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Algorithms for computing Gröbner bases of ideal interpolation

Xue Jiang1 and Yihe Gong2,*

1 School of Mathematics and Statistics, Changchun University of Science and Technology,
Changchun 130000, China

2 College of Science, Northeast Electric Power University, Jilin 132000, China

* Correspondence: Email: yhegong@163.com.
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the interpolation monomial basis of a single point ideal interpolation problem; then we translate the
interpolation condition functionals into formal power series via Taylor expansion; this will help convert
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1. Introduction

Let F be either the real field R or the complex field C. Polynomial interpolation is to construct a
polynomial g belonging to a finite-dimensional subspace of F[X] that agrees with a given function f at
the data set, where F[X] := F[x1, x2, . . . , xd] denotes the polynomial ring in d variables over F.

Based on the perfection of the theories of ideals, varieties and Gröbner bases, the so-called ideal
interpolation research has developed rapidly in recent years. Ideal interpolation is defined by a linear
projector whose kernel is a polynomial ideal. Such a projector is called an ideal projector. Lagrange
projectors and Hermite projectors are two important classes of ideal projectors, which have been
studied by many researchers [3, 5, 9, 15]. In ideal interpolation, the interpolation condition functionals
at an interpolation point θ ∈ Fd can be described by a linear space span{δθ ◦ P(D), P ∈ Pθ}, where Pθ is
a D-invariant (i.e., closed under differentiation) polynomial subspace, δθ is the evaluation functional at
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θ, and P(D) is the differential operator induced by polynomial P [3]. The classical examples of ideal
interpolation are Lagrange interpolation and univariate Hermite interpolation.

For an ideal interpolation problem, suppose that ∆ is the finite set of interpolation condition
functionals. Then, the set of all polynomials that vanish at ∆ constitutes a 0-dimensional ideal, which
is denoted by I(∆), namely,

I(∆) := { f ∈ F[X] : L( f ) = 0,∀L ∈ ∆}.

We refer the readers to [3, 15] for more details about ideal interpolation.
The theory of Gröbner bases has been applied successfully in various fields such as symbolic

computation and numerical calculation, including polynomial system solving and polynomial
interpolation. In previous decades, researchers have done a lot of work on computing Gröbner bases
of vanishing ideals. For any point set Θ ⊂ Fd and any fixed monomial order, the BM algorithm
yields the reduced Gröbner basis and a reducing interpolation Newton basis for a d-variate Lagrange
interpolation on Θ [11]. The BM algorithm computes the vanishing ideal of a finite set of points in
affine space without multiplicities. [1] presents a variant of the BM algorithm that is more effective for
computation over Q. Marinari, Möller, and Mora construct a linear system based on a Vandermonde-
like matrix, and give an algorithm (the MMM algorithm) to compute general zero-dimensional ideals
by Gaussian elimination [10]. The MMM algorithm is one of the most famous algorithms, and it has a
polynomial time complexity.

As a generalization of univariate Newton interpolation, Farr and Gao give an algorithm that
computes the reduced Gröbner basis for vanishing ideals under any monomial order [6]. Farr and
Gao’s method can also be applied to compute the vanishing ideal when the interpolation points have
multiplicities, but the multiplicity set needs to be a delta set in Nd. To avoid solving linear equations,
Lederer gives an algorithm to compute the Gröbner basis of an arbitrary finite set of points under
lexicographic order by induction over the dimension d [8]. Jiang, Zhang, and Shang give an algorithm
for computing the Gröbner basis of a single-point ideal interpolation [7]. For other literature on the
computation of the Gröbner basis, see [13, 14].

In this paper, algorithms are proposed to compute the reduced Gröbner basis for the vanishing
ideal of a general ideal interpolation problem. We consider the general case that the multiplicity
space of each point just needs to be closed under differentiation. The major idea is based on a formal
power series that appeared in [4]. We focus on extracting the reduced Gröbner basis from interpolation
condition functionals. First, we give the definition of “reverse” reduced team, with which the monomial
interpolation basis can be obtained directly; next, we translate interpolation condition functionals into
formal power series via Taylor expansion, which helps convert the general interpolation problem to a
single point interpolation problem; finally, the reduced Gröbner basis is read from formal power series
by Gaussian elimination.

The paper is organized as follows: Section 2 gives some necessary preliminaries and introduces the
definition of “reverse” reduced team. An algorithm is proposed for computing the “reverse” reduced
team in Section 3. Section 4 discusses the method to find the quotient ring basis. The algorithms for
computing the reduced Gröbner basis (Algorithm 2 for Lagrange interpolation and Algorithm 3 for the
general case) are presented in Section 5. A special example is discussed in the last section.
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2. Preliminary

Throughout the paper, N denotes the set of nonnegative integers. Let Nd := {(α1, α2, . . . , αd) :
αi ∈ N}. For α = (α1, α2, . . . , αd) ∈ Nd, define α! := α1!α2! · · ·αd! and denote by Xα the monomial
xα1

1 xα2
2 · · · x

αd
d . Let {Xα1 ,Xα2 , . . . ,Xαn} be a finite set of monomials, and {Li : F[X] → F, i = 1, 2, . . . , n}

be a finite set of linearly independent functionals. We can treat the matrix
L1(Xα1) L1(Xα2) · · · L1(Xαn)
L2(Xα1) L2(Xα2) · · · L2(Xαn)
...

...
...

Ln(Xα1) Ln(Xα2) · · · Ln(Xαn)


as a Vandermonde-like matrix.

A polynomial P ∈ F[X] can be considered the formal power series

P =
∑
α∈Nd

P̂(α)Xα,

where P̂(α) are the coefficients in the polynomial P.
P(D) := P(Dx1 ,Dx2 , . . . ,Dxd ) is the differential operator induced by the polynomial P, where Dx j :=

∂
∂x j

is the differentiation with respect to the jth variable, j = 1, 2, . . . , d.
Define Dα := Dα1

x1 Dα2
x2 · · ·D

αd
xd . The differential polynomial can be rewritten as

P(D) =
∑
α∈Nd

P̂(α)Dα.

Given a monomial order ≺, the least monomial of the polynomial P w.r.t. ≺ is defined by

lm(P) := min
≺
{Xα | P̂(α) , 0}.

Definition 1. We denote by Λ{P1, P2, . . . , Pn} the set of all monomials that occur in the polynomials
P1, P2, . . . , Pn with nonzero coefficients.

For example, let P1 = 1, P2 = x, and P3 =
1
2 x2 + y. Then,

Λ{P1, P2, P3} = {1, x, y, x2}.

Definition 2. Given a monomial order ≺, a set of linearly independent polynomials {P1, P2, . . . , Pn} ⊂

F[X] is called a “reverse” reduced team w.r.t. ≺, if

1) the coefficient of the least monomial of the polynomial Pi, 1 ≤ i ≤ n is 1;
2) lm(Pi) < Λ{P j}, i , j, 1 ≤ i, j ≤ n.

For example, given the monomial order grlex(z ≺ y ≺ x),

{1, x,
1
2

x2 + y,
1
6

x3 − x2 + xy}, {1, y + z, x}, {1, x + z,−x + y}

are “reverse” reduced teams w.r.t. ≺.

AIMS Mathematics Volume 9, Issue 7, 19459–19472.



19462

3. Computing a “reverse” reduced team by Gaussian elimination

Let T and T̄ be two sets of monomials in F[X]. The notation T̄ − T is reserved for the set {t : t ∈
T̄ , t < T }. Given a monomial order ≺, P1, P2, . . . , Pn ∈ F[X] are linearly independent polynomials.
Algorithm 1 yields a “reverse” reduced team w.r.t. ≺.

Algorithm 1: A “reverse” reduced team w.r.t. ≺.
1: Input: A monomial order ≺.
2: Linearly independent polynomials P1, P2, . . . , Pn ∈ F[X].
3: Output: {P∗1, P

∗
2, . . . , P

∗
n}, a “reverse” reduced team w.r.t. ≺.

4: //Initialization
5: List := Λ{P1, P2, . . . , Pn};
6: Xα := min(List,≺);
7: U := (P̂1(α), P̂2(α), . . . , P̂n(α))′;
8: List := List − {Xα};
9: while List , ∅ do

10: Xα := min(List,≺);
11: v := (P̂1(α), P̂2(α), . . . , P̂n(α))′;
12: U := [U, v];
13: List := List − {Xα};
14: end while
15: //Computing
16: U∗ := rref[U] (reduced row echelon form);
17: List := Λ{P1, P2, . . . , Pn};
18: for i = 1 : n do
19: P∗i = U∗(i, :) · (List,≺)′;
20: end for
21: return {P∗1, P

∗
2, . . . , P

∗
n}.

Example 3. Given the monomial order grlex(y ≺ x), P1 = 1, P2 = x, P3 =
1
2

x2+y, P4 =
1
6

x3+ xy+2y.

Using Algorithm 1, we get (List,≺) = (1, y, x, xy, x2, x3),

U =


1 0 0 0 0 0
0 0 1 0 0 0
0 1 0 0 1/2 0
0 2 0 1 0 1/6

 , U∗ =


1 0 0 0 0 0
0 1 0 0 1/2 0
0 0 1 0 0 0
0 0 0 1 −1 1/6

 .
Thus, the “reverse” reduced team is P1

∗ = 1, P2
∗ =

1
2

x2 + y, P3
∗ = x, P4

∗ =
1
6

x3 − x2 + xy.
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4. Interpolation monomial basis and quotient ring basis

Given interpolation conditions ∆ = span{L1, L2, . . . , Ln}, where L1, L2, . . . , Ln are linearly
independent functionals. Let T = {Xα1 ,Xα2 , . . . ,Xαn} be a set of monomials, then T is an interpolation
monomial basis for ∆ if the Vandermonde-like matrix (applying the data map {Li : i = 1, 2, . . . , n} to
the column map {Xα j : j = 1, 2, . . . , n}) is non-singular.

Definition 4. Let T and T̄ be two sets of monomials in F[X] with T̄ − T , ∅ and T − T̄ , ∅. Given a
monomial order ≺, we write T̄ ≺ T, if

max
≺

(T̄ − T ) ≺ max
≺

(T − T̄ ).

Definition 5 (≺-minimal monomial basis [12]). Given a monomial order ≺ and interpolation
conditions ∆ = span{L1, L2, . . . , Ln}, where L1, L2, . . . , Ln are linearly independent functionals. Let T
be an interpolation monomial basis for ∆, then T is ≺-minimal if there exists no interpolation monomial
basis T̄ for ∆ satisfying T̄ ≺ T.

First, we consider the interpolation problem at the origin.

Lemma 6. Given interpolation conditions ∆ = δ0 ◦ span{P1(D), P2(D), . . . , Pn(D)}, where P1,

P2, . . . , Pn ∈ F[X] are linearly independent polynomials. Let T = {Xβ1 ,Xβ2 , . . . ,Xβn} be an
interpolation monomial basis for ∆, then for each Pi, 1 ≤ i ≤ n, there exists an Xαi ∈ Λ{Pi} satisfying
Xαi ∈ T.

Proof. We will prove this by contradiction. Without loss of generality, we can assume that for every
Xα ∈ Λ{P1}, Xα < T . It is observed that

[δ0 ◦ P1(D)]Xβ j = [δ0 ◦
∑

P̂1(α)Dα]Xβ j

=
∑

P̂1(α) (δ0 ◦ DαXβ j)︸         ︷︷         ︸
0

= 0, 1 ≤ j ≤ n.

Therefore, the Vandermonde-like matrix has a zero row, and it is singular. It contradicts the condition
that T = {Xβ1 ,Xβ2 , . . . ,Xβn} is an interpolation monomial basis for ∆. □

Given interpolation conditions ∆ = δ0 ◦ span{P1(D), P2(D), . . . , Pn(D)}, Lemma 6 shows that we
need to choose at least one monomial from each Pi, 1 ≤ i ≤ n to construct the interpolation monomial
basis for ∆.

For θ = (θ1, θ2, . . . , θd) ∈ Fd, we denote θX :=
∑d

i=1 θixi. By Taylor expansion,

eθX =
∞∑
j=0

(θX) j

j!
,

this indicates that
δθ = δ0 ◦ eθD. (4.1)

Furthermore, we get
δθ ◦ P(D) = δ0 ◦ eθDP(D). (4.2)

This means that an interpolation problem at a nonzero point can be converted into one at the origin.
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Theorem 7. For any θ ∈ Fd, given a monomial order ≺ and interpolation conditions ∆ =
δθ ◦ span{P1(D), P2(D), . . . , Pn(D)}. If {P1, P2, . . . , Pn} is a “reverse” reduced team w.r.t. ≺, then
{lm(P1), lm(P2), . . . , lm(Pn)} is the ≺-minimal monomial basis for ∆.

Proof. Let P̃i(D) = eθDPi(D), 1 ≤ i ≤ n. By (4.2), we have

∆ = δθ ◦ span{P1(D), P2(D), . . . , Pn(D)} = δ0 ◦ span{P̃1(D), P̃2(D), . . . , P̃n(D)}.

According to Lemma 6, we choose at least one monomial from each P̃i, 1 ≤ i ≤ n to construct
the interpolation monomial basis. On the other hand, Pi, 1 ≤ i ≤ n are assumed to be linearly
independent, which implies that the cardinal number of the interpolation monomial basis is n. Thus, it
is easy to see that {lm(P̃1), lm(P̃2), . . . , lm(P̃n)} is the minimal choice w.r.t. ≺. We only need to prove
{lm(P̃1), lm(P̃2), . . . , lm(P̃n)} is an interpolation monomial basis for ∆.

Let Pi =
∑

P̂i(α)Xα + Xβi , lm(Pi) = Xβi , 1 ≤ i ≤ n. Since {P1, P2, . . . , Pn} is a “reverse” reduced
team w.r.t. ≺, it means

lm(Pi) < Λ{P j}, i , j, 1 ≤ i, j ≤ n.

Without loss of generality, we can assume that lm(P1) ≺ lm(P2) ≺ · · · ≺ lm(Pn), then we have

lm(Pi) < Λ{P̃ j}, 1 ≤ i < j ≤ n.

Notice that lm(P̃i) = lm(eθX · Pi) = lm(eθX) · lm(Pi) = lm(Pi), 1 ≤ i ≤ n, we have

lm(P̃i) < Λ{P̃ j}, 1 ≤ i < j ≤ n.

Thus, we have

(δ0 ◦ P̃ j(D))(lm(P̃i)) =

0, i < j,

βi! , 0, i = j,
1 ≤ i, j ≤ n.

So, the Vandermonde-like matrix is an upper triangular matrix with nonzero diagonal elements, i.e., it
is non-singular. It follows that

{lm(P̃1), lm(P̃2), . . . , lm(P̃n)} = {lm(P1), lm(P2), . . . , lm(Pn)}

is the ≺-minimal monomial basis for ∆. □

In ideal interpolation, the ≺-minimal monomial basis is equivalent to the monomial basis of the
quotient ring w.r.t. ≺ [12]. The following theorem can be obtained directly by Theorem 7, and we list
it here without proof.

Theorem 8. For any θ ∈ Fd, given a monomial order ≺ and interpolation conditions ∆ =
δθ ◦ span{P1(D), P2(D), . . . , Pn(D)}. If {P1, P2, . . . , Pn} is a “reverse” reduced team w.r.t. ≺, then
{lm(P1), lm(P2), . . . , lm(Pn)} is the monomial basis of the quotient ring F[X]/I(∆) w.r.t. ≺.

The following example shows the application of Theorem 8.

Example 9. Given the ideal interpolation conditions
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∆ = δ(1,2) ◦ span{1,Dx,
1
2

D2
x + Dy,

1
6

D3
x + DxDy + 2Dy}.

Using grlex(y ≺ x), we know P1 = 1, P2 = x, P3 =
1
2 x2 + y, and P4 =

1
6 x3 + xy + 2y. By Algorithm 1,

or Example 3, we have

P1
∗ = 1, P2

∗ =
1
2

x2 + y, P3
∗ = x, P4

∗ =
1
6

x3 − x2 + xy.

By Theorem 8, {lm(P∗1), lm(P∗2), lm(P∗3), lm(P∗4)} = {1, y, x, xy} is the monomial basis of the quotient
ring F[X]/I(∆).

5. The algorithms to compute the reduced Gröbner bases

In order to describe algorithms more conveniently, we introduce some notations. Let F[[X]] be the
ring of formal power series. Let T be a set of monomials in F[X]. For any f ∈ F[[X]], we denote by

λT ( f ) =
∑
Xα∈T

f̂ (α)Xα,

a “truncated polynomial”.
Given a monomial order ≺ and Lagrange interpolation conditions ∆, Algorithm 2 yields the reduced

Gröbner basis for I(∆) w.r.t. ≺.
In Line 11 and Line 14, we use the same skill (recording the reversible matrix used for each

calculation) as the MMM algorithm to calculate the rank of the matrix by Gaussian elimination. It
is obvious that Algorithm 2 terminates. The following theorem shows its correctness.
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19466

Algorithm 2: The reduced Gröbner basis (Lagrange interpolation).
1: Input: A monomial order ≺.
2: The interpolation conditions ∆ = span{δθ1 , δθ2 , . . . , δθn},
3: where distinct points θi ∈ F

d, i = 1, 2, . . . , n.
4: Output: {G1,G2, . . . ,Gm}, the reduced Gröbner basis for I(∆) w.r.t. ≺.
5: //Initialization
6: List := Λ{eθ1X, eθ2X, . . . , eθnX}, Q := {1}, G := ∅;
7: Xβ := min(List,≺);
8: U := ( ˆeθ1X(β), ˆeθ2X(β), . . . , ˆeθnX(β))′;
9: List := List − {Xβ};

10: //Computing
11: while rank(U) < n do
12: Xβ := min(List,≺);
13: v := ( ˆeθ1X(β), ˆeθ2X(β), . . . , ˆeθnX(β))′;
14: if rank(U, v) > rank(U) then
15: U := [U, v];
16: Q := Q ∪ {Xβ};
17: List := List − {Xβ};
18: else
19: G := G ∪ {Xβ};
20: List := List − {multiples of Xβ};
21: end if
22: end while
23: Xα := min(List,≺);
24: G := G ∪ {Xα};
25: G := {Xα1 ,Xα2 , . . . ,Xαm}, the set of the leading monomials of the reduced Gröbner basis;
26: Q := {Xβ1 ,Xβ2 , . . . ,Xβn}, the monomial basis of the quotient ring;
27: P j := λG∪Q(eθ jX), 1 ≤ j ≤ n;
28: {P∗j, 1 ≤ j ≤ n}, a “reverse” reduced team w.r.t. ≺, by Algorithm 1;
29: for i = 1 : m do
30: Gi = Xαi −

∑n
j=1

(
(αi)!
(β j)!

P̂∗j(αi)
)

Xβ j ;
31: end for
32: return {G1,G2, . . . ,Gm}.

Theorem 10. The output {G1,G2, . . . ,Gm} in Algorithm 2 is the reduced Gröbner basis for I(∆).

Proof. By (4.1),
∆ = span{δθ1 , δθ2 , . . . , δθn} = δ0 ◦ span{eθ1D, eθ2D, . . . , eθnD}.

Suppose that {(eθ1X)∗, (eθ2X)∗, . . . , (eθnX)∗} is a “reverse” reduced team of eθ1X, eθ2X, . . . , eθnX. Comparing
Line 13 in Algorithm 2 and Line 11 in Algorithm 1, we have

Q = {Xβ1 ,Xβ2 , . . . ,Xβn} = {lm(eθ1X)∗, lm(eθ2X)∗, . . . , lm(eθnX)∗}.

By Theorem 8, Q is the monomial basis of the quotient ring F[X]/I(∆). On the other hand, since Q is
a lower set [2], it is easy to check that G is the set of the leading monomials of the reduced Gröbner

AIMS Mathematics Volume 9, Issue 7, 19459–19472.
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basis. Thus, we only need to prove that Gi = Xαi −
∑n

j=1

(
(αi)!
(β j)!

P̂∗j(αi)
)

Xβ j in Line 30 lies in I(∆). Due
to {P∗1, P

∗
2, . . . , P

∗
n} in Line 28 is a “reverse” reduced team, it follows that lm(P∗j) = Xβ j < Λ{P∗k}, j ,

k, 1 ≤ j, k ≤ n. Hence, we have

δ0 ◦ P∗k(D)Gi = δ0 ◦ P∗k(D)(Xαi −

n∑
j=1

(
(αi)!
(β j)!

P̂∗j(αi)
)

Xβ j)

= δ0 ◦ P∗k(D)Xαi − δ0 ◦ P∗k(D)
(

(αi)!
(βk)!

P̂∗k(αi)
)

Xβk

= (αi)!P̂∗k(αi) −
(

(αi)!
(βk)!

P̂∗k(αi)
)

(βk)!

= 0, 1 ≤ k ≤ n, 1 ≤ i ≤ m.

Since {Pk, 1 ≤ k ≤ n} can be expressed linearly by {P∗k, 1 ≤ k ≤ n}, it follows that

δ0 ◦ Pk(D)Gi = 0, 1 ≤ k ≤ n, 1 ≤ i ≤ m,

i.e.,
δ0 ◦ λG∪Q(eθkD)Gi = 0, 1 ≤ k ≤ n, 1 ≤ i ≤ m.

Notice that (Λ{eθkX} − (G ∪ Q)) ∩ Λ{Gi} = ∅; it is easy to see that

δ0 ◦ eθkDGi = 0, 1 ≤ k ≤ n, 1 ≤ i ≤ m.

By (4.1), we have
δθkGi = 0, 1 ≤ k ≤ n, 1 ≤ i ≤ m.

So, Gi, 1 ≤ i ≤ m vanishes at θk, 1 ≤ k ≤ n. It follows that Gi, 1 ≤ i ≤ m lies in I(∆). This completes
the proof. □

Line 30 in Algorithm 2 shows that the “reverse” reduced team provides all the information needed
to construct the reduced Gröbner basis. Since we use the same skill as the MMM algorithm, Algorithm
2 also has a polynomial time complexity.

Example 11. (Lagrange interpolation) Given the monomial order grlex(y ≺ x), consider the bivariate
Lagrange interpolation with the interpolation conditions

∆ = span{δ(0,0), δ(1,2), δ(2,1)}.

By Algorithm 2, we get

Q = {1, y, x}, G = {y2, xy, x2},

and

{P1, P2, P3} = {λG∪Q(e(0,0)X), λG∪Q(e(1,2)X), λG∪Q(e(2,1)X)}

= {1,
1
2!

(x2 + 4xy + 4y2) + (x + 2y) + 1,
1
2!

(4x2 + 4xy + y2) + (2x + y) + 1}.
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A “reverse” reduced team of {P1, P2, P3} can be computed, i.e.,

{P∗1, P
∗
2, P

∗
3} = {1, (−

1
3

x2 +
2
3

xy +
7
6

y2) + y, (
7
6

x2 +
2
3

xy −
1
3

y2) + x}.

Finally, the reduced Gröbner basis for I(∆)

{G1,G2,G3} = {y2 −
7
3

y +
2
3

x, xy −
2
3

y −
2
3

x, x2 +
2
3

y −
7
3

x}

is read from the “reverse” reduced team {P∗1, P
∗
2, P

∗
3} by Line 30 in Algorithm 2.

For general ideal interpolation, we can convert it to single-point ideal interpolation. For example,
given ideal interpolation conditions

∆ =


δθ1 ◦ span{P11(D), P12(D), . . . , P1s1(D)},
δθ2 ◦ span{P21(D), P22(D), . . . , P2s2(D)},

...

δθk ◦ span{Pk1(D), Pk2(D), . . . , Pksk(D)},

with distinct points θi ∈ F
d, i = 1, 2, . . . , k and s1 + s2 + · · · + sk = n. By (4.2), we have

∆ = δ0 ◦ span{P1(D), P2(D), . . . , Pn(D)},

where P1 = eθ1XP11, P2 = eθ1XP12, . . . , Ps1 = eθ1XP1s1 , Ps1+1 = eθ2XP21, . . . , Pn = eθkXPksk .

The main cost of Algorithm 2 is calculating the rank of the matrix to obtain the monomial basis
of the quotient ring. In the case of single-point ideal interpolation, if the polynomials in interpolation
conditions constitute a “reverse” reduced team, then we can obtain the monomial basis of the quotient
ring without calculation by Theorem 7. Therefore, we get a faster algorithm for computing the reduced
Gröbner basis. We have the following algorithm (Algorithm 3) for single-point ideal interpolation.
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Algorithm 3: The reduced Gröbner basis (Single point ideal interpolation).
1: Input: A monomial order ≺.
2: The interpolation conditions ∆ = δθ ◦ span{P1(D), P2(D), . . . , Pn(D)},
3: where θ ∈ Fd, {P1, P2, . . . , Pn} is a “reverse” reduced team.
4: Output: {G1,G2, . . . ,Gm}, the reduced Gröbner basis for I(∆).
5: //Initialization
6: Q := {lm(P1), lm(P2), . . . , lm(Pn)}, the monomial basis of the quotient ring;
7: List := {xilm(P j),∀1 ≤ i ≤ d, 1 ≤ j ≤ n};
8: List := List − Q;
9: G := ∅;

10: //Computing
11: while List , ∅ do
12: Xα := min(List,≺);
13: G := G ∪ {Xα};
14: List := List − {multiples of Xα};
15: end while
16: G := {Xα1 ,Xα2 , . . . ,Xαm}, the set of the leading monomials of the reduced Gröbner basis;
17: P j := λG∪Q(eθXP j), 1 ≤ j ≤ n;
18: {P∗j, 1 ≤ j ≤ n}, a “reverse” reduced team w.r.t. ≺, by Algorithm 1;
19: Xβ j := lm(P∗j), 1 ≤ j ≤ n;
20: for i = 1 : m do
21: Gi = Xαi −

∑n
j=1

(
(αi)!
(β j)!

P̂∗j(αi)
)

Xβ j ;
22: end for
23: return {G1,G2, . . . ,Gm}.

6. A special example for ideal interpolation

For general ideal interpolation, first we convert it to single-point ideal interpolation by (4.2) and
get the “reverse” reduced team by Algorithm 1, then we compute the reduced Gröbner basis by
Algorithm 3. The amount of calculation is almost the same as the MMM algorithm. However, in
some special cases, we can first compute the Gröbner basis of a single point ideal interpolation by
Algorithm 3, which needs little calculation, and then the original Gröbner basis is constructed. The
scale of the problem decreases in this case, thus the computational efficiency has improved. A relevant
example is given below.

Example 12. (ideal interpolation) Given the monomial order lex (y ≺ x) and ideal interpolation
conditions

∆ =

{
δ(0,0) ◦ span{1,Dx,

1
2 D2

x + Dy},

δ(1,2) ◦ span{1,Dx}.

We split the original problem into two subproblems, ∆A and ∆B.

∆A := δ(0,0) ◦ span{1,Dx,
1
2

D2
x + Dy}, ∆B := δ(1,2) ◦ span{1,Dx}.
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Since {1, x,
1
2

x2 + y} is a “reverse” reduced team, QA := {1, x, y} is the monomial basis of the quotient

ring F[X]/I(∆A),GA := {y2, xy, x2} is the set of the leading monomials of the reduced Gröbner basis for
I(∆A). By Line 21 in Algorithm 3, we get

GA1 := y2,

GA2 := xy,

GA3 := x2 − y.

{GA1,GA2,GA3} = {y2, xy, x2 − y} is the reduced Gröbner basis for I(∆A).
With the same procedure, we can get

GB1 := y − 2,
GB2 := x2 − 2x + 1.

{GB1,GB2} = {y − 2, x2 − 2x + 1} is the reduced Gröbner basis for I(∆B).
Notice that the polynomials GA1 = y2 and GB1 = y − 2 are coprime; there exist polynomials u =

1
4
, v = −

1
4

(y + 2) such that
uGA1 + vGB1 = 1.

Let
G1 := GA1GB1 = y3 − 2y2,

G2 := GA2GB1 = xy2 − 2xy,

G̃3 := (uGA1)GB2 + (vGB1)GA3 = x2 −
1
2

xy2 +
1
4

y3 +
1
4

y2 − y.

Since G1,G2, G̃3 all lie in I(∆A ∪∆B) = I(∆), the linear combination G̃3 − cG1 − eG2 lies in I(∆), where

c =
1
4

is the coefficient of y3 in G̃3 and e = −
1
2

is the coefficient of xy2 in G̃3. Let

G3 := G̃3 − cG1 − eG2 = x2 − xy +
3
4

y2 − y.

Notice that the leading term of Gi in particular divides none of the nonleading terms of G j, for
i, j ∈ {1, 2, 3}, whereas the dimension of F[X]/⟨G1,G2,G3⟩ is 5. Therefore, {G1,G2,G3} is the reduced
Gröbner basis for I(∆).
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