generating function

U(x, y|z) =

∞∑
n=1

f (n)(x, y)zn, x, y ∈ V(G), z ∈ C.

Given any function g(z), let us denote the radius of convergence by Rg. By the Cauchy-
Hadamard criterion,

RG = RG(λ) =
1

lim supn→∞
n
√

pn(x, y)
.

Recall [19, Exercise 1.2] that RG is independent of x and y due to its irreducibility. Define

ρ = ρG(λ) = ρ(λ) =
1

RG
= lim sup

n→∞

n
√

pn(x, x).

ρ is called the spectral radius of the biased random walk. The reason for this name we can refer
to [14, 19] for more information on the spectral radius. Moreover,

ρ = lim sup
n→∞

n
√

pn(o, o).

Define the speed of RWλ, (Xn)∞n=0, as the limit of |Xn |

n as n → ∞, if it exists almost surely (or
in probability).

There are many deep and important questions related to how the spectral radius and the speed
depend on the bias parameter λ (see [14], Chapter 9). In [17, p.2005 Questions], R. Lyons, R. Pemantle,
and Y. Peres raised the Lyons-Pemantle-Peres monotonicity problem. For a Cayley graph G with
gr(G) > 1, does the speed of RWλ exist and be positive for all λ ∈ (1, gr(G))? For more information,
readers can refer to [1, 4].

Moreover, R. Lyons, R. Pemantle and Y. Peres [18] conjectured that the speed of RWλ on the
supercritical Galton-Watson tree without leaves is strictly decreasing. The conjecture has been
confirmed for λ lying in some regions (see [2, 4, 26]). For Galton-Watson trees without leaves, the
Lyons-Pemantle-Peres monotonicity problem was answered positively for λ ≤ m1

1160 by Ben Arous,
Fribergh and Sidoravicius [4], where m1 is the minimal degree of the Galton-Watson tree. And
Aı̈dékon [1] improved the just-mentioned result to λ ≤ 1

2 by a completely different approach. In [3],
Ben Arous, Hu, Olla, and Zeitouni obtained the Einstein relation for RWλ on Galton-Watson trees,
which implies the conjecture holds in a neighborhood of m.

We are interested in the continuity of the spectral radius of RWλ. For λ > gr(G), RWλ is recurrent,
ρ = 1. When λ = 0 RWλ is not irreducible.

Problem 1.1. For a Cayley graph G, is the spectral radius of RWλ continuous for all λ ∈ (0, gr(G)]?

In this paper, our focus is centered on addressing Problem 1.1 within the realm of a distinctive class
of block-free product groups. To ensure a comprehensive understanding, the precise definition and
pertinent details regarding free products will be meticulously introduced in Section 2.

Theorem 1.2. Let graph G be a free product of complete graphs. Then the spectral radius ρ(λ) of RWλ

on G is continuous in λ ∈ (0, gr(G)].
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To prove Theorem 1.2, the primary technical obstacle lies in establishing the generating function
and subsequently demonstrating that the Cheeger constant is indeed positive.

Theorem 1.2 affirmatively resolves Problem 1.1, specifically for the scenario involving the free
product of complete graphs. A key observation here is that the d-regular tree Td, represents a particular
instance of such free products of complete graphs. Consequently, it is deduced from the theorem that
the spectral radius, ρ(λ) of RWλ defined on Td, exhibits a characteristic of continuity over the interval
(0,gr(Td)], where gr(Td) signifies the growth rate of the d-regular tree. This finding underscores the
robustness of the spectral property with respect to variations in the parameter λ.

2. Proof of Theorem 1.2

2.1. Free product of graphs and growth rate

Intuitively, a “free product” of finite Cayley graphs Gi is a rule to construct a new Cayley graph G
by gluing these m cells at “common vertices” without edge intersection, step by step. Concretely, we
construct the Cayley graph G of H1∗H2∗· · ·∗Hr by the following steps: Here, ∗ denotes a free product.
Step 1. Glue each i-cell (1 ≤ i ≤ r) at a common vertex o such that any two of the r cells only have
one common vertex o. View o as the birth root of these m cells. Usually o is chosen to be the identity
element 1. Denote the obtained graph as G(1), and mark any vertex x in the j-cell as [ j].
Step 2. For any x ∈ G(1)\{o}, it must be in some cell, say an i-cell, then we glue each j-cell (1 ≤ j ,
i ≤ r) at x such that any of the r − 1 cells has only one common vertex x with G(1) and any two of the
r − 1 cells only have one common vertex x. View x as the birth root of just added r − 1 cells. For any
distinctive two vertices x and y of G(1)\{o}, we require that any cell glued at x is disjoint from any cell
glued at y. Let G(2) be the resulting graph. And for any 1 ≤ j ≤ r, also mark a vertex x of G(2)\G(1) in
the j-cell as [ j].
Step 3. For all x ∈ G(2)\G(1), according to 〈x〉, we can determine which type of cell x belongs to, and
glue other type cells as Step 2. And then mark all new added vertices y and define 〈y〉 and [y] as Step 2.
Denote by G(3) the obtained graph. And so on, we obtain G with a type function [·] in its vertices,
where for convenience we let [o] = 0.

2.2. Spectral radius: Free product of complete graphs

Now let G be the Cayley graph of H1 ∗H2 ∗ · · · ∗Hr with root o, where each Hi (1 ≤ i ≤ r) is a finite
group whose Cayley graph is the complete graph Kmi+1 on mi + 1 vertices. Let

∑r
i=1 mi = m. Thus, the

transition probability from v to an adjacent vertex u is

p(v, u) =


1/m if v = o,
λ

m+λ−1 if u ∈ ∂BG(|v| − 1) and v , o,
1

m+λ−1 otherwise.

Let f (n)
i (o, o) (i = 1, 2, · · · , r) be the probability of the biased random walk on G starting at o and

τo = n, which does visit a vertex of Kmi+1. Define

Ui(o, o|z) =

∞∑
n=1

f (n)
i (x, y)zn.
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Hence,

U(o, o|z) =

r∑
i=1

Ui(o, o|z). (2.1)

Note the tree-like structure of G. To compute f (n)
i (o, o), a biased random walk must reach an edge in

Kmi+1 from o and return o by an edge in Kmi+1 at last step. Each vertex of Kmi+1 glues a copy of Km j+1

( j , i). By the symmetry of Kmi+1, we can regard Kmi+1 as an edge with a cycle and glue the same
structure as in G. Thus

Ui(o, o|z) =
mi

m
z

λ

m + λ − 1
z
∞∑

n=0

(
i−1∑
j=0

M j(z) + M̃i(z) +

r∑
k=i+1

Mk(z))n.

Here M j(z) denotes the generating function associated with the hitting probability of Kmi+1, which starts
at a vertex of Km j+1 ( j , i). Note that the probability from o to verteices of Km j+1 is mi

m and from a vertex
of Kmi+1 to the vertices of Km j+1 is mi

m+λ−1 . And the other steps obey the same law as U j(o, o|z). Thus

M j(z) =
m

m + λ − 1
U j(o, o|z), M̃i(z) =

mi − 1
m + λ − 1

z.

Therefore, in the domain {z ∈ C| |z| < RU},

Ui(o, o|z) =
λmi

(m + λ − 1)2 z2 1

1 −
(

m
m+λ−1

∑r
i=1 U j(o, o|z) − m

m+λ−1Ui(o, o|z) + M̃i(z)
)

=
λmi

(m + λ − 1)2 z2 1

1 −
(

m
m+λ−1U(o, o|z) − m

m+λ−1Ui(o, o|z) + M̃i(z)
) .

Hence,

Ui(o, o|z)

=
− ((m + λ − 1) − mU(o, o|z) − (mi − 1) z)

2m

+

√
((m + λ − 1) − mU(o, o|z) − (mi − 1) z)2 + 4λmiz2

2m
.

(2.2)

Drawing upon the results established in Eqs 2.1 and 2.2, we are able to deduce that

U(o, o|z)

=

r∑
i=1

Ui(o, o|z)

=

r∑
i=1

− ((m + λ − 1) − mU(o, o|z) − (mi − 1) z)
2m

+

r∑
i=1

√
((m + λ − 1) − mU(o, o|z) − (mi − 1) z)2 + 4λmiz2

2m
.
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Let
∂BGi(n) = {x ∈ V(Gi) : |x| = n}.

Define
S i(z) =

∑
n≥1

|∂BGi(n)|zn.

Lemma 2.1. [8]

gr(G) =
1
zS
,

where zS is the unique real number with
r∑

i=1

S i(zS )
1 + S i(zS )

= 1. (2.3)

In the work of E. Candellero, L. A. Gilch, and S. Müller [8], they derive an upper bound for the
upper box-counting dimension and a complementary lower bound for the Hausdorff dimension of the
geometric endpoint boundary of the trace. This analysis is instrumental in establishing Lemma 2.1.
Our approach subsequently leverages Lemma 2.1 as a pivotal step to demonstrate that the growth rate
of the free product of complete graphs is indeed positive.

Since the Cayley graph of Hi (1 ≤ i ≤ r) is a complete graph on mi + 1 vertices,

S i(z) = miz.

Recall Lemma 2.1,

gr(G) =
1
zS
,

where zS is the unique real positive number with
r∑

i=1

mizS

1 + mizS
= 1.

Let Γi = (Vi, Ei) generated by the vertex set

Vi = {x ∈ V(G), the geodesic between o and x starting at o to visit Kmi+1}.

Clearly, for any n ∈ Z+, 1 ≤ i ≤ r,

|BΓi(n)| = mi

∑
j,i

|BΓ j(n − 1)|.

Hence, for n large enough and 1 ≤ i , j ≤ r,

|∂BΓi(n)| ∼ |∂BΓ j(n)| ∼ gr(G)n.

To continue, we introduce some preliminaries about the Cheeger constant. For a weighted graph
H (with weight c(x, y) for the edge joining vertices x and y), we say that H satisfies the isoperimetric
inequality, briefly IP∞, if there exists a κ > 0 such that C(∂E(S )) ≥ κC(S ) for any finite connected
subset S . Here C(S ) =

∑
x∈S Cx and C(∂E(S )) =

∑
x∈S , y<S c(x, y), where Cx =

∑
y∼x c(x, y). The largest

possible κ is the: Kesten-Cheeger-Dodziuk-Mohar theorem, see [14] Chapter 7, Theorem 7.3. A
weighted graph can also be regarded as a network. Readers can refer to [19] for details.
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Theorem 2.2. For any connected infinite network H, the following are equivalent:
(1) H satisfies IP∞ with κ > 0.
(2) 0 < ρ < 1.
In fact, κ2/2 ≤ 1 − ρ ≤ κ.

In the subsequent discussion, we will undertake the task of proving that the Cheeger constant of G is
indeed positive. This assertion is facilitated by invoking the Kesten-Cheeger-Dodziuk-Mohar theorem
(Theorem 2.2), which leads us directly to the derivation of the following lemma.

Lemma 2.3. For any λ ∈ (0, gr(G)), 0 < ρ(λ) < 1.

Proof. To return o, a path can hit a vertex x of type [i] with probability 1
m , then move to another

neighbour of x with type [ j] with probability m j−1
m+λ−1 . Until the n − th step, the random walk runs away

from o. From the (n + 1) − th until the 2n − th the random walk returns o with probability λ
m+λ−1 for

every step. Hence, for any n ≥ 2

p(2n)(o, o) ≥
r∑

i=1

1
m

(min
1≤i≤r

mi

m + λ − 1
)n−1(

λ

m + λ − 1
)n.

Thus

ρ(λ) ≥ min
1≤i≤r

√
miλ

m + λ − 1
> 0.

Let S be any connected, finite subgraph of G. Assume that S is between ∂BG(n) and ∂BG(n + m).
Note that

S = ∪n+m
j=n (S ∩ ∂BG( j)) = ∪n+m

j=n S j, |S | = |∂S | + |S o|,

where S j denotes S ∩ ∂BG( j) and S o denotes the interior points of S .
For any x ∈ S n, denote the subgraph of x as S x = (V(S x), E(G)). Here

V(S x) = {y ∈ V(G), the geodesic between y and o visits x},

E(S x) = {xy ∈ E(G), x, y ∈ V(S x)},

S x(n) = {y ∈ V(S x) : the graph distance of x and y ≤ n}.

Given any fixed ε > 0, from the definition of gr(G), there exists n0 such that, for any k > n0,

|∂BG(k)| ≥ (gr(G) − ε)k.

Define
n1 = inf{k > n, there exists y ∈ ∂S ∩ S x(k − n)},

which means that at ∂S x(k − n), we can find at least one vertex belonging to ∂S . Hence,

C(∂S x ∩ S x(n1 − n))
C(S x(n1 − n))

≥
λ−n1

mn1−n(m + λ − 1)λ−n =
λn−n1

mn1−n(m + λ − 1)
.

If n1 − n ≤ n0, then
C(∂S x ∩ S x(n1 − n))

C(S x(n1 − n))
≥

λ−n0

mn0(m + λ − 1)
> 0.
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Now assume that, n1 − n > n0. Notice that every vertex x , o has m − mi neighbors in BG(|x| + 1) and
only one neighbour in BG(|x| − 1) if x ∈ [i]. Let V i

j be the set of all vertices of type [i] in S o ∩ S j. It is
easy to see that

r∑
i=1

(m − mi)|V i
j| ≤ |S j+1|.

Notice that
∑r

i=1(m−mi)|V i
j| denotes the growth way of S o ∩ S j. Since n1 − n > n0, for n0 ≤ j ≤ n1 − n,

|S o ∩ ∂S x( j)|(gr(G) − ε) ≤
r∑

i=1

(m − mi)|V i
j| ≤ |∂S x( j + 1)|.

Write c = gr(G) − ε. Hence, for any n0 ≤ j ≤ n1 − n,

|S o ∩ ∂S x( j)|

≤
1
c
|∂S x( j + 1)| =

1
c
|S o ∩ ∂S x( j + 1)| +

1
c
|∂S ∩ ∂S x( j + 1)|

≤
1
c

(
1
c
|S o ∩ ∂S x( j + 2)| +

1
c
|∂S ∩ ∂S x( j + 2)|

)
+

1
c
|∂S ∩ ∂S x( j + 1)|

=

(
1
c

)2

|S o ∩ ∂S x( j + 2)| +
(
1
c

)2

|∂S ∩ ∂S x( j + 2)|

≤

(
1
c

)n1−n− j

|S o ∩ ∂S x(n1 − n)| +
(
1
c

)n1−n− j

|∂S ∩ ∂S x(n1 − n)|.

In the case when |∂S ∩ ∂S x(n1 − n)| ≥ ε |∂S x(n1 − n)|,

|S o ∩ ∂S x(n1 − n)| ≤ (1 − ε)|∂S x(n1 − n)| ≤
1 − ε
ε
|∂S ∩ ∂S x(n1 − n)|.

Therefore, for any n0 ≤ j ≤ n1 − n,

|S o ∩ S x( j)| ≤
1
ε

(
1
c

)n1−n− j

|∂S ∩ ∂S x(n1 − n)|.

Notice that every vertex in S o ∩ S x( j) has weight λ− j(m + λ − 1). Therefore,

C(S o ∩ ∂S x(n0 + 1)) ≤
m + λ − 1
λn+n0+1

1
ε

(
1
c

)n1−n−n0−1

|∂S ∩ ∂S x(n1 − n)|,

C(S o ∩ ∂S x(n0 + 2)) ≤
m + λ − 1
λn+n0+2

1
ε

(
1
c

)n1−n−n0−2

|∂S ∩ ∂S x(n1 − n)|,

C(S o ∩ ∂S x(n1 − n − 1)) ≤
m + λ − 1
λn1−1

1
ε

1
c
|∂S ∩ ∂S x(n1 − n)|.

Combining with that

C(S o ∩ S x(n1 − n)) =

n1−n∑
i=1

C(S o ∩ ∂S x(i)),

AIMS Mathematics Volume 9, Issue 7, 19529–19545.
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C(∂S ∩ S x(n1 − n)) =

n1−n∑
i=0

C(∂S ∩ ∂S x(i)),

we have that

C(S o ∩ S x(n1 − n)) ≤C(S 0 ∩ S x(n0)) +

n1−n−n0−1∑
i=1

m + λ − 1
ε

(
λ

c

)i

λ−n1 |∂S ∩ ∂S x(n1 − n)|.

Since λ < gr(G) − ε,
n1−n−n0−1∑

i=1

(
λ

c

)
)i ≤

λ
c

1 − λ
c

.

Hence, we obtain that,

C(S o ∩ S x(n1 − n)) ≤ C(S 0 ∩ S x(n0)) +
m + λ − 1

ε

λ
c

1 − λ
c

λ−n1 |∂S ∩ ∂S x(n1 − n)|.

Notice that
λ−n1 |∂S ∩ ∂S x(n1 − n)| ≤ C(∂S x ∩ (S x(n1 − n) \ S x(n0)).

Thus,

C(∂S x ∩ S x(n1 − n))
C(S x(n1 − n))

C(S o ∩ S x(n0)) + C(S o ∩ (S x(n1 − n) \ S x(n0))
C(∂S ∩ S x(n0)) + C(∂S ∩ (S x(n1 − n) \ S x(n0))

≥ min{
λ−n0

mn0(m + λ − 1)
,

1
m+λ−1

ε

λ
c

1− λc
+ 1
} > 0.

Notice that the left case is |∂S ∩ ∂S x(n1 − n)| < ε|∂S x(n1 − n)|. However, we will discuss the case in the
following ways. If n1 − n ≤ n0, for x1 ∈ ∂S x(n1), define

n2(x1) = inf{k > n1, there exists y ∈ ∂S ∩ S x1(k − n1)}.

Then, similar to the proof of S x(n1 − n), we can discuss the case of S x1(n2 − n1). If n1 − n > n0, define

n2 = inf{n2(y), y ∈ ∂S x(n1) ∩ S o}.

Moreover, if |∂S ∩ ∂S x(n2 − n)| ≥ ε |∂S x(n2 − n)|, then for n1 ≤ j ≤ n2,

|S o ∩ ∂S x( j)|(gr(G) − 2ε) ≤
r∑

i=1

(m − mi)|V i
j| ≤ |∂S x( j + 1)|.

Similarly, as above, we have

C(∂S ∩ S x(n2 − n))
C(S x(n2 − n))

≥ min{
λ−n0

mn0(m + λ − 1)
,

1

m+λ−1
ε

λ
c1

1− λ
c1

+ 1
} > 0.
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Here c1 = gr(G) − 2ε. The left case is |∂S ∩ ∂S x(n1 − n)| < ε|∂S x(n1 − n)| and |∂S ∩ ∂S x(n2 − n1)| <
ε |∂S x(n2 − n1)|. Notice that S is a finite graph; then there exists K > 0 such that nK = n + m. And

∂S ∩ ∂S x(nK − n) = ∂S ∩ ∂S x(m) = ∂S x(nK − n).

Hence,
|∂S ∩ ∂S x(nK − n)| > ε|∂S x(nK − n)|.

Whatever, from the above discussion, we can divide S x into several parts. S 1
x, S 2

x, · · · such that every
part satisfies C(∂S∩S i

x)
C(S i

x) > 0 (i ∈ N). Therefore,

C(∂S ∩ ∂S x)
C(∂S x)

≥ min{
λ−n0

mn0(m + λ − 1)
,

1

m+λ−1
ε

λ
cK−1

1− λ
cK−1

+ 1
} > 0.

Here cK−1 = gr(G) − Kε. Hence, for λ ∈ (0, gr(G) − Kε),

C(∂S )
C(S )

> 0.

Note that K is decreasing as ε ↓ 0. Thus, we prove that G is a positive Cheeger constant for λ ∈
(0, gr(G)), which completes the proof by Theorem 2.2.

Lemma 2.4. G(o, o|RG) < ∞, U(o, o|RG) < 1, and RG = RU .

Proof. Note that for any z > 0

G(o, o|z) = 1 +

∞∑
i=1

(U(o, o|z))i.

It is easy to see that RG ≤ RU , and in |z| < RG.

G(o, o|z) =
1

1 − U(o, o|z)
.

So U(o, o|RG) ≤ 1.
Recall the following: Pringsheim’s Theorem: If f (z) =

∑∞
n=0 anzn with an ≥ 0, then the radius of the

convergence is the smallest positive singularity of f (z).
Hence, the smallest positive singularity RG of G(o, o|z) is either one of the radius of convergence

RU of U(o, o|z) or the smallest positive number z1 with U(o, o|z1) = 1. Whatever, notice that U(o, o|z)
is strictly increasing for z. Therefore, z1 is the unique positive number satisfying U(o, o|z) = 1. Thus,
to prove the theorem, we only need to prove U(o, o|RG) < 1.

Assume that U(o, o|RG) = 1. We exclude the trivial case where mi = 1 for 1 ≤ i ≤ r . Notice that
RG ≥ 1. If RG = 1, then U(o, o|1) < 1 by transience. So the left-case is RG > 1. Firstly, let us consider
the case of 0 < λ ≤ 1. Recall that

U(o, o|z) =

r∑
i=1

Ui(o, o|z)

=

r∑
i=1

− ((m + λ − 1) − mU(o, o|z) − (mi − 1) z)
2m
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+

√
((m + λ − 1) − mU(o, o|z) − (mi − 1) z)2 + 4λmiz2

2m
.

Thus

1 =

r∑
i=1

− ((λ − 1) − (mi − 1) RG) +

√
((λ − 1) − (mi − 1) RG)2 + 4λmiR2

G

2m

=

r∑
i=1

((1 − λ) + (mi − 1) RG) +

√
((1 − λ) + (mi − 1) RG)2 + 4λmiR2

G

2m
.

Notice (1 − λ) + (mi − 1)RG ≥ (1 − λ) + (mi − 1). Since there is at least one mi > 1, which implies
(1 − λ) + (mi − 1)RG > (1 − λ) + (mi − 1), we have

1 >
r∑

i=1

((1 − λ) + (mi − 1)) +
√

((1 − λ) + (mi − 1))2 + 4λmi

2m

=

r∑
i=1

mi − λ + mi + λ

2m
= 1.

It is a contradiction. That is for 0 < λ ≤ 1, U(o, o|RG) < 1.
Consider the case when λ > 1. Notice that

[λ − 1 − (mi − 1)z]2 + 4λmiz2 = [λ − 1 + (mi + 1)z]2 + 4λmiz2 − 4miz2 − 4(λ − 1)miz.

For λ > 1,

4λmiR2
G − 4miR2

G − 4(λ − 1)miRG

=4RG(λmiRG − miRG − (λ − 1)mi)
=4RG((λ − 1)miRG − (λ − 1)mi)
=4RG(λ − 1)mi(RG − 1) ≥ 0.

Since RG > 1, we have
4λmiR2

G − 4miR2
G − 4(λ − 1)miRG > 0.

Thus, we get the following contradiction:

1 =

r∑
i=1

− ((λ − 1) − (mi − 1) RG) +

√
((λ − 1) − (mi − 1) RG)2 + 4λmiR2

G

2m

=

r∑
i=1

− ((λ − 1) − (mi − 1) RG)
2m

+

r∑
i=1

√
((λ − 1) − (mi + 1) RG)2 + 4λmiR2

G − 4R2
G + 4(λ − 1)miRG

2m
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>

r∑
i=1

− ((λ − 1) − (mi − 1) RG) + ((λ − 1) + (mi + 1) RG)
2m

= RG > 1.

Hence, for λ ≥ 1, U(o, o|RG) < 1.
Suppose that RG < RU . There exists z̃ with RG < z̃ < RU such that U(o, o|̃z) < 1 since U(o, o|RG) < 1.

Therefore, G(o, o|̃z) < ∞. It is in contradiction with RG, which is the convergence radius of G(o, o|z).
Therefore, we complete the proof.

Lemma 2.5. For any λ0 ∈ (0, gr(G)), lim
λ→λ0

RG(λ) = RG(λ0).

Proof. We will employ proof by contradiction to establish the aforementioned theorem.
Fix a sequence {λk}k≥1 with λk ↑ λ0. Suppose lim sup

λ→λ0

RG(λ) > RG(λ0) = z∗. Then we can find a

subsequence nk with lim
k→∞

RG(λnk) > z∗. Without loss of generality, we can assume z′ = lim
k→∞

RG(λk) > z∗.
For a large enough k,

1 > U(RG(λk), λk) =

∞∑
n=0

f (n)(o, o, λk)RG(λk)n.

Applying Fatou’s lemma,

1 > lim inf
k→∞

U(RG(λk), λk) = lim inf
k→∞

∞∑
n=0

f (n)(o, o, λk)RG(λk)n =

∞∑
n=0

f (n)(o, o, λ0)z′n = ∞.

It is a contradiction. Hence, lim sup
λ→λ0

RG(λ) ≤ RG(λ0), and especially lim inf
λ→λ0

ρ(λ) ≤ ρ(λ0).

Specially lim sup
λ→gr(G)

RG(λ) ≤ RG(gr(G)) = 1. Notice that for any λ, RG(λ) ≥ 1. So lim
λ→gr(G)

RG(λ) =

RG(gr(G)) = 1.
Here we use f (n)(λ) to denote f (n)(o, o) and U(o, o, λ) to U(o, o|z). Let

Πn = { all the paths with length n and τo = n}.

Thus
f (n)(λ) =

∑
γ∈Πn

P(γ, λ).

Here P(γ, λ) =
∏n

i=0 p(wi,wi+1) for γ = w0w1 · · ·wn. Note that

p(v, u) =


1/m if v = o,
λ

m+λ−1 if u ∈ ∂BG(|v| − 1) and v , o,
1

m+λ−1 otherwise.

Given λ0 ∈ (0, gr(G)) and z0. For any ε > 0, RG(λ),RG(λ0), z < z0 with |z − z0|
2 + |λ − λ0|

2 < ε, there
exists a 0 < δ <

√
ε such that P(γ, λ) ≤ (1 + δ)nP(γ, λ0). Hence, f (n)(λ) ≤ (1 + δ)n f (n)(λ0). And there

exists a δ1 > 0 such that

(1 + δ)
z
z0
≤ (1 + δ1) <

Rλ0

z0
.
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Therefore,
U(o, o, λ) = Σ∞n=0 f (n)(λ)zn ≤ Σ∞n=0(1 + δ1)n f (n)(λ0)zn

0 < ∞.

If lim sup
λ→λ0

RG(λ) < RG(λ0). We can find a subsequence nk such that lim
λnk→λ0

RG(λ) < RG(λ0). Thus for

any ε > 0, let z = Rλ0 −
ε
2 . Since lim

λ→λ0
RG(λ) < RG(λ0),

U(o, o, z) = ∞.

It is impossible. It means that lim
λ→λ0

RG(λ) = RG(λ0).

3. Concluding of some open problems

For any vertex set A and Z, let τA = inf{n ≥ 0| Xn ∈ A}. If RWλ starts at a vertex in A, then τA = 0.
Write τ+

A = inf{n > 0| Xn ∈ A}. τ+
A is different from τA only when RWλ starts in A. Consider the

probability of a RWλ starting at a vertex x that visits A before its visit Z :

Px(A→ Z, λ) = Px(τZ < τ
+
A).

For λ ∈ [0, λc], define θ(λ) = Po(τ+
o (λ) < ∞). Clearly, θ(λ) = U(o, o|1) =

∑∞
n=1 f (n)(o, o, λ), and

θ(0) = 0. Suppose A = {o} and (Gn)n≥1 be any sequence of finite subgraphs of G that exhaust G. That
is Gn ⊆ Gn+1 and G =

⋃
Gn. And let Zn be the set of vertices in G \ Gn. So lim

n→∞
Po(o → Zn, λ)

is the probability of never returning to o. And lim
n→∞
Po(o → Zn, λ) is independent of (Zn)n≥1 see [19]

Exercise 2.4. We may regard the entire circuit between o and Zn as a single conductor of effective
conductance Cc(o↔ Zn). Recall [19] Chapter 2.2, Cc(o↔ Zn) = π(o)Po(o→ Zn, λ). Hence,

θ(λ) = 1 − lim
n→∞
Po(o→ Zn, λ).

Recall the following: Rayleigh’s monotonicity principle.

Theorem 3.1. Let H be a finite graph and A and Z be two disjoint subsets of its vertices. If c and c′

are two assignments of conductances on H with c ≤ c′, then Cc(A↔ Z) ≤ Cc′(A↔ Z).

Notice that c(x, y) = c(x, y, λ) is the edge weight of edge xy. And recall the definition of RWλ, c(x, y)
is decreasing of λ. By Theorem 3.1, for λ1 ≤ λ2,

Cc(λ1)(o↔ Zn) ≥ Cc(λ2)(o↔ Zn).

Whatever, for o, π(o) can be any positive constant that is independent of λ. In fact, for any vertex x ∈ G,
we can choose π(x) =

∑
y∼x c(x, y). Therefore, for λ1 ≤ λ2,

lim
n→∞
Po(o→ Zn, λ1) ≥ lim

n→∞
Po(o→ Zn, λ2).

And
θ(λ1) ≤ θ(λ2).
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The number of visits to vertex o prior to escape is modeled by a geometric random variable, which has
an expected value or mean (1 − θ(λ))−1. Note that the mean of τ+

o (λ),

Eo(τ+
o (λ)) =

∞∑
n=1

n f (n)(o, o, λ).

Recall the Varopoulos-Carne bound ( [19] Chapter 13.2, Theorem 13.4) of n-step transition probability.
For any x, y,

p(n)(x, y, λ) ≤ 2
√
π(y)/π(x)ρn.

Clearly, if ρ < 1, then

Eo(τ+
o (λ)) =

∞∑
n=1

n f (n)(o, o, λ) < ∞.

Hence, for large enough n, by the Strong Law of Large Numbers,

]{the number of visits o before time n} ∼
n

Eo(τ+
o (λ))

.

Problem 3.2. Is Eo(τ+
o (λ)) increasing for λ ∈ [0, gr(G)] ?

lim sup
n→∞

p(n)(o, o, λ) = Po(τ+
o (λ) < ∞)

1
Eo(τ+o (λ)) ?

If both problems have a positive answer, then the spectral radius ρ is increasing with λ. And for
λ ∈ [0, gr(G)), if Eo(τ+

o (λ)) < ∞, then ρ < 1.
Moreover,

Problem 3.3. For RWλ on the free product of complete graphs with λ ∈ [0, λc], is θ(λ) continuous and
strictly increasing?

Recall the following result: [19] Chapter 6, Proposition 6.6.

Proposition 3.4. Consider a graph H with an upper exponent growth rate b > 1. For a reversible
Markov chain (Xn)n≥0 starting at o on its vertex set with reversible measure π(·) is bounded and π(o) > 0
and ρ < 1. Then, in the graph metric,

lim inf
n→∞

|Xn|

n
> −

ln ρ
ln b

.

Hence, for RWλ on G with ρ < 1, lim infn→∞
|Xn |

n > 0. So the key, to answer Lyons-Pemantle-Peres
monotonicity problem, is to prove the existence of the speed. Furthermore, R. Lyons, R. Pemantle, and
Y. Peres [17] proved that on the lamplighter group Z n

∑
x∈Z
Z2, which has a growth rate of (1 +

√
5)/2,

the speed of RWλ is 0 at λ = 1, and is strictly positive when 1 < λ < (1 +
√

5)/2. We wonder whether
the spectral radius ρ has a similar property or not. That is

Problem 3.5. For λ ∈ (0, 1], ρ(λ) = 1 ? And for 1 < λ < (1 +
√

5)/2, ρ(λ) < 1?
Moreover, does a similar result hold for amenable groups with exponential growth?
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Citing Chapter 9 of [14], it is demonstrated that the n-step transition probability is governed by the
spectral radius ρ(λ), with the following upper bound holding:

p(n)(x, y) ≤ 2

√
π(y)
π(x)

ρn.

This inequality underscores the influence of the spectral radius; as the spectral radius decreases, the
probability of transition between any two states x and y after n steps becomes more restricted. Given
that the speed, a measure of how rapidly the random walk explores the graph, is inherently tied to the
transition probabilities, a positive speed necessitates that p(n)(x, y) decreases over time, implicating a
requirement for ρ(λ) to be sufficiently small. Based on these considerations, we posit that the existence
of a positive speed aligns with the premise that the spectral radius ρ(λ) must be adequately restrained.

4. Conclusions

In the paper, we establish the continuity of the spectral radius ρ(λ) of RWλ on the free product of
complete graphs, as a function of the parameter λ within the interval (0, gr(G)].
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