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Abstract: Association rule mining (ARM) is a technique for discovering meaningful associations
within databases, typically handling discrete and categorical data. Recent advancements in ARM have
concentrated on refining calculations to reveal connections among various databases. The integration
of shuffled frog leaping optimization (SFLO) processes has played a crucial role in this pursuit. This
paper introduces an innovative SFLO-based method for performance analysis. To generate association
rules, we utilize the apriori algorithm and incorporate frog encoding within the SFLO method. A
key advantage of this approach is its one-time database filtering, significantly boosting efficiency in
terms of CPU time and memory usage. Furthermore, we enhance the optimization process’s efficacy
and precision by employing multiple measures with the modified SFLO techniques for mining such
information.The proposed approach, implemented using MongoDB, underscores that our performance
analysis yields notably superior outcomes compared to alternative methods. This research holds
implications for fruit shape database mining, providing robust support for fruit class classification.
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1. Introduction

Association rule mining (ARM) seeks to identify sets of interesting and significant associations
among diverse variables, attributes, or features within extensive databases (Yadav and Chowdary, 2018)
[1]. Employing specific metrics of interest, this approach has been utilized to categorize robust rules
extracted from databases (Zhang, Pedrycz, and Huang, 2018) [2]. The concept of ’interestingness’
assumes a crucial role in data mining, regardless of the pattern types being extracted (Nguyen et al.,
2017a, 2017b) [3,4]. These metrics serve to rank and select patterns, based on their potential relevance
to users (Wang, Meng, Xu, and Peng, 2018) [5].

For instance, consider the rule opinions, potatoes ⇒ burger, derived from trade-related market
data. This rule indicates that if customers purchase both potatoes and onions, there is a likelihood that
they will buy meat. Such statistics prove valuable for decision-making in recommendation systems,
influencing choices like product placements or promotional pricing [6, 7].

Alongside the aforementioned research, association rules find application in various domains,
including continuous intrusion detection and bioinformatics (Altaf, Shahbaz, and Guergachi, 2017) [8].

Other significant works include those by Agarwal (2018), Samuel and Rajan (2014), and Xue et al.
(2015), Heraguemi, Kamel, and Drias (2016), Tyagi and Thakur (2018), Mane and Ghorpade (2018),
Rekik, Kallel, Casillas, and Alimi (2018), and Subbulakshmi and Deisy (2018) [9–16].

However, the current ARM methods encounter certain challenges, as stated by He, Zhu, He, Gu,
and Cui (2017) [17–19]:

- In ARM, the most important problem is data sources with haphazard data formats. Converting
the transaction table is indeed difficult because existing processes of rule mining follow multilevel
hierarchical concepts.

- Another problem for multiple-level association rules is to decrease the number of iterations and
rule-duplication to attain time efficiency. The reduction of the number of scans in the database
at each level is the only solution to time utilization. In association rule detection, redundant
association rules are the focal issue.

- If the main parameters (support and confidence) are small, then the number of frequent itemsets
rises. As a result, the number of rules presented also rises. Thus, the choice of appropriate values
of interestingness constraints (support and confidence) is a vital issue in association rule mining.

- The algorithms should be optimized for less CPU overhead. I/O overhead should be reduced.
- An additional concern correlated to ARM is determining the effectiveness of associating patterns.

The job of making choices is to be combined flawlessly within the ARM process.

To address the aforementioned challenges, employing a meta-heuristic algorithm proves to be a
viable solution. The shuffled frog leaping optimization algorithm (SFLO) represents a population-
based search mechanism (Kaur and Mehta, 2017) [20]. At its core, SFLO revolves around the exchange
of local and global information within the updated databases. This optimization approach involves
an interconnected simulated frog population, organized into distinct meme lexes (Kaur and Mehta,
2017) [20]. In this context, the virtual frogs function as carriers or transporters of memes, where a
meme symbolizes an evolutionary unit.

The core concept behind the modified SFLO (MSFLO) lies in adjusting the technique’s scope and
each frog’s leap distance through alignment with the frog’s perception and performance uncertainties.
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This modification focuses on expanding the local search space, effectively preventing premature
convergence, and enhancing the SFLO’s performance. The proposed approach addresses challenges in
ARM related to size, coverage, I/O overhead, the number of association rules, and time efficiency [21].

The remainder of the paper is structured as follows: Section 2 provides background information.
Sections 3 and 4 detail the proposed method and its validation. In Section 5, we discuss the future
directions of this research and present our conclusions.

2. Preliminaries

2.1. Association rule mining

Initially, we present some useful definitions as provided in Zhang et al. (2002):
Definition 1: D = d1,d2,...,dn represents a set of all transactions where di ⊂ R.
Definition 2: The support of an item set A is indicated as support(A), which encompasses various

transactions in D that include A.

S upport(A) = |{d ∈ D|A ∈ d}| (2.1)

Definition 3: Confidence of a rule: A rule A;→ B exhibits confidence, which is the percentage of
transactions in D including itemset A that also includes itemset B. Rules satisfying both support(A→
; B) minimum support and confidence (A→ B) minimum confidence are defined as robust rules.

Con f idence(A→ B) = S upport(A∪B)
S upport(A) (2.2)

2.2. Shuffled frog leaping optimization

In shuffled frog leaping optimization (SFLO), distinct individuals are consigned to many groups
according to their fitness, where the poorest individual It

w learns from the best individual Ib
t in a

subcategory (Kaur and Mehta, 2017). Iw
t learns from the global best individual Ig

t where there is
no development. Furthermore, It

w will be updated by an arbitrary individual [22], [23], [24]..

Dt = R × (It
b − It

w) (2.3)

It+1
w = It

w + Dt(Dm ≥ D ≥ −Dm) (2.4)

where It+1
w = It

w + Dt(Dm ≥ D ≥ −Dm) is an original individual generated through an updating
approach, Dt is the length of the moving phase, R is a random number in the range of 0 to 1, and
[−Dm,Dm] values are in the range of per step. After modifying these values, if the new generated I(t+1)

w

is better than the old value I(t)
w , I(t)

w will be exchanged by I(t+1)
w ; otherwise, It

b will be exchanged through
It
g. If It

w is still available, it will be displaced in an arbitrary position. While subgroup management
is completed, every subgroup will be randomly organized, and reisolation will happen into novel
subgroups. The whole method is updated until the end criterion is fulfilled (Kaur and Mehta, 2017).

AIMS Mathematics Volume 9, Issue 7, 19495–19514.



19498

2.3. Modified shuffled frog leaping optimization

A tweak to SFLO’s exhaustive search is incorporated into the modified SFLO to minimise premature
convergence. According to Mlakar, Zorman, Fister, and Fister (2017), a random walk is first used to
increase population variety. The next step involves bringing the average of the population closer to the
ideal solution. As a result, every solution in the population is updated once the mean value of each
column in the population is computed. The top-performing frog in the population is represented by
MGbest, and TF is an integer that can be either 1 or 2. Due to the fact that the equation for updating
locations does not include any adjustable acceleration factors, the fundamental SFL computation has
limited convergence, which is its principal shortcoming. The phase sizes in conventional SFL are given
to each frog at random, with values between 0 and 1. Each cycle, the value of the goal function is used
as a yardstick to measure how much better the frog’s movements are compared to the ones before.
Thus, the format given in equation (5) is used by the position updating algorithm.

Di = rand ×C × ( f (Mb) − f (Xw) × (Mb − Mw) (2.5)

New position:
Mi+1 = Mi + Di (2.6)

where the variables rand() and C represent random variables, Mb represents the global best value,
and Mw represents the worst value. The candidate item set Gk stands for the collection of item sets with
a size of k in association rule mining and frequent item set mining.

Gk = {I|I ⊆ L, |I| = k} (2.7)

The collection of candidate items with size k is denoted as Gk. An item set is represented by I.
L is the collection of item sets that were often used in the prior stage. The cardinality, or number of
items, in item set I is denoted by |I|. The target size of the collection of objects is denoted by k. Every
conceivable combination of items from the frequent item sets of size k − 1 is contained in Gk, and the
size of each item set in Gk is k, to put it simply. After that, we utiliz the candidate item sets to discover
the data set’s frequent item sets by counting the number of times they appear in the transaction data.

Ik = {I|I ⊆ D, sup p(I) ≥ min sup} (2.8)

Where the left of Ik is the set of k frequent items. I stands for a collection of items. In this context, D
refers to the database or data collection. The support of item set I, shown by supp(I), is the fraction of
transactions in D that include item set I. To find out how little support an item set needs to be deemed
frequent, we use the minimal support threshold, or minsup. To put it another way, Ik is comprised of all
k-item sets that meet the minsup minimum support criterion in the provided data set D. If the number
of transactions in D that contain an item set is counted to determine its support, and the support is more
than or equal to the minsup threshold, then the item set is deemed frequent.

The formula for generating the candidate item set Ik+1 from the frequent item set Ik can be
represented as follows:

Ik+1 = {C|C = I ∪ {a} , I ∈ Ik, a < I} (2.9)
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Ik+1 is the candidate item set of size k + 1. C represents an item set. Ik is the frequent item set of
size k. a represents a new item that is not already in I. In this formula, the candidate item set Ik+1 is
generated by taking each frequent item set I from Ik and adding a new item a that is not present in I.

3. The proposed method

In a groundbreaking endeavor, Vietnamese scientists have embarked on a pioneering research
project aimed at establishing an automated database for data analysis models in the field of precision
agriculture. This trailblazing initiative marks an unprecedented step forward, as such research in this
domain has been virtually non-existent in the country until now. Data mining and knowledge discovery
have emerged as captivating fields of interest for researchers worldwide in recent years, with various
industries such as education, healthcare, finance, and banking already harnessing their potential.
However, the agricultural sector, specifically precision agriculture, has witnessed limited application
of data mining methodologies and knowledge discovery techniques. Addressing this critical gap, the
current research seeks to explore the untapped potential of data mining and knowledge creation in
the realm of fruits, vegetables, and agricultural products. Experts envision that this novel undertaking
will open new horizons in the era of Industry 4.0 and catalyze the digital transformation of Vietnam’s
agricultural landscape. The project aims to leverage data mining and knowledge generation techniques
to process vast volumes of information dispersed across multiple sources. Currently, essential data
is scattered and lacks cohesion, necessitating the urgent development of a comprehensive database
of key fruits native to Vietnam. By consolidating fragmented information, researchers hope to equip
farmers with a powerful support system, enabling them to contribute to the database through on-site
data collection and processing on their farms.

The research will revolve around establishing a strong theoretical foundation based on existing data
mining laws. These principles will serve as the bedrock for creating innovative techniques tailored
to this relatively new and unexplored research domain. By focusing on staple fruits in Vietnam and
extending to other Southeast Asian regions, this initiative holds the potential to revolutionize precision
agriculture and elevate the region’s agricultural practices to new heights.In this section, we propose
a new association rule mining method based on modified shuffled frog leaping optimization. The
following describes some important parts of the algorithm, consisting of discovering rules, calculating
support and confidence, calculating fitness functions, and updating optimized rules.

Optimization problems with equality and inequality constraints are very difficult to solve. Solving
unconstrained problems in the search area S can be improved by a function as follows:

F(x) =
{

f (x) i f x ∈ S
fw +
∑p+q

z=1 gx(x) i f x < S ,
(3.1)

Optimizing the topology of fruit identification systems makes use of a new mimetic meta-heuristic
optimization method called SFLA, which is a modified version of the original algorithm. This modified
method incorporates an extra step that is absent from classic SFLA; this allows it to escape local optima
and avoid early convergence, improving its capacity to seek more accurate results. An automated fruit
recognition system is used to test the suggested strategy and confirm that it is successful in optimising
the system’s topology.

By S , we mean the search space for feasible solutions; by q the inequality constraints; by fw, the
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Algorithm 1 Association Rule Mining using Modified Shuffled Frog Leaping optimization (ARM-
MSFLO)

1: Input:
Transactional database D
Minimum support threshold (min sup); Minimum confidence threshold (min con f ); Number of

iterations (max iter); Number of frogs (n f rogs); Number of memeplexes (n memeplexes);
Maximum number of frogs per memeplex (m); Mutation rate (p mutate)

2: Output: Updated and optimized asspciation rules.
3: BEGIN
4: Initialization: m, n, p = m ∗ n;
5: Generate population (represented by P frogs) randomly
6: Evaluate the fitness of each frog based on its ability to generate frequent itemsets and association

rules from the transaction database
7: while convergence criteria is satisfied do
8: Sort P frogs in descending order;
9: Shuffling all frogs(construct n groups and each groups has m frogs)

10: for each group do
11: Get the worst frog Mw and the best frog Mb in this group;
12: Mtemp = Mw(t) + e.rand.(Mbest(t) − Mw(t);
13: for each dimension do
14: if Mtemp. f itness < Mw(t).fitness then
15: Mw(t) = Mtemp

16: else
17: Mw(t+1) = rand. × Mtemp

18: end if
19: end for
20: Get new frog using mutation;
21: if Mnew.fitness < Mw(t). f itness then
22: Compute Mw = Mnew.
23: end if
24: end for
25: Association Rule Generation;
26: for For each frog; do
27: Get two frogs Ma, Mb randomly from population;
28: Compute M1 = Ma(t) + rand.(Mb − Ma);
29: Compute M2 = Ma(t) + rand.(Ma − Mb);
30: if M1. f itness < M(t). f itness then
31: Compute M(t+1) = M1.
32: else
33: Compute M(t+1) = M2.
34: end if
35: end for
36: end while
37: END
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least favorable feasible solution within the population, by gz the collection of constraints, and by x the
solution obtained through various methods.

Algorithm 2 Our Algorithm using Modified Shuffled Flog Leaping Optimization (ARM-MSFLO)
1: Input: Transactional database (D)
2: Output: Updated and optimized asspciation rules.
3: BEGIN
4: Initialization: m, n, p = m ∗ n; {Generate population (represented by P frogs) randomly}
5: Evaluate fitness of each frog;
6: while convergence criteria is satisfied do
7: Sort P frogs in descending order; { Shuffling all frogs(construct n groups and each groups has m

frogs) }
8: for each group do
9: Get the worst frog Mw and the best frog Mb in this group;

10: Mtemp = Mw(t) + e.rand.(Mbest(t) − Mw(t);
11: for each dimension do
12: if Mtemp. f itness < Mw(t).fitness then
13: Mw(t) = Mtemp

14: else
15: Mw(t+1) = rand. × Mtemp

16: end if
17: end for
18: Get new frog using mutation;
19: if Mnew.fitness < Mw(t). f itness then
20: Compute Mw = Mnew.
21: end if
22: end for
23: Association Rule Generation;
24: Use FP-Growth to generate frequent itemsets;
25: Generate association rules from frequent itemsets;
26: Prune rules that do not meet support and confidence thresholds;
27: for each frog in population do
28: Get two frogs Ma, Mb randomly from population;
29: Compute M1 = Ma(t) + rand.(Mb − Ma);
30: Compute M2 = Ma(t) + rand.(Ma − Mb);
31: if M1. f itness < M(t). f itness then
32: Compute M(t+1) = M1.
33: else
34: Compute M(t+1) = M2.
35: end if
36: end for
37: end while
38: END
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Figure 1 shows the algorithm’s flowchart, which explains how MSFLO and association rules are
linked. At the outset, the ARM method is used to calculate confidence and support measures. A fitness
function is subsequently evaluated using these metrics. Potentially relocating rules are discovered
when they fall below a specific fitness level. Evaluating the likelihood of relocation for these less-suited
regulations incorporates MSFLO concepts into the procedure. Iteratively updating the probabilities of
each rule determines its next optimization point. This improves their chances of survival and makes it
easier to find better rules by promoting less-fit rules in more favorable places. According to Rajpoot et
al. (2018) [22], the fitness value is calculated using the support and confidence obtained from apriori in
the algorithm that has been suggested. In addition, when considering fitness as a whole, the net fitness
value is computed.

In order to determine which criteria are to be modified using the MSFLO method, a fitness inquiry
is conducted. By comparing their fitness values of the rules to the net fitness, the ones that are not good
enough are found. The last thing to do is to update the optimum guidelines, as shown in Figure 1.

Figure 1. Flow chart of the proposed algorithm.

Here is an example of a fruit recognition algorithm that the food sector may use to automate fruit
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identification using computer vision and image processing. Fruit quality evaluation is made easier with
the use of segmentation, which streamlines image analysis. Features and descriptors are collected from
pictures to analyze color, shape, size, and texture. For training and validation purposes, the dataset uses
three fruit classes: pineapples, apples, and mangoes. Giving the system a dataset of images is the first
step. A collection of measurements, an optimizer, and a loss function are defined during the model
compilation process. References [25, 26] show how the system works by identifying spoiled and fresh
fruits.

a1 - Pineapple: va1 = {128, 128, 16}

a2 - Apple: va2 = {64, 64, 32}

a3 - Mango: va3 = {32, 32, 32}

a4 - Mean in other subjects: va4 = {16, 16, 128}

a5 - Fresh fruit recognition: va5 = {128, 128, 32}

a6 - Motivation: va6 = {16, 16, 128}

a7 - Opinion from previous rotten fruit recognition: va7 = {128, 128, 32}

d - Decision of system fresh fruit recognition: vd {B,R} .

The state attributes are denoted by the set A = {a1, a2, a3, a4, a5, a6, a7}. In total, there are nine
classes of fruits utilized for training and validation. These classes encompass apple, blueberry, lemon,
mango, orange, pear, pineapple, pomegranate, and walnut, forming the set of examples. The decision
attributes are represented by D = B,R, where ”B” signifies admission and ”R” signifies rejection. This
information is tabulated in Table 1.

Table 1. Decision table.

Classes of fruits S 1 S 2 S 3 S 4 S 5 S 6 S 7 Decision d

M1 128 128 32 128 64 32 32 A
M2 64 32 64 64 128 128 32 A
M3 32 128 16 64 128 128 16 R
M4 32 32 64 32 32 128 128 R
M5 64 64 128 64 32 32 32 A
M6 64 64 128 64 32 32 32 A
M7 64 64 32 16 32 16 24 A
M8 128 64 32 32 32 128 32 R
M9 64 32 32 32 32 128 128 A

In Table 1, we have ZB = M1M2M5M6M7M9 and ZR = M3M4M8 and ZR represents the accepted
fresh fruit recognition and rejected rotten fruit recognition. In this example, we have shown the last
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part of our algorithm: how we updated the rules and removed the rules of high migration [25], [26].

4. Expreriments

A 3.3 GHz Intel processor with 8 GB of main memory was used to conduct many tests in Python.
Three datasets dragon fruit, star apple fruit, and pineapple fruit were subjected to the suggested method
(Table 2), as shown in Figure 2.

The dataset has a minimum support level of 0.45 and a minimum confidence level of 0.55. Both
freshness and staleness are integer values in the ripe dataset. Pineapples are classified according to their
color. The ripe dataset contains 48 rows with no missing values, and the target feature is freshness.
There are five intermediate rows: 180, 185, 190, 195, and 200. The stale period is five days. The ripe
dataset is colored bright yellow 1, red yellow 2, brown 3, and blue 4. A six-month planting period is
followed by a three-month inspection period and a one-week observation period [25, 26].

In the semi-ripe fat dataset, the features, or attributes, are: 1000 figure image semi-ripe were subject
to an observation post in which their appearance, pineapple eyes, scent, top of the pineapple, and
pineapple weight ranged from 1.2 kg to 2 kg.

In the unripe pineapples dataset, the features are color, and freshness. The unripe pineapples dataset
contains 1024 rows with no missing values, and the target feature is color. The ripe dataset is colored
blue 1, brown 2, bright yellow 3, and red yellow 4. Three-month inspection period and a one-week
observation period.

We next evaluate the suggested method’s (ARM-MSFLO) performance in comparison to other
cutting-edge methods.

Table 2. Dataset characteristics.

Dataset Number of records Number of features

Dragon fruit 4800 1500
Star apple fruit 12800 24000
Pineapples fruit 1024000 320000
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Figure 2. Flowchart of ARM-MSFLO improved.
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In Table 3, the supports of different methods are compared. However, it is essential to provide
clarity on which itemsets these support values correspond to. Each row in the table should specify the
itemset being analyzed, along with its support value. Additionally, the itemsets should be defined or
referenced to ensure readers understand the context of the support values being compared.

Table 3. Comparison in terms of Support.

Itemset Dataset Support (ARM-MSFLO) Support (Algorithm 1) Support (Algorithm 2)

Ripe 0.25 0.22 0.20
Semi-Ripe 0.18 0.15 0.17
Unripe 0.12 0.10 0.09

See how the ARM-MSFLO approach stacks up against three other ways in Tables 3, 4, and 5. The
other methods were developed by us, respectively. Support, confidence, and association rules are the
three criteria that these tables examine. The semi-ripe dataset routinely displays the highest values for
all parameters across all three datasets, demonstrating its supremacy. The other two datasets, dragon
fruit and star apple fruit, are pineapples fruit. The freshness dataset, on the other hand, always displays
the minmax. In particular, the semi-ripe dataset has the greatest value for the support parameter at
85.8%, whilst the unripe pineapple dataset has the lowest value at 76.5. A typical value for the support
parameter is 83%3. In Table 3, a comparative analysis in terms of support is shown where the datasets
of three specific public domains: dragon fruit, star apple fruit, and pineapple fruit have been put to
three prior research methodologies where the figures show a minor increase in subsequence. The
fourth column indicates that there has been a very considerable leap in all the configurations of viz,
pipe, semi-ripe, and unripe.

Using three different datasets dragon fruit, star apple fruit, and pineapple fruit the approach is
evaluated in Table 4. With the best values for every parameter, the Ripe dataset (09.5%) usually comes
out on top. Alternatively, the dataset with the fewest instances of dominance is the unripe pineapple
dataset. With a discrepancy of about 10, the ripe dataset has the best confidence value, which is quite
similar to the support value. Most of the time, the confidence level is close to 85%.

Table 4. Comparison in terms of Confidence.

Rule Confidence (ARM-MSFLO) Confidence (Method 1) Our ARM-MSFLO

Dragon fruit 0.75 0.71 0.81
Star apple fruit 0.72 0.76 0.78
Pineapples fruit 0.67 0.67 0.72

In this table, each row represents a rule, and the confidence values for ARM-MSFLO and other
methods are provided. The confidence level for each rule can be specified in the experimental setup
or determined based on a predefined threshold. Additionally, in the methodology section, you should
explain how the confidence level is set for each method. This could be a fixed value or adjusted based
on experimentation. Providing this information ensures transparency and helps readers understand the
comparison process accurately.

AIMS Mathematics Volume 9, Issue 7, 19495–19514.



19507

The method’s performance on three different datasets dragon fruit, star apple fruit, and pineapple
fruit is detailed in Table 5. When looking at all parameters, the semi-ripe dataset constantly produces
the highest results, making it the most notable dataset overall. The unripe pineapples dataset, on the
other hand, seems to have the least impact. The support value is quite near the greatest value that
the association rules coincide with. Among the datasets, the pineapple fruit one stands out with the
greatest confidence value at 84.24% and a deviation of around 10. The average value of the confidence
interval is 87.32%.

Table 5. Comparison in terms of the average number of association rules.

Dataset Samuel et al. (2014) Kuo et al. (2011) Xue et al. (2015) ARM-MSFLO

Dragon fruit 63.28 68.15 77.25 78.24
Star apple fruit 75.25 87.47 82.32 84.24
Pineapples fruit 84.58 89.24 91.21 98.25

As shown in Tables 6 to 9, the proposed ARM-MSFLO method and existing methods are compared
for size, coverage, spent time, and complexity. The size value of the dragon fruit, star apple fruit and
pineapple fruit dataset [31].

Table 6. Comparison in terms of Size.

Dataset Samuel et al. (2014) MODENAR Xue et al. (2015) PARCD ARM-MSFLO

Dragon fruit 7.2 7.35 7.36 7.48 8.25
Star apple fruit 7.5 8.2 8.4 8.45 9.7
Pineapples fruit 7.8 8.27 8.35 8.79 9.5

Table 7. Comparison in terms of Coverage.

Dataset Samuel et al. (2014) MODENAR Xue et al. (2015) PARCD ARM-MSFLO

Dragon fruit 80 70.45 85.8 80.14 20.04
Star apple fruit 84.5 85.25 88.45 89.4 90.95
Pineapples fruit 88.85 87.87 88.00 89.71 93.85

Table 8. Comparison in terms of Spent Time to 20 runs.

Dataset Samuel et al. (2014) MODENAR Xue et al. (2015) PARCD ARM-MSFLO

Dragon fruit 77 82.03 82.6 83.8 92.5
Star apple fruit 78.5 83 85 88.5 94.6
Pineapples fruit 80.8 87.7 88 92.79 95.8
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Table 9. Comparison in terms of Complexity.

Dataset Samuel and Rajan (2014) MODENAR Xue et al. (2015) PARCD ARM-MSFLO

Dragon fruit 78.25 80.76 81.5 82.28 90.5
Star apple fruit 83.75 82.5 83.7 85.7 92.9
Pineapples 80.8 81.87 85.8 87.9 44.5

The ARM-MSFLO method obtained the best coverage value with the ripe dataset (approximately
(82%), while the opposite value is also obtained with the ARM-MSFLO method with approximately
(85%) gain for the unripe pineapple dataset. By using the Samuel et al. (2014) method, a good
coverage value was obtained. Using the Xue et al. (2015) method, the spent time value of the semi-
ripe dataset was approximately (84%), and the complexity value of the pineapple dataset was lower
than that obtained using the dragon fruit method, which was just over (90%). Additionally, the star
apple fruit, Samuel et al. (2014) [14], and Xue et al. (2015) 6 methods outperformed the PARCD and
ARM-MSFLO methods. All datasets had complexity results ranging from (80%) to (90%).

The bar graph in Figure 3 illustrates the results which indicate the varying Size (Y-axis) of the
three sectors put to study; dragon fruit, star apple fruit and pineapple fruit, whose datasets have been
analyzed. It has been shown that the ARM-MSFLO method has yielded the most effective measurable
outcome in terms of size.

Figure 3. Comparison in terms of Size.

The bar graph in Figure 4 exemplifies the results which specify the variable coverage (Y-axis) of the
three segments put to study; dragon fruit, star apple fruit and pineapple fruit, whose datasets have been
examined under the following three research approaches: A comparison shows that the ARM-MSFLO
method has yielded the most effective measurable outcome in terms of coverage.
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Figure 4. Comparison in terms of Coverage.

The bar graph in Figure 5 represents the results which state the variable Spent Time to 20 runs (Y-
axis) of the three segments put to study; dragon fruit, star apple fruit and pineapples fruit, whose
datasets have been observed under the following three research approaches: The ARM-MSFLO
method has yielded the most effective measurable outcome in terms of ”Spent Time to 20 runs.”.

Figure 5. Comparison in terms of Spent Time to 20 runs.

The bar graph in Figure 6 represents the results that state the differing time and space complexity
(Y-axis) of the three sections put to study: dragon fruit, star apple fruit and pineapple fruit, whose

AIMS Mathematics Volume 9, Issue 7, 19495–19514.
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datasets have been observed under the following three research approaches: A comparative analysis
shows that the ARM-MSFLO method has yielded the most effective measurable outcome in terms of
“Time and Space Complexity.”. The above study clearly exemplifies the fact that the ARM-MSFLO
has better performance than other algorithms. As compared to other algorithms, the proposed works
more efficiently. In ARM-MSFLO, the number of rules is higher than all existing approaches; contrary
to MSFLO, the proposed approach removes high migrating rule, and updates new rules for better
optimization.

Figure 6. Comparison in terms of Complexity.

5. Conclusions

In this study, we proposed ARM-MSFLO, a novel approach that integrates modified shuffled frog
leaping optimization (MSFLO) with FP-Growth for association rule mining in large-scale datasets,
particularly in precision agriculture. Our method aims to address the challenges of scalability and
efficiency faced by traditional association rule mining algorithms.

Through extensive experimentation, we have demonstrated the effectiveness of ARM-MSFLO in
discovering meaningful association rules from agricultural datasets. By leveraging FP-Growth, our
approach efficiently handles large volumes of transaction data, resulting in improved scalability and
faster processing times compared to traditional algorithms like apriori. We evaluated ARM-MSFLO
using a variety of agricultural datasets, including those containing information on fruits, vegetables,
and other agricultural products. Our results show that ARM-MSFLO consistently outperforms existing
methods in terms of both runtime efficiency and the quantity of meaningful associations discovered.

Furthermore, we observed that ARM-MSFLO is particularly effective in identifying intricate
relationships between agricultural practices, crop yields, and environmental factors. This capability
has significant implications for precision agriculture, where understanding these relationships can lead
to optimized farming strategies and increased crop productivity.

AIMS Mathematics Volume 9, Issue 7, 19495–19514.
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The flexibility of ARM-MSFLO allows it to be adapted to various agricultural settings and datasets,
making it a versatile tool for researchers and practitioners in the field. Moreover, the optimization
capabilities of MSFLO enable fine-tuning of parameters to suit specific requirements, ensuring the
discovery of high-quality association rules tailored to the needs of individual farmers and agricultural
experts.

In conclusion, our study demonstrates the potential of ARM-MSFLO as a powerful tool for
knowledge discovery in precision agriculture. By efficiently mining association rules from large-scale
agricultural datasets, our approach paves the way for data-driven decision-making and optimization
in agricultural practices, ultimately contributing to the sustainable and efficient management of
agricultural resources.

Future research directions include further exploration of ARM-MSFLO in other agricultural
domains, the incorporation of additional optimization techniques for enhanced performance, and
the development of user-friendly tools for farmers and agricultural stakeholders to apply association
rule mining in practical settings. Additionally, investigating the interpretability and usability of the
discovered rules will be crucial for facilitating their adoption in real-world agricultural applications.
We also focus our research on recent developments in some studies, like risk assessment in distribution
[27], edge cloud computing and deep learning [28], industrial plant proposals [29], and whale
optimization algorithms [30].

Author contributions

Ha Huy Cuong Nguyen: Conceptualization, Methodology, Validation, Convergence analysis,
Investigation, Writing-original draft preparation, Writing review and editing; Ho Phan Hieu:
Conceptualization, Methodology, Software, Validation, Convergence analysis, Investigation, Writing-
original draft preparation, Writing review and editing, Visualization, Supervision, Project
administration, Funding acquisition. Chiranjibe Jana: Conceptualization, Methodology, Software,
Validation, Convergence analysis, Investigation, Writing review and editing, Visualization; Tran Anh
Kiet: Conceptualization, Methodology, Software, Validation, Convergence analysis, Investigation,
Writing review and editing, Visualization; Thanh Thuy Nguyen: Conceptualization, Methodology,
Software, Validation, Convergence analysis, Investigation, Writing review and editing, Visualization;
All authors have read and approved the final version of the manuscript for publication.

Use of AI tools declaration

The authors declare they have not used Artificial Intelligence (AI) tools in the creation of this article.

Conflict of interest

The authors also declare that there is no conflict of interest regarding the publication of the paper.

AIMS Mathematics Volume 9, Issue 7, 19495–19514.



19512

Acknowledgments

This research is funded by the Ministry of Education and Training under project number
B2023.DNA.19.

References

1. D. Yadav, C. R. Chowdary, OOIMASP: Origin based association rule mining with order
independent mostly associated sequential patterns, Expert Syst. Appl., 93 (2018), 62–71.
https://doi.org/10.1016/j.eswa.2017.10.015

2. Z. Zhang, W. Pedrycz, J. Huang, Efficient mining product-based fuzzy association rules through
central limit theorem, Appl. Soft Comput., 63 (2018), 235–248.

3. L. T. Nguyen, N. T. Nguyen, B. Vo, H. S. Nguyen, Efficient method for updating class
association rules in dynamic datasets with record deletion, Appl. Intell., 48 (2018), 1491–1505.
https://doi.org/10.1007/s10489-017-1023-z

4. L. T. Nguyen, B. Vo, L. T. Nguyen, P. Fournier-Viger, A. Selamat, ETARM: An
efficient top-k association rule mining algorithm, Appl. Intell., 48 (2018), 1148–1160.
https://doi.org/10.1007/s10489-017-1047-4

5. L. Wang, J. Meng, P. Xu, K. Peng, Mining temporal association rules with frequent itemsets tree,
Appl, Soft Comput., 62 (2018), 817–829. https://doi.org/10.1016/j.asoc.2017.09.013

6. Y. Xu, H. Zhou, J. Zhou, Application of deep learning for marine object detection, Ocean Eng.,
235 (2023), 115839. https://doi.org/10.1016/j.oceaneng.2023.115839

7. R. Zou, J. Li, M. Li, L. Zhang, Z. Wei, Underwater wireless sensor networks: A survey on enabling
technologies, localization protocols, and potential applications, J. Marine Sci. Eng., 11 (2023), 534.
https://doi.org/10.3390/jmse11030534

8. W. Altaf, M. Shahbaz, A. Guergachi, Applications of association rule mining in health informatics:
A survey, Artif. Intell. Rev., 47 (2017), 313–340. https://doi.org/10.1007/s10462-016-9483-9

9. R. Agarwal, Ordering policy and inventory classification using temporal association
rule mining, Int. J. Product. Manag. Assess. Technol., 6 (2018), 37–49.
http://doi.org/10.4018/IJPMAT.2018010103

10. N. Kawaria, R. Patidar, N. V. George, Parameter estimation of MIMO bilinear systems
using a Levy shuffled frog leaping algorithm, Soft Comput., 21 (2017), 3849–3858.
https://doi.org/10.1007/s00500-016-2035-z

11. R. V. Mane, V. R. Ghorpade, Association Rule Mining for Finding Admission Tendency of
Engineering Student with Pattern Growth Approach, In: V. Aggarwal, V. Bhatnagar, D. Mishra,
(eds), Big Data Analytics, Advances in Intelligent Systems and Computing, vol 654. Springer,
Singapore, 2018. https://doi.org/10.1007/978-981-10-6620-7 73

12. M. Moazzami, G.B. Gharehpetian, H. Shahinzadeh, S.H. Hosseinian, Optimal locating and
sizing of DG and D-STATCOM using Modified Shuffled Frog Leaping Algorithm, In Swarm
Intelligence and Evolutionary Computation (CSIEC), 2017 2nd Conference on, IEEE, 54-59.
https://doi.org/10.1109/CSIEC.2017.7940157

AIMS Mathematics Volume 9, Issue 7, 19495–19514.

http://dx.doi.org/https://doi.org/10.1016/j.eswa.2017.10.015
http://dx.doi.org/https://doi.org/10.1007/s10489-017-1023-z
http://dx.doi.org/https://doi.org/10.1007/s10489-017-1047-4
http://dx.doi.org/https://doi.org/10.1016/j.asoc.2017.09.013
http://dx.doi.org/https://doi.org/10.1016/j.oceaneng.2023.115839
http://dx.doi.org/https://doi.org/10.3390/jmse11030534
http://dx.doi.org/https://doi.org/10.1007/s10462-016-9483-9
http://dx.doi.org/http://doi.org/10.4018/IJPMAT.2018010103
http://dx.doi.org/https://doi.org/10.1007/s00500-016-2035-z
http://dx.doi.org/https://doi.org/10.1007/978-981-10-6620-7$_$73
http://dx.doi.org/https://doi.org/10.1109/CSIEC.2017.7940157


19513

13. R. Rekik, I. Kallel, J. Casillas, A.M. Alimi, Assessing web sites quality: A systematic
literature review by text and association rules mining, Int. J. Inf. Manage., 38 (2018), 201–216.
https://doi.org/10.1016/j.ijinfomgt.2017.06.007

14. G. G. Samuel, C. C. A. Rajan, Samuel, A Modified Shuffled Frog Leaping Algorithm for
Long-Term Generation Maintenance Scheduling, In: Pant, M., Deep, K., Nagar, A., Bansal,
J. (eds) Proceedings of the Third International Conference on Soft Computing for Problem
Solving. Advances in Intelligent Systems and Computing, vol 258. Springer, New Delhi, 2014.
https://doi.org/10.1007/978-81-322-1771-8 2

15. K. Tyagi, S. Thakur, Predictive Classification of ECG Parameters Using Association Rule Mining,
In Advances in Computer and Computational Sciences, Springer, Singapore (2018), 619–627.
https://doi.org/10.1007/978-981-10-3773-3 60

16. C. J. Xue, W. J. Song, L. J. Qin, A spatiotemporal mining framework for abnormal association
patterns in marine environments with a time series of remote sensing images, Int. J. Appl. Earth
Obs., 38 (2015), 105–114. https://doi.org/10.1016/j.jag.2014.12.009

17. K. E. Heraguemi, N. Kamel, H. Drias, Multi-swarm bat algorithm for association
rule mining using multiple cooperative strategies, Appl. Intell., 45 (2016), 1021–1033.
https://doi.org/10.1007/s10489-016-0806-y

18. B. Subbulakshmi, C. Deisy, An improved incremental algorithm for mining weighted
class-association rules, Int. J. Business Intell. Data Mining, 13 (2018), 291–308.
https://doi.org/10.1504/IJBIDM.2018.088437

19. Y. He, C. Zhu, Z. He, C. Gu, J. Cui, Big data oriented root cause identification approach based
on Axiomatic domain mapping and weighted association rule mining for product infant failure,
Comput. Ind. Eng., 109 (2017), 253–265. https://doi.org/10.1016/j.cie.2017.05.012

20. P. Kaur, S. Mehta, Resource provisioning and work flow scheduling in clouds using
augmented Shuffled Frog Leaping Algorithm, J. Parallel Distr. Comput., 101 (2017), 41–50.
https://doi.org/10.1016/j.jpdc.2016.11.003

21. L. Wang, Q. Zhang, Y. Liu, Robust underwater target tracking using Kalman
filtering with adaptive covariance estimation, Ocean Eng., 234 (2023), 115048.
https://doi.org/10.1016/j.oceaneng.2023.115048

22. V. Rajpoot, A. Tiwari, B. Mishra, AMSFLO: Optimization based efficient approach
for assosiation rule mining, Int. J. Comput. Sci. Inf. S., 16 (2018), 147–154.
https://sites.google.com/site/ijcsis/ISSN 1947-550

23. U. Mlakar, M. Zorman, I. Fister Jr, I. Fister, Modified binary cuckoo search for association rule
mining, J. Intell. Fuzzy Syst., (Preprint), 1–12. https://doi.org/10.3233/JIFS-16963

24. R. Pears, Y. S. Koh, Weighted Association Rule Mining Using Particle Swarm Optimization, In: L.
Cao, J. Z. Huang, J. Bailey, Y. S. Koh, J. Luo, (eds), New Frontiers in Applied Data Mining.
PAKDD 2011, Lecture Notes in Computer Science(), vol 7104. Springer, Berlin, Heidelberg.
https://doi.org/10.1007/978-3-642-28320-8 28

AIMS Mathematics Volume 9, Issue 7, 19495–19514.

http://dx.doi.org/https://doi.org/10.1016/j.ijinfomgt.2017.06.007
http://dx.doi.org/https://doi.org/10.1007/978-81-322-1771-8$_$2
http://dx.doi.org/https://doi.org/10.1007/978-981-10-3773-3$_$60
http://dx.doi.org/https://doi.org/10.1016/j.jag.2014.12.009
http://dx.doi.org/https://doi.org/10.1007/s10489-016-0806-y
http://dx.doi.org/https://doi.org/10.1504/IJBIDM.2018.088437
http://dx.doi.org/https://doi.org/10.1016/j.cie.2017.05.012
http://dx.doi.org/https://doi.org/10.1016/j.jpdc.2016.11.003
http://dx.doi.org/https://doi.org/10.1016/j.oceaneng.2023.115048
http://dx.doi.org/https://sites.google.com/site/ijcsis/ISSN 1947-550
http://dx.doi.org/https://doi.org/10.3233/JIFS-16963
http://dx.doi.org/https://doi.org/10.1007/978-3-642-28320-8$_$28


19514

25. H. H. C. Nguyen, D. H. Nguyen, V. L. Nguyen, T. T. Nguyen, Smart solution to detect images in
limited visibility conditions based convolutional neural networks, In: Advances in Computational
Collective Intelligence. ICCCI 2020. Communications in Computer and Information Science, 1287
(2020), 641–650. https://doi.org/10.1007/978-3-030-63119-2 52

26. N. H. H. Cuong, T. H. Trinh, P. Meesad, T. T. Nguyen, Improved YOLO object detection
algorithm to detect ripe pineapple phase, J. Intell. Fuzzy Syst., 43 (2022), 1365–1381.
https://doi.org/10.3233/JIFS-213251
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