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Abstract: The Allen-Cahn (AC) model is a mathematical equation that represents the phase
separation process. The AC equation has numerous applications in various disciplines, such as
image processing, physics, and biology. It models phase transitions, such as solidification and grain
growth in materials, pattern formation in chemical reactions, and domain coarsening in biological
systems like lipid membranes. Numerical methods are crucial for solving the AC equation due to
its complexity and nonlinear nature. Analytical solutions are often extremely difficult to obtain.
Therefore, the development of efficient numerical techniques is indispensable for approximating
solutions and studying phase transitions, material behavior, and pattern formation accurately. We
investigate the stability of an explicit finite difference method (FDM) used to numerically solve the
two-dimensional (2D) AC model with a high-order polynomial potential, which was recently proposed
to preserve a more intricate structure of interfaces. To demonstrate the precision and optimal estimate
of our stability constraints, we conduct various computational tests using the derived time step formulas
that ensure the maximum principle.
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1. Introduction

We investigate a stability analysis of an explicit finite scheme to numerically solve the Allen-
Cahn (AC) model with a high-order polynomial potential [1]:

∂φ(x, t)
∂t

= −
F′α(φ(x, t))

ε2 + ∆φ(x, t), x ∈ Ω, t > 0, (1.1)
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n · ∇φ(x, t) = 0, x ∈ ∂Ω, t > 0, (1.2)

where φ(x, t) is the order parameter at two-dimensional space position x = (x, y) and time t, ε is
positive, Fα(φ) is a double-well potential, and n is normal to the boundary ∂Ω. We consider the
following high-order polynomial free energy potential [1–3]:

Fα(φ(x, t)) =
1

4α2

(
(φ(x, t))2α

− 1
)2
, (1.3)

where α is a positive integer. Equation (1.1) can be rewritten as follows:

∂φ(x, t)
∂t

= −
1
αε2

(φ(x, t))2α−1
(
(φ(x, t))2α

− 1
)

+ ∆φ(x, t). (1.4)

We note that if α = 1, then Eq (1.4) becomes the classical AC equation [4], which is a partial
differential equation describing phase separation in materials, such as solidification or liquid-vapor
transitions. It models the evolution of a scalar order parameter to minimize interfacial energy and
has been used in volume repair [5], oil pollution dynamics [6], 3D volume reconstruction from slice
data [7, 8], shape transformation [9], data assimilation [10], image segmentation [11], structural
topology optimization [12], mathematical physics for phase transition studies [13], and numerous
applications related to interfacial evolution.

Due to the fact that analytical solutions for the AC equation are often impractical or unattainable,
numerical methods are necessary to obtain approximate solutions for the equation. Recently, many
numerical methods for the AC equation have been proposed. Lee [14] introduced a linear convex
splitting scheme and an energy-minimizing method on the mass-conserving space for solving the
AC equation. Numerical simulations verified phase separation, dissipation of energy, and mass
conservation. Zhang et al. [15] developed a class of up to third-order explicit structure-preserving
schemes for solving two modified conservative AC equations. Furthermore, the authors developed and
analyzed an unconditionally structural-preserving parametric single-step method of up to fourth-order
accuracy for the conservative AC equation in [16]. Feng et al. [17] developed a maximum-principle
preserving, unconditionally stable, and second-order FDM for the AC equation. Zhang et al. [18]
developed the Runge-Kutta method for temporal integration and FDM for spatial discretization
to propose high-order maximum principle-preserving schemes. Characteristics such as maximum
principle preservation and energy dissipation were demonstrated through numerical experiments.
Lee [19] presented a mathematical model and numerical method of area-minimizing surfaces using the
AC equation. Deng and Weng [20] developed the barycentric interpolation collocation scheme based
on the Crank-Nicolson method for the AC model. Park et al. [21] presented an unconditionally stable
computational algorithm for the AC equation with logarithmic free energy. Zhang et al. [22] proposed
and analyzed a class of up to eighth-order inequality-preserving two-step integrating factors using the
Runge-Kutta method to solve the semilinear parabolic equation. Typically, fourth-order equations such
as the Cahn-Hilliard (CH) type equations [23, 24] require implicit numerical schemes for stability due
to their severe time step restrictions with explicit schemes.

However, the AC equation is a second-order equation, and its explicit numerical scheme requires
only a moderate time step condition for stability. Furthermore, as demonstrated in a series of previous
research papers [25], the fully explicit numerical schemes of the AC equation have performed well
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in terms of both efficiency and accuracy. The primary objective of this paper is to study the stability
condition of an explicit FDM to solve the AC model with high-order polynomial potential.

The contents of this article are as follows: In Section 2, a fully explicit computational method is
described and stability analysis is conducted for the AC equation with the high-order polynomial free
energy. In Section 3, numerical tests are performed to validate the derived theorem. In Section 4, we
conclude.

2. Numerical scheme and stability analysis

Now, we present a fully explicit numerical scheme of the AC equation with the high-order (higher
than fourth) polynomial free energies and derive its temporal step restriction, which satisfies the
maximum principle. Let Ω = (Lx,Ux) × (Ly,Uy) be the domain, and Ωh = {(xi, y j)|xi = Lx + (i −
0.5)h, y j = Ly + (i − 0.5)h, 1 ≤ i ≤ Nx, 1 ≤ j ≤ Ny} be its discrete domain, where h is spatial step
size and Nx and Ny are integers. Let φn

i j = φ(xi, y j, n∆t), where ∆t is the time step size. We define the
discrete maximum norm by ‖φn‖∞ = max

1≤i≤Nx, 1≤ j≤Ny
|φn

i j|. The AC model (1.1) is discretized by using an

explicit method as follows:

φn+1
i j − φ

n
i j

∆t
=

(φn
i j)

2α−1
(
1 − (φn

i j)
2α

)
αε2 +

φn
i+1, j + φn

i−1, j + φn
i, j+1 + φn

i, j−1 − 4φn
i j

h2 , (2.1)

where we use a 5-point stencil for the discrete Laplacian operator. We can use the 9-stencil isotropic
finite difference scheme [26] for the isotropic solutions. Here, we use the homogeneous Neumann
boundary condition:

φn
i0 = φn

i1, φ
n
i,Ny+1 = φn

iNy
for i = 1, . . . ,Nx and φn

0 j = φn
1 j, φ

n
Nx+1, j = φn

Nx j for j = 1, . . . ,Ny.

Now, we shall prove the following maximum principle theorem of the fully explicit scheme for the
AC equation with high-order polynomial potentials.

Theorem 1. Assume that the initial condition satisfies ‖φ0‖∞ ≤ 1. Then, the fully explicit numerical
method (2.1) maintains the boundedness of the numerical solutions at any discrete time:

‖φn+1‖∞ ≤ 1, for n ≥ 0,

if the temporal step size satisfies

∆t ≤
ε2h2

2
(
h2 + 2ε2) . (2.2)

Proof. We have ‖φ0‖∞ ≤ 1 by the assumption. By mathematical induction, suppose that ‖φn‖∞ ≤ 1.
The explicit numerical method for the AC model (2.1) can be reformulated as follows:

φn+1
i j = φn

i j + ∆t
( (φn

i j)
2α−1

(
1 − (φn

i j)
2α

)
αε2 +

φn
i−1, j + φn

i+1, j + φn
i, j−1 + φn

i, j+1 − 4φn
i j

h2

)
. (2.3)

Let us first consider the following case:
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Case 1.

(φn
i j)

2α−1
(
1 − (φn

i j)
2α

)
αε2 +

φn
i−1, j + φn

i+1, j + φn
i, j−1 + φn

i, j+1 − 4φn
i j

h2 ≥ 0. (2.4)

In Eq (2.3), we have φn+1
i j ≥ −1. From Eq (2.3), we can derive the following inequality:

φn+1
i j ≤ φ

n
i j + ∆t

 (φn
i j)

2α−1
(
1 − (φn

i j)
2α

)
αε2 +

4 − 4φn
i j

h2

 . (2.5)

We want to determine the condition for ∆t such that

φn
i j + ∆t

 (φn
i j)

2α−1
(
1 − (φn

i j)
2α

)
αε2 +

4 − 4φn
i j

h2

 ≤ 1.

Then, it can be reformulated as

∆t(1 − φn
i j)

 (φn
i j)

2α−1
(
1 + φn

i j + · · · + (φn
i j)

2α−1
)

αε2 +
4
h2

 ≤ 1 − φn
i j. (2.6)

If φn
i j = 1, the time step is free from any constraints; and otherwise, i.e., φn

i j < 1, by dividing both sides
of (2.6) by (1 − φn

i j) > 0, we have

∆t

 (φn
i j)

2α−1
(
1 + φn

i j + · · · + (φn
i j)

2α−1
)

αε2 +
4
h2

 ≤ 1.

Hence, ∆t is subject to the following restriction:

∆t ≤
αε2h2

h2(φn
i j)2α−1

(
1 + φn

i j + · · · + (φn
i j)2α−1

)
+ 4αε2

.

Here, because
∣∣∣φn

i j

∣∣∣ ≤ 1, we derive the following condition:

∆t ≤
ε2h2

2
(
h2 + 2ε2) .

Hence, when ∆t ≤ 0.5ε2h2/
(
h2 + 2ε2

)
, we have ‖φn+1‖∞ ≤ 1. Next, let us consider the following case:

Case 2.

(φn
i j)

2α−1
(
1 − (φn

i j)
2α

)
αε2 +

φn
i−1, j + φn

i+1, j + φn
i, j−1 + φn

i, j+1 − 4φn
i j

h2 < 0. (2.7)

From Eq (2.3), φn+1
i j ≤ 1 always holds true. From Eq (2.3), we get the following inequality:

φn
i j + ∆t

 (φn
i j)

2α−1
(
1 − (φn

i j)
2α

)
αε2 −

4 + 4φn
i j

h2

 ≤ φn+1
i j . (2.8)
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From (2.8), to satisfy that −1 ≤ φn+1
i j , we consider

−1 ≤ φn
i j + ∆t(1 + φn

i j)

 (φn
i j)

2α−1
(
1 − (φn

i j)
α
) (

1 − φn
i j + · · · + (−1)α−1(φn

i j)
α−1

)
αε2 −

4
h2

 . (2.9)

It can be reformulated as

−(1 + φn
i j) ≤ ∆t(1 + φn

i j)

 (φn
i j)

2α−1
(
1 − (φn

i j)
α
) (

1 − φn
i j + · · · + (−1)α−1(φn

i j)
α−1

)
αε2 −

4
h2

 . (2.10)

If φn
i j = −1, the time step is free from any constraints; and otherwise, i.e., φn

i j > −1, by dividing both
sides of Eq (2.10) by −(1 + φn

i j) < 0, we have

∆t

 4
h2 −

(φn
i j)

2α−1
(
1 − (φn

i j)
α
) (

1 − φn
i j + · · · + (−1)α−1(φn

i j)
α−1

)
αε2

 ≤ 1. (2.11)

If−1 ≤ φn
i j ≤ 1, since 0 ≤

(
1 − (φn

i j)
α
) (

1 − φn
i j + · · · + (−1)α−1(φn

i j)
α−1

)
≤ 2α, we obtain the following

inequality as

∆t
(

4
h2 +

2
ε2

)
≤ 1. (2.12)

Thus, we derive the following condition:

∆t ≤
h2ε2

2(h2 + 2ε2)
. (2.13)

Therefore, ∆t ≤ 0.5h2ε2/(h2 + 2ε2) results in ‖φn+1‖∞ ≤ 1. �

We note that the case of α = 1 was proved in [27]. Here, we generalized the stability of
the numerical methods of the AC model with high-order polynomial potentials for all α ≥ 1 by
mathematical induction. Additionally, this time step constraint can be evaluated by using Lemma 3.7
in [28].

Next, we verify that the time step size condition derived from Theorem 1 is optimal; namely, the
bound is the maximum time step size that satisfies the maximum principle. Let

∆tmax =
ε2h2

2(h2 + 2ε2)

be the least upper bound of the time steps that satisfy the maximum principle for the AC equation.
To verify ∆tmax is optimal, let us assume ∆t > ∆tmax. Then, we have ∆t > ∆tmax, which implies
0 < ∆tmax/∆t < 1. Let us consider the following polynomial function on (0, 1):

f (ψ) =
4αε2ψ + h2ψ2α(1 + ψ + ψ2 + · · · + ψ2α−1)

2α(h2 + 2ε2)
,
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which is a strictly monotonically increasing function because f ′(ψ) > 0 on (0, 1). Because f (0) = 0,
f (1) = 1, and f (ψ) is continuous, there exists a unique 0 < ψ < 1 satisfying ∆tmax/∆t = f (ψ). Using
this obtained value of ψ, let us consider an initial condition on Ωh as follows:

φ(xi, y j, 0) =

ψ, if i = p, j = q,

1, otherwise,

where 1 < p < Nx and 1 < q < Ny. From Eq (2.3), we have

φ1
pq = φ0

pq + ∆t
( (φ0

pq)2α−1
(
1 − (φ0

pq)2α
)

αε2 +
φ0

p+1,q + φ0
p−1,q + φ0

p,q+1 + φ0
p,q−1 − 4φ0

pq

h2

)

= ψ +
∆tmax

f (ψ)

(ψ2α−1
(
1 − ψ2α

)
αε2 +

4 − 4ψ
h2

)

= ψ +
αε2h2

4αε2ψ + h2ψ2α(1 + ψ + · · · + ψ2α−1)

ψ2α−1
(
1 − ψ2α

)
αε2 +

4 − 4ψ
h2


= ψ +

1
ψ
− 1 > 1,

which implies that the maximum principle is not satisfied for any time step sizes larger than the
maximum time step size ∆tmax. Therefore, we can conclude that ∆tmax is the optimal bound.

3. Computational experiments

In this section, we perform several characteristic computational tests to validate the maximum
principle property, motion by mean curvature, and the effect of parameter α on the dynamics of the
equation.

3.1. Convergence test

Before conducting computational experiments, we investigate the accuracy of the numerical
scheme. Consider the following initial condition:

φ(x, y, 0) = cos(2πx) cos(2πy) (3.1)

in the computational domain Ω = (−1, 1)×(−1, 1). The parameters used to investigate spatial accuracy
are ε = 1/32, ∆t = ε2(1/512)2/(2((1/512)2 + 2ε2)), and T = 2000∆t. We use the relative error. Table 1
shows the spatial error and convergence rate. When h = 1/32, the error is the relative error between
using h = 1/32 and h = 1/16.
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Table 1. The spatial error and convergence rate.

h = 1/32 h = 1/64 h = 1/128 h = 1/256

m = 1
error 6.94631e-03 1.74150e-03 4.35750e-04 1.08960e-04
rate 1.996 1.999 2.000

m = 2
error 5.26517e-03 1.31358e-03 3.28425e-04 8.21080e-05
rate 2.003 2.000 2.000

m = 3
error 4.95124e-03 1.24355e-03 3.10964e-04 7.77460e-05
rate 1.993 2.000 2.000

The temporal accuracy is also investigated using the same initial condition (3.1). The other
parameters are used as follows: Nx = Ny = 210, ε = h, ∆tmax = ε2h2/(2(h2 + 2ε2)), and T = 100∆tmax.
Table 2 provides the temporal error and convergence rate.

Table 2. The temporal error and convergence rate.

∆t = ∆tmax ∆t = ∆tmax/2 ∆t = ∆tmax/4 ∆t = ∆tmax/8

m = 1
error 3.03760e-08 1.70626e-08 8.95919e-09 4.58087e-09
rate 0.832 0.929 0.968

m = 2
error 3.47939e-03 1.75910e-03 8.84523e-04 4.43520e-04
rate 0.984 0.992 0.996

m = 3
error 1.57539e-03 7.93956e-04 3.98577e-04 1.99693e-04
rate 0.989 0.994 0.997

Consequently, it was found that the method has second-order accuracy in space and first-order
accuracy in time.

3.2. Maximum principle

We consider the maximum principle of the fully explicit method with ∆tmax. The random initial
condition is given as follows:

φ(x, y, 0) = 0.5 rand(x, y), (x, y) ∈ Ω = (−1, 1) × (−1, 1),

where rand(x, y) is a random value between −1 and 1. Here, the parameters used are α = 1, h = 0.02,
ε = h, and a final time T = 2000∆tmax. Figure 1 displays the temporal progressions of the highest and
lowest values of φ, using time step sizes ∆t = ∆tmax and ∆t = 1.21∆tmax. When employing a time step
greater than ∆tmax, it is confirmed that the φ value exceeds the bounds of −1 and 1.

AIMS Mathematics Volume 9, Issue 7, 19332–19344.



19339

0 0.02 0.04 0.06 0.08 0.1 0.12

-1

-0.5

0

0.5

1

Figure 1. Temporal progressions of the highest and lowest values of φn using ∆t = ∆tmax and
∆t = 1.21∆tmax.

3.3. Motion by mean curvature

Motion by mean curvature in the AC equation means the evolution of interfaces between different
phases. It describes how the interface between two distinct phases evolves over time due to the
minimization of the total interface energy. The motion is governed by the mean curvature of the
interface, which tends to smooth out irregularities and minimize the interface area. This phenomenon
plays a very important role in various physical processes, including phase separation, pattern formation,
and material microstructure evolution. We consider the motion by mean curvature using the fully
explicit scheme of the AC equation with a high-order polynomial potential. The initial condition on
the computational domain Ω = (−1, 1) × (−1, 1) is defined as

φ(x, y, 0) = tanh

r −
√

x2 + y2

√
2ε

 .
We used the following parameters: Nx = Ny = 128, α = 3, r = 0.5, ε = 0.013, ∆t = 0.5h2ε2/(h2 + 2ε2),
and Nt = 3400. The analytic radius is defined as R(t) =

√
r2 − 2t. Figure 2 shows the temporal

evolution of the theoretical radius R(t) and numerical radius with the zero-level filled contours of
the numerical solutions at t = 560∆t, 1600∆t, and 3100∆t. From the computational experiment, it
becomes evident that the numerical results demonstrate a strong correspondence with the theoretical
radius, indicating a high level of agreement between the two results.

0 0.02 0.04 0.06 0.08 0.1 0.12

0

0.1

0.2

0.3

0.4

0.5

-0.5 0 0.5

-0.5

0

0.5

-0.5 0 0.5

-0.5

0

0.5

-0.5 0 0.5

-0.5

0

0.5

Figure 2. Temporal evolution of the radius R(t) and numerical radius with the zero-level
filled contours of the numerical solutions at t = 560∆t, 1600∆t, and 3100∆t.
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3.4. Effect of α on the dynamics of phase-field

Next, we consider the effect of α on the dynamics of the phase-field of separated four squares as
an initial condition on the computational domain φ = (0, 2π) × (0, 2π) with the following numerical
parameters: Nx = Ny = 256, h = 2π/256, and ∆t = 2.0×10−5. The initial condition is given as follows:

φ(x, y, 0) =


1, if (x, y) ∈ (15h, 140h) × (15h, 120h) ∪ (15h, 78h) × (132h, 237h)

∪ (152h, 237h) × (15h, 120h) ∪ (90h, 237h) × (132h, 237h),
−1, otherwise.

Figures 3(a),(b) show the temporal evolution of the zero-level filled contour representing the numerical
solution with α = 1 and α = 10, respectively. We note that when α = 1, the proposed model reduces to
the conventional AC equation with fourth-order polynomial free energy. In Figure 3(a), the separated
four squares merge into one structure. Conversely, for α = 10, the four squares shrink individually
without merging, as shown in Figure 3(b). Here, ε = 0.0512 is used for α = 1, and ε = 0.0085 is used
for α = 10.

(a)

(b)

t = 0 t = 8000∆t t = 22000∆t t = 34000∆t
Figure 3. Temporal evolutions of the zero-level filled contour represent the numerical
solution with (a) α = 1 and (b) α = 10, where filled regions indicate positive values.

4. Conclusions

In this paper, we presented a detailed stability analysis of the fully explicit finite difference scheme
to solve the AC equation with a high-order polynomial free energy, which was recently proposed to
preserve a more intricate structure of interfaces. To demonstrate the accuracy and optimal estimation
of our stability limitations, we conducted a series of numerical experiments using the derived time step
formulas that ensure the maximum principle. The obtained time step estimation, which guarantees
stability, can be useful for applying the AC equation in various practical applications, such as data
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classification, image inpainting, and image segmentation. In data classification, for instance, the
equation’s stability ensures robust and accurate categorization of complex datasets. In the context
of image inpainting, where missing or damaged portions of images are reconstructed, the stability
provided by our estimation enhances the fidelity of the inpainting process. Similarly, in image
segmentation tasks aimed at partitioning images into meaningful regions, the reliability of the AC
equation enables precise description of boundaries. In conclusion, the stability contributions outlined
in this paper not only advance the theoretical understanding of stability in finite difference schemes but
also provide the methodology for practical implementations across a range of applications.

Appendix

The following MATLAB code is used for the numerical simulation as shown in Figure 2 and can be
accessed from the corresponding author’s webpage: https://mathematicians.korea.ac.kr/cfdkim/open-
source-codes/.

Nx = 128; xL = -1; xR = 1; h = (xR-xL)/Nx; yL = -1; yR = 1; Ny = round((yR-yL)/h);
x = linspace(xL-0.5*h,xR+0.5*h,Nx+2); y = linspace(yL-0.5*h,yR+0.5*h,Ny+2);
alpha = 3; ep = 0.013; ep2 = alpha*epˆ2; dt = hˆ2*epˆ2/(2*(hˆ2+2*epˆ2)); Nt = 3400;
r = 0.5; phi = tanh((r-sqrt(x'.ˆ2+y.ˆ2))/(sqrt(2)*ep));
for it = 1:Nt
phi(1,:) = phi(2,:); phi(end,:) = phi(end-1,:);
phi(:,1) = phi(:,2); phi(:,end) = phi(:,end-1);
phi(2:end-1,2:end-1) = phi(2:end-1,2:end-1) ...

+dt*(phi(2:end-1,2:end-1).ˆ(2*alpha-1).*(1-phi(2:end-1,2:end-1).ˆ(2*alpha))/ep2 ...
+(phi(3:end,2:end-1)+phi(1:end-2,2:end-1)+phi(2:end-1,3:end)+phi(2:end-1,1:end-2) ...
-4*phi(2:end-1,2:end-1))/hˆ2);

analytic(it) = sqrt(rˆ2-2*dt*it);
figure(1); clf; hold on; box on; grid on
[c d] = contourf(x,y,phi,[0 0],'facecolor',[0.8500 0.3250 0.0980]);
axis image; axis([-0.5 0.5 -0.5 0.5]); drawnow;
radius(it) = mean(sqrt(sum(c(:,2:end).ˆ2)));
end
figure(2); clf; hold on; box on;
plot([0:Nt]*dt, [r real(analytic)],'MarkerIndices',[1:200:3400])
plot([0:Nt]*dt, [r radius],'o-','MarkerIndices',[100:200:3400]);
axis([0 dt*Nt 0 0.5]); leg = legend('Analytic radius','Numerical radius');
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