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Abstract: This paper attempts to explore possible box dimension of two added fractal continuous
functions with the same dimension. Two interesting and meaningful results are obtained. Let g(x)
and h(x) have the same box dimension t (1 < t ≤ 2), the box dimension of g(x) + h(x) may or may
not exist. If it exists, it can take an arbitrary real number γ satisfying 1 < γ ≤ t. If it does not
exist, its lower and upper box dimensions can reach arbitrary different real numbers t1 and t2 that
satisfy 1 < t1 < t2 < t ≤ 2. These unexpected conclusions drive us to probe into the characteristics
of collection of all fractal continuous functions with the same box dimension under ordinary linear
operations (scalar multiplication and addition). Following the known fractal features of some typical
fractal functions such as the Weierstrass function Wt(x), we classify the fractal functions into three
types: consistent fractal functions, non-consistent fractal functions, and simple fractal functions. By
utilizing these classifications and fractal feature descriptions, the causality of the box dimension of two
added fractal functions can be partially revealed. We hope that these initial superficial discussions will
lead deeper consideration on the essence of variants of fractal dimension under linear combinations of
fractal functions. Moreover, these fractal features may be applied further in other fields of fractals.
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1. Introduction

Up to now Weierstrass function Wt(x) (see Figure 1) has been seemingly “unique fractal continuous
function”. Naturally we ask how many real fractal functions (fractional dimension lies between 1
and 2, is not equal to 1) exist. Luckily, we got a positive answer for this problem: the cardinality
of all fractal continuous functions is the second category by Baire theory [1]. The fractal dimension
(mainly box dimension and Hausdorff dimension) of a plane fractal curve was possibly studied firstly
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by Besicovitch [2]. Then numerous studies on the box dimension of fractal function graphs appeared
openly, which are mainly classified into several types. (1) Self-similar set (including plane set of self-
affine function graphs) as presented in Refs. [3–5] and physical applications (see, e.g., [6, 7]). (2)
Some special constructed fractal functions such as the Weierstrass type and its variant Besicovitch
type (see, e.g., [8–13]). (3) Some induced fractal functions (by integration or differentiation of known
particular fractal curves), as shown in Refs. [14–18]. It is worth mentioning Shen’s study [19]. An
unresolved fractal problem is whether the Hausdorff dimension of the Weierstrass function is equal
to its box dimension. Although the box dimension of the Weierstrass function has been clearly
discussed, it remains unproven. Shen [19] proved that this open problem holds for all integers λ (see in
Example 2.7), which may be a significant advancement in calculating fractal dimension. (4) General
discussion about fractal dimensions, for instance, estimate box dimension of fractional integral about
Hölder function (see, e.g., [14, 20]), some constructed fractal functions (see, e.g., [21, 22]), and fractal
interpolation (see, e.g., [23]). All these papers focused on estimating fractal dimension of a fractal set
or a plane curve produced by a fractal continuous function.

Write tDI (1 < t ≤ 2) for the collection of all fractal continuous functions with the same box
dimension t on a closed interval I = [0, 1] and Υ(h, I) for the graph {(x, y), y = h(x), x ∈ I}. Since the
box dimension of a plane curve produced by h(x) on I, indicated by dimBΥ(h, I) = t (1 < t ≤ 2), is
greater than 1, h(x) is a real fractal function, not an ordinary function. Our concerned global properties
of all fractal continuous functions mean the following aspects: What is cardinality of the collection
of all real fractal functions? (discussed in Ref. [1])? What are algebraic properties of the collection
of all fractal functions under linear operations of functions (scalar multiplication and addition)? An
interesting fundamental problem is estimating the box dimension of sum of two fractal continuous
functions, which is a topic that we are currently investigating.

Let CI be the collection of all fractal continuous functions. dimBΥ(h, I), dimBΥ(h, I), and
dimBΥ(h, I) indicate the lower box dimension, the upper box dimension, and the box dimension of
the graph of the function h(x) on I = [0, 1], respectively. Actually, Wen [5] may be the first attempt
to estimate the box dimension of sum of two fractal continuous functions, and reached the following
conclusion.

Proposition 1.1. [5] For any g(x), h(x) ∈ CI ,
(1) If dimBΥ(g, I) > dimBΥ(h, I), then

dimBΥ(g + h, I) = dimBΥ(g, I).

(2) If dimBΥ(g, I) > dimBΥ(h, I), then

dimBΥ(g + h, I) = dimBΥ(g, I).

Following Proposition 1.1, one may question the possible values of dimBΥ(g+h, I) given the known
dimBΥ(g, I) and dimBΥ(h, I)? Wen [5] mentioned that it is a hard problem during a Chinese fractal
conference.

Since Proposition 1.1 answers the case of dimBΥ(g + h, I) when dimBΥ(g, I) , dimBΥ(h, I), this
paper discusses the case of dimBΥ(g + h, I) while g(x), h(x) ∈ tDI . Under conventional function
addition and scalar multiplication, we focus on the following problems:

Suppose that g(x), h(x) ∈ tDI , i.e., dimBΥ(g, I) = dimBΥ(h, I) = t, then
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(1) Does dimBΥ(g + h, I) exist?
(2) If dimBΥ(g + h, I) exists, what is the value (if it is unique), or what is its range (if it is not

unique)?
(3) If dimBΥ(g+h, I) does not exist, what are the possible values for dimBΥ(g+h, I) and dimBΥ(g+

h, I)?
(4) What is the essential feature to affect dimBΥ(g + h, I)? How describe this fractal feature?
This paper takes an initial study and arrives at some interesting results.

For convenience, some notations are listed as follows:

(1) t2
t1 DI , all fractal functions on closed interval I = [0, 1] with the lower and upper box dimensions

t1 and t2 (1 ≤ t1 ≤ t2 ≤ 2), respectively. When t1 = t2 = t, this notation indicates tDI .
(2) tDcs

I , all consistent fractal functions with the box dimension t (presented in Definition 4.1).
(3) tDnc

I , all non-consistent fractal functions with the box dimension t (presented in Definition 4.3).
(4) tDsp

I , all simple fractal functions with the box dimension t (presented in Definition 4.5).
(5) N[a,b]

h,δ represents the smallest number of meshes of diameter at most δ which can cover
Υ(h, [a, b]), particularly, Nh,δ = N I

h,δ = N[0,1]
h,δ .

(6) The oscillation of a function h(x) on a closed interval [a, b] is defined by

Rh[a, b] = Rh,[a,b] = sup
x,y∈[a,b]

|h(x) − h(y)|.

(7) C, C1, and C2 denote some absolute constants and may be different real numbers even in the
same line in different environments.

2. Preliminaries

In this preparatory section, there are three aspects involved: the box dimension of fractal functions,
the covering number of a function graph Nh,δ, and two examples of typical fractal functions.

2.1. Box-counting dimension

First, we present precise mathematical definitions by the covering number Nh,δ for the lower and
upper box dimensions of a function h(x) on its domain I = [0, 1].

Definition 2.1. [4, 5] The lower and upper box dimensions of a function h(x) on I = [0, 1] are defined,
respectively,

dimBΥ(h, I) = lim
δ→0

log Nh,δ

− log δ

and

dimBΥ(h, I) = lim
δ→0

log Nh,δ

− log δ
.

If both the lower and upper box dimensions are equal to each other, then the box dimension is defined
as

dimBΥ(h, I) = dimBΥ(h, I) = dimBΥ(h, I).

From Definition 2.1, some results hold trivially.
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Lemma 2.2. Assume g(x) ∈ CI and its box dimension exists. The following statements hold.
(1) For a constant function g(x) = c, dimBΥ(g, I) = dimBΥ(c, I) = 1.
(2) dimBΥ(cg, I) = dimBΥ(g, I) (c , 0).
(3) 1 ≤ dimBΥ(g, I) ≤ 2.

2.2. Coving number Nh,δ

From Definition 2.1, dimBΥ(h, I) = s means that Nh,δ obeys power law as δ→ 0 ( see [1,4,5]), i.e.,

Nh,δ ≃ Cδ−s

for some absolute constant C. Hence, the following assertions are trivial.

Lemma 2.3. [1, 4, 5] The following assertions hold as δ→ 0.
(1) C1δ

−s ≤ Nh,δ ≤ C2δ
−s, if and only if dimBΥ(h, I) = s.

(2) If Nh,δ ≤ Cδ−s, then dimBΥ(h, I) ≤ s.
(3) If Nh,δ ≥ Cδ−s, then dimBΥ(h, I) ≥ s.
The calculation of Nh,δ is the key to estimate dimBΥ(h, I). Given 0 < δ < 1/2, assume that the

interval I = [0, 1] is divided into m subintervals by δ. Write

∆k = [kδ, (k + 1)δ], k = 0, 1, 2, · · · ,m − 1.

Here, m = [δ−1] denotes the largest integer less than or equal to δ−1. Sometimes suppose mδ−1 = 1
without loss of generality. Then the estimation of Nh,δ can be converted into the oscillation on these
subintervals. The following assertion is adopted from Refs. [4, 5].

Lemma 2.4. [4, 5] The range of Nh,δ can be estimated as follows.

δ−1
m−1∑
i=0

Rh[iδ, (i + 1)δ] ≤ Nh,δ ≤ 2m + δ−1
m−1∑
i=0

Rh[iδ, (i + 1)δ].

For arbitrary given two fractal functions h(x) and g(x), we present an estimation of Nh+g,δ, which is
adopted from our recent paper [1].

Lemma 2.5. [1] Let h(x), g(x) ∈ CI . Then

max{0,
∣∣∣Nh,δ − Ng,δ

∣∣∣ − 2δ−1} ≤ Nh+g,δ ≤ 2δ−1 + Nh,δ + Ng,δ.

The evaluation of the upper box dimension is always applied repeatedly. We present a general
estimation of the upper box dimension.

Theorem 2.6. The following two statements hold.
(1) If h(x) ∈ sDI , g(x) ∈ tDI (1 ≤ s, t ≤ 2), then

dimBΥ(h + g, I) ≤ max {dimBΥ(h, I), dimBΥ(g, I)} .

(2) If h(x) ∈ s1
s2 DI , g(x) ∈ t1

t2 DI , and s2 > t1, then

dimBΥ(h + g, I) ≥ s2.
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Proof. (1) For any δ > 0, we consider the limit as δ → 0. It is assumed without loss of generality
that δ ≤ 1/2. Given that h(x) ∈ sDI , g(x) ∈ tDI (1 ≤ s, t ≤ 2), Lemma 2.3 shows that

Nh,δ ≤ C1δ
−s, Ng,δ ≤ C2δ

−t

for some absolute constants C1 and C2. Then, by Lemma 2.5,

Nh+g,δ ≤ 2δ−1 + Nh,δ + Ng,δ

≤ 2δ−1 +C1δ
−s +C2δ

−t

≤
(
2δmax{s,t}−1 +C1δ

max{s,t}−s +C2δ
max{s,t}−t

)
δ−max{s,t}

≤ Cδ−max{s,t},

which, in combination with Lemma 2.3, leads to (1) in Theorem 2.6.
(2) Since h(x) ∈ s1

s2 DI and g(x) ∈ t1
t2 DI , for an arbitrary positive ϵ < 1, there exists δ̂ > 0 such that

when δ ≤ δ̂,

Nh,δ > δ
s2 −

1
2
ϵ, and Ng,δ < δ

t1 +
1
2
ϵ,

which, by Lemma 2.5, leads to

Nh+g,δ ≥
∣∣∣Nh,δ − Ng,δ

∣∣∣ − 2δ−1

≥ δ−s2 − δ−t1 − 2δ−1 − ϵ

≥
(
1 − δs2−t1 − 2δs2−1 − ϵδs2

)
δ−s2

≥ Cδs2 ,

for sufficiently small δ. Hence, from Lemma 2.3, we conclude dimBΥ(h + g, I) ≥ s2.

Obviously, Proposition 1.1 is a particular case of Theorem 2.6. Of course, we need to use the
analogous method of Theorem 2.6 to make an induction of Proposition 1.1. □

2.3. Two typical fractal functions

In view of fractals, the Weierstrass function may be regarded as the first fractal function. For
consideration of box dimension, the extreme cases were constructed, called the Besicovitch function.
Here, these two typical fractal functions are introduced for later applications.

Example 2.7. [4, 5] Weierstrass function Wt(x) (see Figure 1).
Let 1 < t < 2, λ > 1. The Weierstrass function with parameter t is defined as

Wt(x) =
∞∑
j=1

λ(t−2) j sin(λ jx).

For a large enough real number λ, we know that

dimBΥ(Wt, I) = t.

This means
Wt(x) ∈ tDI .
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Especially, for any subinterval [c, d] ⊂ I = [0, 1],

dimBΥ(Wt, [c, d]) = t.

The graph of the Weierstrass function Wt(x) looks like Figure 1.
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Figure 1. Weierstrass function Wt(x).

Remarks to Example 2.7. From Example 2.7, we can find a real fractal continuous function with a
given box dimension t (1 < t < 2). Especially, at any point x ∈ [0, 1], its box dimension is still t.

Now we give another example the Besicovitch function (Weierstrass type) whose box dimension
might not exist on I.

Example 2.8. [8] Besicovitch function BW(x) provided by Barański.
Let a periodic Lipschitz function h(x) be monotonic on a subinterval I of its domain, which satisfies

|h(x) − h(y)| > C|x − y|

for arbitrary x, y ∈ I and some C > 0. Given any two positive sequences {bn} and {cn} satisfying that
bn+1/bn → 0, cn+1/cn → ∞ as n→ ∞ and θn ∈ R, the Besicovitch function BW(x) is defined by

BW(x) =
∞∑

n=1

bnh(cnx + θn).

For arbitrary real numbers L1 and L2 with 1 ≤ L1 ≤ L2 ≤ 2, there is always a Besicovitch type function
BW(x) satisfying that

dimH Υ(BW, I) = dimBΥ(BW, I) = L1, dimBΥ(BW, I) = L2,

where dimH Υ(BW, I) indicates Hausdorff dimension of this function BW(x). From this point, if we
take two real numbers t1 and t2 satisfying 1 ≤ t1 < t2 ≤ 2, then we can always find a fractal function
BW(x) that satisfies BW(x) ∈ t2

t1 DI , which exhibits that there always exists a continuous function taking
any different lower and upper box dimensions.

3. Box dimension of summation

Our interesting goal is to study the algebraic properties under function addition and scalar
multiplication, or further investigate the algebraic structure of all fractal continuous functions with
the same fractal dimension.

AIMS Mathematics Volume 9, Issue 7, 19261–19275.
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For given two fractal functions h(x) and g(x) with the same box dimension, we discuss possible
values of dimBΥ(h + g, I). We discover that the box dimension of h(x) + g(x) maybe exist or not even
when dimBΥ(h, I) = dimBΥ(g, I). Actually, the following theorem exhibits that the value of the box
dimension of their summation h(x) + g(x) can be arbitrary.

Theorem 3.1. Given a real number t (1 < t ≤ 2), for an arbitrary s satisfying 1 < s < t, there exist
two fractal functions h(x), g(x) ∈ tDI (1 < t ≤ 2) such that

dimBΥ(h + g, I) = s ∈ (1, t).

That is to say, assume h(x), g(x) ∈ tDI (1 < t ≤ 2). If dimBΥ(h + g, I) exists, then it can arrive at any
real number between one and t.

Proof. Let h(x) ∈ tDI and set g(x) = −h(x) + Ws(x), where Ws(x) is the Weierstrass function with
parameter s.

Firstly, we need to verify that g(x) ∈ tDI . From Example 2.7, we know dimBΥ(Ws, I) = s. From
Lemma 2.2,

dimBΥ(−h, I) = dimBΥ(h, I) = t > s = dimBΥ(Ws, I).

By Proposition 1.1,

dimBΥ(g, I) = dimBΥ(−h +Ws, I) = max {dimBΥ(−h, I), dimBΥ(Ws, I)} = t,

which means g(x) = −h(x) +Ws(x) ∈ tDI .
Secondly, h(x) + g(x) = Ws(x), and

dimBΥ(h + g, I) = dimBΥ(Ws, I) = s (1 < s < t ≤ 2).

So, dimBΥ(h + g, I) reaches any given number s (1 < s < t ≤ 2). Theorem 3.1 is done. □

Remarks to Theorem 3.1. Two points are emphasized.
(1) If h(x), g(x) ∈ tDI (1 < t ≤ 2), and dimBΥ(h + g, I) exists, then dimBΥ(h + g, I) can reach at

most t. By Theorem 2.6, we have
dimBΥ(h + g, I) ≤ t.

So, t is the best upper boundary of dimBΥ(h + g, I).
(2) For any 1 < t ≤ 2, there exist two fractal functions h(x), g(x) ∈ tDI such that h(x) + g(x) ∈ γDI

for any γ (1 < γ < t).
Naturally we ask what is the possible value of the lower and upper box dimension of summation

whenever its box dimension does not exist? The following Theorem 3.2 answers.

Theorem 3.2. Given a real number t (1 < t ≤ 2), for an arbitrary pair ⟨s1, s2⟩ satisfying 1 < s1 <

s2 < t ≤ 2, there exist two fractal functions h(x), g(x) ∈ tDI such that h(x) + g(x) ∈ s2
s1 DI . That is to

say, if the box dimension of h(x) + g(x), dimBΥ(h + g, I), does not exist, then its lower and upper box
dimension can take any different values between one and t, i.e.,

1 < dimBΥ(h + g, I) = s1 < s2 = dimBΥ(h + g, I) < t ≤ 2.
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Proof. Let h(x) ∈ tDI , and g(x) = −h(x)+BW(x), where BW(x) is a specified Besicovitch type function.
From Example 2.9, we just select two appropriate sequences {bn} and {cn} such that

1 < dimBΥ(BW(x), I) = s1 < dimBΥ(BW(x), I) = s2 < t,

then this specified BW(x) ∈ s2
s1 DI .

Now we verify g(x) ∈ tDI . Assertion (1) in Theorem 2.6 tells us

dimBΥ(g, I) = dimBΥ(−h + BW, I) ≤ max
{
dimBΥ(−h, I), dimB(WB, I)

}
= t.

Since t > s2, assertion (2) in Theorem 2.6 tells us

dimBΥ(g, I) = dimBΥ(−h + BW, I) ≥ t.

These two inequalities show that dimBΥ(g, I) = t, or g(x) ∈ tDI .
However, h + g = BW(x) ∈ s2

s1 DI , which accomplishes Theorem 3.2. □

Remarks: From Theorems 3.1 and 3.2, we obtain surprising conclusions.
(1) For any two fixed numbers t and s with 1 < s < t ≤ 2, there exist two fractal continuous

functions h(x), g(x) ∈ tDI such that h(x) + g(x) ∈ sDI .
(2) For any three fixed numbers t, s1, and s2 with 1 < s1 < s2 < t ≤ 2, there exist two fractal

continuous functions h(x) and g(x) with h(x), g(x) ∈ tDI such that h + g ∈ s2
s1 DI .

These two conclusions show that we cannot talk about the algebraic structure (linear space or linear
manifold) of tDI under conventional function addition and scale multiplication, because h(x) + g(x) <
tDI might hold while h(x), g(x) ∈ tDI . In our recent paper [1], we found a unique subspace, 1DI .
Hence, we try to know what causes the wide range of dimBΥ(h + g, I), such as Theorems 3.1 and 3.2.
Or further, explore essential characteristics of fractal functions that controlling the box dimension of
summation. This is our motivation.

4. Description of fractal feature

We are motivated to try understanding fractal features on fractal function graphs from the range of
dimBΥ(h + g, I) after the box dimensions of h(x) and g(x) are known. We naturally ask, why a fractal
function behaves with fractal features? What causes the wide range of dimBΥ( f + g, I) even when
h(x), g(x) ∈ tDI (see Theorems 3.1 and 3.2)?

According to our viewpoint, there are three aspects that can display the characteristics of fractal
functions globally or locally:

(1) box dimension;
(2) total variation;
(3) length of curve.
For h(x) ∈ tDI , we know dimBΥ(h, I) is only one way to totally describe the fractal feature of the

function h(x) on I. Then, what are the pointwise property of a real fractal function h(x) (local fractal
features) is? It means we need to investigate the fractal behavior at a given point a ∈ I = [0, 1]. For
h(x) ∈ tDI , its total variation is unbounded on I. However, there is possibly a subinterval [c, d] ⊆ [0, 1]
where its total variation is bounded. Similarly, in some subintervals of I, the box dimension of h(x)
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may be less than the total dimension. On the basis of this idea, we try to give some definitions to
describe fractal features locally and/or globally.

Definition 4.1. Let h(x) ∈ tDI (t ∈ [1, 2]). If dimBΥ(h, [c, d]) = t for all subinterval [c, d] ⊆ I, then
h(x) is called a consistent fractal function. A set of all these fractal functions is denoted by tDcs

I .

Remarks to Definition 4.1. Notice the following facts.
(1) Definition 4.1 presents the global fractal behavior of a function, which says that a consistent

fractal function exhibits the same fractal behavior (by box dimension) everywhere in I.
(2) The consistent behavior include box dimension and total variation. Actually, if the box

dimension is greater than one, the total variation of fractal function is naturally unbounded.
(3) For an arbitrary closed subinterval [c, d] ⊆ I, dimBΥ(h, [c, d]) = t, or we say that the fractal

function has the same box dimension at each point of I, which exhibits consistent box dimension in
the entire interval I.

(4) For an arbitrary closed subinterval [c, d] ⊆ I, the total variation of h(x) is unbounded on [c, d],
called uniformly unbounded variation, which shows the uniform property of unbounded variation in
the entire interval I.

(5) The Weierstrass function Wt(x) in Example 2.7 is a consistent fractal function, i.e., Wt(x) ∈ tDcs
I

for all t ∈ (1, 2). From the graph of the Weierstrass function (see Figure 1), its consistent fractal feature
is exhibited completely.

Except for the Weierstrass function Wt(x), another example of a consistent fractal function is
ΦXZ(x) ∈ 2DI .

Example 4.2. [13] ΦXZ(x) with dimBΥ(ΦXZ(x), I) = 2.
Let λ > 1, b > a > 1. Define

φ(x) = 2x, 0 ≤ x ≤ 1/2, φ(−x) = φ(x) and φ(x + 1) = φ(x).

The graph of the following function

ΦXZ(x) =
∑
n≥1

λ−na
φ(λnb

x), 0 ≤ x ≤ 1

has the box dimension two,
dimBΥ(ΦXZ , I) = 2.

Thus, we know ΦXZ(x) ∈ 2DI . Particularly, for any subinterval [c, d] ⊂ I, dimBΥ(ΦXZ, [c, d]) = 2.

If the fractal behaviours are broken in some subinterval of I, or or more precisely at some point
ξ ∈ I, we consider these variations as local features. Some fractal behavior hold at a point ξ ∈ I, which
always means that they hold on some subinterval [c, d] ⊂ I, not really a point ξ ∈ [c, d].

The local fractal dimension might be stated as follows, contrasting to the global fractal dimension.

Definition 4.3. Let h(x) ∈ tDI ( 1 ≤ t ≤ 2 ) be a function with unbounded variation everywhere on I.
If there exists some subinterval [c, d] ∈ I such that

dimBΥ(h, [c, d]) = s ∈ [1, t),
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then h(x) is called a non-consistent fractal function. A set of all these fractal functions is indicated by
tDnc

I .

Remarks to Definition 4.3. Notice the following facts.
(1) Notice that dimBΥ(h, I) = t is a total feature (not global), since there may exist a subinterval

[c, d] ⊂ I = [0, 1] such that dimBΥ(h, I) = s < t.
(2) Definition 4.3 states the local behaviors about the box dimension.
(3) For all subintervals [c, d] ⊂ I, the function h(x) is always of unbounded variation on [c, d]

(global behavior), which means that the unbounded variation property keeps unchanged. However, the
fractal behavior about the box dimension is broken in some subinterval or saying at some point, which
exhibits the local property about the box dimension.

Example 4.4. A non-consistent fractal continuous function fnc(x)
Take real numbers t and s satisfying 1 < t < s < 2. Construct a fractal function by Weierstrass

function Wt(x),

fnc(x) =
{

Ws(x), for x ∈ [−1, 0],
Wt(x), for x ∈ [0, 1].

This function fnc(x) is continuous on [−1, 1], and belongs to sDnc
I (note t < s). In any subinterval

[c, d] ⊂ [−1, 1], the total variation of fnc(x) is unbounded. So it is a non-consistent fractal function by
Definition 4.3.

Remarks to Example 4.4. Example 4.4 is constructed for Definition 4.3. It seems to be an unnatural
function. Can somebody construct this type of non-consistent fractal function within the “same
framework”?

Definition 4.3 describes one of the local fractal behaviors, the box dimension is broken somewhere.
Actually, another fractal feature, total variation, can be broken at some point in I. We present
Definition 4.5 to describe this local fractal feature.

Definition 4.5. If h(x) ∈ tDI(1 ≤ t ≤ 2), and its total variation is bounded on some subintervals, then
h(x) is called a simple fractal function. A set of all these simple fractal functions is denoted by tDsp

I .

Remarks to Definition 4.5. Note the following facts.
(1) Definition 4.5 presents another local fractal behavior (about the total variation).
(2) A simple function has two characterizations:

(a) dimBΥ(h, I) = t;
(b) total variation of the function is bounded on some subinterval [c, d] ⊂ I.

(3) dimBΥ(h, I) = t is an entire (not surely consistent) feature, but we do not say the box dimension
unchanged everywhere. Obviously, dimBΥ(h, [c, d]) = 1 if the total variation of h(x) on the subinterval
[c, d] ⊂ I is bounded.

(4) If the function with bounded variation satisfies dimBΥ(h, I) = 1, it is actually an ordinary
function (obviously, its length is finite), which is a member of 1Dsp

I .

Example 4.6. [24] A simple fractal function Φzh.
The graph of a function Φzh(x) adopted from Ref. [24] is exhibited in Figure 2, which is a simple

fractal function, Φzh(x) ∈ 1Dsp
I . Obviously, the total variation of the function Φzh(x) is bounded in

any subinterval [c, d] ⊂ [0, 1), and it is unbounded for the total variation of Φzh(x) in any subinterval
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[a, 1] ⊂ [0, 1]. Equivalently speaking, the fractal feature about unbounded total variation for Φzh(x) is
broken at the right end point of the interval I = [0, 1]. Hence, we call this type of function a simple
fractal function. It looks “simple”.

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Figure 2. Simple fractal function Φzh(x).

Remarks to Example 4.6. Note that this fractal function is constructed from “the same framework”.
It looks naturally like fractal function. This is why we think that Example 4.4 looks like an unnatural
fractal function in contrast to Example 4.6, since it is pieced up. These kinds of fractal functions of
unbounded total variation with one dimension can be found more in Refs. [15, 24, 25].

At the end, we present a particular example of the Devil’s staircase. Although it is regarded as a
fractal curve, by our mathematical definition, it is actually an ordinary function since its box dimension
is one and its total variation is bounded on [0, 1], it has a finite length.

Example 4.7. [26] Devil’s staircase fDevil(x) (see Figure 3).
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Figure 3. Devil’s staircase.

Remarks to Example 4.7. Devil staircase is a simple ordinary function, not a simple fractal function
as its total variation is bounded everywhere on [0, 1] (its length is finite). Note the difference.

5. Application of fractal feature

Theorems 3.1 and 3.2 reveal that the box dimension of summation of two fractal functions in sDI

might be any size. However, the box dimension of summation might remain unchanged under certain
conditions. Naturally, we ask What are the conditions preserving summation remains in sDI? We
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have explored the fractal characteristics of a fractal function in the previous section, which can help us
investigate the condition that preserves summation in sDI .

Here we discuss the summation of two fractal functions from different set (tDcs
I , tDnc

I , and tDsp
I ),

which may help us understand fractal features and discover conditions preserving summation in tDI to
some extent.

Theorem 5.1. Assume h(x) ∈ sDcs
I , and g(x) ∈ sDnc

I with 1 < s ≤ 2. It holds

dimBΥ(h + g, I) = s.

Proof. Since h(x) ∈ sDcs
I , and g(x) ∈ sDnc

I , by Theorem 2.6,

dimBΥ(h + g, I) ≤ max {dimBΥ(h, I), dimBΥ(g, I)} = s. (5.1)

On the other side, since g(x) ∈ sDnc
I , by Definition 4.3, there exists a real number t with 1 < t < s ≤ 2

and a subinterval [c, d] ⊂ I = [0, 1] such that

dimBΥ(g, [c, d]) = t < s,

which indicates that there exists an absolute C2 such that (from Lemma 2.3)

N[c,d]
g,δ ≤ C2δ

−t.

Since h(x) ∈ sDcs
I , from Definition 4.1 and Lemma 2.3, there exists an absolute C1 such that

N[c,d]
h,δ ≥ C1δ

−s.

Note that [c, d] ⊂ I = [0, 1]. Applying Lemmas 2.3 and 2.5, for sufficiently small δ, we have

Nh+g,δ = N[0,1]
h+g,δ ≥ N[c,d]

h+g,δ

≥

∣∣∣∣N[c,d]
h,δ − N[c,d]

g,δ

∣∣∣∣ − 2δ−1

≥ C1δ
−s −C2δ

−t − 2δ−1

=
(
C1 −C2δ

s−t − 2δs−1
)
δ−s

≥ Cδ−s.

According to Lemma 2.3, it can be concluded that,

dimBΥ(h + g, I) ≥ s. (5.2)

Combination (5.1) with (5.2) leads to dimBΥ(h + g, I) = s, which indicates h(x) + g(x) ∈ sDI .
Theorem 5.1 is done. □

Theorem 5.2. Assume h(x) ∈ sDcs
I and g(x) ∈ sDsp

I with 1 < s ≤ 2. It holds

dimBΥ(h + g, I) = s, 1 < s ≤ 2.
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Proof. Because g(x) ∈ sDsp
I , by Definition 4.5, there exists a subinterval [c, d] ⊂ I = [0, 1] such that

the total variation of g(x) on the subinterval [c, d] is bounded, which means dimBΥ(g, [c, d]) = 1.
Analogical inductions like Theorem 5.1 lead to dimBΥ(h + g, I) = s. Theorem 5.2 is done. □

From our investigation of fractal characteristics, some fractal features are described by
Definitions 4.1, 4.3, and 4.5. Applying these fractal features, we discuss possible cases of fractal
functions that make the summation is the original box dimension. We hope these conclusions
(Theorems 5.1 and 5.2) help us understand the range of the box dimension of summation (Theorems 3.1
and 3.2), and understand when the summation keeps the identical box dimension, i.e., dimBΥ(h+g, I) =
s holds while dimBΥ(h, I) = dimBΥ(g, I) = s.

6. Conclusions

Under conventional function addition and scale multiplication, the investigation of the algebraic
properties of fractal functions is our original motivation. To begin this investigation, we need to know
how many real fractal functions exist. The study [1] shows that the collection of fractal continuous
functions with the identical box dimension t, indicated by tDI , is the second category according to
Baire theory. So it is meaningful to discuss the algebraic properties of fractal functions. For the
known result Proposition 1.1 (or see [5]), we naturally focus on the set of fractal functions with the
same box dimension tDI . As a result, let h(x), g(x) ∈ tDI and then dimBΥ(h + g, I) may exist or
not. If dimBΥ(h + g, I) exists, then dimBΥ(h + g, I) can be any real number between one and t
(Theorem 3.1). If dimBΥ(h + g, I) does not exist, then h(x) + g(x) ∈ t2

t1 DI for any real number t1

and t2 satisfying 1 < t1 < t2 < t ≤ 2 (Theorem 3.2). These surprising results drive us to probe the
characteristics of fractal functions. According to the fractal features of known fractal functions, we
classify fractal functions into three types: consistent fractal functions, non-consistent fractal functions,
and simple fractal functions. This classification helps us partially understanding the essence of fractal
functions, which may be applied in other fields of fractals.
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