AIMS Mathematics, 9(7): 19195-19239.
DOI: 10.3934/math.2024936
AIMS Mathematics Received: 24 April 2024

Revised: 27 May 2024

Accepted: 03 June 2024
http://www.aimspress.com/journal/Math Published: 11 June 2024

Research article

Stability of HHV-8 and HIV-1 co-infection model with latent reservoirs and
multiple distributed delays

A. M. Elaiw"*, E. A. Almohaimeed'? and A. D. Hobiny'

! Department of Mathematics, Faculty of Science, King Abdulaziz University, P.O. Box 80203,
Jeddah 21589, Saudi Arabia

2 Department of Mathematics, College of Science, Qassim University, P.O. Box 53, Buraydah 51921,
Saudi Arabia

* Correspondence: Email: aclaiwksu.edu.sa@kau.edu.sa.

Abstract: Human immunodeficiency virus type 1 (HIV-1) gradually destroys the CD4* T cells
leading to immune system dysfunction. HIV-1 can result in acquired immunodeficiency syndrome
(AIDS) if antiretroviral drugs are not used. HIV/AIDS patients are more vulnerable to opportunistic
infections or cancers. Human herpesvirus 8 (HHV-8) targets B cells and causes an AIDS-related
cancer known as kaposi sarcoma (KS). Numerous investigations have demonstrated co-infection
instances between HIV-1 and HHV-8. In this research, we investigated the co-dynamics of HIV-1
and HHV-8 in vivo using a system of delay differential equations (DDEs). The model explained the
interactions between uninfected CD4" T cells, latently/actively HIV-1-infected CD4* T cells, free HIV-
1 particles, uninfected B cells, latently/actively HHV-8-infected B cells, and free HHV-8 particles.
Eight distributed-time delays were incorporated into the model to account for the delays that arose
during the generation of both actively and latently infected cells, the activation of latent reservoirs, and
the maturation of freshly discharged virions. By examining the nonnegativity and boundedness of the
solutions, we demonstrated that the model was both mathematically and biologically well-posed. We
calculated the model’s equilibria and threshold numbers. We studied the global asymptotic stability
of the model’s equilibria by building appropriate Lyapunov functionals and applying the Lyapunov-
LaSalle asymptotic stability theorem. Numerical simulations were used to display the results. For the
basic reproduction numbers of HHV-8 single-infection (R;) and HIV-1 single-infection (R,), sensitivity
analysis was carried out. Comparing HIV-1 or HHV-8 single infections with co-infections of HHV-8
and HIV-1 was shown. It’s interesting to note that we detected larger amounts of HHV-8 and HIV-1
when they co-infect than when they are infected alone. This outcome aligned with several findings
seen in the literature. The effect of antiviral drugs and time delays on the co-dynamics of HIV-1 and
HHV-8 was investigated. We found that the delay parameter and drug effectiveness both contributed
to a decrease in the basic reproduction numbers, R; and R,. Less treatment efficacies will be needed
to keep the system at the infection-free equilibrium and remove HIV-1 and HHV-8 from the body if a
model with time delays is employed.
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1. Introduction

The frightening illness known as acquired immune deficiency syndrome (AIDS) has drawn attention
from scientists. About 40.4 million people have died as a result of this terrible issue (estimates
from UNAIDS 2023 [1]). Human immunodeficiency virus type 1 (HIV-1) is the cause of AIDS. It
targets CD4" T cells, which manage the adaptive immune response in humans, starting a conflict
between the immune system and pathogens. Consequently, the virus progressively erodes the immune
system, encouraging the development of cancers and potentially lethal opportunistic infections [2].
Kaposi sarcoma (KS) is a kind of cancer and one of the illnesses associated with AIDS [3]. Human
herpesvirus 8 (HHV-8), also referred to as Kaposi’s sarcoma-associated herpesvirus (KSHV), is human
rhadinovirus and was discovered in 1994 by Chang et al. [4]. HHV-8 is the cause of KS and other
diseases such as primary effusion B-cell lymphoma (PEL) [5] and multicentric Castleman disease
(MCD) [5]. These diseases frequently occur among individuals living with HIV [6]. HHV-8 primarily
targets B cells [7], which, in addition to cytotoxic T-lymphocytes (CTLs), are the main components
of adaptive immunity. B cells generate a particular antibody to neutralize the virus directly, while
CTLs eliminate the virus-infected cells [8]. Both HIV-1 and HHV-8 share ways of transmission to
the human body, such as blood products and sexual contact. Those with HIV-1 are more likely than
those without HIV-1 to be HHV-8 seropositive, according to the review of Rohner et al. [9]. The HIV-
infected population has an 800-fold higher risk of developing KS compared to the general population,
making it the most prevalent cancer among people living with HIV [10]. Several investigations have
reported cases of co-infection between HHV-8 and HIV-1 (see, e.g., [11-14]). Therefore, researching
the prevalence of HHV-8 in HIV-infected individuals is crucial because it can help predict the risks of
complications arising from co-infection in the future.

Mathematical modeling is used to describe real-world problems. Indeed, mathematical models
have been used to study the behavior of several biological systems such as dynamics of human viral
infections. As a result, understanding and predicting the course of a viral infection has become
possible. Recently, many researchers have focused their attention on mathematical modeling of HIV-
1 infection, which is interesting and full of research topics. Nowak and Bangham [15] used the
derivatives with respect to time ¢ to express the proportion of transfer between three components,
uninfected CD4" T cells, U(¢), HIV-1-infected cells, Y(¢) and free HIV-1 particles, V(). As a result, a
system of ordinary differential equations (ODEs) was constructed as:

generation rate of uninfected CD4* T cells death rate  infection rate
. —_— — —
U= A -du - BUV , (1.1)
growth rate of infected cells  death rate
. — —
Y= ﬂlUV - alY , (12)
generation rate of HIV-1  viral clearance rate
. — —
V= k 1 Y - C1 |% . (1 3)
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Several viral infections can be controlled and eliminated in large part by adaptive immunity. With
regard to the impact of B-cell response, model (1.1)—(1.3) can be expressed as [16]:

U=21-dU-pB,UY, (1.4)
Y=8UV -ay, (1.5)
V=gY-cV-rVw, (1.6)
W =Z(V,W) - uW, (1.7)

where W = W() is the concentration of B cells. The viruses are neutralized via antibodies generated
by the B cells, which are rVW. The term uW represents the death rate of B cells. Z(V, W) represents
the B-cell activation. The literature considered the subsequent special shapes of Z(V, W) as follows:

Shape-1. Self-regulating B-cell activation, Z(V, W) = «, where a > 0 [16].

Shape-2. Linear B-cell activation, Z(V, W) = uV, where u > 0 [17,18].

Shape-3. Predator-prey like B-cell activation, Z(V, W) = gVW, where ¢ > 0 [16, 18-20].
Shape-4. Combination of Shape-1, Shape-2, and Shape-3, E(V, W) = @ + uV + gVW [16].

Model (1.4)—(1.7) has been extended in several directions by including: (i) time delays [19, 20],
(i1) reaction-diffusion [21], (iii) age structure [22], (iv) cell-to-cell transmission [23,24], and (v) latent
reservoirs [25].

Researchers have focused a great deal of work on modeling the dynamics of HIV-1 single-infection
inside the host, but they have not given much thought to analyzing the dynamics of HHV-8 single-
infection. Chimbola et al. [26] developed an HH V-8 single-infection model. However, only the stability
of the infection-free equilibrium was analyzed. The within-host co-dynamics of HIV-1 and other
viruses have been the subject of numerous mathematical models developed in recent years. Examples
of these models include those between HIV-1 and severe acute respiratory syndrome coronavirus 2
(SARS-CoV-2) [27]; HIV-1 and human T-cell lymphotropic virus (HTLV) [28]; HIV-1 and hepatitis C
virus (HCV) [29]; and HIV-1 and hepatitis B virus (HBV) [30]. The evolution of HIV-1 co-infection
and KS under the impact of highly active antiretroviral therapy (HAART) is shown in a mathematical
model formulated by Nani and Jin [31]. To support this paradigm, adoptive cellular immunotherapy
was included by the same authors in [32]. The kinematics of both B cells and free HHV-8 particles,
however, were not included in these two papers. Models were developed in [33-35] to show the
development of co-infection between HHV-8 and HIV-1. The model from [33] could not account for
the population dynamics of uninfected CD4" T cells and uninfected B cells. Mathematical analysis
of the model in [34] was limited to assessing the positivity of the model’s solutions. All that was
examined in [33, 35] was the stability of the infection-free equilibrium. It is worth noting that the
models showcased in [31-35] ignored the function of B cells in the fight against HIV-1. Furthermore,
these models disregarded two crucial biological elements: latent reservoirs, which harbor the virus
within them but do not secrete it until it activates, and the interval between the virus’s collision with
the target cell and the generation of new, mature viruses.

In this work, our ultimate goal is to develop and examine a novel mathematical model to explain the
co-dynamics between HIV-1 and HHV-8. The model incorporates the function of B cells against HIV-
1 and accounts for latent reservoirs. The model also includes eight distributed-time delays to account
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the delays that occur during the creation of both actively and latently infected cells, the activation of
latently infected cells, and the maturation of freshly emitted virions. We explore the basic properties
of the model’s solutions in addition to the global stability of the equilibria. We provide numerical
simulations to validate the theoretical results. We describe the findings in our conclusion.

2. Model formulation of HHV-8/HIV-1 co-infection with multi-time distributed delays

In this section, we formulate an HHV-8/HIV-1 co-infection model with eight distributed-time
delays. Let Y* = YE(r), YA = YA(r), ZF = ZE(r), Z* = ZA(f), and P = P(t) be the concentrations of
latently HIV-1-infected CD4* T cells, actively HIV-1-infected CD4" T cells, latently HHV-8-infected
B cells, actively HHV-8-infected B cells, and free HHV-8 particles, respectively. Denote

WU, Y5, YA, V,W,z8 74, Py = (U, Y5, YA, V, W, Z5, 24, P)(p),
(Un, Y5 Y2, Ve, Wi, ZE, 22, P = (U YE, YA, VLW, Z5, 24, P (2 — 7).

Then, the model is given as:

U=1-dU-p,UYV, (2.1)
Yh=(1-é)B fo ) fi(@e™ U, Vedt — (6; + b))Y*, (2.2)
YA = &8 fo N fHr(D)e ™ U, Vdt + 6, fo N fi(0)e™ YEdr — a Y4, (2.3)

V =k f N fi()e ™ YAt — |V — rVW, (2.4)
W=a+ OqVW — uW — mWP, (2.5)
ZF=(1-&)m fo N fs(T)e ™" WP dT — (6, + by)Z" (2.6)
74 = &m fo K fo(D)e "W, PdT + 6, fo K fr(r)e ™ Zkdr — a, 78, (2.7

P=k fo N fy(0)e ™" ZAdr — ¢, P. (2.8)

The production rate of uninfected B cells is denoted by @, whereas the rate at which they are infected
by HHV-8 is represented as mWP. A fraction & € [0,1], i = 1,2 of target cells becomes active,
while the remaining fraction 1 — &; remains latent. Actively HIV-1-infected CD4*T cells and actively
HHV-8-infected B cells, respectively, produce HIV-1 and HHV-8 particles at rates k; Y and k,Z4. The
rates at which latently HIV-1-infected CD4*T cells and latently HHV-8-infected B cells become active
are represented by 6, Y% and §,Z%, respectively. The B cells undergo proliferation as a result of the
presence of HIV-1 at a rate of gVW. The terms b, Y%, a, Y2, b,Z%, a,Z*, and c, P represent the death
rates of compartments Y%, YA, 7L 72, and P, respectively. Here, n;, i = 1,2,---,8 are the positive
constants. The delay parameter 7 is a random variable picked from probability distribution functions
fi(tr) over time interval [0,%;], i = 1,2,---,8, where %; is the limit superior of the delay period. We
have the presumptions.
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(I) The likelihood that uninfected CD4*T cells and uninfected B cells contacted by HI'V-1 and HHV-8
at time ¢ — 7 survived 7 time units and become latently HIV-1-infected CD4*T cells and latently
HHV-8-infected B cells at time ¢, respectively, is represented by the factors fi(r)e™", i = 1,5,
where 1/n; 1s the average lifetime of the cell during the period of formation of a latently infected
cell [36]. Here, T denotes the time between viral entry and latent infection (i.e., the integration of

viral DNA into cell’s DNA has finished) [37-39].

(IT) The likelihood that uninfected CD4* T cells and uninfected B cells contacted by HIV-1 and HHV-8
at time ¢ — 7 survived 7 time units and became actively HIV-1-infected CD4*T cells and actively
HHV-8-infected B cells at time ¢, respectively, is represented by the factors fi(t)e™",i = 2,6,
where 1/n; is the average lifetime of the cell during the period of formation of an actively infected
cell. Here, 7 represents a time delay between the cell infection and the subsequent generation of
new immature virions [37-39].

(IIT) The likelihood that latently HIV-1-infected CD4*T cells and latently HHV-8-infected B cells
would survive for 7 time units before becoming active at time ¢ is shown by the factors
fi(me™™, i = 3,7, where 1/n; is the average lifetime of the cell during the period of a latently
infected cell’s reactivation. Here, 7 is a period of time during which latently infected cells are
activated to generate actively infected cells [40,41].

(IV) The likelihood of newly immature HIV-1 and HHV-8 at time ¢ — 7 surviving 7 time units and
maturing at time 7, respectively, is represented by the factors fi(t)e™",i = 4,8, where 1/n; is the
average lifetime of an immature virus [36]. Here, 7 represents the time it takes from the newly
produced virus to be mature and then infectious [39,42,43].

Note that the functions fi(7),i = 1,2,--- , 8, satisfy f;() > 0 and
f fi(ndr =1, f f}(T)eleT < o0,
0 0

where [ > 0 [44]. Let us denote I1;(7) = fi(t)e™ " and F; = fo%i [l(r)dr,i = 1,2,---,8, which implies
that 0 < F; < 1. The initial conditions for model (2.1)—(2.8) are given as follows:

U(6) = ¢1(0), Y(6) = $2(0), Y () = $3(60), V(0) = a(6),
W(6) = ¢5(6), Z(6) = ¢6(6), Z"(6) = $+(6), P(6) = ¢5(6), (2.9)
$:(0)>0,i=1,2,...,8, 6Hel[-1",0],

where 7" = max {x,%,,...,x%3},¢; € C([-7",0],R59), and C is the Banach space of continuous
functions mapping from [-7*,0] to Ryo with the norm |||l = sup_._o|¢:(0)| for ¢; € C, i =
1,2,...,8. According to the standard theory of functional differential equations, model (2.1)—(2.8)
with initial conditions (2.9) has a single solution [45,46]. The values of parameters of model (2.1)—
(2.8) are given in Table 1.
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Table 1. Model parameters.

Symbol  Parameter Value Source
A Production rate of uninfected CD4*T cells 10 cells mm™ day™! [47,48]
d Death rate of uninfected CD4*T cells 0.01 day™! [23,49]
B Infection rate of uninfected CD4*T cells by HIV-1 varied

a, Death rate of actively HIV-1-infected CD4* T cells 0.4 day’1 [47]

ki Production rate of HIV-1 38 viruses cells™! day™! [49,50]
l Death rate of HIV-1 2.4 day~! [47-49]
r Neutralization rate of HIV-1 particles due to B cells 0.1 cells™' mm? day™!

a Production rate of uninfected B cells 48 cells mm™ day’1 [34]

q Stimulation rate of B cells 0.01 viruses™! mm? day™!  [51]

u Death rate of uninfected B cells 0.24 day‘l [34]

m Infection rate of uninfected B cells by HHV-8 varied

a Death rate of actively HHV-8-infected B cells 0.33 day™! [34]

ky Production rate of HHV-8 1 viruses cells™! day™ Assumed
c) Death rate of HHV-8 0.57 day™! [34]

& A portion of newly HIV-1-infected CD4*T cells that activate 0.1 [52]

& A portion of newly HHV-8-infected B cells that activate 0.001 [26]

o1 Activation rate of latently HIV-1-infected CD4*T cells 0.01 day™! [52]

02 Activation rate of latently HHV-8-infected B cells 1.1 day‘1 [26]

b, Death rate of latently HIV-1-infected CD4*T cells 4x1073 day’1 [52]

b, Death rate of latently HHV-8-infected B-cells 0.30 day™! [26]

T Time delay parameter varied

n; Average lifetime of the cell or virus during a delay period 1 day™! Assumed

3. Preliminaries

This section presents the nonnegativity and boundedness of solutions of model (2.1)—(2.8) with
initial conditions (2.9), and it also provides the equilibrium points and the threshold parameters.

3.1. Analysis and properties of solutions

This section presents the nonnegativity and boundedness of the solutions to establish that the model
(2.1)—(2.8) is biologically acceptable and mathematically well-posed.

Lemma 3.1. Solutions of model (2.1)—(2.8) with the initial states (2.9) are nonnegative and ultimately
bounded.

Proof. Let us show the nonnegativity of solutions of model (2.1)-(2.8). Clearly, Eq (2.1) and
Eq (2.5) of model (2.1)—(2.8) give

U]y
Hence, U(t) > 0 and W(¢) > O for any ¢ > 0. In addition, we have

:/l>O,W|W:0:a>O.

! |
YH(0) = e 0(0) + (1 — €1y f e Orrh=o) f IL (U0 - 1)V(0 - 1)drd6 > 0,
0 0
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YA®t) = e 3(0) + f e =9 lglﬁl f " IL(T)U© - 7)V(0 — 7)dT+6, f K (1) YH(6 - 1)dr
0 0

0

df > 0,

V() = e berodg, ) + k, fo PR fo : TL,(0)Y*(6 — 7)d7d6 = 0,
ZH1) = e p(0) + (1 — E)m fo PRCTAy fo ) Is(1)W(0 — 7)P(0 — T)d7d6 > 0,
ZA(t) = e ¢,(0)+ fo [ e~ [gzm fo N s ()W(0 — T)P(0 — T)dT+6, fo K I, (1) Z"(6 - T)dr] do > 0,
P(t) = e ¢g(0) + k» fo t e~ 20 j; N Ig(1)Z*(6 — T)d7d6 > 0,
for any ¢ € [0, 7*]. Hence, by recursive argumentation, we obtain that (Y%, Y4, V,ZE, ZA, P)(t) > O for
any t > 0.

Let’s prove the ultimately boundedness of solution (U, Y%, YA, V, W, ZL, ZA, P). From Eq (2.1), we
have lim sup U(¢) < Q; where Q| = fl. To prove the ultimate boundedness of YX(f), we define
—00

¥, =(1-¢) fom I, (t)U.dt + Y*~.
Then, we get
¥ =(1-¢) fom I, (r)U.dt + Y*
=(1-¢&) fom 1, (1) [A - dU, - B1U.V, ] dr + (1 — &)B, fom I, (1)U, V,dt — (6, + b)Y*"

—(1-&)A f My (x)dr - (1 —fl)df%l (D) Uydr — (6) + by)Y"
0 0

< (I =&k - & [(1 —fl)f I, (r)U.dt + Y*
0

<(A-=-éD1-4 [(1 - &) f(:“ I, ()U.dt + Y*
=1 -&Na-4aY,
where /; = min{d, 5, + b;}. It follows that lim sup ¥;(¥) < Q,, and then lim sup Y*(¢) < ,, where
Q) = “;%M Define o o
¥, = & fo N I, (7)U.dt + Y2,

Then, we get
%) %) %3
W, = g f M(0) [A = dU, - U, V, ] dr + .5, f My(0)U, Vydr + 6, f My (0)YEdr - ay vt
0 0 0

%o 7% %3
= &1 f I, (7)dT — dé f (1) U.dt + 6, f 3(r)Yidr — a) Y2
0 0 0
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<EAF +61F30 — & [§1 f (1)U, d7 + Y*
0

<EA+ 61 — LYo,

£14+61

where ¢, = min{d, a;}. It follows that lim sup W,(¢) < Q3 where Q3 = 2
t—00

, then lim sup Y4(¢) < Qs.
—0o0

Now, let us define
r
Ys=V+-W.
q

Then, we obtain

x4
¥, =k, f [L(D)YAdT — eV = VW + = (@ + qVW — uW — mWP)
0 q

2
=k1f L@OYidr—cV+— - Ew-"wp
0 q q q

74
Sklf H4(T)de‘r+g—clv_ﬂw
0 q q
Sk1F493+g—§3 V+£W]
4q q

< ki Q3 + A $Ys,
q

b&s 4 or and, thus,

where {3 = min{cy,u}. It follows that limsup W3(r) < €Q,, where Q; = 2 o
—o0 3

lim sup V(7) < Q4 and lim sup W(r) < Qs where Qs = 21Q,. We define
[—o0 >0

Y, =(1-&) fﬂs s(1)W.dr + Z-.
0

Then,
s

lP4 = (1 - é:Z) fﬂs HS(T) [CY + qVTWT _IUWT - mWTPT] dr + (1 - ‘fZ)mf . HS(T)WTPTdT - (62 + bZ)ZL
0 0
=(1- fz)&fo s(n)dr + (1 - fz)qfo Hs(T)V: Wedt — (1 - 62)#[0 Is(1)Wedt — (6 + by)Z"

< (1 =&)aFs + (1 = &)qFs€4Q5 — (1 - fz),uf s(1)Wedt — (62 + by)Z"
0

< (I - &)l + gQuQs] — 44'Wa,

(1-&)la+g24Q5] then

where {, = min{u,d, + b,}. It follows that lim sup W4(r) < Q¢ where Q¢ = 7
t—00 S

lim sup Z%(¢) < Q¢. Consider
t—00

%6
Ys =&, f e(T)W.dt + Z*.
0

Then, we obtain

26 %6 %7
¥s =4, f e(7) [ + gV, Wy — uW, — mW.P. ] dt + &;m f [s(T)W.P.dT + 6, f (1) Z5dr — a,Z*
0 0 0
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%6 26 %6 7
= &Ha f [e(t)dt + éxq f e(1)V. W, dt — &2 f s (T)W.dT + 6, f (1) Ztdr — a, 7t
0 0 0 0

%6
< &EafFe + EgF 6 Qs + 6:F7Q6 — {5 [é:zf Hs(1)W.dt + Z*
0

< §2a' + szQ4Q5 + 6296 — {5‘1’5,

£a+69Q4Q5+6,Q6

2 , then

where {5 = min{u,a,}. It follows that limsupWs(r) < €, where Q; =
[—0o0

lim sup ZA(t) < Q. Finally, Eq (2.8) gives

[—0o0

%3
P=k f Mg(7)Z2d7 — 2P < kyQ7 — ¢ P.
0
Thus, lim sup P(f) < Qg where Qg = % Consequently, according to the Lemma 3.1, the region
t—o00

r={(U, Y5 Y4 VW, 25 24, P) € CSy < I < Qu, IV < Qo) IIYA1] < Qs, IVI] < Qu,
IWIl < Qs. 1124 < Q. [|2*]] < Q7. 11PIl < Qs)

is positively invariant with respect to model (2.1)—(2.8). O

3.2.  Equilibrium points and threshold parameters

Lemma 3.2. For model (2.1)—(2.8), there are four threshold numbers (R;, j = 1,2,3,4) in addition to
four equilibria such that

(I) There is always infection-free equilibrium, EPy = (U, 0, 0,0, W, 0,0, 0).

A If Ry > 1, then there exists an HHV-8 single-infection equilibrium, EP; =
(01.0,0,0, Wy, ZE, Z{, P\) besides EP,.

dIm 7f R, > 1, then there exists an HIV-1 single-infection equilibrium, EP, =
(U2, Y5, Y4, V2, W5,0,0,0) besides EP,.

IV) If Ry > 1 and Ry > 1, then then there exists an HHV-8/HIV-1 co-infection equilibrium, EP;
(Us. YE, Y4, V3, W3, ZE, Z4, Ps) besides EP,,.

Proof. The equilibrium points EP = (U, Y:, YA, V, W, ZL, Z4, P) of model (2.1)—(2.8) can be found by
solving the following system of algebraic equations:

0=1-dU -p,UYV,

0=(1-&)FBUV -6 Y —bYh

0=&FB UV + 6 FYE —a Y4,

0=kF, Y —cV-rVW,

O=a+qVW —uW —mWP,

0 = (1 — &)FsmWP - 6,75 — b, 7",

0 = &FgmWP + 6,F,ZF — ay 77,

0 = koFsZ" — c3P.
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We find that the given model (2.1)—(2.8) admits four equilibria as well as four threshold parameters,
which are:

(1) Infection-free equilibrium, EPy = (U,, 0, 0,0, W, 0,0, 0), where U, = ﬁ and W, = /%

(2) HHV-8 single-infection equilibrium, EP; = (U 1,0,0,0, Wl,ZlL, Zf‘, Pl), where

U = A W, = 26 (02+b2) ;  @oopu
1 — 7 1 = 5 = 5 > | =
d kszgpl ngzm?)l

A Cop H
i kszS(l ), P m(l )

Here, R, and #; are defined as:

(I-&)Fs(R - 1),

_ aknggP]
arCord ((52 + l’)z)’
where Py = (62 + by)éxF¢ + 62(1 — &)FsF7,

where R; represents the basic reproduction number for HHV-8 single-infection. Clearly, EP,
exists when R; > 1.

(3) HIV-1 single-infection equilibrium, EP, = (Uz, YL, Y3, Vo, Wi, 0,0, 0), where

_ (51+b1)Y2L L_Clll'_l(l_fl)Yﬁ4
T A-e)FpV, P
A Vo +rVoW, a 3.1
vg = W, = ,
kiFy4 H—qVs

where P, = £1F2(61 + b1) + FiF361 (1 - &),
and V, satisfies the following equation:

AVE+AV+A
! 2 3:O, VG(O,’L—I),
u—qV q

where

Ay =aic\f1q(01 +by),
Ay =aydciq (01 + by) —aicifip (01 + by) —ayrafy (61 + by) — Ak B1gFsPs,
Az = Ak BipF 4Py — ardeip (6, + by) — ardra (61 + by) .

Let us define a function G(V) as:

G(V) =

AVE+AV+A
V7 Ay 3v€(0,’i).
H—qV

Function G(V) is continuous on V € (O, ’é) Then, we have

Gy = WO FbIat ) o o i Ry s 1
u
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and
lim G(V) = -0 <0,
v-(5)

where
Ak B1uF 4P

2= ard (cip + ra) (6, + by)’
Here, R, is the basic reproduction number for HIV-1 single-infection. Thus, there exists V, such
that 0 < V, < g satisfies G(V;) = 0. As aresult, we get U, > 0, YZL > 0, Yf‘ >0, and W, > 0.

(4) HHV-8/HIV-1 co-infection equilibrium, EP3 = (U3, YR YE, V3, Wa, 25, 7, P3), where

a(by + 61) [axcar(by + 62) + cihkomPiFg]

Us = :
: kikompBPoF 4P Fg
. adF (1 = &)(citkom®PiFg + aycor(bsy + 62))
Y3 = (R3 - 1) s
kikompBPoF 4P Fs
d(Clkzmpng + a2C2l"(b2 + 52))
Y{ = Ry-1),
3 kikompBP1FgF4 R = 1)
Vs = i(R3 ). Wi axco(by +52)’ L arcr(1 — &)Fs(dg + i) (Ri—1).
Bi kom®PF kompBP1Fg
c2(dq + Bi) dq + piu
ZA:—R—I P:—R_l,
3 kompBiFs Ry = 1), P B, (Ry—1)
where
R = AkikomBP1PoF aF
3T ald(él + b]) (C]kzmpll:g + azczl"(éz + bz))’
R, = kZmﬁlFS ( Q/Pl n k1Q/lP1F4P2 )
! (dq + i) \azc2(62 + b2) — a1(6) + by) (crkom®PiFs + axcar(6, + b)) )
We have
_ kzmﬁng ( a/Pl + quﬂP1F4P2 )
P dg+ By \axca(6: +by) T ai(61 + by) (crkamPiFy + arear(6y + b))
_ Biu ak,mF3P, N qd AkikympB P11 PoF 4Fs
(dq + pip) arcou(62 + by)  (dg + i) ard(61 + by) (cikom®PFg + arcrr(6: + by))
Biu dq
= Ry + R
dg+Bip ' dg+Biu
< R; + R;.

Thus, R4 < Ry as well as Ry < Rj3. Therefore, the co-infection equilibrium, E P53, exists whenever
R4 > 1. The parameter R4 determines when HIV-1 and HHV-8 will be coexist. m|

4. Global stability of equilibria

In this section, the global stability of all equilibria of co-infection model (2.1)—(2.8) is studied. We
formulate a suitable Lyapunov function and apply LaSalle’s invariant principle given in [36,53]. Let
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us define a function £(6) = 6 — 1 — In 0, and let T;. be the largest invariant subset of

T, = {(U Yh YA V. W25 24 P) aH

=07, Jj=0,1,2,3.
dt } J

Theorem 4.1. The co-infection model (2.1)—(2.8) is globally asymptotically stable (GAS) around the
infection-free equilibrium EPy if Ry < 1 and R, < 1. Furthermore, EP is unstable if Ry > 1 or R, > 1.

Proof. Define Hy(U, YE, YA, V, W, ZE, ZA, P) as:

b b F b
7‘{0 = P2U0~£( )+51F3Y +(61+b1)YA 611(5] + 1)V+Cl]r(5] + I)W.L(W ) aro, 7(61 + I)ZL
0

kiF4 kigF4 kigF 4P,
ar(6y +b1)(02 +by) 4 ajar(6; + by)(02 + by) f ft
7%+ P+6 1-&)F 11 U@)ve)ded
lagF P kikagF A 5P 1Bi1(1=&)F3 | 1(7) - OV (O)dodr

+ &151(01 + by) fﬂz Hz(T)f U@)ve)dodr + 6,(6; + by) fm I15(7) YE(0)dbdr
0 -7 0

-7

51 +by) [ ' SomF7(1 — &)(S1 + by) (7 '
+Cll( 1+ 1)f TL(7) YA(Q)deT-l-alr amF( 52)( 1t l)f HS(T)f W(@)P(@)d@dT
0 T quF4P1 0 -7
%6 !
+ Cllr'me(dl + bl)((SZ + b2) Hé(T)f W(G)P(Q)d@d?’
quF47)1 O
a1162(61 + b1)(62 + by) f I
H Z-(0)dod
+ lngF P 7(7) @) T
ayar(6y + b1)(62 + by) f A
H Z2(60)dod
kigF4F 3P 0 © B

Obviously, Hy(U, YL YA, V,W,Z5,ZA,P) > 0 for any UYL YA V,W,ZE,ZA,P > 0, and
Hy(Uy,0,0,0, Wy, 0,0,0) = 0. Let us calculate d% along the solutions of model (2.1)—(2.8) as:

d?'(() Uo . a1(51 + bl) . aﬂ'(dl + bl) W()
- 1——)U 51FsYE + (5, + by) VA % (1——)W
ar 7)2( g Ut ot it b)Y+ ==V == W
N aroF4(0; + bl)Z-L N ar(6y + by)(6, + bz)Z-A N ayaxr(6) + b1)(02 + by) .
kigF 4P kigF4P: kikogF 4F 3P

+ 8811 - E)Fs f (@) UV - UsV,)dr + EBi(6) + by) f L) UV - U, Vy) dr
0 0

13 Z 7
£ 616 + bl)f M0 (¥* - ) dr + @11+ by) f ML) (V" - ¥2)dr
0 F4 0

0,mF7(1 — 01 +b #s
+ ajroom 7( 62)( 1 + 1) f Hj(T) (WP _ WTPT) dT
quF4P1 0
01 +b)6+b
4 ayr&m(6; + by)(62 + by) Tl4(7) (WP — W.P.) dt
quF4P1 0
ar6,(8y + b1)(02 + by) (77 L L
+ I;(0)\Z2™ - Z; ) dt
kigF4P1 0 ’ ( )
alazr((S] + b])((52 + bZ) s A A
+ Ig() (2" - Z7 ) dT.
kigF4FsP 0 ’ ( )
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Using Eqgs (2.1)—(2.8), we obtain

dH,

— =P (1 - %)(/1 —dU - BUV) +61F3 ((1 = &1)B) f IHI(T)UTVTdT_ (01 +b1)YL)
dt U 0

) %3
+ (51 +b1)(§:1ﬁ1 f Hz(T)UTVTdT+51 f Hg(T)YTLdT—CIlYA)
0 0

S1+b “

@i+ h) (kl f My()Y7dr =1V = rVW)
k1F4 0

L ar@i+b) (1 _ W
kigF, 4
5,F7(8, + b e

ayrésF7(61 + by) ((1 _ gz)mf Is(7)W P dt — (6, + bz)ZL)

k1qF4P1 0

01 +b)(S2+b & “
@r +6)( +b2) (fzm f (1) W, P-dt + 6 f H7(T)ZTLdT—aQZA)
kigF 4% 0 0

ayaxr(61 + b1)(02 + by) fxs A
+ k Is(D)Z%dT — ¢, P
lnkagF oF 5P ), BoEdr=a

)(a +qgVW —uW —mWP)

+01p1(1 —fl)F3f (@) (UV - U Vo) dt + §i1(61 + b1)f IL(T) (UV - U, V) dt
0 0

213 V7
£ 6,51 + bl)f (o) (V* = ¥E)dr + 00D f () (Y* - ¥/) dr

+ alrész7(l —fg)(él +b

) f s(t) (WP — W, P,) dt
0

kigF 4P,
01 +b)6+b %o
N ayré&m(0; + by)(62 + by) Ty(z) (WP — W.P.) dr
kigF 4P 0
ar6,(8y + b1)(02 + by) (77 L oL
I1 Z"—=7Z-)d
kigf 4P 7(T)( T) !
a1ar(6y + b1)(62 + by) [ A A
Ig(7) (2" - Z; ) dT.
kigF4FsP 0 ’ ( )
Collecting terms and using A = dU, and @ = uW,, we obtain
dH, d ,  air(0) +by) u 2
—==P,—U-Uy) — —— (W -W,
I zU( 0) P W( 0)
N a(01 + by) (cu + ra) ( Ak BuF 4P B 1)
kyuf 4 ad (cipu + ra) (61 + by)
a1a2r62(61 + b])(62 + bg) ( CL’kzl’l’ngP] _ 1)P
kikogF 4F 3P a1 (02 + by) '
Finally, we get
dH, d , air(61+by) u 2
— =P, —U-Uy)y ——— (W-W,
o zU( 0) P W( 0)
a)(01 + by) (cu + ra) ayarrcy(0 + by)(02 + by)
R,—-1)V+ Ri-DP
kyuf4 ®:~1) kikagfF 4F 3P4 (Ri=D
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When R; < 1and R, < 1, then dd—qfo < 0. Furthermore, dd—?t{“ =0whenU =Uy, W=Wy,, (R, — 1)V =

0, and (R; — 1) P = 0. Solutions of the model (2.1)—~(2.8) converge to I, [45]. Any component in 17,
fulfills U = Uy, W = W,,
R,—-1)V=0 and (R —-1)P=0. “4.1)

We have four cases:
Case (I) R, =1and R, = 1. Then, from Eq (2.1), we get
0=U=21-dUy-BU)V = V(@)=0 foranyt. 4.2)
From Eq (2.4), we have
0=V=k j; N (r)Y4dr = Y*#) =0 foranyt, (4.3)
and from Eq (2.3), we get
0=Y*=¢, fo 3(r)Ydr = Y*1)=0 foranyt. (4.4)

Equation (2.5) implies that

O=W=a-uWy-mWyP = P()=0 foranyt. 4.5)
Equation (2.8) gives
78
0=P=k f Og(r)Z%dr = Z*)=0 foranyt, (4.6)
0

and from Eq (2.7), we get
HT
0=2"=6, f ;(r)Ztdr = Zt) =0 foranyt. 4.7
0

Thus, Y}, = {EP).

Case (II) R, < 1and R, < 1. Then, from Eq (4.1), we have V = P = 0, and Eqs (4.3) and (4.6) give
Y4 = Z* = 0. Hence, Eqgs (4.4) and (4.7) lead to Y* = Z" = 0. Therefore, Y, = {EPy}.

Case (III) R, = 1 and R, < 1. Then, from Eq (4.1), we get V = 0. Equations (4.3)—(4.7) imply
YA=Yl=pP=274=7=0. Thus, Ty = {EPo}.

Case (IV) R; < 1 and R, = 1. Equation (4.1) implies P = 0. Equations (4.2)-(4.4), (4.6), and (4.7)
give V=Y4 =Y =274 =7" = 0. Thus, Y| = {EP}.

Applying the Lyapunov-LaSalle asymptotic stability theorem [54-56], we get that EP, is GAS.

The characteristic equation of model (2.1)—(2.8) at the equilibrium E Py is specified by

(x+d)(x+ wM(x) =0, 4.8)
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where x is the eigenvalue, M(x) = M;(x)M,(x) is defined for interval [0, co) as:
Mi(x) = (62 + 6% + bix + o)
My(x) = (h3x3 + X + Fyx + ho)

and

0 =u,
U = aop + bop + cop + Gap,
b = arbopt + aycopt + bycopt + r6p1 + €260 — kymardFoFs,
Lo = arcrui(0r + by) + akomdré5F sF7Fg — akymdoFsF-Fg — akombyésFeFg — akymdé:FgFs,
= arcu(by + 62) (1 = Ry).
hs = du,
hy, = dra + aydu + bydu + c1du + dou,
K = aidra + bidra + drad, + a\bydu + ajcidu + bicydu + a1dé i + c1dou — ki By Aué FoF s,
o = abidra + a\drad, + aibicidp + ayc1ddpu — kif161 AuF F3Fy — bk B Aué FoF 4 — ki BiApé 81FaF 4
+ k8161 AuérFLF3Fs,
= a1d(61 + b)(ciu + ra) (1 = Ry),

where F; = foxi fi(m)e 7 dr i = 1,2,---,8. Obviously, M(0) < 0 since M;(0) = arcou(by +
0) (1 =Ry) <0ifR; > 1, 0or M>(0) = a1d(61+by)(ciu+ra)(1 —R,) <0if R, > 1 and lim M(x) =

This presents that M(x) has a positive real root. Thus, when Ry > 1 or R, > 1, we get £, < 0 or /iy < 0,
respectively. Consequently, Eq (4.8) has a positive root and then E P, is unstable. m|

Theorem 4.2. The co-infection model (2.1)—(2.8) is GAS around the HHV-8 single-infection
equilibrium E P, when the following conditions are satisfied: Ry > 1 and R; < 1.

Proof. Consider H, (U, YE, YA, V, W, ZE, ZA, P) as:

H, = PZUIL( )+5F3YL+(61+b1)YA “1(51+b‘)V+a1r(61+bl)W1£(W)

kiFy4 kigF4 Wi
a1r62F7(51 + bl)ZL,E 7L Clﬂ”(él + b])((Sz + bz) AL 7A
quF47)] ZL k] qF47)1 ZA
ayaxr(6) + b1)(02 + by) f f
P +d 1-&)F II Uo)yve)ded
kikagF oF5 P 11:( ) 1B1(1 = &DF3 1(7) OV (0)dodr

+ &181(01 + by) f’”z Hz(T)f U@ve)dodr + 6,(61 + bl)f Hg(T)f Y*(0)dbdr
0 -7 0 -7

51 +by) [ ’
@0 tb) f L) | YAO)dodr
F4 0

ajréombo(1 — £)(61 + by) W(O)P(0)

+ quF4P1 Wlplf HS( )f ( W1P1 )d@dT
airé&;m(0y + by) (62 + bo) W(O)P(0)

+ quF4SD1 Wlplf H(,( )f ( W]PI )d@d?’
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a1r62(01 + by)(62 + by) Lf f ( L(g))
+ o F P z ; I;(7) ddt

ayarr(6) + b1)(62 + ba) f f (
+ Z Is(r
kigF4F P #(7)

)d@dT

d7’(1

Calculate as:

dH,

- :7)2 (1 — ﬂ)(/l —-dU —ﬁlUV) + 61/:3 ((1 _fl)ﬁl f%] Hl(T)UTVTdT — (51 + b])YL)
dt U 0

%) %3
+ (61 + by) (.flﬂl f IL(T)U,V,dt + 6, f 3(r)e ™ Yidr - alYA)
0 0

61 +0b "
s Gt by (Iq f [L()YAdt — ¢,V - rVW)
kiFy4 0

aﬂ'(&l +b1)( W])
+ —1-— +qgVW — uW —mwWP
KidFa W (@+gqg uW —mWPp)

F Z -
a,ré2F7(61 + by) ( )((1 _ fz)mf [Is(r)W, P dt — (6, + bz)ZL)
quF4P1 0
b ZA %6 %7
ayr(0; + b)(62 + by) (1 )(fﬂlf ()W, P.dr + 62f I (1)ZLdr — aZZA)
quF47)1 zZA 0 0

ayaxr(6) + b)(02 + by) ( Pl) f”g A
+ 1- k (1) Z2dT — ¢, P
kikagF 4F 3P P ? 0 #(7) e

+018:1(1 —51)F3f LUV - U Vy)dr + & 161 + bl)f IL(T) UV -U,V)dr
0 0
£ 6161+ by) f (o) (¥ - ¥E) dr + 202D fm M) (Y4 - ¥2)dr

0mF-(1 — 01 +b %s
| Qurym, 7(1 = &)(61 + 1)W1P1f Ms(7)
0

P TPT TPT
W —W +ln(W )]dr

ki gF 4P, W,P, WP, WP
e [ o g (o
A sy (T 22 (2
R el R R S

Summing the terms and using the equilibrium conditions of EP;:

A=dU,,
a=uW, + mW, Py,
(1 - &)mFsW Py = (6 + by)ZY,
EmFW Py + 6,F1ZF = a, 77,
I’QF;;Z‘l4 = P.
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We get

dH, d ,  air(0; + b)) p 2
PN p Loy -GN g
dt 7 X kigF4 w X kigFa
N a,(01 + by) (crkom®PFg + ac (6, + b))

klksz1F4Fg
_ 2 W, P,Z"
_ardy(1 = &)mb7(6, + bl)WlPIf H5(T)£( l)dT
0

ar(6; + bl)L(%)lePl

R: -1V

quF4P1 W1P1ZL
4 A
e U A o
2’ L—7A
g [ i
e 0020

‘%ﬁ =0ifU = U,,W =W, zZF =724 = Z},P = P, and (R; — 1)V = 0. Solutions of system
(2.1)—(2.8) converge to Y where U = U, W = W,,Z" = ZF, Z* = Z{', P = P,, and

If R, > 1, R; < 1, we conclude that dd—qf‘ < 0 for any U, Y, Y4, V,W,Zt, Z2, P > 0. Further, we have

Rs—1)V=0. 4.9
We have two cases:
Case (I) R; =1, then from Eq (2.1),
0=U=1-dU,-B UV = V(@)=0 foranyt. (4.10)
From Eq (2.4), we have
74
0=V=k f ()Y = YA =0 foranyt, (4.11)
0
and from Eq (2.3) we get
0=Y*=¢ f T(n)Yidr =  Y.()=0 foranyt. (4.12)
0

Then, 1 = {EP,}.

Case (II) R; < 1, then Eq (4.9) implies that V = 0 and Eqs (4.11), (4.12) give Y4 = Y/ = 0. Thus,
T = {EP}.

Hence, by applying the Lyapunov-LaSalle asymptotic stability theorem, we obtain that EP; is
GAS. ]

Theorem 4.3. The co-infection model (2.1)—(2.8) is GAS around the HIV-1 single-infection equilibrium
EP>, when R, > 1 and Ry < 1.
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Proof. Construct Hy,(U, YL, YA, V, W, ZE, Z4, P) as:

yL
A a(01 + by)
VI )"‘(51 + b)Y, £(YA) T VzL(Vz)

2
+ ar(6, + bl)W L( ) arorF7(61 + bl)ZL + ar(0; + b1)(62 + bz)ZA
kigF, W, kigfF 4% kigF 4P

aiaxr(6y + by)(62 + by) Uu@eve)
R P+6lﬁl(1—§1)F3U2vzf M(r )f ( T )dedr

H, —PzUzﬁ( )+51F3Y £(

- U@V
+EBIG) + b)ULV, f (o) ( £(vOVe
0 -7 U2V2

%3 4 L
+61(61 +b)Y5 f Ms(7) f L(YY(LQ))deT
0 -1 2

4 ! A
, a0+ +b‘)Y;‘f H4(T)f L(Y &9))610417
Fq 0 -7 Y2

— = l
 @rdamFs(l = £)6 + by) f () f W(OP(©)d6d
k1qF4P1 0 T

N ar&m(0; + by)(62 + by)
kigF 4P 0
a1ré2(61 + b1)(62 + by) (7 f[ L
+ I (r Z-(0)dodr
kigF 4P, 0 ) -1 (©)
ayayr(6) + b)(02 + by)
kigF4F P 0

)deT

K IIe(7) f W(0)P(6)dbdr

13 !
Is(7) f ZA(0)dbdr.
-7

Take the derivative of H, along the solution of model (2.1)—(2.8) as:

L

dH, —502(1——)(1 dU - ﬁlUV)+51F3(1—Y—)((1—§1),81 f“ Hl(T)UTVTdT—(61+b1)YL)
0

dr
A

+ (S, +by) (1 - Y—) (§1ﬁ1 f " IL(0)U.V.dt + 6, f - I3(r)Ytdr — alYA)
0

@G +b) (. V
v 0 (1 - 72)(kl fo ()Y dr — ¢,V — rVW)

S, +b W
+M(1__2)(a+qVW uW —mWP)
kigF4

52F7(6) + b ”
L @rdsFa(61 +by) ((1 _ 52)mf [s(r)W,P.dt — (6, + bz)ZL)
quF47)1 0

S, + b)) +b o “
@ir(01 +51)(02 + bo) §2mf Ig(T)W. P dr + 62f H7(T)ZTLdT —a,Z"
kigF 4P 0

aya,r(61 + by)(62 + by) f A
+ k I[s(D)Z%dt — ¢, P
kikagF oF P (2 A

uv ULV, U.V.
+ ln( )] dr

71
+0 1-&)HFU,V. II —
1B1(1 = EDF3U, 2f0 1(‘f)[U2V2 UV
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2 Uuv U.,V. U.V.
+ 81 + b)U, V- I1 —TT+1(TT)d
&Bi(0 +b)U, 2](; 2(7')[U2V2 U,V n UV ] T

. %3 YL YL YL
+ 6161 + b)Y, L H3(T)[ﬁ_ﬁ+l (YL)]dT

a (6, + by) Afm vt v v;
—Y I1 — ——Z +In|=|d
+ 3 5 ; 4(T) Y? Y?+ n 7z T
0mfF-(1 — o1 +b %5
L @urdomba(1 = 5)(6; + 1)f Ts(t) (WP — W.P.) dr
kigF4P1 0
N ayré&;m(01 + by)(62 + by)
kigF 4P 0
a1r62(61 + b1)(62 + by) (7 I I
I1 75 —-7Z=)d
kigF 4P 7(7)( T) !
ayaxr(6) + b1)(02 + by)
kigF4FsPy 0

%6
Ig(t) (WP — W, P,)dr

" My(r) (2" - Z2) dr.

Summing the terms and using the following equilibrium conditions,

A =dUy + B1U, Vs,
(I =&DF1B1ULV, = (61 + b)Yy,
EFBIULV, + 61F3Yy = ai Yy,
kiF4Ys = |V + rVa Wy,
a = uW, — gV,W,.

We obtain
d?‘{z d 2 ar(0; +b]) a ( )
- _p — — W—-W,) — \%
7 PZU (U -U,) kiaF WWZ( ) =P L B1UV,
Cl]f‘l’l’t(é] + b]) fﬂl UTVTYzL
— W, -W3)P-96 1 -&)HFRU,V. I1 1 d
kiaFs (Wr — W3) 1B1(1 = &DF3ULV, ; 1ML n(UszYL T
2 U:vyy L (7 YLys
_‘flﬁl(él"'bl)UZVZ](; LML AR dT—51(51+b1)Y2f0 (0L yiys dr
01(51 +b1) A fm Y?Vz
-—Y I1 .
£ 5 ) s L va dr

Now, we show thatif Ry < 1, then W, < W3. If R4 < 1, then the HHV-8/HIV-1 co-infection equilibrium,
EP3, does not exist since Z5 < 0, Z§ <0, and P; < 0. In this case,

%5
7k = (1- fz)mf HS(T)WTPTdT — (0 + bz)ZL <0,
0
%6 %7
74 = -fsz [e(T)W, P dt + 62f ;(t)ZtdT — a,Z* <0,
0 0

%3
P=k f g(1)Z4dt — ¢, P < 0.
0
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We want to determine the value W where 0 < W(¢) < W such that Z%(t) < 0, Z4(t) < 0, and P < 0.
Let’s consider

O0oF7 ; (02+by)_, ax(62+by) OomF7(1 = &) f”j ft
A= 7"+ 75+ P+ I1 W(O)P(6)dod
P P koF 3Py P 0 - -t .

202t b) f ) Ie(7) f t W(O)P@O)dr + 202+ 02 f i IT;(7) f ZHO)dr
P 0 -1 P 0 =T

ar(6 + by) (74 ft A
A I(T Z2(0)dodr.
FSP] 0 8( ) t—7 ( )
Then,
dAN  6,F "
= =27 ((1 - &)m f Os(r)W, P.d7 — (6, + bz)ZL)
0

0+ b %6 *7
+ ( 2; ) (fzm f g ()W P dTt + 0, f H7(T)ZTLdT — aZZA)
1 0 0

b g SomFo(1 - &) ™
RGN (kz | ng(r)zfdf-czp)+M [ s ove-w.poar
koF 31 0 P 0

%6 %7
+ gzm(52 + b2) f H6(T) (WP _ WTPT) dT + M f H7(T) (ZL — Zf_‘) dT
P 0 P 0

N a(0, + by)

N My(r) (2" - Z2)dr

FsP1 0
_ 52”¢F5F71f1 - &) WP+ fszﬁg(glz + by) WP — azclzz(iz;]bz)l)
o ((52(1 - fz)FsF;:l‘ (62 + bz)szﬁ) WP — azcliz(lfiz;'lbz)P
= mWP - —azczgiz;lb”
:m(W—%Z:P?Z))PSO for any P > 0.

This occurs when W< W= % W5. Obviously, 22 < 0 for any U, Y%, YA, V, W, Z%, ZA, P > 0.

Moreover, 22 CL=0ifU=U,, Y=Y, Y =Y}, V= Vz, W = W,, and (W, — W3) P = 0. Solutions
of the model converge to Y, where U = U,, Y- = Y5, YA =Y, V = V,, W = W,, and

(W, =W3)P=0. (4.13)
We have two cases:
Case (I) W, = W;. From Eq (2.5), we have
0=W=a+qVoW, — uW, — mW,P — P(t)=0 foranyt.

Equation (2.8) leads to

%3
0=P=k f g(1)Z8 = Z*) =0 foranyt, (4.14)
0

AIMS Mathematics Volume 9, Issue 7, 19195-19239.



19215

and from Eq (2.7) we get
77
0=2%=¢, f (1) Z8 = ZM©H =0 foranyt. 4.15)
0

Consequently, 17, = {EP,}.

Case (I) W, < W3, and from Eq (4.13) we get P = 0. Equations (4.14) and (4.15) give Zt = Z4 = 0.
Hence, T}, = {EP,}.

Thus, by the Lyapunov-LaSalle asymptotic stability theorem, EP, is GAS. O

Theorem 4.4. The co-infection model (2.1)—(2.8) is GAS around the HHV-§/HIV-1 co-infection
equilibrium EP3; when Ry > 1 and R; < 1 + %‘.

Proof. We construct Hz(U, YX, YA, V, W, ZL, ZA, P) as:

YL A A 01(61 +bl)
YL )+(51+b1)y .L( ) —k1F4 V3-£(V3)

3
+ Cl]l"(51 +b]) a1r52F7(61 +b])ZL£(ZL) Cl]l"((sl +b1)(52 +b2) AL(ZA)

W.
kigF 3£(W3) kygF 4P, kygF 4P ZA

ajaxr(6; + b)) (62 + by) U@OV(©)
+ K hogFoF P P3.£( )+ 618:1(1 —fl)F3U3V3f (v )f (W) dodr

7‘[3 P2U3L( )+(5F3YL_£(

" U@V
+§1,31(51+b1)U3V3f0 (1) 3 (%

L A
0 0 3

L @urdamba(l - 5)(6; + bl)W3P3f Ms(r )f (W(H)P(O))deT

)d@dr

kigFaP, WsPs
+alrérgm(illq-;:flp)l(5g+bz)w3p3 fo o [ (%’zﬁ)d%
A [ [ 2(7) v
g [ e [ o)
Calculate % as:
dH;

= —Pz(l——)(/l dU - BUV)

L |
‘5 F3(1 _ Y—)((l &)y f [0 U, Vsdr — (6, +b1>YL)

A

+ (5, + b)) (1 - Y—) (§1ﬁ1 f " IL(T)U,V.dt + 6, f - I3(r)Yidr - alYA)
0
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S +b v “
RLICRLD) (1 - —3)(k1 f My(0)Y2dr — eV - rVW)
0

kiF, %
ar(o, + bl) ( Wg)
—_— (1 - — VW — uW —mWP
+ v W (@+gqg u mWP)
arooF7(61 + by) z fks L
1 - =1 - [s5(0)W.P.dt — (02 + b))Z
kigF P ( 7L (1 -&)m ; 5(7) T— (62 + b2)

ar(6) + by)(62 + by) zy f”ﬁ f}ﬁ L A
-2 Mo(D)W,P.dt+6, | Th(nZdr — a7
+ dF P ( 74 &m 5 6(T) T+ 0, ; 7(T)Zdt — ay

g
e b0 () (- )
0

kikogF 4F 3P

d uv UV, U.V.
+6,81(1 - E)FUs Vs f Hl(T)[ ! ( )}dr
0

—_— +1In
UsV; U3V uv

%2 uv U.V. U.V.
+ o1 + b)) U5V I1 —#H(TT)d
EiBi1(61 + b)U3 3](: 2(T)[U3V3 ULV, n UV ] T

ot [yt ovb (v
+61((51 +b1)Y3 H';(T) — — — +1In|—||dr
0

VE €5 Yt
(11(51+b1) Afm YA Y.{_‘ Y;‘
—Y I1 — — — +In|—]|d
+ F. 3 | 4(7) Y? Y§*+ n A T
0,mF7(1 — 01+b %5 WP W.P, W.P,
| aurym, 7(1 = &)(6) + 1)W3P3f IIs(7) _ +ln( ) gt
quF4P1 0 W3P3 W3P3 wpP
01 +b)6+b %o P W.P. W_.P,
N ayré&m(6; + by)(6; + 2)W3P3f (1) wp N ln( ) gt
quF4P1 0 W3P3 W3P3 wpP
a1r62(61 + b])((SZ + bz) I fm zZr Z7l_‘ Zf
+ Z IT —— = +In{=-]||d
kigF 4P > Jo 70 zy  Zr Mz 4r
araxr(6y + b1)(62 + b)) 4 f”g VA zA
+ Z IT — — =; tIn| = ||dr.
kigF F P R 7 e VY | R

Collecting terms and using the following equilibrium conditions:

A=dU; + B,U;3V;3,
(1 = &NFiBUVs = (61 + b)Yy,
EFB U3 Vs + 6,F3Yy = a, Y3,
kiFyYs = ¢\ V3 + rVsWs,
a = uW; — qVisWi + mWs Ps,
(1 = &)mFsW3Ps = (6, + by)ZY,
EmFW3Ps + 6,F1Z5 = ayZ3,
kyFsZy = ¢, Ps,
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we finally obtain

d d(0;+by) 1 U
=- 7)25 (U - Us)* + @rdoy+b) 1 (W - W;)? (R3 -1- 'Lﬁ) - P2£(5)31U3V3

kipiFs W dq
U.V,YE
dr
U3 V3YL

dH;
dr
arm(6, + by)

- kigF,

2 UV, Y! e YLy
= &181(0; +b1)U3V3f IL(ML TAAL dt —61(01 + b))Y5 f I3(7).L dr
0 3V3 0

7 A
_aiGi+b) f H4(T)L(YTV3)dT
0

Fa YiV

ar6y(1 — E)mF(8, + by) f W.P.Z}
- WP 11 d
kigF 4P, P ) ISOL g7 |47

aré;m(6y + by)(62 + by) fxﬁ W.P.Z}
- Wi P I1 d
kigF P P ) ML g7 4T

a176,(8, + b))(6y + b)), f zZr73
— Z IT = |d
kigF 4P, > Jo oL zizA !

_ alazr(él + b])(éz + bz)Z? fkg Hg(T)L(ZAP3)dT_
0

quF4FgP1 Z?P

W3

L(W)W3P3 —5:81(1 — E)F3Us Vs fo Hl(T)L(

Thus, when R; < 1 + ’%, we obtain that % < Oforany U, YL, Y4, V,W,ZE, Z4, P > 0. Furthermore,

TE = 0ifU=Us, Yo =YL, YA =Y,V =V, W=W,, ZL =z, 74 = Z}, and P = P5. Solutions
of system (2.1)—(2.8) converge to Y} where U = Us, Y- = YE, YA = Y, V = V3, W = W3, ZF = ZE,
Z* =74, and P = P5. Hence, T} = {EP3}, and by applying the Lyapunov-LaSalle asymptotic stability
theorem, EP5 is GAS. m]

A summary of global stability conditions for any equilibria of model (2.1)—(2.8) are given in Table 2.

Table 2. Conditions of existence and global stability of equilibria.

Equilibrium Existence condition Stability condition
EPy = (U,,0,0,0,W,,0,0,0) - R <landR, <1
EP, = (U,0,0,0, W, ZL, Z) Py) R >1 Ry >1landR; <1
EP, (U, Y., Y3, V2, 2,0,0,0) Ry > 1 Ry>1land Ry <1
EP; = (Us, YL, Y4, V3, W3, ZL, Z4, P;) Ry > 1 Ry>land Ry < 1+

HHV-8/HIV-1 co-dynamics under the effect of antiviral therapy

An analysis is given of the co-dynamics of HIV-1 and HHV-8 in the context of antiviral therapy
and time delays. Examining two different antiviral therapies: (i) reverse transcriptase inhibitors whose
medication efficacy is ny € [0, 1] to stop the HIV-1 from infecting the CD4*T cells [16], and (ii)
endocytic pathway inhibitors whose medication efficacy is n7p € [0, 1] that block the mechanism, which
the HHV-8 uses to infect the B cells [26,57]. The model of co-infection between HHV-8 and HIV-1
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under antiviral therapy and time delays is provided as follows:

U=21-dU—-(1-ny)BUY,

Y= (=) =B [ TL(@U:Ved = (61 + b)Y",

VA= (1 =nép )" T@U:Vidr + 6, [ (0 Yfdr - a Y,

V./ =k fom (D) Y2dT — 1V — rVW, @.16)
W=a+qVW —-uW - (1 —np)mWP, )
Z" = (1=np)(1 = &m [ Ns(O)W, Pedr = (6 + b2)Z",

ZA = (1 = pp)éom [} Te(n)W.Pedt + 6, [} Ty(1)ZEdr — a, 2%,

P =k [ Ty(r)Z2dT - 3P,

The basic reproduction numbers for model (4.16) are given as:

akymFg [(62 + b2)éxFe + 02(1 — &)FsF7]

RWith delay
aycopt (62 + by)

1 (np) = (1 = 1p) = (1 = np)R)" "™ (0),

Ak\BrpF 4 [€1F2(61 + by) + F1F56, (1 = &))]

=(1 - RWith delay 0).
ard (cypt + ra) (6, + by) (1=, 0)

R () = (1 —my)

Following the fixation of all other parameters, we compute the drug efficacies np and 7y resulting in

R}’Vith delay (UP) <1and R;Vith delay (77\/) <1

_ _ RWith delay(o) —1
R}Wh o<l 122 ny;}ilndelay = max {0, — With dela ’ (4.17)
’ R, Y(0)
. ) RWith delay (O) -1
With del With del
RV (1) < ey 1 2y 2 g0 2 oy {0, Zanh W (- (4.18)
) 0)
Hence, if ngj:l?ndelay < np <1 and nyri;?ndelay < ny < 1, then infection-free equilibrium EP, of

system (4.16) is GAS.
We rewrite system (4.16) without accounting for time delays in order to examine how time delays
affect the minimum drug efficacies required for the stabilization of infection-free equilibrium:

U=21-dU-(1-ny)B UV,

YE = (1—ny)(1 = E)BIUV = (6 + b)YE,
Y4 =1 -n&BUV + 6 YE —a Y4,
V=kY"-cV-rVWw,

W=a+qVW —uW — (1 — np)mWP,

ZF = (1 =np)(1 = E)mMWP — (8, + by)Z",
74 = (1 — np)émWP + 8,75 — a, 74,

P = kzZA - C2P.

(4.19)

Model (4.19) has two reproduction numbers, which are given by:

ithout dela; kom (52 + b2§2) Without dela:
R Vithout delay —(1— aKy — (1 = )R Y(0).,
1 (np) = ( np) trcat (55 + by) ( np) 1 0)
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/lklﬁlﬂ (51 + bl'fl) _ (1 _ nV)R;Vithout delay(o).

RWithout delay —(1 - —
2 () = =) e+ 1) @1 + 1)

We determine the drug efficacies np and 1y, which make R:Vithom ey (p) < 1 and R;Who”t ey ) <1
and stabilizes the infection-free equilibrium of system (4.19) as:

=n P.min Without dela
» y
R’ (0)

RWithout delay (0) -1 }

Without delay Without delay 2
<l 12> > . =
R, (mv) <1 L>ny 20y max {O’ RYVioutdelay ()

2

. . RWithout delay 0)=1
R;Vuhout delay (nP) <le1> np > Without delay — max {O, 1 ( ) ’ (420)

4.21)

Since F; >0, i =1,2,...8, then

akomFg [(02 + by)éxFe + 02(1 — &)FsF7]

RWith delay (O) —
! aycop (62 + by)
akom (62 + b&r) _ R;Vithout delay ()
axcopt (62 + by)
with delay v AKIBIF4 [E1F2(61 + by) + F1F36, (1 - )]
RV () =

aid (ciu + ra) (6, + by)
AkiBip (01 + bi&)) _ gWithoutdelay )
ayd (c\pu + ra) (61 + by) 2 ‘

Hence, R;Vith delay (UP) < R\I?Vithout delay (UP) and R;Vith delay (nv) < R;Vithout delay (nv)’ and, thUS, eliminating
the time delays from the co-dynamics model would lead to an overestimation of the basic reproduction

numbers. By comparing Eqgs (4.17), (4.18) and (4.20), (4.21), we get that 7y "% < pWithoutdelay 59

P,min P,min
With del Without del . : . . .
NN v V9% Thus, using a model with delays will require fewer treatment efficacies to

maintain the system at the infection-free equilibrium and eliminate HIV-1 and HHV-8 from the body.
This illustrates how crucial it is to take time delays into account in order to reduce the quantity of
antiviral medication required, which stabilizes the model close to the equilibrium EPy. In light of this,
the model (2.1)—(2.8) that describes the HIV-1 co-dynamics with HHV-8 is more accurate.

5. Numerical simulations

This section provides numerical simulations of model (2.1)-(2.8) to enhance the theoretical findings
given in Theorems 4.1-4.4. To achieve that, we transform the model with distributed-time delay (2.1)—
(2.8) to a discrete one by using a particular form of the probability distributed function called Dirac
delta function D(.). Define

fi(t)=D(t—-1),i=1,2,---,8.

In case #; — oo0,i = 1,2,---, 8, we have
f fit)dr =1andF; = f Dr-1)e " dr=e""i=1,2---,8.
0 0
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Then,

f D(t —1))e " U, Vedr = €U, Vs, f D(t = 1) U Vedt = €Uy, Vo,
0 0

732 T4

f D(t — 13)e "™ Yidr = e YE f D(t — 14)e ™ YAdT = e YA
0 0

f D(T — T5)€_nSTWTPTdT =e " W75P75’ f D(T - T6)e_nﬁTWTPTdT = e_n6T6WT6PT6’
0 0

T7°

f D(t — T7)e_”7TZTLdT = e 7L f D(t - Tg)e_”gTZde = e‘"gT*ng.
0 0

Hence, model (2.1)—(2.8) can be written as:

U=1-dU-pBUYV,

YE = (1= &)Bie™ " Uy, Vy, — (61 + b)Y",
YA = &B1e7 U, Ve, + 61670 Y], — ar YA,
V= kle‘”“”Yf4 - V-rvw,

W=a+qVW - uW — mWP, G-
ZL = (1 = &)me™SW, Py, — (02 + by)ZE,
Zh = Esme™ Wy Prg + 6267 ZE — ay 7P,
P = kge_"meg — CzP.
The threshold parameters of model (5.1) are provided as:
B akymP e
' e (8, + by)
R, = /lklﬁl,u¢ze_”4”
P ad(eptra) 6+ by’
R /lklkzmﬁlﬁbszle‘(”““"m) (5.2)
3= = )
ad(o; + b]) (clkszle‘”STS + a2C2r(52 + bz))
kymf3 e aP) N kygAP Pyem
4= = )
(dg + pip) | a2c2(62 + ba) a0y + by) (clkszle‘”m + arcr(07 + bz))

where

Pi = E67"7(02 + by) + 627 TTTT(1 - &),
Py = &€ (81 + by) + eI (1 - €)).

5.1. Numerical simulations for model (5.1)

By using the dde23 solver in MATLAB, we solve numerically the system of DDEs (5.1). In this
subsection, for simplicity, let us choose the delay parameters as: 7; = 0.1,i = 1,2,---,8. Moreover,
the three distinct initial conditions (IC) are picked as:
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IC-1: U(6) = 200, YX() = 300, YA(0) = 6, V(0) = 8, W(6) = 150, Z%(0) = 8, Z2(6) = 25, P(0) = 40,
IC-2 : U(0) = 400, YL(6) = 200, YA(0) = 3, V(0) = 5, W(0) = 170, Z~(©0) = 5,Z4(0) = 15, P(6) = 30,
IC-3: U(6) = 600, YX(0) = 100, YA(0) = 1, V(0) = 2, W(0) = 190, Z%0) = 2,Z2(6) = 10, P(0) = 20,

where 6 € [-0.1, 0].

By varying the values of the parameters 5; and m, and fixing other parameters, the four following
scenarios are risen as:

Scenario 1 (Stability of EPj): 5; = 0.0001 and m = 0.0005. With this choice, we find the basic
reproduction numbers R, and R, take the following values: Ry = 0.23 < 1 and R, = 0.18 < 1,
then the stability conditions in Theorem 4.1 are satisfied. Figure 1 presents that the trajectories
starting with IC-1, IC-2, and IC-3 arrive at the equilibrium EP, = (1000, 0, 0, 0, 200, 0, 0, 0). This
provides EP, is GAS which is consistent with the result in Theorem 4.1. In this situation, both
HIV-1 and HHV-8 will be cleared out from patients.

Scenario 2 (Stability of £P,): 8; = 0.0001 and m = 0.002. This gives us Ry = 1.24 > 1 and R; =
0.29 < 1, then the stability conditions in Theorem 4.2 are held true. Thus, the equilibrium
EP; exists and the numerical results show that EP; = (1000,0,0,0,161.51,5.96, 18.01, 28.60).
Figure 2 illustrates that the trajectories starting with IC-1, IC-2, and IC-3 reach to the equilibrium
EPy, and then is EP; GAS as we have proven in Theorem 4.2. This situation leads to the case of
HHV-8 single-infection. Evidently, in this case, the concentration of CD4*T cells is not affected
by this infection, while the concentration of B cells are reduced.

Scenario 3 (Stability of EP,): 5; = 0.001 and m = 0.0001. For this set of parameters, we calculate
R, = 237 > 1 and R, = 0.09 < 1, hence, the presented conditions in Table 2 are satisfied
and the equilibrium EP, exists. Figure 3 shows that the solutions initiating with IC-1, IC-2,
and IC-3 tend to the equilibrium EP, = (582.81,242.67,6.43,7.16,285.01, 0, 0, 0), which agrees
with the results in Theorem 4.3. This case represents the appearance of a single HIV-1 single-
infection. Without doubt, HIV-1 infection leads to a decrease in CD4* T cells concentration
besides increasing the B cells concentration.

Scenario 4 (Stability of EP; ): 5, = 0.001 and m = 0.0013. This leads to R, = 1.14 > 1, R; = 1.95,
and R; < 1+ %‘ = 3.4, then the stability conditions in Theorem 4.4 are held true. Figure 4 shows
that the equilibrium EP; = (513.91,282.75,7.50,9.46,248.48,7.66, 23.14,36.74) is GAS, which
supports the result in Theorem 4.4. In this case, an HIV-1 patient becomes infected by HHV-8,
which leads to a decrease in the concentration of both CD4* T cells and B cells.
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Solutions of system (5.1) with three different initials conditions reach the

equilibrium EP, = (1000, 0, 0, 0, 200, 0, 0, 0) (Scenario 1).
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Figure 2. Solutions of system (5.1) with three different initials conditions reach the

equilibrium EP; = (1000,0,0,0,161.51,5.96, 18.01, 28.60) (Scenario 2).
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Figure 3. Solutions of system (5.1) with three different initials conditions reach the

equilibrium EP, = (582.81,242.67,6.43,7.16,285.01, 0,0, 0) (Scenario 3).
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Figure 4. Solutions of system (5.1) with three different initials conditions converge to the
equilibrium, EP5; = (513.91,282.75,7.50, 9.46,248.48,7.66, 23.14, 36.74) (Scenario 4).
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5.2. Impact of time delays on HHV-8/HIV-1 co-dynamics

By fixing the following parameters: 8; = 0.001, m = 0.0013 and 7; = 0.01,i = 1,2,3,5,6,7, and
varying 7;,i = 4, 8, we study the impact of the inclusion of time delays on the stability of EP,. Since
R, and R, that are provided in (5.2) are based on 7;,i = 4, 8, any changing the parameters 7;,i = 4,8
will change the stability of EP,. Obviously, any small increase in the value of 7;,i = 4,8 will lead to
a decrease in the values of R, and R,, which is our aim ( see Table 3). Let us consider the following
cases:

T.D-1 74,=713=0,

T.D-2 7, =0.513=0.01,
T.D-3 7, =0.7,73 = 0.05,
T.D-4 7,=1.3,73 =0.08,
T.D-5 7, =15,73 =0.1.

Table 3. The variation of R, and R, with respect to the delay parameters.

Delay parameter g R, Delay parameter 74 R,
0 1.06485 0 3.0923
0.01 1.05425 0.5 1.87558
0.05 1.01291 0.7 1.53559
0.06283 1 1.12892 1
0.08 0.98298 1.3 0.84275
0.1 0.96351 1.5 0.68999

Let us solve system (5.1) under the following initial condition:
IC -4 : U(®) = 500, YX(0) = 200, YA(0) = 5, V(0) = 6, W(#) = 190, Z5(0) = 10, Z4(9) = 30, P(6) = 50,

where 6 € [-1.5,0].
Let us compute the critical value of the time delay that alters the stability of EP,. By fixing the
other parameters, R; and R, can be written as functions of tg, 74, respectively, as follows:

komPye s
R, (1g) = w’
arcop (62 + by)
AkopiPre
Ry(rs) = 1B1uPre

ayd (cip + ra) (61 + by)’

To fulfill that R;(7g) < 1 and R,(74) < 1, we take 74 and 73 as:

. 1 kym#
Tg > T¢ where 7' = max {0, —In (az—m?%)} ,
ng  \axcop (6 + by)

and
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74 > 75 where 7§ = max <0, 1 In Ak P, .
ng  \aid(ciu+ra) (6 + by)

Thus, when 73 > 7¢" and 74 > 74/, then EP is GAS. Using the values of parameters given in Table 1,
we obtain 7g" = 0.06283 and 73" = 1.12892, respectively. Consequently,

(i) if 73 > 0.06283 and 74 > 1.12892, then R; (153) < 1, R, (14) < 1, and EP, is GAS;

(i) if 73 < 0.06283 and/or 74 < 1.12892, then R; (tg) > 1 and/or R, (74) > 1, and EP, will lose its
stability and, in this case, another equilibrium will be GAS.

Figure 5 displays the numerical solutions of system (5.1). We can see that inclusion of time delays
leads to significant increase in the concentration of uninfected CD4*T cells and B cells; on the contrary,
it contributes in reducing the concentrations of other compartments. Since the increasing of the delay
period can control the HHV-8 and HIV developing in the patients, we can notice that the time delay
has a comparable effect as the drug efficacy. Thus, inserting time delays contributes in developing new
effective treatment methods.

5.3. Sensitivity analysis

In biological systems, sensitivity analysis is utilized to illustrate the relation between parameters
and model outcomes and, hence, increasing the understanding of studying models [58]. This leads to
place the key operators that affect the model’s output [59]. To measure the biological responses to any
change in model’s parameters, there is diverse approaches such as direct differentiation, use of a Latin
hypercube sampling technique, or linearizing the system and resolving the resultant equations [60].
For our model (5.1), we use derivative-based sensitivity which can be calculated analytically by partial
derivatives with respect to model parameters. We study the sensitivity analysis for R; and R, due
to their contribution to determining the stability of the uninfected equilibrium EP,. The normalized
forward sensitivity index is generally given by

=, t=1,2, (5.3)

where vy is a parameter. Study sensitivity analysis for both R; and R, is proceeded as the following:

5.3.1. Sensitivity analysis of R

The normalized forward sensitivity index of R; that is responsible in the developing of the HHV-8
in the body can be computed by using Eq (5.3). By fixing m = 0.002, the sensitivity index for each
parameter is presented in Table 4 and Figure 6.
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Figure 5. Solutions of system (5.1) for different maturation delays 7g and 74.
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Table 4. Sensitivity index of R;.

Parameter S}  Parameter s Parameter s
a 1 CH -1 ng -0.1
k> 1 M -1 s -0.0999
m 1 b, -0.2140 T6 -0.0001
02 0.2140 ns —0.0999 T7 -0.0999
& 0.0004 Ne —0.0001 T3 -0.1000
a -1 ny —0.0999

According to the sign of the indices, we obtain that:

e a, ko, m, 05, and &, have positive indices and have a positive effect on R;. Because of that, these
parameters contribute to the development of HHV-8 in the body. Obviously, a, k,, and m have
the most positive sensitivity index, while 6, and &, have the least positive sensitivity index. For
example, increasing (or decreasing) ¢, by 10% will increase (or decrease) the R, value by 2.14%.

® ay, ¢, U, by, ny4, ns, ng, Ts, Te, T7, and 1g have negative indices and, hence, have a negative effect
in R;. That means when the values of these parameters increase (or decrease), the value of R,
decreases (or increases). As an example, the sensitivity index of b, is —0.2140. This indicates
that increasing (or decreasing) b, by 10% will decrease (or increase) the R, value by 2.14%. We
note that a,, ¢,, and y have the most negative sensitivity index.

T T T T T T T T T T T
o ko mas ca p 92 by & ns ng ny ng s Te Tr TR

e
N

Forward sensitivity indices
o
o o

Parameters

Figure 6. Forward sensitivity analysis of the parameters on R;.
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5.3.2. Sensitivity analysis of R,

By applying Eq (5.3) and taking 8; = 0.001, we calculate the sensitivity analysis of R, which
explains the effect of the parameters on the HIV-1 progression in the body. The results are provided in
Table 5 and Figure 7.

Table 5. Sensitivity index of R,.

Parameter S 52 Parameter S I;Z Parameter S 5 2

A 1 d -1 n3 —0.0853
ki 1 r —0.8929 ny —0.1000
Bi 1 a —-0.8929 T —0.0853
u 0.8929 c -0.1071 T, -0.0147
01 0.2438 b, —-0.2438 T3 —0.0853
& 0.0519 n —0.0853 Ty —0.1000
a; -1 ny -0.0147

Forward sensitivity indices

e
(3}

o

1
o
ot

T T T T T T T T T T T T
AkifBirpar de r od by &ininengng T T T3 T4

Parameters

Figure 7. Forward sensitivity analysis of the parameters on R;.

5.4. Comparison study

In this section, let us fix the delay parameters as 7; = 0.1,i = 1,2, .-, 8. The influence of HHV-8
infection on the dynamic of the HIV-1 single-infection and vice versa will be studied.
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5.4.1. Comparison between HIV-1 single-infection and HHV-8/HIV-1 co-infection

The solutions of HHV-8/HIV-1 co-infection model (5.1) in comparison with solutions of the
following HIV-1 single-infection system are presented:

U=1-dU-pB UV,

Yi = (1= &)Bie™ " Uy, Vy, — (61 + b)Y",

YA = &B1e U, Vr, + 61670 YE —a YA, (5.4)
V=kie ™ Ys — eV —rVw,

W=a+qVW —uW.

Let us select the parameter’s values 8; = 0.001 and m = 0.0013 and the following initial condition:
IC-5: U(6) = 550, Y*(6) = 260, Y*(6) = 7, V(6) = 8, W(6) = 275, Z"(6) = 20,Z"(9) = 40, P(6) = 50,

where 8 € [-0.1,0]. Figure 8 represents the solutions of two systems (5.1) and (5.4). It can be
seen that in the case of HIV-1 patients becoming infected by HHV-8 infections, then concentration of
uninfected CD4*T cells decreases and the concentration of HIV-1 particles increases. This observation
is compatible with studies that have been published in [61, 62], which suggest that HHV-8 may raise
the HIV-1 load and spread, hastening the onset of AIDS. The appearance of HHV-8 infection in
HIV-positive patients leads to the risk of developing opportunistic diseases, including KS and other
proliferative diseases, such as PEL and MCD [63].

5.4.2. Comparison between HHV-8 single-infection and HHV-8/HIV-1 co-infection

We compare the solutions of HHV-8/HIV-1 co-infection model (5.1) and the following HHV-8
single-infection system:

W=a- uW —mWweP,

ZF = (1 = &)me W Py — (62 + by)ZF,
Z4 = Eme" T W Py + 6267 ZE — ay 77,
P = kze_nSTSng - CQP.

(5.5)

We select the values 8; = 0.001 and m = 0.003. We take the initial condition as:
IC-6 : U(6) = 200, YX(0) = 300, YA(6) = 3, V(0) = 50, W(6) = 100, Z%(6) = 10, Z2(6) = 40, P(0) = 70,

where 6 € [-0.1,0]. Figure 9 displays the solutions of two models (5.1) and (5.5). Evidently, the
concentrations of the B cell in both models gradually approach the same value, W5 = W,. Although,
latently HHV-8-infected B cells, actively HHV-8-infected B cells, and free HHV-8 particles are more
diffused in patients with co-infection with HIV-1 than in those without it. This is harmonic with
the results stated in [64], which proposed that there is a possibility that high HIV-1 DNA levels might
stimulate HHV-8 reactivation by either directly activating HHV-8 or by increasing immunosuppression.
According to the paper of Mercader, et al. [65], HIV-1 may contribute to the enhancement of HHV-8
lytic replication and, hence, increase the likelihood of tumor formation.
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6. Conclusions and discussion

Since mathematical modeling is an essential tool in helping experimental studies to understand
new diseases, co-infection between HHV-8/HIV-1 with distributed time-delays have been studied in
this paper. Our presented model describes the contacts between uninfected CD4" T cells, latently
and actively HIV-1-infected CD4" T cells, free HIV-1 particles, uninfected B cells, latently and
actively HHV-8-infected B cells, and free HHV-8 particles. We first demonstrated the two primary
characteristics of the solutions: boundedness and nonnegativity. After that, we showed that the model
has four equilibria as well as four threshold parameters R;, i = 1,2,3,4. The global asymptotic

stability of the model’s equilibria are determined by four threshold parameters.

The Lyapunov-

LaSalle asymptotic stability theorem and the Lyapunov technique allowed us to demonstrate the global
asymptotic stability for every equilibrium point. These are the outcomes that we have:

e Infection-free equilibrium EP, always exists and is GAS if R; < 1 and R, < 1. This state
represents the situation of a person without HIV-1 and HHV-8.

e HHV-8 single-infection equilibrium EP; exists if Ry > 1 and is GAS if R; < 1.

represents the person has only an HHV-8 infection.
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e HIV-1 single-infection equilibrium EP, exists if R, > 1 and is GAS if Ry < 1. This state
represents the person has only an HIV-1 infection.

e HHV-8/HIV-1 co-infection equilibrium EP; exists if R4 > 1 and is GAS if R; < 1 + ’% This
state represents a person who suffers from both HIV-1 and HHV-8 co-infection.

We presented numerical simulations that coincided with the theoretical results. We studied
sensitivity analysis for both R; and R, and established which parameters have most effect on the
spread of HIV-1 and HHV-8 in the body. We discussed the effect of time delays on HHV-8/HIV-1
co-dynamics. We found that the delay parameter and drug effectiveness both contribute to a decrease
in the basic reproduction numbers. This provides us with some insight into creating treatments that
lengthen the time of delay. Furthermore, we demonstrated that using a time-delay model will require
fewer treatment efficacies to keep the system at infection-free equilibrium and remove HIV-1 and HHV-
8 from the body. These results imply that time delays have a significant and unavoidable influence on
the HHV-8/HIV-1 co-dynamics.

We are confident that the approach proposed in our paper can be further developed. An interesting
perspective would be the modeling of the in-host dynamics focused on the competition between the
immune system and invasive particles. Active-particle methods have recently been used to model
epidemics through a detailed description of the immune competition at the cellular scale (see [66,67]).
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