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Abstract: The orthogonal polynomials approach with Gegenbauer polynomials is an effective tool 

for analyzing mixed integral equations (MIEs) due to their orthogonality qualities. This article 

reviewed recent breakthroughs in the use of Gegenbauer polynomials to solve mixed integral 

problems. Previous authors studied the problem with a continuous kernel that combined both 

Volterra (V) and Fredholm (F) components; however, in this paper, we focused on a singular 

Carleman kernel. The kernel of FI was measured with respect to position in the space 𝐿2[−1,1], 

while the kernel of VI was considered as a function of time in the space 𝐶[0, 𝑇],𝑇 < 1. The 

existence of a unique solution was discussed in 𝐿2[−1,1] × 𝐶[0, 𝑇] space. The solution and its error 

stability were both investigated and commented on. Finally, numerical examples were reviewed, and 

their estimated errors were assessed using Maple (2022) software. 
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1. Introduction 

Several problems in astrophysics, including linear and nonlinear elasticity and engineering 

crack problems, lead to an integral equation of the first and second kinds of Fredholm integral 
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equations (FIEs), which deal with problems having boundary conditions, while problems having 

initial conditions are described by the Volterra integral equation (VIE); see Popov [1] and 

Aleksandrovsk and Kovalenko [2]. After using Kiren’s method, many spectral relationships for FIEs 

with discontinuous kernels were obtained (Mkhitaryan and Abdou [3]). For Carleman kernel and its 

importance in the nonlinear theory of plasticity, see Artinian [4]. Alalyani et al. [5] dealt with the 

solution of the third kind of mixed integro-differential equations with displacement using orthogonal 

polynomials. Gegenbauer polynomials, also known as ultraspherical polynomials, constitute a family 

of orthogonal polynomials that have found widespread applications in various mathematical 

disciplines. In recent years, researchers have increasingly turned to these polynomials for solving 

mixed integral equations (MIEs), which refers to problems with a Fredholm kernel in position and 

Volterra in time, and often arise in mathematical modeling across different fields. Using the 

polynomial method, Abdou and Khamis [6] were able to solve a first type F-VIE with a Carleman 

kernel. El-Gindy et al. [7] used the shifted Gegenbauer polynomials and Tau method to present 

numerical solutions to multi-order fractional differential equations. Atta [8] applied the shifted 

Gegenbauer polynomials to solve the time fractional cable problems. Nasr and Abdel-Aty [9] used 

the degenerate method to solve a V-FIE. Mirzaee and Samadyar [10] represented the Bernstein 

collocation method for solving 2D-mixed Volterra-Fredholm integral equations. Alhazmi et al. [11] 

used the Lerch polynomial method to solve MIEs, which had a strongly singular kernel. More details 

on several approaches for solving integral equations can be found in [12–17]. 

In this work, we discuss innovative approaches and algorithms employed to solve MIEs and 

show how the Gegenbauer polynomials contribute to the efficiency and accuracy of these methods. 

Consider the following MIEs of two types: V-FIE and F-VIE, respectively. 

𝜇Φ(𝑢, 𝑡) − 𝜆 ∫ ∫ 𝑘(|𝑦 − 𝑢|)𝑓(𝑡, 𝑠)Φ(𝑦, 𝑠)𝑑𝑦𝑑𝑠
1

−1

𝑡

0

= 𝐹(𝑢, 𝑡), (1a) 

𝜇Φ(𝑢, 𝑡) − 𝜆 ∫ 𝑓(𝑡, 𝑠)Φ(𝑢, 𝑠)𝑑𝑠 −
𝑡

0

𝜆 ∫ 𝑘(|𝑦 − 𝑢|)Φ(𝑦, 𝑡)𝑑𝑦
1

−1

= 𝐻(𝑢, 𝑡), (1b) 

with the dynamical condition 

∫ Φ(𝑢, 𝑡)𝑑𝑢 = 𝑃(𝑡),         𝑡 ∈ [0, 𝑇], 𝑇 < 1.
1

−1

 (2) 

Condition (2) is of particular importance in applied sciences, as all the unknown functions 

during the integration period do not exceed the pressure exerted on the bodies and are changing with 

time. 

Here, the function  𝑓(𝑡, 𝑠) ∈ 𝐶[0, 𝑇]2, 𝑇 < 1 . The singular kernel 𝑘(|𝑦 − 𝑢|)  takes the 

Carleman function form. The constants 𝜇  and 𝜆  have several physical meanings. The given 

function 

𝐹(𝑢, 𝑡) ∈ 𝐿2[−1,1] × 𝐶[0, 𝑇], 
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while function Φ(𝑢, 𝑡) will be determined in the same space of the function 𝐹(𝑢, 𝑡). 
The paper is structured as follows: Using the fixed-point theorem and under certain conditions 

in Section 2, the existence of a unique solution is established. In Section 3, the convergence and the 

error stability of the solution are discussed. In Section 4, we use the separation variables technique to 

obtain a Fredholm equation of the second type with the Carleman kernel. In Section 5, the orthogonal 

polynomials method and Gegenbauer polynomials are used to convert the system of FIEs with time 

parameters to an algebraic system, where its convergence is considered in Section 6. The numerical 

results are given in Section 7. Finally, Section 8 presents our conclusions from the present research 

study. 

2. Existence of a unique solution for the MIE 

Consider the following assumptions: 

(a) The kernel 𝑘(|𝑦 − 𝑢|) in 𝐿2[−1,1] space in which its discontinuity condition is 

[∫ ∫ 𝑘2(|𝑦 − 𝑢|)
1

−1

𝑑𝑢𝑑𝑦
1

−1

]

1
2

= 𝛼, (𝛼 is a constant). 

(b) For 𝑡, 𝑠 ∈ [0, 𝑇], 𝑇 < 1, the time function 𝑓(𝑡, 𝑠) ∈ 𝐶[0, 𝑇] and satisfies 

‖𝑓(𝑡, 𝑠)‖ ≤ 𝛽,  (𝛽 is a constant). 

(c) The given function 𝐹(𝑢, 𝑡) ∈ 𝐿2[−1,1] × 𝐶[0, 𝑇] is well-defined and its norm 

‖𝐹‖ = max
0≤𝑡≤𝑇

|∫ [∫ 𝐹2(𝑢, 𝑠)𝑑𝑢
1

−1

]

1
2

𝑑𝑠
𝑡

0

| = 𝑀,  where 𝑀 is a constant. 

To discuss the existence of a unique solution for Eq (1a), we write it in the integral operator 

form as 

𝛘Φ(𝑢, 𝑡) =
1

𝜇
[𝐹(𝑢, 𝑡) + 𝑲Φ], (3) 

where 

𝑲Φ = 𝜆 ∫ ∫ 𝑘(|𝑦 − 𝑢|)𝑓(𝑡, 𝑠)Φ(𝑦, 𝑠)𝑑𝑦𝑑𝑠
1

−1

𝑡

0

. (4) 

Theorem 1 (Existence and uniqueness for V-FIE). There exists a unique solution for the MIE (1a) 

under the condition 

𝑇𝛼𝛽|𝜆| < |𝜇|,       𝑇 < 1. (5) 

Proof. To demonstrate this theorem, we use the following results: 

Lemma 1. Under the condition of Theorem 1, 𝛘 is a bounded operator. 
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Proof. The normality of Eq (3) leads to 

‖𝛘Φ‖ ≤
1

|𝜇|
[‖𝐹‖ + ‖𝑲Φ‖], 

(6) 

‖𝑲Φ‖ = |𝜆| ‖∫ ∫ 𝑓(𝑡, 𝑠)𝑘(|𝑥 − 𝑦|)Φ(𝑦, 𝑠)𝑑𝑦𝑑𝑠
1

−1

𝑡

0

‖. 

The conditions (a), (b), and the Cauchy-Schwarz inequality lead to 

‖𝑲Φ‖ ≤ |𝜆|‖𝑓‖ [ ∫∫ 𝑘2(|𝑢 − 𝑦|)
1

−1

𝑑𝑥𝑑𝑦

1

−1

]

1
2

𝑇‖Φ‖ ≤ |𝜆|𝛼𝛽𝑇‖Φ‖. (7) 

Hence, (6) becomes 

‖𝛘Φ‖ ≤
1

|𝜇|
[𝑀 + |𝜆|𝛼𝛽𝑇‖Φ‖]. (8) 

Therefore, the operator 𝛘 transforms the ball 𝑆𝑟 ⊂ 𝐿2[−1,1] × 𝐶[0, 𝑇] into itself, where 

𝑟 =
𝛿

1 − 𝜌
, 𝛿 =

𝑀

𝜇
, 𝑎𝑛𝑑 𝜚 =

𝑇𝛼𝛽|𝜆|

|𝜇|
. 

Since 𝑟 > 0,  under the hypothesis condition 𝑇𝛼𝛽|𝜆| < |𝜇|,  the operator 𝑲  is bounded and, 

accordingly, 𝛘 is bounded. 

Lemma 2. In the space of integration, the operator 𝛘 is a contraction. 

Proof. Let Φ1, Φ2 be two different solutions of Eq (1a); hence, formula (3), once using (4), leads to 

‖𝛘Φ1 − 𝛘Φ2‖ ≤
𝑇

|𝜇|
[|𝜆|𝛼𝛽‖Φ1 − Φ2‖]. (9) 

So, we have the continuity of 𝛘. 

Furthermore, under the condition 𝛼𝛽|𝜆|𝑇 < |𝜇|, 𝛘 is a contraction mapping. 

By the fixed-point theorem, since 𝛘 is a bounded and continuous operator, and moreover, it is a 

contraction mapping, then the solution of Eq (1a) has a unique solution. 

Theorem 2 (Existence and uniqueness for F-VIE) (without proof). There exists a unique solution 

for the MIE (1b) under the condition 

(𝛼 + 𝛽𝑇)|𝜆| < |𝜇|. 

3. The convergence and the error stability of the solution 

3.1. The solution convergence 

To study the solution behavior of Eq (1a), we construct the sequence 

{Φ0(𝑢, 𝑡), Φ1(𝑢, 𝑡), Φ2(𝑢, 𝑡),⋯ ,Φ𝑛−1(𝑢, 𝑡), Φn(𝑢, 𝑡),⋯ }. 
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Hence, consider a specific equation 

𝜇Φ𝑛(𝑢, 𝑡) = 𝐹(𝑥, 𝑡) + 𝜆 ∫ ∫ 𝑘(|𝑦 − 𝑢|)𝑓(𝑡, 𝑠)Φ𝑛−1(𝑦, 𝑠)𝑑𝑦𝑑𝑠
1

−1

𝑡

0

, 

Φ0 =
𝐹(𝑢, 𝑡)

𝜇
. 

(10) 

We define 

Ψ𝑛 = Φ𝑛 − Φ𝑛−1,             Ψ0(𝑢, 𝑡) = Φ0, (11) 

to establish  

Φn(𝑥, 𝑡) = ∑ Ψ𝑖 .

𝑛

𝑖=0

 

In view of (11), we can adapt Eq (10) to take the form 

𝜇Ψn(𝑢, 𝑡) = 𝜆 ∫ ∫ 𝑘(|𝑦 − 𝑢|)𝑓(𝑡, 𝑠)Ψ𝑛−1(𝑦, 𝑠)𝑑𝑦𝑑𝑠
1

−1

𝑡

0

. (12) 

Theorem 3 (Convergence of the solution for V-FIE). A sequence {Ψn}n=0
∞  of the solution to (12), 

under condition (5), is uniformly convergent. 

Proof. Formula (12), when using the Cauchy-Schwarz inequality, yields 

|𝜇|‖Ψ𝑛(𝑢, 𝑡)‖ ≤ |𝜆| |∫ ∫ 𝑘(|𝑦 − 𝑢|)𝑓(𝑡, 𝑠)𝑑𝑦𝑑𝑠
1

−1

𝑡

0

| ‖Ψ𝑛−1(𝑢, 𝑡)‖. (13) 

Then, by using assumptions (a)–(c), we have 

|𝜇|‖Ψ𝑛(𝑢, 𝑡)‖ ≤ |𝜆|𝛼𝛽𝑇‖Ψ𝑛−1(𝑢, 𝑡)‖. (14) 

Therefore, 

|𝜇|‖Ψ𝑛‖ ≤ |𝜆|𝛼𝛽𝑇‖Ψ𝑛−1‖. (15) 

Hence, with the use of (11), we get 

‖Ψ𝑛‖ ≤ 𝜚𝑛‖𝐹‖,          𝜚 =
𝑇𝛼𝛽|𝜆|

|𝜇|
. (16) 

So, Φn(𝑥, 𝑡) = ∑ Ψ𝑖
𝒏
𝒊=𝟎  is uniformly convergent, provided that 𝜚 < 1. 

If 𝑛 → ∞, then Φn(𝑥, 𝑡) → Φ(𝑥, 𝑡), i.e., Φ(𝑥, 𝑡) is uniformly convergent. 

As an approximation of Eq (1a), we have 

𝜇Φn(𝑢, 𝑡) = 𝐹𝑛(𝑢, 𝑡) + 𝜆 ∫ ∫ 𝑘(|𝑦 − 𝑢|)𝑓(𝑡, 𝑠)Φn(𝑦, 𝑠)𝑑𝑦𝑑𝑠
1

−1

𝑡

0

, (17) 

where 𝐹𝑛(𝑢, 𝑡) → 𝐹(𝑢, 𝑡) as 𝑛 → ∞. 

By considering Eq (1a), we get the equation of the error as follows: 
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Let the error function be defined as 

ℜ𝑛(𝑥, 𝑡) = Φ(𝑥, 𝑡) − Φ𝑛(𝑥, 𝑡). 

Hence, we get 

𝜇ℜ𝑛(𝑢, 𝑡) − 𝜆 ∫ ∫ 𝑘(|𝑦 − 𝑢|)𝑓(𝑡, 𝑠)ℜ𝑛(𝑦, 𝑠)𝑑𝑦𝑑𝑠
1

−1

𝑡

0

= 𝐻𝑛(𝑢, 𝑡), 

(𝐻𝑛(𝑢, 𝑡) = 𝐹 − 𝐹𝑛). 

(18) 

Theorem 4 (Convergence of the error for V-FIE). A sequence {ℜn} of error for Eq (18) is 

uniformly convergent under condition (5). 

Proof. After constructing the sequence of errors {ℜ0(𝑢, 𝑡), ℜ1(𝑢, 𝑡),⋯ ,ℜ𝑛−1(𝑢, 𝑡), ℜ𝑛(𝑢, 𝑡),⋯ }, 

and considering 

ℝ𝑛 = ℜ𝑛 − ℜ𝑛−1,  ℝ0(𝑥, 𝑡) =
𝐻0(𝑢, 𝑡)

𝜇
,  ℜ𝑛(𝑢, 𝑡) = ∑ ℝ𝑖

𝒏

𝒊=𝟎

, (19) 

then by using assumptions (a)–(c), we get 

|𝜇|‖ℝ𝑛‖ ≤ |𝜆|𝛼𝛽𝑇‖ℝ𝑛−1‖. (20) 

By induction, 

‖ℝ𝑛‖ ≤ 𝜚𝑛‖𝑓‖,       𝜚 =
𝑇𝛼𝛽|𝜆|

|𝜇|
. (21) 

So, under the inequality 𝜚 < 1, ℝ𝑛(𝑥, 𝑡) is convergent. 

If 𝑛 → ∞, ℜ𝑛(𝑢, 𝑡) → ℜ(𝑢, 𝑡), then the error function ℜ(𝑢, 𝑡) is convergent. 

3.2. Examples 

3.2.1. Consider the V-FIE 

𝜇Φ(𝑥, 𝑡) − 𝜆 ∫ ∫ 𝑡𝑠|𝑥 − 𝑦|−𝜈Φ(𝑦, 𝑠)𝑑𝑦𝑑𝑠
1

−1

𝑡

0

= 𝐹(𝑥, 𝑡), 

where 

𝛼 = [∫ ∫ |𝑦 − 𝑢|−2𝜈
1

−1

𝑑𝑢𝑑𝑦
1

−1

]

1
2

 

and 𝛽 = 𝑇2. So, there exist numerical solutions under the convergence condition 
𝜆𝛼𝛽𝑇

𝜇
< 1. The 

convergence condition for a given 𝜇 = 1 and various values of 𝜈, 𝜆, and 𝑇 are displayed in Table 1: 
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Table 1. Convergence condition for 𝜇 = 1 and different values of 𝜈, 𝜆, and 𝑇. 

𝑇 𝜈 𝛼 𝜆 Convergence condition 

0.005 

0.07 2.130 

0.018 

0.700 

4.79 × 10−9 
1.80 × 10−7 

0.09 
0.018 
0.700 

2.70 × 10−5 
0.001 

0.7 
0.018 
0.700 

0.013 
0.510 

0.005 

0.4 4.375 

0.018 

0.700 

9.83 × 10−9 
3.80 × 10−7 

0.09 
0.018 

0.700 
5.70 × 10−5 
0.002 

0.7 
0.018 
0.700 

0.027 
1.050 

From Table 1, there is a fast convergence to the solution whenever we have decreasing 𝜈, 𝜆, 

and 𝑇, and for example, there is a divergence when 𝜈 = 0.4, 𝑇 = 0.7, and 𝜆 = 0.7. 

3.2.2. Consider the F-VIE 

𝜇Φ(𝑥, 𝑡) − 𝜆 ∫ 𝑡𝑠Φ(𝑥, 𝑠)𝑑𝑦
𝑡

0

− 𝜆 ∫ |𝑥 − 𝑦|−𝜈Φ(𝑦, 𝑡)𝑑𝑦
1

−1

= 𝐹(𝑥, 𝑡). 

In this example, there exist numerical solutions under the convergence condition 
|𝜆|(𝛼+𝛽𝑇)

|𝜇|
< 1. 

The convergence condition for a given 𝜇 = 1 and various values of 𝜈, 𝜆, and 𝑇 are displayed in 

Table 2: 

Table 2. Convergence condition for 𝜇 = 1 and different values of 𝜈, 𝜆, and 𝑇. 

𝑇 𝜈 𝛼 𝜆 Convergence condition 

0.005 

0.07 2.130 

0.018 
0.100 

0.0383 
0.2131 

0.09 
0.018 
0.100 

0.0384 
0.2130 

0.7 
0.018 

0.100 

0.0445 

0.2473 

0.005 

0.4 4.375 

0.018 

0.100 

0.0788 

0.4375 

0.09 
0.018 

0.100 

0.0788 

0.4376 

0.7 
0.018 
0.100 

0.0849 
0.4718 

From Table 2, there is a straightforward time effect, while when 𝜈 and 𝜆 decrease, there is 

rapid convergence. 
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4. The separation variables technique 

Some researchers have solved the integral equations at zero time using the earlier technique; 

see, for example, [9]. In other studies, time and position may be separated using the Laplace or 

Fourier transforms; however, this method has drawbacks when trying to identify inverse transformers. 

Another technique is to divide the time into periods to create an entire set of integral equations that 

are especially applicable to the position . 

The approach of separating variables using explicit functions in position and time makes the 

discussion of the time impact more comprehensible. 

Assume the unknown and given functions, respectively, take the form 

Φ(𝑢, 𝑡) = 𝐴(𝑡)𝜓(𝑢),     𝐹(𝑢, 𝑡) = 𝑔(𝑢)𝐵(𝑡). (22) 

Hence, when using formula (22), Eq (1a) yields  

𝜇∗𝜓(𝑢) − 𝜆∗ ∫ 𝑘(|𝑦 − 𝑢|)𝜓(𝑦)𝑑𝑦
1

−1

= 𝑔(𝑢), (23) 

where 

𝜆∗ =
𝜆

𝐵(𝑡)
∫ 𝑓(𝑡, 𝑠)𝐴(𝑠)𝑑𝜏

𝑡

0

,  𝜇∗ =
𝐴(𝑡)

𝐵(𝑡)
. (24) 

In all previous research, the solution to MIEs cannot be discussed in view of time. Also, 𝜇∗ 

determines the kind of the integral equation. If 𝜇∗ = 0, we have an IE of the first kind, while if 

𝜇∗ = constant ≠ 0, we have an IE of the second kind. A third kind of IE can be obtained if 𝜇∗ =

𝜇∗(𝑢). The significance of the separation method came from obtaining a quadratic FIE with a 

time-related coefficient. In this case, the time can be computed explicitly at any point. 

5. The orthogonal polynomials method and Gegenbauer polynomials 

The solution of Eq (23) will be discussed using Gegenbauer polynomials of the order 
𝜈

2
, which is 

𝐶𝑛

(
𝜐
2
)
(𝑢) = ∑

(−1)𝑘Γ (𝑛 − 𝑘 +
𝜐
2)(2𝑢)𝑛−2𝑘

Γ (
𝜐
2) 𝑘! (𝑛 − 2𝑘)!

⌊
𝑛
2

⌋

𝑘=0

. 

So, we write the unknown function 𝜓(𝑥) and the given function 𝑔(𝑥) in the following forms: 

𝜓(𝑢) = ∑ 𝑏𝑛(1 − 𝑢2)
𝜐−1
2 𝐶𝑛

(
𝜐
2
)

∞

𝑛=0

(𝑢), (𝑏𝑛  are unknown constants). (25a) 
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𝑔(𝑢) = ∑𝑔𝑛(1 − 𝑢2)
𝜐−1
2 𝐶𝑛

(
𝜐
2
)
(𝑢)

∞

𝑛=0

, 

𝑔𝑛 =
𝑛! (𝑛 +

𝜐
2)Γ2 (

𝜐
2)

𝜋21−𝜐Γ(𝑛 + 𝜐)
∫ 𝑔(𝑢)𝐶𝑛

(
𝜐
2
)
(𝑢)

1

−1

𝑑𝑢. 

(25b) 

Now, consider the following relationships (see [18]). 

a) Spectral relationship: 

∫
(1 − 𝑦2)

𝜐−1
2

|𝑢 − 𝑦|𝜈
𝐶𝑛

(
𝜐
2
)
(𝑦)𝑑𝑦

1

−1

=
𝜋Γ(𝑛 + 𝜐)

Γ(𝜐)Γ(𝑛 + 1) cos (
𝜋𝜐
2

)
𝐶𝑛

(
𝜐
2
)
(𝑢). 

(26a) 

b) Orthogonal relationship: 

∫ (1 − 𝑦2)
𝜐−1
2 𝐶𝑛

(
𝜐
2
)
(𝑦)𝐶𝑚

(
𝜐
2
)
(𝑦)𝑑𝑦 =

1

−1

𝜋21−𝜐Γ(𝑛 + 𝜐)

𝑛! (𝑛 +
𝜐
2) Γ2 (

𝜐
2)

𝛿𝑚,𝑛. 
(26b) 

In (25a), 𝑏𝑛, 𝑛 ≥ 0 are called the eigenvalues of the unknown function 𝜓(𝑥). The function 

(1 − 𝑥2)
𝜐−1

2  is the weight function of Gegenbauer polynomials of order (
𝜐

2
). 

Truncate formula (25a) as an approximate solution to take the form 

𝜓𝑁(𝑢) = ∑ 𝑏𝑛(1 − 𝑢2)
𝜐−1
2 𝐶𝑛

(
𝜐
2
)
(𝑢)

𝑁

𝑛=0

,   lim
𝑁→∞

𝜓𝑁(𝑢) = 𝜓(𝑢). (27) 

So, Eq (24) takes the form 

𝜇∗ ∑ 𝑏𝑛(1 − 𝑢2)
𝜐−1
2 𝐶𝑛

(
𝜐
2
)
(𝑢)

𝑁

𝑛=0

− 𝜆∗ ∫ ∑ 𝑏𝑛|𝑦 − 𝑢|−𝜐(1 − 𝑦2)
𝜐−1
2 𝐶𝑛

(
𝜐
2
)
(𝑦)

𝑁

𝑛=0

𝑑𝑦
1

−1

= ∑𝑔𝑛(1 − 𝑢2)
𝜐−1
2 𝐶𝑛

(
𝜐
2
)
(𝑢)

𝑁

𝑛=0

. 

(28) 

By using Eq (26a), we get 

𝜇∗ ∑ 𝑏𝑛(1 − 𝑢2)
𝜐−1
2 𝐶𝑛

(
𝜐
2
)
(𝑢)

𝑁

𝑛=0

− 𝜆∗ ∑𝑏𝑛

𝜋Γ(𝑛 + 𝜐)

Γ(𝜐)Γ(𝑛 + 1) cos(
𝜋𝜐
2 )

𝐶𝑛

(
𝜐
2
)
(𝑢)

𝑁

𝑛=0

= ∑ 𝑔𝑛(1 − 𝑢2)
𝜐−1
2 𝐶𝑛

(
𝜐
2
)
(𝑢)

𝑁

𝑛=0

. 

(29) 
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Multiplying (29) by 𝐶𝑚

(
𝜐

2
)
(𝑢) and integrating it with respect to 𝑢, 𝑢 ∈ [−1,1], we get 

𝜇∗ ∑ 𝑏𝑛

𝜋21−𝜐Γ(𝑛 + 𝜐)

𝑛! (𝑛 +
𝜐
2
) Γ2 (

𝜐
2
)

𝑁

𝑛=0

− 𝜆∗ ∑ 𝑏𝑛

𝜋Γ(𝑛 + 𝜐)

Γ(𝜐)Γ(𝑛 + 1) cos(
𝜋𝜐
2 )

𝑁

𝑛=0

∫ 𝐶𝑛

(
𝜐
2
)
(𝑢)𝐶𝑚

(
𝜐
2
)
(𝑢)𝑑𝑢

1

−1

= ∑ 𝑔𝑛

𝜋 21−𝜐Γ(𝑛 + 𝜐)

𝑛! (𝑛 +
𝜐
2) Γ2 (

𝜐
2)

.

𝑁

𝑛=0

 

(30) 

By using the Gegenbauer relations (see [18]), 

𝐶𝑚
𝜐 (𝑢)𝐶𝑛

𝜐(𝑢)

= ∑
[
 
 
 
 (1 − (𝑘 + 𝑚 + 𝑛) mod2)(𝑘 + 𝜐)𝑘! Γ (

1

2
(−𝑘 + 𝑚 + 𝑛 + 2𝜐))

Γ(
1

2
(𝑘 + 𝑚 − 𝑛 + 2𝜐))Γ (

1

2
(𝑘 − 𝑚 + 𝑛 + 2𝜐)) Γ(

1

2
(𝑘 + 𝑚 + 𝑛 + 4𝜐))

]
 
 
 
 

/

[
 
 
 
 Γ (

1

2
(−𝑘 + 𝑚 + 𝑛 + 2))Γ (

1

2
(𝑘 + 𝑚 − 𝑛 + 2))

Γ(
1

2
(𝑘 − 𝑚 + 𝑛 + 2)) Γ(

1

2
(𝑘 + 𝑚 + 𝑛 + 2𝜐 + 2)) Γ(𝑘 + 2𝜐)Γ2(𝜐)

]
 
 
 
 

𝐶𝑘
𝜐(𝑢)

𝑚+𝑛

𝑘=|𝑚−𝑛|

, (31a) 

∫ 𝐶𝑛
𝜐(𝑥)

1

−1

𝑑𝑥 =
𝐶𝑛+1

𝜐−1(1) − 𝐶𝑛+1
𝜐−1(−1)

2(𝜐 − 1)
, (31b) 

𝐶𝑛
𝜐(1) =

Γ(2𝜐 + 𝑛)

Γ(2𝜐)Γ(𝑛 + 1)
, (31c) 

𝐶𝑛
𝜐(−1) =

Γ(2𝜐 + 𝑛)

Γ(2𝜐)Γ(𝑛 + 1)
cos(𝜋(𝜐 + 𝑛))sec(𝜋𝜐), (31d) 

and we have the following linear algebraic system (LAS): 

𝜇∗𝑏𝑛 −
𝜆∗ (𝑛 +

𝜐
2) Γ2 (

𝜐
2)

21−𝜐(𝜐 − 2)Γ(𝜐) cos (
𝜋𝜐
2 )

∑ 𝑏𝑚𝜒𝑘,𝑛,𝑚 (
Γ(𝜐 + 𝑘 − 1)

Γ(𝜐 − 2)Γ(𝑘 + 2)
{1

𝑚+𝑛

𝑘=|𝑚−𝑛|

− cos (
𝜋𝜐

2
+ 𝜋𝑘) sec (

𝜋𝜐

2
− 𝜋)}) = 𝑔𝑛 , 

(32) 

where 𝑛 = 0, 1,2, 3,⋯ , 𝑁 and 𝜒𝑘,𝑛,𝑚 is given by 
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𝜒𝑘,𝑛,𝑚 =

[
 
 
 
 (1 − (𝑘 + 𝑚 + 𝑛) mod 2) (𝑘 +

𝜐

2
)𝑘! Γ (

1

2
(−𝑘 + 𝑚 + 𝑛 + 𝜐)) Γ(

1

2
(𝑘 + 𝑚 − 𝑛 + 𝜐))

Γ(
1

2
(𝑘 − 𝑚 + 𝑛 + 𝜐))Γ(

1

2
(𝑘 + 𝑚 + 𝑛 + 2𝜐))

]
 
 
 
 

 

/

[
 
 
 
 Γ (

1

2
(−𝑘 + 𝑚 + 𝑛 + 2))Γ (

1

2
(𝑘 + 𝑚 − 𝑛 + 2))Γ (

1

2
(𝑘 − 𝑚 + 𝑛 + 2))

Γ (
1

2
(𝑘 + 𝑚 + 𝑛 + 𝜐 + 2))Γ(𝑘 + 𝜐)Γ2 (

𝜐

2
)

]
 
 
 
 

. 

(33) 

6. The convergence of the algebraic system 

We write the LAS (32) in the operator form 

�̅�𝑏𝑛 =
1

𝜇∗
𝑔𝑛 +

1

𝜇∗
𝑄𝑏𝑚,     𝑄𝑏𝑚 = 𝜆∗𝜔(𝑛, 𝜐) ∑ 𝑏𝑚𝐶(𝑘, 𝜐)𝜒𝑘,𝑛,𝑚 ,

𝑚+𝑛

𝑘=|𝑚−𝑛|

 (34) 

where 

(a) 𝜔(𝑛, 𝜐) =
(𝑛 +

𝜐
2) Γ2 (

𝜐
2)

21−𝜐(𝜐 − 2)Γ(𝜐) cos (
𝜋𝜐
2

)
, 

(b) 𝐶(𝑘, 𝜐) = (
Γ(𝜐 + 𝑘 − 1)

Γ(𝜐 − 2)Γ(𝑘 + 2)
{1 − cos (

𝜋𝜐

2
+ 𝜋𝑘) sec (

𝜋𝜐

2
− 𝜋)}) . 

To prove the convergence of (34), we assume 

(I) ‖𝜒𝑘,𝑛,𝑚‖ = max
𝑁

∑ |𝜒𝑘,𝑛,𝑚| =

𝑚+𝑛

𝑘=|𝑚−𝑛|

𝛽1,          𝑁 = {
max(𝑚 + 𝑛),

min|𝑚 − 𝑛|.
 

(II) |𝑔𝑛| = 𝛾, 

(III) ‖𝜔(𝑛, 𝜐)‖ =max
𝑛

|𝜔(𝑛, 𝜐)| = 𝛿1 , 

(IV) ‖𝐶(𝑘, 𝜐)‖ = max
𝑁

∑ |𝐶(𝑘, 𝜐)|

𝑚+𝑛

𝑘=|𝑚−𝑛|

= 𝛿2. 

Then, we state the following theorem. 

Theorem 5. The LAS (32) or (34) is convergent in 𝑙∞ space, under the above assumptions, and has 

a unique solution under the condition: 
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𝛽1𝛿1𝛿2𝜆
∗ < 𝜇∗. (35) 

Proof. From Eq (34), we have 

|𝑄𝑏𝑚| ≤ |𝜆∗||𝜔(𝑛, 𝜐)| ∑  

𝑚+𝑛

𝑘=|𝑚−𝑛|

|𝑏𝑚𝐶(𝑘, 𝜐)𝜒𝑘,𝑛,𝑚|. 

The above inequality takes the form 

‖𝑄𝑏𝑚‖ ≤ max
𝑛

|𝜔(𝑛, 𝜐)| |𝜆∗| (max
𝑚,𝑛

∑ |𝜒𝑘,𝑛,𝑚|

𝑚+𝑛

𝑘=|𝑚−𝑛|

)(max
𝑚,𝑛

∑ |𝐶(𝑘, 𝜐)|

𝑚+𝑛

𝑘=|𝑚−𝑛|

) |𝑏𝑚|. 

Hence, we have 

‖𝑄𝑏𝑚‖ ≤ 𝛽1𝛿1𝛿2|𝜆
∗||𝑏𝑚|. (36) 

Finally, we get 

‖�̅�𝑏𝑛‖ ≤
1

|𝜇∗|
{𝛾 + 𝛽1𝛿1𝛿2|𝜆

∗||𝑏𝑚|}. (37) 

Formula (36) leads to the convergence of the linear algebraic system, while inequality (37) leads 

to the uniqueness of the system under the given condition (35). 

An illustrative example 

Consider the V-FIE 

𝜇Φ(𝑥, 𝑡) − 𝜆 ∫ ∫ 𝑡𝑠|𝑥 − 𝑦|−𝜈Φ(𝑦, 𝑠)𝑑𝑦𝑑𝑠
1

−1

𝑡

0

= 𝐹(𝑥, 𝑡). 

By using formula (24), we have  

𝜇∗𝜓(𝑥) − 𝜆∗ ∫ |𝑥 − 𝑦|−𝜈𝜓(𝑦)𝑑𝑦
1

−1

= 𝑔(𝑥). 

If 𝐴(𝑡) = 𝐵(𝑡), we have 

|𝜆∗| = |𝜆|𝑇3, |𝜇∗| = 1. 

The convergent approximate solution can be obtained under the condition 
 𝛽1𝛿1𝛿2|𝜆∗|

|𝜇∗|
< 1, 

which can be shown in Table 3.  
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Table 3. Convergence condition for different values of 𝜈, 𝜆, and 𝑁 with 𝑇 = 0.7. 

From Table 3, we deduce that there is fast convergence whenever 𝑁 increases, while there is 

slow convergence when the values of 𝜈 and 𝜆 increase. 

7. Numerical results 

In this section, we present some examples to demonstrate the accuracy and applicability of the 

presented techniques by considering the requirements for the existence of a solution and its 

numerical convergence, shown by Tables 1–3. 

Example 1. Consider the V-FIE 

𝜇Φ(𝑥, 𝑡) − 𝜆 ∫ ∫ 𝑡𝑠|𝑥 − 𝑦|−𝜈Φ(𝑦, 𝑠)𝑑𝑦𝑑𝑠
1

−1

𝑡

0

= 𝐹(𝑥, 𝑡), 0 ≤ 𝑡 ≤ 𝑇 < 1. (38) 

Here, 𝐹(𝑥, 𝑡) is given by sitting Φ(𝑥, 𝑡) = 𝑥2𝑡2 as an exact solution, and its error function is 

given by ℜ𝑁 = |Φ(𝑥, 𝑡) − Φ𝑁(𝑥, 𝑡)|. Under the assumption 
𝜆𝛼𝛽𝑇

𝜇
< 1 for some values of 𝜆 and 

for the given values 𝜈 = 0.07 and 𝑇 = 0.09, shown in Table 1, mean errors and their rate of 

convergence for different values of 𝑁 are represented in Table 4. 

Table 4. Mean errors and their rate of convergence. 

𝜆 𝑁 Mean error Convergence rate 

0.018 

4 9.02 × 10−4 2.25 

8 1.91 × 10−4 1.32 

16 7.60 × 10−5 1.84 

32 2.13 × 10−5 --- 

0.7 

4 9.03 × 10−4 2.07 

8 2.15 × 10−4 1.49 

16 7.64 × 10−5 1.84 

32 2.15 × 10−5 --- 

From Table 4, the error decreases with increasing values of 𝑁, and its approximate numerical 

solution is stable with increasing values of 𝜆 under the convergence condition. 

𝜈 𝑛 𝑁 𝛽1 𝛿1 𝛿2 𝜆 𝜆∗ Convergence condition 

0.07 

4 8 0.0265 62.963 5.0 × 10−4 
0.018 

0.700 

0.006 

0.240 

5.0 × 10−6 
2.0 × 10−4 

8 16 0.0177 125.381 7.0 × 10−5 
0.018 

0.700 

0.006 

0.240 

9.0 × 10−7 
3.0 × 10−5 

16 32 0.0133 250.215 1.0 × 10−5 
0.018 

0.700 

0.006 

0.240 

2.0 × 10−7 
8.0 × 10−6 

0.4 

4 8 0.4794 20.340 0.004 
0.018 

0.700 

0.006 

0.240 

2.0 × 10−4 
0.008 

8 16 0.5266 39.711 6.0 × 10−4 
0.018 

0.700 

0.006 

0.240 

7.0 × 10−5 
0.003 

16 32 0.6241 78.453 1.0 × 10−4 
0.018 

0.700 

0.006 

0.240 

3.0 × 10−5 
0.001 
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Example 2. Consider the V-FIE 

Φ(𝑥, 𝑡) − 0.18 ∫ ∫ 𝑡2𝑠2|𝑥 − 𝑦|−𝜈Φ(𝑦, 𝑠)𝑑𝑦𝑑𝑠
1

−1

𝑡

0

= 𝐹(𝑥, 𝑡), (39) 

where 𝐹(𝑥, 𝑡) is specified by setting Φ(𝑥, 𝑡) = (𝑥2 + 𝑥5)(0.005 + 0.03𝑡+0.7𝑡3) as an accurate 

solution. 

Table 5. The solution Φ(𝑥, 𝑡) and its corresponding errors where 𝑁 = 16 for different 

values of time and 𝜐. 

𝑇 𝑥 
𝜐 = 0.07 𝜐 = 0.4 

Φ(𝑥, 𝑡) Error (ℜ𝑁) Φ(𝑥, 𝑡) Error (ℜ𝑁) 

0.005 

–0.8 0.0016164 0.0000079 0.0016204 0.0000119 

–0.4 0.0007548 0.0000164 0.0007523 0.0000189 

0.0 –0.0000122 0.0000122 – 0.0000141 0.0000141 

0.4 0.0008726 0.0000041 0.0008738 0.0000029 

0.8 0.0050392 0.0000555 0.0050360 0.0000523 

0.09 

–0.8 0.0025769 0.0000126 0.0025833 0.0000191 

–0.4 0.0012033 0.0000262 0.0011993 0.0000302 

0.0 –0.0000195 0.0000195 –0.0000224 0.0000224 

0.4 0.0013911 0.0000066 0.0013930 0.0000047 

0.8 0.0080335 0.0000886 0.0080284 0.0000834 

0.7 

–0.8 0.0825486 0.0005598 0.0824931 0.0006153 

–0.4 0.0380344 0.0018165 0.03770211 0.0021488 

0.0 –0.0015983 0.0015983 –0.0018176 0.0018176 

0.4 0.0440846 0.0012165 0.0437332 0.0015679 

0.8 0.2592969 0.0017963 0.2579618 0.0004611 

In Table 5, the errors are presented for different values of 𝜈, demonstrating that the errors 

increase with time 𝑇 and are stable. 

By taking 𝜐 = 0.4, for example, the error increases with time and decreases by increasing the 

number of iterations; see Figures 1–4. 

Figure 5 represents the approximate solution Φ(𝑥, 𝑡) of Example 2 in 3-dimensional space. 

 

Figure 1. The error of Example 2, where 𝑁 = 16, 𝑇 = 0.09. 
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Figure 2. The error of Example 2, where 𝑁 = 16, 𝑇 = 0.7. 

 

Figure 3. The error of Example 2, where 𝑁 = 8, 𝑇 = 0.09. 

 

Figure 4. The error of Example 2, where 𝑁 = 8, 𝑇 = 0.7. 



19255 

AIMS Mathematics  Volume 9, Issue 7, 19240–19260. 

 

Figure 5. The approximate solution Φ(𝑥, 𝑡) of Example 2, where 𝑁 = 8. 

Example 3. Consider the F-VIE 

𝜇Φ(𝑥, 𝑡) − 𝜆 ∫ 𝑡2𝑠2Φ(𝑥, 𝑠)𝑑𝑠
𝑡

0

− 𝜆 ∫ |𝑥 − 𝑦|−𝜈Φ(𝑦, 𝑡)𝑑𝑦
1

−1

= 𝐹(𝑥, 𝑡). (40) 

Figures 6–11 show the solution and the associated errors for the F-VIE with a Carleman kernel. 

We noticed that the errors declined as the values of 𝜈 decreased. 

Figure 12 represents the approximate solution Φ(𝑥, 𝑡) of Example 3 in 3-dimensional space 

 

Figure 6. The error of Example 3, where 𝑁 = 16, 𝑇 = 0.09, and 𝜈 = 0.4. 
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Figure 7. The error of Example 3, where 𝑁 = 16, 𝑇 = 0.25, and 𝜈 = 0.4. 

 

Figure 8. The error of Example 3, where 𝑁 = 16, 𝑇 = 0.55, and 𝜈 = 0.4. 

 

Figure 9. The error of Example 3, where 𝑁 = 8, 𝑇 = 0.25, and 𝜈 = 0.4. 
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Figure 10. The error of Example 3, where 𝑁 = 16, 𝑇 = 0.25, and 𝜈 = 0.007. 

 

Figure 11. The error of Example 3, where 𝑁 = 8, 𝑇 = 0.25, and 𝜈 = 0.007. 

 

Figure 12. The approximate solution Φ(𝑥, 𝑡) of Example 3, where 𝑁 = 8. 
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8. Conclusions 

This study aimed to deepen our understanding of the role that Gegenbauer polynomials play in 

solving mixed integral equations. By combining a rigorous exploration of mathematical principles 

with insights from recent references, this study aimed to contribute to the ongoing discourse in the 

field and provide a valuable resource for researchers and experts seeking the potential of Gegenbauer 

polynomials in the solution of MIEs. From the previous results, we conclude the following: 

The separation variables technique is a strategy that assists in solving the scientific deficiencies 

of previous approaches, as it allows researchers to control the time required to solve the problem in a 

specific way. 

The method of separation of variables was used in this research to transform the mixed integral 

equation in position and time into an integral equation in position and with coefficients in time. 

Furthermore, spectral relationships can be derived, which helps in solving many mathematical 

physics problems. 

Using the orthogonal polynomials technique and certain special functions, we may quickly 

express that the solution is a linear relationship between the eigenvalues and the eigenfunctions. 

In Example 2, we considered a V-FIE with a Carleman kernel for different values of 𝜈 and 

time. We observed that the errors increased with time and were extremely stable for different values 

of 𝜈 (see Table 5). 

By increasing the iteration number 𝑁, the errors decreased, which can be observed in Figures 1–4, 

while the approximate solution Φ(𝑥, 𝑡) of Example 2 appears in Figure 5. 

In Example 3, we numerically presented the solution of a F-VIE with a Carleman kernel. The 

solution and its corresponding errors are displayed in Figures 6–11, and we observed that by 

decreasing the values of 𝜈 , the errors decreased. The approximate solution Φ(𝑥, 𝑡)  is also 

illustrated in Figure 12. 
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