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1. Introduction

Fractional-order differential and integral equations represent wide applications in physics,
engineering, and biomedical engineering. Nonlocal situations often arise in mathematical and physical
problems. In which the system’s behavior is influenced by multiple elements or parameters. Nonlocal
integral conditions are common in mathematical analysis when working with differential equations,
sometimes involving constraints or objectives. Fixed point theorems are valuable tools for examining
the solvability of differential equation problems extensively covered in various monographs and
publications (see [1–5] and the references therein).

Delay systems have been extensively used to describe the evolution of propagation and
transportation or population movements [6, 7]. In economic systems, decisions like investment
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strategies and the dynamics of commodity markets are spread out across time intervals, leading to the
natural occurrence of delays. In the 19th century, Euler, Lagrange, and Laplace delved into the realm
of delayed differential equations. Subsequently, in the late 1930s and early 1940s, Voltaire introduced
various delayed differential equations while researching the predator-prey model, becoming the first to
systematically investigate these equations.

The pantograph differential equation is a type of delay differential equation initially developed
through the study of an electric locomotive [8]. Mahler introduced pantograph equations in 1940
as part of his Number Theory [9]. The term “pantograph” originated from the work of Ockendon and
Taylor, who examined the electric locomotive’s catenary system. Their objective was to formulate an
equation for analyzing the movement of a pantograph head on an electric locomotive that operates
using a trolley overhead wire [8]. Kato and Mcleod [10] investigated the asymptotic properties and
stability of solutions to the pantograph equation u‘(t) = au(kt) + bu(t).

A pantograph (or “pan” or “panto”) is a device installed on the roof of an electric train, tram, or
electric bus to gather power by making contact with an overhead line [11]. An important application
of the pantograph appears in engineering, particularly in designing machines and mechanisms that
require precise scaling and copying of movements (see [12–14]). For instance, a pantograph can be
utilized to move in a specific manner. Additionally, pantographs find relevance in electrodynamics [9]
and number theory [15]. In 1971, Ockendon and Taylor [8] researched how electric current is collected
by the pantograph of an electric locomotive using a delay equation, now known as the pantograph
equation. Since then, numerous researchers have explored and applied it across various mathematical
and scientific domains such as number theory, probability, electrodynamics, and medicine, as seen
in [8, 16, 17] and the references therein.

Much research has been conducted on fractional pantograph equations due to their significance in
various research areas. For instance, in [18], Balachandran and Kiruthika examined the existence of
solutions. Additionally, in [19], Jalilian and Ghasemi studied a fractional integro-differential equation
of pantograph type along with suitable initial conditions.

Let C(I) = C[0, 1] be the class of continuous functions defined on I = [0, 1], and the norm of
x ∈ C(I) is defined by ‖x‖C = sup

t∈I
|x(t)|.

Inspired by contemporary literature, we consider the nonlocal issue of the pantograph equation via
Caputo fractional-order derivative Dς, ς ∈ {α, β, ρ},

dx
dt

= f (t, ux(t), x(t),Dαx(γt)), t ∈ (0, 1], γ ∈ (0, 1), (1.1)

satisfying

x(τ) = x0 +

∫ 1−τ

0
h(s, x(s),Dβx(γs))ds, τ ∈ (0, 1] (1.2)

equipped with the fractal-fractional feedback control

dux(t)
dtδ

= −λux(t) + g(t, x(t),Dρx(γt)), u0 = ux(0), λ ≥ 0, δ ∈ (0, 1], (1.3)

where α, β, ρ ∈ (0, 1], τ is a fixed parameter and d
dtδ denotes the fractal derivative of order δ (for

more information on fractal derivatives, refer to [20, 21]).
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In this study, we explore the presence of solutions x ∈ C(0, 1] to the problem (1.1)–(1.3). The
necessary conditions for the uniqueness of the solution will be provided. The continuous dependence
of the unique solution x ∈ C(0, 1] of (1.1) and (1.2) on y(t) =

dx(t)
dt , the function h, and the parameter

x0 will be demonstrated. The Hyers-Ulam stability of the problem (1.1)–(1.3) will be examined. The
feedback control problem of the linear version of the pantograph equation (Ambartsumian)

dx
dt

= aux(t) + bx(t) + cDαx(γt), t ∈ (0, 1], (1.4)

x(τ) = x0 +

∫ 1−τ

0
h(s, x(s),Dβx(γs))ds, τ ∈ (0, 1] (1.5)

equipped with the fractal-fractional feedback control (1.3) will be addressed. The continuation of
α, β→ 1 will be established. We outline the key contributions of this article as follows:

• We examine the feedback control problem of the fractional pantograph differential equation with
arbitrary fractional orders (1.1) and (1.2) with the fractal-fractional feedback control (1.3).
• We explore the feedback control problem of the linear version of the pantograph (Ambartsumian)

equations (1.4) and (1.5) with the fractal-fractional feedback control (1.3).

This paper enhances the qualitative analysis of the feedback control fractional pantograph
differential equation problem. The paper’s structure is as follows: Section 2 covers key features, and
demonstrates the existence-uniqueness of the solution, and Section 3 explores Ulam Hyers stability
(UHRS) and the continuous dependence on some data. Furthermore, Section 4 presents a special case
and an example. Finally, Section 5 provides a conclusion.

2. Main result

The problem (1.1)–(1.3) will be investigated under the assumptions:

(i) The function f : I × R3 → R is measurable in t ∈ I for all ui, vi,wi ∈ R, i = 1, 2, and satisfies the
Lipschitz condition with a positive Lipschitz constant b

| f (t, u1, v1,w1) − f (t, u2, v2,w1)| ≤ b(|u1 − u2| + |v1 − v2| + |w1 − w2|).

Observation 1. Based on assumption (i), we have

| f (t, u1, v1,w1)| − | f (t, 0, 0, 0)| ≤ | f (t, u1, v1,w1) − f (t, 0, 0, 0)| ≤ b(|u1| + |v1| + |w1|).

This implies that

| f (t, u1, v1,w1)| ≤ a∗ + b(|u1| + |v1| + |w1|), where a∗ = sup
t∈I
| f (t, 0, 0, 0)|.

(ii) h : I × R2 → R is measurable in t ∈ I for every u, v ∈ R and continuous in u, v ∈ R for every
t ∈ I. There exist a function a2 ∈ L1(I) and a positive constant b2 such that

|h(t, u, v)| ≤ a2(t) + b2(|u| + |v|), sup
t∈I

∫ t

0
|a2(s)|ds ≤ M.
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(iii) g : I × R2 → R, is continuous function for every u, v ∈ R, such that

|g(t, u, v)| ≤ k[|u| + |v|] + m, where m = sup
t∈I
|g(t, 0, 0)|.

(iv) r1 and r2 represent positive solutions of the two simultaneous equations:

|x0| + M + b2(r2 + γ r1) + 2r1 = r1,

a∗ + b1r2 + b1(w + w1 + w2 r2 + w3 + w4) + 2γr1b1 = r2.

Additionally, the condition b1(1 + w2) < 1 is satisfied.

Let X be the Banach space consisting of all pairs (x, y) where x and y are functions in the space
C(I). The norm of an element (x, y) in X is defined as the sum of the sup norms of x and y in C(I)
respectively.

The following lemma shows that the feedback control problem described in Eqs (1.1) and (1.2)
equipped with a fractal feedback control (1.3) is equivalent to its respective integral equations.

Lemma 2.1. If the solution of (1.1)–(1.3) exists, it can be expressed by the following coupled system

x(t) = x0 +

∫ 1−τ

0
h(s, x(s), γI1−βy(γs))ds −

∫ τ

0
y(s)ds +

∫ t

0
y(s)ds, (2.1)

y(t) = f (t, ux(s), x(t), γI1−αy(γt)), (2.2)

along with the integral feedback equation

ux(t) = u0e−λtδ + δ

∫ t

0
e−λ(tδ−sδ) sδ−1 g(s, x(s), γI1−ρy(γs))ds, u0 = ux(0). (2.3)

Proof. Let x represent the solution of the problem (1.1)–(1.3). Take y(t) = d
dt x(t), then

x(γt) = x(0) +

∫ γt

0
y(s)ds, (2.4)

d
dt

x(γt) = γy(γt). (2.5)

Applying the Riemann-Liouville fractional integral operators I1−α, I1−β and I1−ρ to both sides of (2.5),
and we get

Dαx(γt) = I1−αdx(γt)
dt

= γI1−αy(γt), (2.6)

Dβx(γt) = I1−βdx(γt)
dt

= γI1−βy(γt), (2.7)

and

Dρx(γt) = I1−ρdx(γt)
dt

= γI1−ρy(γt).
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Using the substitutions of Dαx(γt), Dβx(γt), and Dρx(γt) in the problem (1.1)-(1.2), we obtain the
representation (2.1)-(2.2).

On the contrary, assume x is a solution of (2.1) and differentiate both sides of (2.1). We get

dx
dt

= y(t) = f (t, ux(t), x(t),Dαx(γt)), t ∈ (0, 1]

Put t = τ in Eq (2.1), then we can deduce

x(τ) = x0 +

∫ 1−τ

0
h(s, x(s),Dβx(γs))ds, τ ∈ (0, 1].

This demonstrates the equivalence between the problem (1.1)-(1.2) and the problem (2.1)-(2.2).
Now, the fractal-fractional feedback control (1.3), can be expressed as

dux(t)
dt

dt
dtδ

= −λux(t) + g(t, x(t),Dρx(γt)),

then

1
δ · tδ−1

dux(t)
dt

= −λux(t) + g(t, x(t),Dρx(γt)),

therefore,

dux(t)
dt

= −λ δ · tδ−1 ux(t) + δ · tδ−1g(t, x(t),Dρx(γt)).

Multiply both terms by eλtδ

eλtδ dux(t)
dt

+ eλtδλ δ · tδ−1 ux(t) = eλtδδ · tδ−1g(t, x(t),Dρx(γt)),

and

d
dt

(
ux(t) · eλtδ) = eλtδδ · tδ−1g(t, x(t),Dρx(γt)).

Integrate with respect to t, then

ux(t) · eλtδ = ux(0) +

∫ t

0
δ · sδ−1 eλsδg(s, x(s),Dρx(γs)) ds.

Hence

ux(t) = u0 e−λtδ +

∫ t

0
δ · sδ−1 e−λ(tδ−sδ)g(s, x(s),Dρx(γs)) ds.

Substitute for Dρx(γt), and we obtain

ux(t) = u0 e−λtδ +

∫ t

0
δ · sδ−1 e−λ(tδ−sδ)g(s, x(s), γI1−ρy(γs))ds.

For any real-valued function x, the solution of the fractal differential feedback control (1.3) denoted as
ux(t) can be expressed as shown in (2.3). �
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Lemma 2.2. The control variable ux(t) satisfies (1.3) and can be expressed by (2.3), then the solution
ux(t) is bounded for u0 > 0.

Proof.

|ux(t)| ≤ u0|e−λtδ | + δ

∫ t

0
e−λ(tδ−sδ) sδ−1 [k (|ux(s)| + |x(s)| + |γI1−ρy(γs))|) + m]ds

≤ w + k
∫ t

0
e−λ(tδ−sδ)sδ−1|ux(s)|ds + k

∫ t

0
e−λ(tδ−sδ)sδ−1‖x‖ds

+ kγ
∫ t

0
e−λ(tδ−sδ)sδ−1I1−ρ‖y‖ds + k

∫ t

0
e−λ(tδ−sδ)sδ−1m ds

≤ w + sup
t∈I

∫ t

0
e−λ(tδ−sδ)sδ−1k |ux(s)|ds + sup

t∈I

∫ t

0
e−λ(tδ−sδ)sδ−1 k ‖x‖ ds

+ kγ sup
t∈I

∫ t

0
e−λ(tδ−sδ)sδ−1I1−ρ‖y‖ds + sup

t∈I

∫ t

0
e−λ(tδ−sδ)sδ−1m ds

≤ w + w1 + w2 r2 + w3 + w4,

where

sup
t∈I

u0 e−λtδ = w,

sup
t∈I

∫ t

0
e−λ(tδ−sδ) sδ−1 k|ux(s)|ds = w1,

sup
t∈I

∫ t

0
e−λ(tδ−sδ) sδ−1 ‖x‖ds = w2,

sup
t∈I

∫ t

0
e−λ(tδ−sδ) sδ−1 m ds = w3,

sup
t∈I

kγ
∫ t

0
e−λ(tδ−sδ)sδ−1I1−ρ‖y‖ds = w4,

and

|ux1(t) − ux2(t)|

≤ δ

∫ t

0
e−λ(tδ−sδ) sδ−1 |g(s, ux1(s), x1(s), γI1−ρy(γs)) − g(s, ux2(s), x2(s), γI1−ρy(γs))|ds

≤ k
∫ t

0
e−λ(tδ−τδ) sδ−1 (

|ux1(s) − ux2(s)| + |x1(s) − x2(s)|
)
ds

≤ k
e−λ

δλ

(
‖ux1 − ux2‖ + ‖x1 − x2‖

)
.

Hence,

‖ux1 − ux2‖ ≤ ∆ ‖x1 − x2‖,

with k
e−λ

δλ
< 1 and ∆ =

k e−λ
δλ

(1 − k e−λ
δλ

)
. �
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2.1. Existence of the solution

Here, we demonstrate the existence of a continuous solution for the problem (1.1)-(1.2) equipped
with a fractal differential constraint (1.3). To achieve this, we introduce the following theorem.

Theorem 2.3. Assuming conditions (i)–(iv) are met, then the constrained problem (1.1)–(1.3) has at
least one solution x ∈ C(I).

Proof. Define an operator F as F(x, y) = (F1y, F2x), where

F1y(t) = x0 +

∫ 1−τ

0
h(s, x(s), γI1−βy(γs))ds −

∫ τ

0
y(s)ds +

∫ t

0
y(s)ds,

F2x(t) = f (t, ux(t), x(t), γI1−αy(γt)).

Define set U ⊂ X as

U = {u = (x, y) ∈ X : ‖x‖C ≤ r1, ‖y‖C ≤ r2},

then ‖(x, y)‖X = ‖x‖C + ‖y‖C ≤ r where r = r1 + r2, for positive values of r1 and r2 satisfying
condition (iv).

Obviously, U is a closed convex bounded set. For (x, y) ∈ U and t ∈ I, we have:

|F1y(t)| =

∣∣∣∣∣x0 +

∫ 1−τ

0
h
(
s, x(s), γI1−βy(γs)

)
ds −

∫ τ

0
y(s)ds +

∫ t

0
y(s)ds

∣∣∣∣∣
≤ |x0| +

∫ 1−τ

0
|h(s, x(s), γI1−βy(γs)|ds +

∫ τ

0
|y(s)|ds +

∫ t

0
|y(s)|ds

≤ |x0| +

∫ 1−τ

0

(
|a2(s)| + b2

(
|x(s)| + γI1−β|y(s)|

))
ds +

∫ τ

0
|y(s)|ds +

∫ t

0
|y(s)|ds

≤ |x0| +

∫ 1−τ

0

(
|a2(s)| + b2

(
r2 + r1

γ

Γ(2 − β)

))
ds + 2r1

≤ |x0| + M + b2

(
r2 +

r1 γ

Γ(2 − β)

)
+ 2r1,

and

‖F1y‖C ≤ |x0| + M + b2(r2 + γ r1) + 2r1 = r1.

In a similar manner,

|F2x(t)| =
∣∣∣∣∣ f (t, ux(t), x(t), γI1−αy(γt)

)∣∣∣∣∣
≤ |a1(t)| + b1

(
|ux(t)| + |x(t)| + γI1−α|y(γt)|

)
≤ a∗ + b1r2 + b1(w + w1 + w2 r2 + w3 + w4) +

γr1b1

Γ(2 − α)
,
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and

‖F2x‖ ≤ a∗ + b1r2 + b1(w + w1 + w2 r2 + w3 + w4) + 2γr1b1 = r2.

Therefore,

‖FU‖X = ‖F(x, y)‖X = ‖(F1y, F2x)‖X = ‖F1y‖C + ‖F2x‖C = r1 + r2 = r.

For each point u = (x, y) ∈ U, the function F(u) is also in U, showing that F maps the set U into
itself. This implies that the set of functions {FU} is uniformly bounded on the interval I.

Now, we show that the class F1y is equi-continuous. Let t1, t2 ∈ I such that t2 > t1 and | t1 − t2 |≤ δ,
then

|F1y(t2) − F1y(t1)| =
∣∣∣∣∣x0 +

∫ 1−τ

0
h
(
s, x(s), λI1−βy(λs)

)
ds −

∫ τ

0
|y(s)|ds +

∫ t2

0
y(s)ds

− x0 −

∫ 1−τ

0
h
(
s, x(s), λI1−βy(λs)

)
ds +

∫ τ

0
|y(s)|ds −

∫ t1

0
y(s)ds

∣∣∣∣∣
≤

∫ t2

0
|y(s)|ds −

∫ t1

0
|y(s)|ds

≤

∫ t2

t1
|y(s)|ds.

This demonstrates that the class of functions {F1y} is equi-continuous on the interval I in the space of
continuous functions.

Similarly,

|F2x(t2) − F2x(t1)|

=

∣∣∣∣∣ f (t2, ux(t2), x(t2), γ
∫ t2

0

(t2 − s)−α

Γ(1 − α)
y(γs)ds

)
− f

(
t1, ux(t1, x(t1), γ

∫ t1

0

(t1 − s)−α

Γ(1 − α)
y(γs)ds

)∣∣∣∣∣
=

∣∣∣∣∣ f (t2, ux(t2), x(t2), γ
∫ t2

0

(t2 − s)−α

Γ(1 − α)
y(γs)ds

)
− f

(
t1, ux(t2), x(t2), γ

∫ t2

0

(t2 − s)−α

Γ(1 − α)
y(γs)ds

)
+ f

(
t1, ux(t2), x(t2), γ

∫ t2

0

(t2 − s)−α

Γ(1 − α)
y(γs)ds

)
− f

(
t1, ux(t2), x(t1), γ

∫ t2

0

(t2 − s)−α

Γ(1 − α)
y(γs)ds

)
+ f

(
t1, ux(t2), x(t1), γ

∫ t2

0

(t2 − s)−α

Γ(1 − α)
y(γs)ds

)
− f

(
t1, ux(t2), x(t1), γ

∫ t1

0

(t2 − s)−α

Γ(1 − α)
y(γs)ds

)
+ f

(
t1, ux(t2), x(t1), γ

∫ t1

0

(t2 − s)−α

Γ(1 − α)
y(γs)ds

)
− f

(
t1, ux(t2), x(t1), γ

∫ t1

0

(t1 − s)−α

Γ(1 − α)
y(γs)ds

)∣∣∣∣∣
+ f

(
t1, ux(t2), x(t1), γ

∫ t1

0

(t1 − s)−α

Γ(1 − α)
y(γs)ds

)
− f

(
t1, ux(t1), x(t1), γ

∫ t1

0

(t1 − s)−α

Γ(1 − α)
y(γs)ds

)∣∣∣∣∣
≤

∣∣∣∣∣ f (t2, ux(t2), x(t2), γ
∫ t2

0

(t2 − s)−α

Γ(1 − α)
y(γs)ds

)
− f

(
t1, ux(t2), x(t2), γ

∫ t2

0

(t2 − s)−α

Γ(1 − α)
y(γs)ds

)∣∣∣∣∣
+

∣∣∣∣∣ f (t1, ux(t2), x(t2), γ
∫ t2

0

(t2 − s)−α

Γ(1 − α)
y(γs)ds

)
− f

(
t1, ux(t2), x(t1), γ

∫ t2

0

(t2 − s)−α

Γ(1 − α)
y(γs)ds

)∣∣∣∣∣
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19284

+

∣∣∣∣∣ f (t1, ux(t2), x(t1), γ
∫ t2

0

(t2 − s)−α

Γ(1 − α)
y(γs)ds

)
− f

(
t1, ux(t2), x(t1), γ

∫ t1

0

(t2 − s)−α

Γ(1 − α)
y(γs)ds

)∣∣∣∣∣
+

∣∣∣∣∣ f (t1, ux(t2), x(t1), γ
∫ t1

0

(t2 − s)−α

Γ(1 − α)
y(γs)ds

)
− f

(
t1, ux(t2), x(t1), γ

∫ t1

0

(t1 − s)−α

Γ(1 − α)
y(γs)ds

)∣∣∣∣∣
+

∣∣∣∣∣ f (t1, ux(t2), x(t1), γ
∫ t1

0

(t1 − s)−α

Γ(1 − α)
y(γs)ds

)
− f

(
t1, ux(t1), x(t1), γ

∫ t1

0

(t1 − s)−α

Γ(1 − α)
y(γs)ds

)∣∣∣∣∣
≤ ε + b1|x(t2) − x(t1)| + γb1

∫ t2

t1

(t2 − s)−α

Γ(1 − α)
y(γt)ds + b1|ux(t2) − ux(t1)|

+ γb1

∫ t1

0

(t2 − s)−α

Γ(1 − α)
−

(t1 − s)−α

Γ(1 − α)
y(γt)ds

≤ ε + b1|ux(t2) − ux(t1)| + b1|x(t2) − x(t1)| + γb1r2

∫ t2

t1

1
Γ(1 − α)(t2 − s)α

ds

+ γb1r2

∫ t1

0

(t1 − s)α − (t2 − s)α

Γ(1 − α)(t2 − s)α(t1 − s)α
ds.

This demonstrates that the class {F2x} is equi-continuous on the interval C(I).

Fu(t2) − Fu(t1) = F(x, y)(t2) − F(x, y)(t1)
= (F1y(t2), F2x(t2)) − (F1y(t1), F2x(t1))
= (F1y(t2) − F1y(t1), F2x(t2) − F2x(t1)),

which implies that

‖Fu(t2) − Fu(t1)‖ ≤ ‖F1y(t2) − F1y(t1)‖ + ‖F2x(t2) − F2x(t1)‖.

Then, the class of functions FU is equi-continuous on X.
Thus, by the Arzela-Ascoli theorem [22], {FU} is relatively compact. Hence the operator F is

compact.
Now, we will show that the operator F is continuous.
Let (xn, yn) ∈ U such that xn → x, yn → y, then

F1yn = x0 +

∫ 1−τ

0
h
(
s, xn(s), λI1−βyn(λs)

)
ds −

∫ τ

0
yn(s)ds +

∫ t

0
yn(s)ds,

F2xn = f
(
t, uxn(t), xn(t), γI1−αyn(γt)

)
,

lim
n→∞

F1yn = x0 + lim
n→∞

∫ 1−τ

0
h
(
s, xn(s), λI1−βyn(λs)

)
ds − lim

n→∞

∫ τ

0
yn(s)ds + lim

n→∞

∫ t

0
yn(s)ds,

and

lim
n→∞

F2xn(t) = lim
n→∞

f
(
t, uxn(t), xn(t), γI1−αyn(γt)

)
.

Since f , h are continuous in x, y, then

f
(
t, uxn(t), xn(t), I1−αyn(s)

)
→ f

(
t, ux(t), x(t), γI1−αy(γt)

)
,
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h
(
s, xn(s), λI1−βyn(λs)

)
→ h

(
s, x(s), λI1−βy(λs)

)
.

Since

|h(t, x, y)| ≤ a2(t) + b2(|x| + |y|),

and regarding to the Lebesgue dominated convergence theorem [22], we can derive

lim
n→∞

F1yn(t) = x0 +

∫ 1−τ

0
h(s, x(s), λI1−βy(λs))ds −

∫ τ

0
y(s)ds +

∫ t

0
y(s)ds

= F1y(t).

Then F1 is continuous. Also,

lim
n→∞

F2xn(t) = f (t, ux(t), x(t), γI1−αy(γt)) = F2x(t),

and F2 is continuous. Hence,

lim
n→∞

F(xn, yn) = lim
n→∞

(F1y, F2x) = (F1y, F2x) = F(x, y).

Therefore, the function F is continuous. As all the requirements of Schauder’s fixed point theorem [22]
are met, it follows that F must have at least one fixed point u = (x, y) ∈ U. Then the coupled system of
integral equations

x(t) = x0 +

∫ 1−τ

0
h(s, x(s), λI1−βy(λs))ds −

∫ τ

0
y(s)ds +

∫ t

0
y(s)ds,

y(t) = f (t, ux(t), x(t), γI1−αy(γt)),

has a solution u = (x, y) ∈ U. Consequently, the problem (1.1)-(1.2) with a fractal differential
constraint (1.3) has a solution x ∈ C(I). �

Corollary 2.1. Let the assumptions of Theorem 2.3 be satisfied, then Dαx(γt), Dβx(γt) ∈ C(I).

Proof. From Theorem 2.3, we have y ∈ C(I). By utilizing the definition and properties of the fractional
operators [23], and making use of Eqs (2.6) and (2.7), we can conclude that

Dαx(γt) = γI1−αy(γt) ∈ C(I),
Dβx(γt) = γI1−βy(γt) ∈ C(I).

�

3. Features of the solution

3.1. Uniqueness of the solution

For the uniqueness of the solution of the problem (1.1)-(1.2) with the fractal-fractional feedback
control (1.3), we replace condition (ii) by the assumption:
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(ii*) The function h : I × R2 → R is measurable for t ∈ I for all (xi, yi) ∈ R × R, where i = 1, 2, and h
satisfies the Lipschitz condition

|h(t, x1, y1) − h(t, x2, y2)| ≤ b2(|x1 − x2| + |y1 − y2|), t ∈ I, xi, yi ∈ R

with Lipschitz constant b2 > 0.

Observation 2. From assumption (ii)∗, we obtain:

|h(t, x, y)| ≤ |h(t, 0, 0)| + b2(|x| + |y|),

and

|h(t, x, y)| ≤ a2 + b2(|x| + |y|), where a2 = sup
t∈I
|h(t, 0, 0)|, t ∈ I.

This demonstrates that assumption (ii) is satisfied.

Theorem 3.1. If the conditions of Theorem 2.3 are met, assumption (ii) is replaced by (ii)∗, and if the
inequality

b1(1 + ∆)
(
b2γ + 2)

(1 − 2γb1)(1 − b2)
< 1

holds, then the solution x ∈ C(I) of problem (1.1)-(1.2) (and, consequently, (1.4)-(1.5)) with the fractal-
fractional feedback control (1.3) is unique.

Proof. All conditions of Theorem 2.3 are met, implying that solutions to the problem (2.1)-(2.2)
with feedback control (1.3) exists. Consider u1 = (x1, y1) and u2 = (x2, y2) as two solutions of the
problem (2.1)-(2.2) with feedback control (1.3). Then, we can observe

‖(x1, y1) − (x2, y2)‖X = ‖x1 − x2, y1 − y2‖X = ‖x1 − x2‖C + ‖y1 − y2‖C.

Now,

|x1 − x2| = |x0 +

∫ 1−τ

0
h(s, x1(s), γI1−βy1(γs))ds −

∫ τ

0
y1(s)ds +

∫ t

0
y1(s)ds

− x0 −

∫ 1−τ

0
h(s, x2(s), γI1−βy2(s))ds +

∫ τ

0
y2(s)ds −

∫ t

0
y2(s)ds|

≤

∫ 1−τ

0
|h(s, x1(s), γI1−βy1(s)) − h(s, x2(s), γI1−βy2(s))|ds

+

∫ τ

0
|y1(s) − y2(s)|ds +

∫ t

0
|y1(s) − y2(s)|ds

≤ b2

∫ 1−τ

0

[
|x1(s) − x2(s)| + γI1−β|y1(γs) − y2(γs)|

]
ds

+

∫ τ

0
|y1(s) − y2(s)|ds +

∫ t

0
|y1(s) − y2(s)|ds

≤ b2‖x1 − x2‖C +
b2γ

Γ(2 − β)
‖y1 − y2‖C + 2‖y1 − y2‖C,
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then

‖x1 − x2‖C ≤
(b2γ + 2)
1 − b2

‖y1 − y2‖C.

Also

|y1 − y2| =

∣∣∣∣∣ f (t, ux1(t), x1(t), γI1−αy1(γt)
)
− f

(
t, ux2(t), x2(t), γI1−αy2(γt)

)∣∣∣∣∣
≤

∣∣∣∣∣ f (t, ux1(t), x1(t), γI1−αy1(γt)
)
− f

(
t, ux2(t), x2(t), γI1−αy1(γt)

)
+ f

(
t, ux1(t), x2(t), γI1−αy1(γt)

)
− f

(
t, ux2(t), x2(t), γI1−αy2(γt)

)∣∣∣∣∣
≤ b1‖ux1 − ux2‖C + b1‖x1 − x2‖C + b1γI1−α|y1(γt) − y2(γt)|

≤ b1 ∆ ‖x1 − x2‖C + b1‖x1 − x2‖C +
γb1

Γ(2 − α)
‖y1 − y2‖C,

≤ b1(1 + ∆)‖x1 − x2‖C + 2γb1‖y1 − y2‖C,

then

‖y1 − y2‖C ≤
b1(1 + ∆)‖x1 − x2‖C

1 − 2γb1
.

Hence,

‖x1 − x2‖C ≤
b1(1 + ∆)(b2γ + 2)
(1 − 2γb1)(1 − b2)

‖x1 − x2‖C,(
1 −

b1(1 + ∆)(b2γ + 2)
(1 − 2γb1)(1 − b2)

)
‖x1 − x2‖C ≤ 0,

this gives x1 = x2.
In a similar manner,

‖y1 − y2‖C ≤
b1(1 + ∆)
1 − 2γb1

‖x1 − x2‖C ≤
b1(1 + ∆)(b2γ + 2)
(1 − 2γb1)(1 − b2)

‖y1 − y2‖C,

‖y1 − y2‖C

(
1 −

b1(1 + ∆)
(
b2γ + 2)

(1 − 2γb1)(1 − b2)

)
≤ 0,

then y1 = y2.
Thus, the solution of the coupled system (2.1)-(2.2) with the fractal-fractional feedback control (1.3)

is unique. Consequently, the solution x ∈ C(I) of the problem (1.1)-(1.2) with a feedback control (1.3)
is also unique. �

3.2. Hyers-Ulam stability

Definition 3.1. Let the unique solution x ∈ C(I) of (1.1)-(1.2) with feedback control (1.3) exist. The
problem (1.1)–(1.3) is Hyers-Ulam stable if ∀ε > 0, ∃ δ(ε) > 0 such that for any approximate solution
xs ∈ C(I) of (1.1)-(1.2) with a feedback control (1.3) satisfying∣∣∣∣∣dxs

dt
− f (t, uxs(t), xs(t),Dαxs(γt))

∣∣∣∣∣ ≤ δ.
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Then

‖x − xs‖C ≤ ε.

Theorem 3.2. Assuming that the hypothesis of Theorem 3.1 is satisfied, the problem (1.1)-(1.2) with
feedback control (1.3) is Hyers-Ulam stable. Consequently, (1.4)-(1.5) with feedback control (1.3) is
Hyers-Ulam stable.

Proof. Let us improve ∣∣∣∣∣dxs(t)
dt
− f (t, uxs(t), xs(t),Dαxs(γt))

∣∣∣∣∣ ≤ δ,
then

−δ ≤
dxs(t)

dt
− f (t, uxs(t), xs(t),Dαxs(γt)) ≤ δ,

−δ1 ≤ ys(t) − f (t, uxs(t), xs(t), γI1−αys(γt)) ≤ δ1, ys(t) =
dxs(t)

dt
.

Now,

|y(t) − ys(t)| =

∣∣∣∣∣ f (t, , ux(t), x(t), γI1−αy(γt)) − ys(t)

− f (t, uxs(t), xs(t), γI1−αys(γt)) + f (t, uxs(t), xs(t), γI1−αys(γt))
∣∣∣∣∣

≤

∣∣∣∣∣ f (t, ux(t), x(t), γI1−αy(γt)) − f (t, uxs(t), xs(t), γI1−αys(γt))
∣∣∣∣∣

+

∣∣∣∣∣ys(t) − f (t, uxs(t), xs(t), γI1−αys(γt))
∣∣∣∣∣

≤ b1|ux(t) − uxs(t)| + b1|x(s) − xs(s)| + γb1I1−α|y(γt) − ys(γt)| + δ

≤ b1‖ux1 − ux2‖C + b1‖x − xs‖C +
(2 − α)γb1

Γ(3 − α)
‖y − ys‖C + δ

≤ b1∆ ‖x1 − x2‖C + b1‖x − xs‖C + 2γb1‖y − ys‖C + δ.

Hence,

‖y − ys‖C(1 − 2γb1) ≤ δ + b1(1 + ∆)‖x − xs‖C

and

‖y − ys‖C ≤
b1(1 + ∆)‖x − xs‖C

1 − 2γb1
+

δ

1 − 2γb1
.

Now,

|x(t) − xs(t)| =

∣∣∣∣∣x0 +

∫ 1−τ

0
h(s, x(s), γI1−βy(γs))ds −

∫ τ

0
y(s)ds +

∫ t

0
y(s)ds

− x0 −

∫ 1−τ

0
h(s, xs(s), γI1−βys(γs))ds +

∫ τ

0
ys(s)ds −

∫ t

0
ys(s)ds

∣∣∣∣∣
AIMS Mathematics Volume 9, Issue 7, 19276–19298.
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≤ b2

∫ 1−τ

0
[|x(s) − xs(s)| + γI1−β|y(γs) − ys(γs)|]ds

+

∫ τ

0
|y(s) − ys(s)|ds +

∫ t

0
|y(s) − ys(s)|ds,

≤ b2‖x − xs‖C +
b2γ

Γ(2 − β)
‖y − ys‖C + 2‖y − ys‖C

≤ b2‖x − xs‖C + b2γ‖y − ys‖C + 2‖y − ys‖C.

≤ b2‖x − xs‖C + (2 + b2γ)‖y − ys‖C,

and

‖x − xs‖C ≤
(2 + b2)‖y − ys‖C

1 − b2
.

Substituting by ‖y − ys‖C, we obtain

‖x − xs‖C ≤ (2 + b2γ)(
b1(1 + ∆)‖x − xs‖C

1 − 2γb1
+

δ

1 − 2γb1
)

≤
(2 + b2)δ
1 − 2γb1

+
(2 + b2)b1(1 + ∆)‖x − xs‖C

1 − 2γb1
,

[
1 −

( (2 + b2)b1(1 + ∆)
1 − 2γb1

)]
‖x − xs‖C ≤

(2 + b2)δ
1 − 2γb1

,

and

‖x − xs‖C ≤

(2 + b2)δ
1 − 2γb1

1 −
( (2 + b2)b1(1 + ∆)

1 − 2γb1

) .
Since

(2 + b2)b1(1 + ∆)
1 − 2γb1

≤ 1,

then

‖x − xs‖C ≤ ε.

Then, the problem (1.1)-(1.2) with feedback control (1.3) is Hyers-Ulam-stable. �

3.3. Continuous dependence on y, h, and x0

Definition 3.2. The unique solution x ∈ C(I) of (1.1)-(1.2) constrained with (1.3) depends continuously
on y, h, and x0, and if for all ε > 0, there exists δ(ε) > 0 such that

max{|y − y∗|, |h − h∗|, |x0 − x∗0| ≤ δ} ⇒ ‖x − x∗‖C ≤ ε,
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where x∗ and y∗ are the solutions of the following respectively

x∗(t) = x∗0 +

∫ 1−τ

0
h∗(s, x∗(s), γI1−βy∗(γs))ds −

∫ τ

0
y∗(s)ds +

∫ t

0
y∗(s)ds, (3.1)

y∗(t) = f
(
t, ux∗(t), x∗(t), γI1−αy∗(γt)

)
, (3.2)

and

u∗x(t) = u0e−λtδ + δ

∫ t

0
e−λ(tδ−sδ) sδ−1 g(s, x∗(s), γI1−ρy∗(γs))ds. (3.3)

Theorem 3.3. Suppose that the hypotheses of Theorem 3.1, are satisfied; then the solution x ∈ C(I)
of (1.1)-(1.2) with feedback control (1.3) (consequently, (1.4)-(1.5) with feedback control (1.3))
depends continuously on y, h, and x0).

Proof. Let x(t) and x∗(t) be the two solutions of (1.1) and (1.2), respectively, then

|x(t) − x∗(t)| =

∣∣∣∣∣x0 +

∫ 1−τ

0
h(s, x(s), γI1−βy(γs))ds −

∫ τ

0
y(s)ds +

∫ t

0
y(s)ds

− x∗0 −
∫ 1−τ

0
h∗(s, x∗(s), γI1−βy∗(γs))ds +

∫ τ

0
y∗(s)ds −

∫ t

0
y∗(s)ds

∣∣∣∣∣
≤ |x0 − x∗0| +

∣∣∣∣∣ ∫ 1−τ

0
h(s, x(s), γI1−βy(γs))ds − h∗(s, x∗(s), γI1−βy∗(γs))ds

+

∫ τ

0
y(s) − y∗(s)ds +

∫ t

0
y(s) − y∗(s)ds

∣∣∣∣∣
≤ |x0 − x∗0| +

∫ 1−τ

0
|h(s, x(s), γI1−βy(γs)) − h(s, x(s), γI1−βy∗(γs)) ds

+

∫ 1−τ

0
|h(s, x(s), γI1−βy∗(γs)) − h(s, x∗(s), γI1−βy∗(γs))|ds

+

∫ 1−τ

0
|h(s, x∗(s), γI1−βy∗(γs)) − h∗(s, , x∗(s), γI1−βy∗(γs))|ds + 2‖y − y∗‖C

≤ |x0 − x∗0| + b2

∫ 1−τ

0
(|x(s) − x∗(s)| + γI1−β|y(γs) − y∗(γs)|)ds

+ b2

∫ 1−τ

0
‖h − h∗‖Cds + 2‖y − y∗‖C

≤ δ + b2

(
‖x − x∗‖C + ‖y − y∗‖C

γ

Γ(2 − β)
+ ‖h − h∗‖C

)
+ 2‖y − y∗‖C,

‖x − x∗‖C ≤

(
δ + b2

(
‖y − y∗‖C

γ

Γ(2 − β)
+ ‖h − h∗‖C

)
+ 2‖y − y∗‖C

)
(1 − b2)−1.

Then

‖x − x∗‖C ≤

(
δ + b2δ(2 +

1
Γ(2 − β)

) + b2δ
)
(1 − b2)−1 = ε,

and, the solution x ∈ C(I) of (1.1)-(1.2) (consequently, (1.4)-(1.5)) with feedback control (1.3) depends
continuously on y, h, and x0. �
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3.4. Continuous dependence on the control variable ux

Definition 3.3. The unique solution x ∈ C(I) of (1.1)-(1.2) with feedback control (1.3) depends
continuously on the control variable ux, if for all ε > 0, there exists δ(ε) > 0 such that

max{|ux − ux∗ | ≤ δ} ⇒ ‖y − y∗‖C ≤ ε,

where x∗ and y∗ are the solutions of

x∗(t) = x∗0 +

∫ 1−τ

0
h∗(s, x∗(s), γI1−βy∗(γs))ds −

∫ τ

0
y∗(s)ds +

∫ t

0
y∗(s)ds, (3.4)

y∗(t) = f
(
t, ux∗(t), x∗(t), γI1−αy∗(γt)

)
, (3.5)

constrained to (1.3), respectively.

Proof. Let (x(t), y(t)) and (x∗(t), y∗(t)) be the two solutions of the problem (1.1)-(1.2) constrained
to (1.3), respectively, then

|y − y∗| = | f (t, ux(t), x(t), γI1−αy(γt)) − f (t, ux∗(t), x∗(t), γI1−αy∗(γt))|
≤ | f (t, ux(t), x(t), γI1−αy(γt)) − f (t, ux∗(t), x∗(t), γI1−αy(γt))
+ f (t, ux(t), x∗(t), γI1−αy(γt)) − f (t, ux∗(t), x∗(t), γI1−αy∗(γt))|
≤ b1‖ux − ux∗‖C + b1‖x − x∗‖C + b1γI1−α|y(γt) − y∗(γt)|

≤ b1 δ + b1‖x − x∗‖C +
γb1

Γ(2 − α)
‖y − y∗‖C,

≤ b1δ + b1‖x − x∗‖C + 2γb1‖y − y∗‖C.

‖y − y∗‖C ≤
b1δ + b1‖x − x∗‖C

1 − 2γb1
.

Also,

|x − x∗| = |x0 +

∫ 1−τ

0
h(s, x(s), γI1−βy(γs))ds −

∫ τ

0
y(s)ds +

∫ t

0
y1(s)ds

− x0 −

∫ 1−τ

0
h(s, x∗(s), γI1−βy∗(s))ds +

∫ τ

0
y∗(s)ds −

∫ t

0
y∗(s)ds|

≤

∫ 1−τ

0
|h(s, x(s), γI1−βy(s)) − h(s, x∗(s), γI1−βy∗(s))|ds

+

∫ τ

0
|y(s) − y∗(s)|ds +

∫ t

0
|y(s) − y∗(s)|ds

≤ b2

∫ 1−τ

0
[|x(s) − x∗(s)| + γI1−β|y(γs) − y∗(γs)|]ds

+

∫ τ

0
|y(s) − y∗(s)|ds +

∫ t

0
|y(s) − y∗(s)|ds

≤ b2‖x − x∗‖C +
b2γ

Γ(2 − β)
‖y − y∗‖C + 2‖y − y∗‖C,
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‖x − x∗‖C =
(b2γ + 2)
1 − b2

‖y − y∗‖C.

Therefore

‖y − y∗‖C ≤
b1δ

1 − 2γb1
+

b1(b2γ + 2)
(1 − 2γb1)(1 − b2)

‖y − y∗‖C.

Then

‖y − y∗‖C ≤
b1δ

1 − 2γb1

(
1 −

b1(b2γ + 2)
(1 − 2γb1)(1 − b2)

)−1

= ε.

Thus, the solution x ∈ C(I) of the problem (1.1)-(1.2) constrained with (1.3) (consequently, (1.4)-
(1.5) with feedback control (1.3)) depends continuously on feedback control ux. �

4. Special cases and examples

In this section, we analyze cases in the presence and absence of a control variable, addressing the
integer orders issue with an illustrative example.

4.1. In the presence of control variable

Here, we pinpoint specific instances that are valuable for qualitatively analyzing the nonlocal issue
of the fractional pantograph differential equation with the fractal feedback control and are essential for
various models and practical applications.

• For λ = 0, δ→ 1, then the fractional pantograph differential equation

dx
dt

= f (t, ux(t), x(t),Dαx(γt)), t ∈ (0, 1], γ ∈ (0, 1), (4.1)

x(τ) = x0 +

∫ 1−τ

0
h(s, x(s),Dβx(γs))ds, τ ∈ (0, 1], (4.2)

equipped with the fractal feedback control

dux(t)
dt

= g(t, x(t),Dρx(γs)), u0 = 0, λ ≥ 0, δ ∈ (0, 1], (4.3)

which gives

dx
dt

= f
(
t,
∫ t

0
g(s, x(s),Dρx(γs)) ds, x(t),Dαx(γt)

)
, t ∈ (0, 1], γ ∈ (0, 1), (4.4)

x(τ) = x0 +

∫ 1−τ

0
h(s, x(s),Dβx(γs))ds, τ ∈ (0, 1], (4.5)

under the assumptions of Theorem 3.3. The problem (4.4)-(4.5) depends continuously on the
functions on y, h, and x0. This case is the same result discussed in [24].
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• If we put τ = 1 in Eq (1.2), then the pantograph problem has the form

dx
dt

= f (t, ux(t), x(t),Dαx(γt)), t ∈ (0, 1], γ ∈ (0, 1), (4.6)

with backward boundary condition

x(1) = x0 (4.7)

equipped with the fractal-fractional feedback control

dux(t)
dtδ

= −λux(t) + g(t, x(t),Dρx(γt)), u0 = ux(0), λ ≥ 0, δ ∈ (0, 1], (4.8)

under the assumptions of Theorem 3.3. The pantograph backward problem (4.6)-(4.7) equipped
with the fractal-fractional feedback control (4.8) depends continuously on the functions y, h, and
on the parameter x0.

4.2. In absence of control variable

We derive specific cases in the absence of the control variable, which are valuable for the qualitative
analysis of certain functional integral equations and essential for various models and real problems.

• The pantograph problem becomes

dx
dt

= f (t, x(t),Dαx(γt)), t ∈ (0, 1], γ ∈ (0, 1), (4.9)

x(τ) = x0 +

∫ 1−τ

0
h(s, x(s),Dβx(γs))ds, τ ∈ (0, 1], (4.10)

under the assumptions of Theorem 3.3. The problem (4.9)-(4.10) depends continuously on y, h,
and x0.

4.3. Integer orders problem

Assuming the conditions of Theorem 2.3 are met, utilizing the characteristics of the fractional order
derivative [23], we derive

lim
α→1

dx
dt

= lim
α→1

f (t, ux(t), x(t),Dαx(γt)),

yielding

dx
dt

= f (t, ux(t), x(t), lim
α→1

Dαx(γt))

and

dx
dt

= f (t, ux(t), x(t),
dx(γt)

dt
), γ ∈ (0, 1]. (4.11)
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Moreover,

lim
β→1

x(τ) = x0 + lim
β→1

∫ 1−τ

0
h(s, x(s),Dβx(γs))ds.

However,

|h(t, x(t),Dβx(γt))| ≤ |a2(t)| + b2(|x(t)| + |Dβx(γt)|),

thus

lim
β→1

h(t, x(t),Dβx(γt)) = h(t, x(t), lim
β→1

Dβx(γt)) = h(t, x(t),
dx(γt)

dt
),

and

x(τ) = x0 +

∫ 1−τ

0
lim
β→1

(h(s, x(s),Dβx(γs)))ds.

x(τ) = x0 +

∫ 1−τ

0
h(s, x(s),

dx(γs)
ds

)ds. (4.12)

Therefore, we have established the subsequent corollary.

Corollary 4.1. Assuming the conditions of Theorem 2.3 are met, then both of the two integer order
problems:

dx
dt

= f (t, ux(t), x(t),
d
dt

x(γt)), t ∈ (0, 1], γ ∈ (0, 1],

x(τ) = x0 +

∫ 1−τ

0
h(s, x(s),

d
ds

x(γs))ds, τ ∈ (0, 1],

equipped with the fractal-fractional feedback control

dux(t)
dtδ

= −λux(t) + g(t, x(t),
d
dt

x(γt))), u0 = ux(0), λ ≥ 0, δ ∈ (0, 1],

and

dx
dt

= a ux(t) + b x(t) + c
d
dt

x(γt), γ ∈ (0, 1],

x(τ) = x0 +

∫ 1−τ

0
h(s, x(s),

d
ds

x(γs))ds, τ ∈ (0, 1],

equipped with the fractal-fractional feedback control

dux(t)
dtδ

= −λux(t) + g(t, x(t),
d
dt

x(γt))), u0 = ux(0), λ ≥ 0, δ ∈ (0, 1],

are guaranteed to have at least one solution x ∈ C(I).
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Corollary 4.2. Under the assumption that Theorem 2.3 is valid, the linear pantograph (Ambartsumian)
problem (1.4) and (1.5) possesses at least one solution x ∈ C(I).

Proof. By considering

f (t, ux(t), x(t),Dαx(γt)) = a ux(t) + b x(t) + c Dαx(γt),

the conclusions can be derived. �

Corollary 4.3. Let the hypothesis of Theorem 2.3 be valid; if we put τ = 1 in (1.2), then the backward
problem

dx
dt

= f (t, ux(t), x(t),Dαx(γt)), t ∈ (0, 1], (4.13)

with

x(1) = x0, (4.14)

with a fractal feedback control (1.3) has a solution x ∈ C(I). Consequently, if the hypotheses of
Theorem 3.1 are valid, then it has a unique solution x ∈ C(I).

Corollary 4.4. Let the hypothesis of Corollary 4.2 be valid; if we put τ = 1 in (1.5), then the backward
problem

dx
dt

= a ux(t) + bx(t) + cDαx(γt), t ∈ (0, 1], (4.15)

x(1) = x0, (4.16)

with a fractal feedback control (1.3) has a solution x ∈ C(I). Consequently, if the hypotheses of
Corollary 4.2 are valid, it has a unique solution x ∈ C(I).

Example 1. Consider the problem

dx
dt

= (
t
2

)2 + ux(t) +
1
3

x(t) +
1
3

D
1
2 x(

t
2

), t ∈ (0,
1
4

], (4.17)

x(τ) =
1
4

+

∫ 1−τ

0

( √t
3

+ x(s) +
1
3

D
1
2 x(

s
2

)
)
ds, (4.18)

with fractal-fractional feedback control

du(t)

dt
1
2

= −0.4u(t) + e−
7
2 t(cos t +

1
3

t3 D
1
2 x(t)). (4.19)

Note that, this issue is a specific instance of a feedback control problem (1.1)–(1.3) as shown below

α = β = γ = ρ =
1
2
, x0 =

1
4
.

Set

f (t, ux(t), x(t),Dαx(γt)) = (
t
2

)2 + ux(t) +
1
3

x(t) +
1
3

D
1
2 x(

t
2

),
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h(t, x(t),Dβx(γt)) =

√
t

3
+ x(t) +

1
3

D
1
2 x(

t
2

).

Thus, conditions (i), (ii) are satisfied with a∗ = 1
4 , b1 = b2 = 1

3 , M = 1
6 . It is evident that all

conditions of Theorem 2.3 are met as follows b1(1 + w2) = 0.333 < 1. Therefore, there is at least one
solution x ∈ C(I) for (4.17)–(4.19). Additionally, we have

b1(1 + ∆)
(
b2γ + 2)

(1 − 2γb1)(1 − b2)
≈ 0.1981 < 1.

Thus, all assumptions of Theorem 3.1 are satisfied, then the solution of the problem (4.17)–(4.19) is
unique.

5. Conclusions

In some applicable differential equations, the state variable appears with a delayed argument. This
kind of differential equation, which appears in many fields of science, is well-known as a delay
differential equation. This equation involving fractional orders has been examined by several authors
in [25, 26]. In some studies, fractional-order delay differential equations have been found to exhibit
interesting dynamical behaviors that differ from their integer-order counterparts. The presence of
delays introduces memory effects into the system, leading to rich and complex dynamics. Researchers
have explored various analytical and numerical techniques to study the stability, bifurcations, and
oscillatory behavior of such systems. The investigation of fractional delay differential equations is an
active area of research with applications in physics, engineering, biology, and other fields [27].

In this research, the solvability of the fractional pantograph differential equation (1.1) with an
integro-differential boundary condition (1.2) constrained to a fractal-fractional feedback control (1.3)
was established. The existence of solutions to the problem (1.1)–(1.3) was proved, some sufficient
conditions for the uniqueness of the solution were provided, and then the Hyers Ulam stability of the
problem (1.1)–(1.3) was derived. Additionally, some continuous dependency results of the solution x
on the fractional-order derivative y(t), the parameter x0, the function h, and on the control variable ux

were established. Finally, a few special cases and examples were presented.
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