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Abstract: Coronavirus spread in Wuhan, China, in December 2019. A few weeks later, the virus
was present in over 100 countries around the globe. Governments have adopted extreme measures to
contain the spreading virus. Quarantine is considered the most effective way to control the spreading
speed of COVID-19. In this study, a mathematical model is developed to explore the influence of
quarantine and the latent period on the spatial spread of COVID-19. We use the mathematical model
with quarantine, and delay to predict the spreading speed of the virus. In particular, we transform the
model to a single integral equation and then apply the Laplace transform to find implicit equations for
the spreading speeds. The basic reproduction number of COVID-19 is also found and calculated.
Numerical simulations are performed to confirm our theoretical results. To validate the proposed
model, we compare our outcomes with the actual reported data published by the National Health
Commission of China and the Health Commission of local governments. The model demonstrates
good qualitative agreement with the actual data reported. The results show that delay and quarantine
highly influence the spreading speeds of COVID-19. Also, we can only contain the disease if we
quarantine 75% of the infected people.
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1. Introduction

A severe acute respiratory syndrome coronavirus 2 (SARS-COV-2) spread in Wuhan, China, in
December 2019. The novel coronavirus disease has been called COVID-19 by the World Health
Organization (WHO) [5]. As of Jan 29, 2020, there were 5993 confirmed cases in China and 132
reported deaths [44]. The numbers increased rapidly to over 77,500 confirmed cases and 2600 deaths
as of Feb 24, 2020 [30]. The National Health Commission of China and the Health Commission of
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local governments report daily the number of new disease cases and their locations. Here, we care
about the data reported by these Commissions and by Feng et al. [19] from Jan 17, 2020 to
Mar 20, 2020. The results [19, Figure 1] show that the disease outbreak began in Wuhan, and no cases
were reported in any other region of the country until Jan 17, 2020. The government of China
imposed a lockdown on Wuhan on Jan 23 [19]. The number of cases peaked on February 7 according
to [19], and on February 10 according to [14]. The COVID-19 virus was able to spread to other cities
despite the government’s efforts to control the disease. By the end of February 2020, the number of
new cases reported was gradually slowing down [19]. This indicates that the COVID-19 virus was
under control within two months [19, Figure 1].

The value of the basic reproduction number is significant in pathology. The basic
reproduction number is the average number of people catching a disease from one infectious
person [13]. At the early stages of the epidemic in China, the basic reproduction number has been
reported between 2 to 3.58 [20, 22, 24, 27, 28, 30–32, 42, 44, 46]. Other authors estimated the mean
value of the basic reproduction number to be from 4.8 to 7.08 [5, Figure 1].

Governments have adopted extreme measures, such as social distancing, quarantine, and travel
restrictions to minimize the spread of the virus. About a week after applying some of these measures,
the basic reproduction number dropped to 1.05 [27]. According to [23], quarantine is the most effective
way to contain the disease.

Because of the direct impact of COVID-19 on global health, many mathematical models
and studies have been published, see [5, 6, 12, 14, 18, 19, 21, 23, 24, 27, 29, 36, 41, 43, 44, 47]. The
current COVID-19 mathematical models are mostly a system of ordinary differential
equations [5, 6, 12, 18, 21, 24, 27, 29, 44]. For mathematical models that consider quarantine and
isolation measures, we refer to [14, 23, 34]. [11] developed a SEIR model to describe the interactions
between passengers and crews on a ship and the influence of quarantine to slow the spread of the
disease. [14] introduced a model for COVID-19 to investigate the power of isolation and quarantine
further. The mathematical model in [47] assumes that individuals are quarantined during the infected
or infectious stage. In contrast, the mathematical models in [10, 26, 35] suggest a possible quarantine
for susceptible, infected, and infectious individuals.

Due to the incubation period of COVID-19, infected individuals are subject to some time delay
before being transferred to the infectious state. The model we study in this paper describes the infected
individuals in the latent period, which makes it more appropriate to investigate the spatial dynamics of
COVID-19. Recently, modeling the infection age is more common, and this leads to more complicated
mathematical models, see [36, 39]. The incubation period ranges from 1 to 14 days [13]. The mean
incubation period is three days in [30], from 5 to 6.4 in [42,45]. The mean length of infectious periods is
five days in [30] and 1.61 days in [31]. The latent and incubation periods are assumed to be exact [44].

Hence, we propose a model with a time delay due to the incubation period to understand the
dynamics of COVID-19 better. Also, we study the influence of quarantine and the values of the
parameters on the spatial spreading speeds of COVID-19 in China. This can be done by applying the
concept of asymptotic speeds of the spread of an epidemic discussed by Diekmann [15–17] and
Thieme [37, 38], generalized by Thieme and Zhao [40], and applied recently by Alanazi, Jackiewicz,
and Thieme [2, 4].

According to Diekmann [16, 17] and Thieme [37, 38], an epidemic can be described by
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u(t, x) = u0(t, x) +
∫ t

0

∫
Rn

G(u(t − s, x − y), s, y)dyds,

if there is no increase in the susceptible individuals by birth, immigration, or recovery. In this
equation, u is the cumulative rate of infected individuals meeting the susceptible, which describes the
development of the population. The initial conditions are collected and listed in u0. The nonlinear
term G contains integral kernels that measure the contribution of infected individuals to the
cumulative rate u. Aronson and Weinberger [8, 9] and Aronson [7] show that c∗ is called the
asymptotic speed if the solution u converges to zero uniformly when |x| ≥ ct for c > c∗, whereas it is
bounded away from zero uniformly when |x| ≤ ct for c < c∗ after a sufficiently long time t. For more
on this, we refer to the work by Ruan [33].

The paper is organized as follows. In Section 2, we consider a mathematical model with quarantine
and a generally distributed length of the incubation stage. In Section 3, we reduce the model to a
single integral equation where the theory of asymptotic speeds of spread can apply. The definition of
the spreading speeds and the basic reproduction number are also introduced in Section 3. Numerical
examples are given in Section 4 to confirm some of the analytic findings. The theoretical and numerical
results are discussed in Section 5.

2. COVID-19 model with delay and quarantine

The model assumes the infected individuals of COVID-19 are not infectious during the incubation
stage, see [20, 44]. Also, quarantining all of the infectious population is not possible. Therefore, we
assume that part of the infectious population is non-quarantined.

Let the density of susceptible individuals be denoted by S (x, t), the density of infected individuals
in the latent period be I(x, a, t) with infection age a, and the density of non-quarantined infectious
individuals be Q(x, t). Also, let the infected individuals with infection age a ∈ [0,∞) leave the latent
period with rate ℓ(a). Then, the model takes the form

∂tS (x, t) = −ηS (x, t)Q(x, t),

∂tQ(x, t) = (1 − γ)
∫ ∞

0
ℓ(a)I(x, t, a)da − qQ(x, t),

∂tI(x, a, t) + ∂aI(x, a, t) = −ℓ(a)I(x, a, t),

I(x, 0, t) = ηS (x, t)Q(x, t),

(2.1)

with x ∈ Rn and t > 0. The initial densities are

S (x, 0) = S 0(x), I(x, a, 0) = I0(x, a), Q(x, 0) = Q0(x). (2.2)

η > 0 is the disease transmission coefficient, and ℓ > 0 is the per capita transition rate from the
latent (infected) stage to the infectious stage. ℓ is a continuous function and ℓ: [0,∞) → [0,∞). The
effectiveness of quarantine is given by γ, where 1 > γ ≥ 0. 1/q > 0 is the mean length of the infectious
period. We assume that the initial are nonnegative continuous functions.

We reduce system (2.1) by integrating along the characteristics for the infected individuals I(x, a, t).
Let a = t + r, ir(x, t) = I(x, t + r, t), and tr = max{0,−r}, where r ∈ R. Then, the model of infected
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individuals inside the latent period becomes ∂tir(x, t) = −ℓ(t + r)ir(x, t),

ir(x, tr) = I(x, tr + r, tr),

for t ≥ tr. Solving, we get
ir(x, t) = ir(x, tr)e

−
∫ t

tr
ℓ(s+r)ds.

Therefore, for a > t,
ir(x, t) = ir(x, 0)e−

∫ t
0 ℓ(s+r)ds.

Let s→ s − r. Then we get

ir(x, t) = ir(x, 0) e−
∫ t+r
0 ℓ(s)ds

e−
∫ r
0 ℓ(s)ds

.

Let L(r) = exp
(
−
∫ r

0
ℓ(s)ds

)
. Then we conclude

ir(x, t) = ir(x, 0) L(t+r)
L(r) . (2.3)

For t > a,
ir(x, t) = ir(x,−r)e−

∫ t
−r ℓ(s+r)ds.

Also, let s→ s − r. Then we have

ir(x, t) = ir(x,−r)e−
∫ t+r

0 ℓ(s)ds = ir(x,−r)L(t + r). (2.4)

Therefore, from (2.3), we have

I(x, a, t) = I0(x, a − t) L(a)
L(a−t) , a > t ≥ 0, (2.5)

and from (2.4) we have

I(x, a, t) = ηS (x, t − a)Q(x, t − a)L(a), t > a ≥ 0. (2.6)

Substituting (2.5) and (2.6) into (2.1) gives the following system with delay and Volterra integral
equations 

∂tS (x, t) = −ηS (x, t)Q(x, t),

∂tQ(x, t) = (1 − γ)
(
W1 +W2

)
− qQ(x, t),

(2.7)

where  W1 = η
∫ t

0
ℓ(a)S (x, t − a)Q(x, t − a)L(a)da,

W2 =
∫ ∞

t
ℓ(a)L̂(a, t)I0(x, a − t)da,

(2.8)

x ∈ Rn, t > 0, and L̂(a, t) = L(a)
L(a−t) .We define L(a) = exp

(
−
∫ a

0
ℓ(s)ds

)
to be the probability that infected

individuals with infection age a are still in the latent period. Therefore, L is a decreasing function,
L : R+ → [0, 1], and L(0) = 1.
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3. Spreading speeds of COVID-19

Models 2.7 and 2.8 could be reduced to a single integral equation. We begin this section by
integrating the differential equations in (2.7). Therefore, we have

S (x, t) = S 0(x)e−w(x,t), (3.1)

where
w(x, t) = η

∫ t

0
Q(x, r)dr, (3.2)

and
Q(x, t) = (1 − γ)

∫ t

0
e−qs
(
W1(x, t − s) +W2(x, t − s)

)
ds + Q0(x)e−qt. (3.3)

We substitute (2.8) into (3.3) and do a change of variables several times, and we get the following
non-linear equation describing the development of the infectious population,

w(x, t) = η(1 − γ)
∫ t

0

∫ r

0
e−qsℓ(r − s)L(r − s)S 0(x)

(
1 − e−w(x,t−r)

)
dsdr + ŵ(x, t), (3.4)

where
ŵ(x, t) = η(1 − γ)

∫ t

0

∫ r

0

∫ ∞
0

e−qsℓ(a + r − s)L̂(a + r − s, r − s)I0(x, a)dadsdr
+ η

∫ t

0
Q0(x)e−qrdr.

(3.5)

Let ȷ(x, r) = η(1 − γ)
∫ r

0
e−qsℓ(r − s)L(r − s)S 0(x)ds. Then, (3.4) becomes

w(x, t) =
∫ t

0
ȷ(x, r)

(
1 − e−w(x,t−r)

)
dr + ŵ(x, t). (3.6)

We assume that the initial number of susceptible is constant, then apply one side Laplace transform,

L(c, λ) =
∫ ∞

0
e−λcr ȷ(r)dr,

= η(1 − γ)S 0

∫ ∞
0

∫ r

0
e−λcre−qsℓ(r − s)L(r − s)dsdr.

We do a change of variables, let r − s→ r, and obtain

L(c, λ) = η(1 − γ)S 0

∫ ∞
0

∫ ∞
0

e−λc(s+r)e−qsℓ(r)L(r)dsdr,

= η(1 − γ)S 0

∫ ∞
0
ℓ(r)L(r)e−λcrdr

∫ ∞
0

e(−q−λc)sds.

We know that −L′(r) = ℓ(r)L(r), so we have

L(c, λ) = S 0η(1−γ)
q+λc

∫ ∞
0
−L′(r)e−λcrdr. (3.7)

By the assumptions in Section 2, we have

L(c, λ) = −S 0η(1−γ)
q+λc

∫ ∞
0

e−λcrdL(r). (3.8)

By [40], we can use the Laplace transform to find equations for the spreading speeds c∗ as follows:

L(c∗, λ) = 1,
∂

∂λ
L(c∗, λ) = 0. (3.9)
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Example 3.1. Let ρ be the mean length of the incubation period. If the incubation stage is uniformly
distributed,

L(a) =

1 − a
ρ
, 0 ≤ a ≤ ρ,

0, a > ρ,
(3.10)

and then
−
∫ ∞

0
e−λcadL(a) = 1

ρ

∫ ρ
0

e−λcada = 1
λcρ

[
1 − e−λcρ

]
.

Therefore,
L(c, λ) =

(
1
λcρ

)
S 0η(1−γ)

q+λc

[
1 − e−λcρ

]
. (3.11)

The basic reproduction number of COVID-19 can be found by replacing λ and c in (3.8) with zero,
see [38, 40]. Therefore, the basic reproduction number of COVID-19 is given by

R0 = L(0, 0) =
S 0η(1 − γ)

q

∫ ∞

0
dL(r). (3.12)

According to [16, 17, 38], the spreading speed is defined by

c∗ := inf{c ≥ 0; ∃λ > 0 : L(c, λ) < 1}, (3.13)

as long as R0 > 1, and c∗ := 0 if R0 ≤ 1. Therefore, we have the following results.

Theorem 3.2. Assume the initial conditions I0 and Q0 are defined as I0(x, a),Q0(x) ≤ εe−λ|x|, and
| x |≥ ct. Then ŵ(x, t)→ 0 as t → ∞.

Proof. ŵ(x, t) is given in (3.5). Since L̂(a, t) = L(a)
L(a−t) , we have

ŵ(x, t) = −η(1 − γ)
∫ t

0

∫ r

0

∫ ∞
0

e−qsL′(a + r − s)I0(x, a) 1
L(a)dadsdr

+ η
∫ t

0
Q0(x)e−qrdr.

(3.14)

We change the order of integration as follows:

ŵ(x, t) = η(1 − γ)
∫ t

0

∫ ∞
0

e−qs
[ ∫ t−s

0
−L′(a + r − s)dr

]
I0(x, a) 1

L(a)

dads + η
∫ t

0
Q0(x)e−qrdr,

= η(1 − γ)
∫ t

0

∫ ∞
0

e−qs
[
L(a) − L(a + t − s)

]
I0(x, a) 1

L(a)

dads + η
∫ t

0
Q0(x)e−qrdr,

≤ η(1 − γ)
∫ t

0

∫ ∞
0

e−qsI0(x, a)dads + η
∫ t

0
Q0(x)e−qrdr.

By the assumptions I0(x, a),Q0(x) ≤ εe−λ|x|, we have

ŵ(x, t) ≤ εη(1 − γ)eλ(ct−|x|)
∫ t

0
es(−λc−q)ds + εηeλ(ct−|x|)

∫ t

0
er(−λc−q)dr,

=
(2εη−γεη)
λc+q eλ(ct−|x|).

Since γ < 1 and | x |≥ ct, ŵ(x, t)→ 0 as t → ∞. This completes the proof. □
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Theorem 3.3. Let ρ̂ > 0 be the minimum length of the latent period, L1 be a decreasing function such
that L1 : R+ → [0, 1], and L(a) be defined as

L(r) =

1, 0 ≤ r < ρ̂,

L1(r − ρ̂), ρ̂ < r < ∞.
(3.15)

Then:
(1) L(c, λ) ≤ S 0η(1−γ)

q+λc e−λcρ̂.
(2) L(c, λ)→ S 0η(1−γ)

q+λc as ρ̂→ 0.
(3) L(c, λ)→ 0 as ρ̂→ ∞, which provides c∗ ≤ c.
(4) L(c, λ)→ R0 as λ→ 0.

Proof. (1) By (3.7),
L(c, λ) = S 0η(1−γ)

q+λc

∫ ∞
0
−L′(r)e−λcrdr.

The integration by parts of
∫ ∞

0
−L′(r)e−λcrdr gives

L(c, λ) = S 0η(1−γ)
q+λc

(
1 − λc

∫ ∞
0

L(r)e−λcrdr
)
, [39].

From the definition in (3.15), we get

L(c, λ) = S 0η(1−γ)
q+λc

(
1 − λc

∫ ρ̂
0

e−λcrdr − λc
∫ ∞
ρ̂

L1(r − ρ̂)e−λcrdr
)
,

=
S 0η(1−γ)

q+λc

(
e−λcρ̂ − λc

∫ ∞
ρ̂

L1(r − ρ̂)e−λcrdr
)
.

Let r − ρ̂→ r. Then we have

L(c, λ) = S 0η(1−γ)
q+λc

(
e−λcρ̂ − λce−λcρ̂

∫ ∞
0

L1(r)e−λcrdr
)
,

=
S 0η(1−γ)

q+λc e−λcρ̂
(
1 − λc

∫ ∞
0

L1(r)e−λcrdr
)
.

Therefore,
L(c, λ) ≤ S 0η(1−γ)

q+λc e−λcρ̂. (3.16)

(2) By (3.16), L(c, λ)→ S 0η(1−γ)
q+λc as ρ̂→ 0.

(3) By (3.16), L(c, λ)→ 0 as ρ̂→ ∞. By definition (3.13), we conclude c∗ ≤ c.
(4) We clearly have L(c, λ)→ R0 as λ→ 0 from (3.16). □

Theorem 3.4. Let L(a) be defined as in (3.10). Then, L(c, λ) → 0 as λ → ∞. Also, L(c, λ) → 0 as
ρ→ ∞.

Proof. By (3.11),
L(c, λ) =

(
1
λcρ

)
S 0η(1−γ)

q+λc

[
1 − e−λcρ

]
,

≤
(

1
λcρ

)
S 0η(1−γ)

q+λc .

This shows L(c, λ)→ 0 by either λ→ ∞ or ρ→ ∞. □
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Theorem 3.5. The spreading speed c∗ of COVID-19 is an increasing function of S 0 and η.

Proof. The Laplace transform L(c, λ) is an increasing function of S 0, η, and d for all c, λ > 0. By [4,
Corollary 8.2], the associated spreading speeds are also increasing functions of these parameters. □

Theorem 3.6. The spreading speed c∗ of COVID-19 is a decreasing function with the effectiveness of
quarantine γ and q.

Proof. Since the Laplace transformL(c, λ) is a decreasing function with the effectiveness of quarantine
γ and q for all c, λ > 0, the assertion holds by [4, Corollary 8.2]. □

4. Numerical experiments

4.1. Numerical approximations of the basic reproduction number R0 of COVID-19

By (3.12), the basic reproduction number of COVID-19 is

R0 =
S 0η(1 − γ)

q

∫ ∞

0
dL(r). (4.1)

Therefore, the disease is going to spread as long as R0 > 1. With the given values in Table 1, the
threshold density of the susceptible at which R0 = 1 is S T

0 ≈ 1.05[people/km2] for γ = 0. The values
of R0 at different values of S 0 are demonstrated in Table 2.

Table 1. Values of the model parameters.

Parameter Biological meaning Units Values References

η Disease transmission coefficient [km2/day] 0.59 [30]
ρ The incubation period value [day] 3 [30]

1/q The mean length of infectious period [day] 1.61 [31]

Table 2. Values of R0 at different values of the initial susceptible density S 0. The numerical
values of the parameters are given in Table 1.

S 0 R0 when γ = 0 R0 when γ = 0.5
1 0.9499 0.4750
2 1.8998 0.9499
3 2.8497 1.424
4 3.7996 1.8998
5 4.7495 2.3748
7 6.6493 3.3247
9 8.5491 4.2745
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4.2. Propagation of COVID-19

Assuming that the infected individuals leave the latent period with fixed rate ρ such that ℓ(a) is one
for 0 ≤ a < ρ and zero otherwise. Then, the model takes the form,

∂tS (x, t) = −ηS (x, t)Q(x, t),

∂tQ(x, t) = (1 − γ)I(x, t, ρ) − qQ(x, t),

∂tI(x, a, t) + ∂aI(x, a, t) = −ℓ(a)I(x, a, t),

I(x, 0, t) = ηS (x, t)Q(x, t),

(4.2)

where x ⊆ R and t ∈ [0, 60] is measured in days. The initial densities have been selected as follows:

S (x, 0) = 10, I(x, a, 0) = 0, Q(x, 0) = 3e−|x|. (4.3)

Systems (4.2) and (4.3) are discretized in space. Then, we apply the continuous Runge-Kutta method of
the fourth-order and the discrete Runge-Kutta method of the third-order to approximate the solutions
in time. This numerical method provides accurate and stable solutions, as discussed in [2, 3]. The
dynamics of (4.2) and (4.3) are presented in Figures 1–4. The approximated solutions of the density
of susceptible S (x, t) are demonstrated in Figure 1, and the approximated solutions of the density of
non-quarantined infectious individuals Q(x, t) are shown in Figure 2. The contour plots of S and Q are
depicted in Figures 3 and 4. The numerical values of the parameters are chosen from the literature as
in Table 1.

(a) (b)

(c) (d)

Figure 1. Plots of S (x, t) at different values of quarantine. (a) γ = 0, (b) γ = 0.25, (c)
γ = 0.50, (d) γ = 0.75.
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(a) (b)

(c) (d)

Figure 2. Plots of Q(x, t) at different values of quarantine. (a) γ = 0, (b) γ = 0.25, (c)
γ = 0.50, (d) γ = 0.75.

(a) (b)

(c) (d)

Figure 3. Contour plots of S (x, t) at different values of quarantine. (a) γ = 0, (b) γ = 0.25,
(c) γ = 0.50, (d) γ = 0.75.
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(a) (b)

(c) (d)

Figure 4. Contour plots of Q(x, t) at different values of quarantine. (a) γ = 0, (b) γ = 0.25,
(c) γ = 0.50, (d) γ = 0.75.

5. Discussion

In this work, we present a mathematical model with time delay and quarantine to study the dynamics
of COVID-19. We aim to investigate the influence of the latent period, quarantine, and the values of the
parameters on the spatial spreading speeds of COVID-19 in China. We reduce the model to a single
equation so that the concept of asymptotic speeds of the spread of an epidemic can be used. In the
other part of this work, we provide a numerical simulation to assess our proposed model.

The dynamics of COVID-19 are presented in Figures 1–4. Figure 3 depicts contour plots of the
density of susceptible individuals S (x, t), while Figure 4 displays contour plots of the density of
non-quarantined infectious individuals Q(x, t). The contour plots in Figures 3 and 4 are essential to
predict the spatial spreading speeds of COVID-19. Figure 1 demonstrates the dynamics of the density
of susceptible individuals S (x, t), while Figure 2 exhibits the density of non-quarantined infectious
individuals Q(x, t) for different scenarios. In the first scenario, we assume that there are no
quarantines imposed by the government of China, i.e., γ = 0. This choice depicts massive waves in
the density of non-quarantined infectious individuals Q(x, t) and huge drops in the density of
susceptible individuals S (x, t). Increasing the chance of quarantining infected individuals by 25%
leads to a considerable decrease in the spreading speeds of COVID-19 as in Figures 1(b) and 2(b).
Increasing the quarantine rate to 50% of the infected individuals shows that the first wave of
COVID-19 would not hit the boundaries until about 45 days after the pandemic began. The last
scenario shows that the disease is under control within two months if we can quarantine 75% of the
infected people. The actual data published by the National Health Commission of China and the
Health Commission of local governments during the period from Jan 17, 2020, to Mar 20, 2020,
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demonstrate that the cumulative number of infected people peaked after twenty days, which is on
Feb 7, 2020 [19]. To reduce the spreading speed of the virus, the government of China imposed a
lockdown in Wuhan on Jan 23 [19]. The data reported by the National Health Commission of China
and the Health Commission of local governments show that the disease of COVID-19 was under
control within two months [19, Figure 1]. Therefore, the model demonstrates good qualitative
agreement with the actual data published by the National Health Commission of China and the Health
Commission of local governments, and is summarized by [19, Figure 1]. This study shall help experts
and decision-makers understand the spatial spreading speeds of COVID-19 better and make the
necessary efforts to prevent the virus from spreading further.

The numerical results displayed in Table 3–6 are consistent with the analytic results in Theorems 3.5
and 3.6. The spreading speeds of COVID-19 that are given in Tables 3–6 are summarized in Table 7.
Tables 3 and 4 indicate that c∗ is an increasing function of the initial number of susceptible S 0 and the
disease transmission coefficient η (Theorem 3.5), while Tables 3 and 6 demonstrates that the spreading
speeds of COVID-19 is a decreasing function with the effectiveness of quarantine γ and with the
mean length of the infectious period 1/q (Theorem 3.6). Table 5 depicts c∗ as a decreasing function
with the mean length of the incubation period ρ. Alanazi [1] studied the asymptotic spreading speeds
of COVID-19 by assuming that the susceptible, infected, and infectious individuals can diffuse by
adding the diffusing coefficients to the model. The results are demonstrated in Table 8 [1, Table 2].
The results demonstrated in Table 8 depict that the diffusion coefficients greatly impact the disease’s
spreading speed. Overall, the values of the model parameters can highly influence the spreading speeds
of COVID-19. Also, Figures 1 and 2 suggest that S (x, t)→ S 0 and Q(x, t)→ 0 as γ → 1,which clearly
show that quarantine measures are constructive and effective in containing the disease.

It is feasible to show that the assumptions of Theorem 2.1 in [40] hold. Therefore, since ŵ(x, t)→ 0
as t → ∞ (Theorem 3.2), we have w(x, t) → 0 as t → ∞ for | x |≥ ct and c > c∗. This shows that if
you move away from any point in R for sufficiently large t with speed c that is higher than the minimal
speed c∗, then you would be able to outrun the infected population. However, the infected population
will surpass you if c < c∗.

The basic reproduction number has been calculated to be between 2
and 3.58 [20, 22, 24, 25, 27, 28, 30–32, 42, 44, 46]. The calculated range of R0 means that one patient
could infect two to three other people [42]. We can reach the following conclusions by Table 2. First,
the range R0 ∈ [2, 3.58] suggests that the density of susceptible individuals S 0 available to be infected
is from approximately 2 [people/km2] to 4 [people/km2]. In addition, S 0 greatly impacts the value of
the basic reproduction number R0. Quarantining part of the infectious population can effectively
reduce the value of R0 as demonstrated by Table 2. This clearly shows that population density and
quarantine play crucial roles in the spreading speed of COVID-19.

Table 3. Calculated c∗ [km/week] at different values of γ. The numerical values of the
parameters are given in Table 1.

S 0 γ = 0 γ = 0.25 γ = 0.5 γ = 0.75
3 c∗ ≈ 2.1 c∗ ≈ 1.75 c∗ ≈ 1.16 c∗ ≈ 0.23
5 c∗ ≈ 2.6 c∗ ≈ 2.1 c∗ ≈ 1.5 c∗ ≈ 0.52
7 c∗ ≈ 3.1 c∗ ≈ 2.6 c∗ ≈ 1.9 c∗ ≈ 0.81

10 c∗ ≈ 3.5 c∗ ≈ 3 c∗ ≈ 2.6 c∗ ≈ 1.9
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Table 4. Calculated c∗ [km/week] at different values of η without quarantine and S 0 = 10.

η c∗

0.4 c∗ ≈ 2.9
0.5 c∗ ≈ 3.38
0.59 c∗ ≈ 3.5
0.65 c∗ ≈ 3.88
0.7 c∗ ≈ 4

Table 5. Calculated c∗ [km/week] at different values of ρ without quarantine and S 0 = 10.

ρ c∗

2 c∗ ≈ 4.7
4 c∗ ≈ 3
6 c∗ ≈ 2.1
8 c∗ ≈ 1.8

10 c∗ ≈ 1.28
12 c∗ ≈ 1.05
14 c∗ ≈ 0.87

Table 6. Calculated c∗ [km/week] at different values of q without quarantine and S 0 = 10.

q c∗

0.5 c∗ ≈ 4.2
0.55 c∗ ≈ 3.8
0.6 c∗ ≈ 3.75
0.65 c∗ ≈ 3.3
0.7 c∗ ≈ 3.28

Table 7. Summary of COVID-19 spreading speeds for γ = 0.

Parameter c∗ [km/week]
S 0 ∈ [3, 10] c∗ ∈ [2.1, 3.5]
η ∈ [0.4, 0.7] c∗ ∈ [2.9, 4]
τ ∈ [2, 14] c∗ ∈ [4.7, 0.87]

q ∈ [0.5, 0.7] c∗ ∈ [4.2, 3.28]

Table 8. COVID-19 spreading speeds with diffusion as in [1].

S 0 c∗ [km/week]
3 c∗ ≈ 14
4 c∗ ≈ 16.4
5 c∗ ≈ 18.6
6 c∗ ≈ 19.9
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We conclude this work by pointing out some of the limitations of the model and future study. The
model assumes that the recovered individuals are immune to the disease. Hence, the resulting system is
a susceptible-exposed(infected)-infectious-recovered (SEIR) mathematical model. However, allowing
recovered people to return to the susceptible stage seems reasonable biologically. With this assumption,
we would have a more complex mathematical model. This fact compels us to extend this work in the
future by studying the SEIRS version of this model.
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