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model under feasible delay-dependent feedback controller and delay-dependent adaptive controller,
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1. Introduction

Neural networks (NNs) are computational models inspired by the neuronal structure of the human
brain, which consists of numerous artificial neurons (also called nodes or units) that are connected to
each other by connection weights. In recent years, various properties of NNs have been widely studied,
such as stability [1–3] and synchronization [4, 5]. It is usually described by a first-order differential
equation, and it has been widely used in optimization, classification and solving nonlinear algebraic
equations [6–9].

Furthermore, when modeling the link between flux and current, integer order NNs containing
inertial terms, also known as inertial neural networks (INNs), are commonly utilized. In [10, 11],
Babcock and Westervelt initially presented INN, a second-order differential equation. The inertial term
is a key element in causing chaos. INN has received a lot of attention since its introduction and has
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produced some significant outcomes. Cui et al. investigated the stability of delayed INN with stochastic
impulses via using the matrix measure method in [12]. Criteria to ensure exponential stability of INN
with proportional delays was given in [13] through applying the non-reduced order method. Dong
et al. [14] studied the synchronization between memristive INNs by designing a suitable controller.
Mittag-Leffler stability of fractional delayed INN was explored in [15] by utilizing the properties of the
Riemann-Liouville integral. Wei et al. analyzed the synchronization between memristive INNs via the
interval matrix method in [16] and applied the theoretical results to the field of secret communication.

Fractional-order inertia neural network (FOINN) is a new kind of NN model, that introduces
the concept of fractional-order calculus and is better able to describe the dynamic characteristics
of the nonlinear system [17, 18]. Compared with traditional integer order NNs, FOINNs have
better performance and applicability when dealing with nonlinear and complex systems. In practical
applications, FOINN has a wide range of application prospects, such as a control system, signal
processing and pattern recognition. In recent years, some important progress has been made on
the stability and synchronization of FOINNs. In [19], the stability of FOINN with delay-dependent
impulses were investigated by constructing Lyapunov-Krasovskii functions (LKFs). Peng and Jian
analyzed the Mittag-Leffler synchronization of delayed FOINN under two different control strategies
in [20], and obtained sufficient criteria for Mittag-Leffler synchronization between delayed FOINNs
through the Lyapunov stability theory and fractional-order differential inequalities. Liu et al.
established a class of synchronous control strategies based on the properties of FOINNs, and several
conditions to achieve synchronization are given in [21].

Finite-time stability (FTS) is the property that the system can reach a stable state and remain in
that state for a finite period of time. For FOINNs, FTS is an important property, which determines
whether the system can converge to a stable state in a finite time, and is of great significance for
practical applications. When studying the FTS of FOINNs, it is necessary to consider the dynamic
characteristics of the system, the topology of the network and the characteristics of fractional-order
calculus. In addition, the time delays factors in the modeling process are also factors that affect the
FTS of the system [22–26]. Time delays are usually expressed as certain terms in the differential
equation that depend on the state of the system at a previous point in time. Time delays can make the
dynamic behavior of the system complicated, even oscillating, unstable, or chaotic [27]. In the fields of
control systems, biological systems, chemical reaction dynamics, etc., time delays often make stability
analysis and control design of systems more difficult. The appearance of time delays may also cause
the solution of differential equations to be no longer smooth, but to have a certain piecewise property,
which brings challenges to both numerical solution and analysis.

The vagueness can cause the solution of differential equation to become fuzzy or uncertain, which
makes the analysis and prediction of the system behavior more difficult. In control systems, artificial
intelligence, fuzzy control, and other fields, the existence of vagueness needs to be dealt with by special
mathematical tools and methods in [28]. In order to better handle the fuzziness during operation, Yang
et al. introduced fuzzy logic into NN models in [29]. Fuzzy logic not only maintains the connectivity
between NN nodes, but also integrates the ability of low-level and high-level information processing of
NN models. At present, many scholars have designed appropriate feedback control methods to realize
the stability and synchronization of FOINNs. In [30], Aouiti et al. studied the stabilization of the
fractional-order fuzzy inertial neural network (FOFINN) in finite time by designing nonlinear feedback
controllers. Hu et al. explored the stability of complex-valued fractional-order NNs (FONNs) in finite
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time by designing nonlinear feedback controllers in [31]. By designing a segmented feedback control
strategy, synchronization in finite time between fuzzy FONNs was investigated in [32]. In [30–32],
the feedback control strategy based on system state is the most common and effective control method.
However, for many real-world systems, traditional fixed parameter controllers may not effectively deal
with the complexity, including nonlinearity, time-variability and uncertainty. Meanwhile, adaptive
control technology can adapt to the changes of the system and improve the robustness and performance
of the system. Moreover, in fuzzy systems, the dynamic characteristics of the system might not
be accurately modeled or measured, which make it difficult to apply traditional control methods.
Therefore, it is necessary to consider adaptive controllers in the controller design process of fuzzy
NNs.

Based on the above analysis, the main works and contributions of this paper are as follows:

1) Based on FONNs, distributed delay and fuzzy factors are further considered in this paper, which
is different from [30, 33]. Additionally, the unbounded activation functions are considered in the
model.

2) Appropriate order reduction techniques are then employed to convert the model into a first-
dimensional FONN model. In contrast to the strategy utilized in [34] to minimize the order
of INN, our approach involves two positive parameters %i and ξi, which make the model more
general.

3) In order to achieve FTS of FOFINN, we design two different controllers, namely state feedback
controller and adaptive controller, respectively. By selecting appropriate Lyapunov functions and
combining inequality techniques with the FTS theorem, sufficient conditions for FTS of FOFINN
models with mixed delays under two control strategies were obtained, and the settling time (ST) is
calculated accordingly. Compared with feedback controllers designed in existing works [35, 36],
the coefficients in the controllers designed in this paper not only depend on constants, but also
include functions which change with time.

Finally, we provide the organizational structure of this article. In Section 2, we mainly introduce
relevant definitions, assumptions, lemmas, and the NN models. In Section 3, we investigate the
problem of FTS of FOFINN with mixed delays by designing delay dependent feedback controller
and delay dependent adaptive controller. By using the fractional-order FST theorem, the ST to reach
stable state that is independent of the initial value is obtained. Examples are given in Section 4 to verify
the results in Theorems 3.1 and 3.2.

Notations: R = (−∞,+∞), R+ = (0,+∞). Rn and Rn×m represent the space which combined by real
valued n-dimensional vector and real valued n × m-dimensional matrices, respectively. Z+ is the set
which contains all positive integers.

∧
and

∨
are fuzzy AND and fuzzy OR operations, respectively.

| · | represents the Euclidean norm. In addition, for simplicity, we denote
∑

i =
∑n

i=1,
∧

i =
∧n

i=1, and∨
i =

∨n
i=1.

2. Preliminaries and mathematical model description

2.1. Basic knowledge

We review the relevant definitions and properties of fractional order calculus first.
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Definition 2.1. [34] The following is the definition of the Caputo fractional-order derivative with
non-integer order µ of function y(t):

C
t0 Dµy(t) =

1
Γ(1 − µ)

∫ t

t0

y′(t)
(t − ζ)µ

dζ, (2.1)

where µ ∈ (0, 1), and

Γ(t) =

∫ ∞

t0
e−ζζ t−1dζ. (2.2)

Definition 2.2. [31] The fractional-order integral of order µ ∈ (0, 1) is defined as follows:

tI
µ
t0y(t) =

1
Γ(µ)

∫ t

t0

y(ζ)
(t − ζ)1−µdζ. (2.3)

Remark 2.1. Due to the fact that the fractional derivative depends on the lower bound of the integral,
compared to the integer derivative operator, the fractional derivative operator is a nonlocal operator.

Definition 2.3. [37] System (2.8) is finite time stable if it is asymptotically stable in finite time, i.e.,
y(t) = 0, ∀t > T (y0), where T (y0) is called the settling time function (STF).

Lemma 2.1. [33] If p ∈ (0, 1) and κ j ∈ R, then( n∑
j=1

|κ j|

)p

≥ np−1
n∑

j=1

|κ j|
p. (2.4)

Lemma 2.2. [33] For any 0 < µ < 1, α, β > 0 such that

C
0 DµV(t) ≤ −αV−ν(t) − βV−ε(t) (2.5)

holds, where 0 ≤ ν, ν < ε < 1 + 2ν, then, system (2.8) will achieve FTS with following settling time

T ∗ =

[
Γ(1 + µ)

β2
ε−2ν−1

1+ν (1 + ε)

((
V1+ν(t0) +

(
β

α

) 1+ν
ε−ν

) 1+ε
1+ν

−

(
β

α

) 1+ε
ε−ν

)] 1
µ

. (2.6)

2.2. Model description

Consider the FOFINN shown below.

C
0 D2µςi(t) = − ai

C
0 Dµςi(t) − biςi(t) +

∑
j

ci jζ j(ς j(t)) +
∑

j

zi jζ j(ς j(t − ϕ j(t)))

+
∑

j

mi j

∫ t

−∞

H j(t − ε)ζ j(ς j(ε))dε +
∧

j

ei jζ j(ς j(t − ϕ j(t)))

+
∨

j

ki jζ j(ς j(t − ϕ j(t))), (2.7)

where i, j ∈ Z+ and the term C
0 Dµ is called the inertial term; ai, bi > 0, ϕ j(t) > 0 represents the delay

function in the jth neuron, and ϕ j(t) is bouned by P; ci j, zi j, mi j, λi j represent connection weights
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between the ith and jth neuron; ei j and ki j stand for the elements of the fuzzy feedback MIN template,
and the fuzzy feedback MAX template, respectively; ζi(·) is the activation function; H j(·) is the delay
kernel.

Take ς̄i(t) = %i
C
0 Dµςi(t) + ξiςi(t), %i, ξi ∈ R

+, then

C
0 Dµςi(t) =

1
%i
ς̄i(t) −

ξi

%i
ςi(t),

C
0 Dµς̄i(t) =(

ξi

%i
− ai)ς̄i(t) + (aiξi − bi%i −

ξ2
i

%i
)ςi(t) + %i

[∑
j

ci jζ j(ς j(t))

+
∑

j

zi jζ j(ς j(t − ϕ j(t))) +
∑

j

mi j

∫ t

−∞

H j(t − ε)ζ j(ς j(ε))dε

+
∧

j

ei jζ j(ς j(t − ϕ j(t))) +
∨

j

ki jζ j(ς j(t − ϕ j(t)))
]
,

(2.8)

where the initial values are given by ςi(s) = φ̂(s) and ς̄i(s) = ψ̂(s), s ∈ (−∞, t0].

Remark 2.2. The addition of fractional calculus greatly enhances the memory and genetic abilities of
INN models. Compared with integer order INNs, FOINN has more significance to explore.

Remark 2.3. Different with [34], parameters %i in the reduce order method can not only be taken as 1,
but also other positive numbers. This makes the model more general.

Remark 2.4. In existing literatures [34, 35, 38–40], models consider only included bounded time
delays. However, when they come to unbounded time delays, the controllers designed in [34,35,38–40]
exhibit some limitations. In addition, there is a lack of fuzzy logic in the current literature [37, 41], so
the controller designed for the addition of fuzzy logic cannot effectively handle the fuzziness present in
the system.

Remark 2.5. This paper relies on the reduced order technique during the analytical phase. Currently,
two approaches are offered for analyzing the dynamic characteristics of INN models: The reduced
order method and the non-reduced order method. The main advantage of the reduced order method
over the non-reduced order method is that it converts the higher order differential equation into the
lower order differential equation, which simplifies system analysis; however, the system’s stability
conditions require additional parameters to verify. For the non-reduced order method, there have been
many pioneering results, such as [42–45]. The advantage of the non-reduced order method is that
it directly analyzes the properties of INN by constructing Lyapunov functionals. The structure of the
constructor is clear, but the derivation process is relatively complicated.

We assume functions ζi(·) and Hi(·) meet the following assumptions.

Assumption 2.1. For ζ j(·), j ∈ {1, 2, . . . , n}, ∃L j > 0 such that

|ζ j(u) − ζ j(v)| ≤ L j|u − v| and ζ j(0) = 0,

where u, v ∈ R.
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Assumption 2.2. Bump functions H j(·) > 0, j = 1, . . . , n, and we have∫ +∞

0
H j(s)ds = 1.

Lemma 2.3. [23] Assume that u and v are two states of FOFINN (2.8), then,∣∣∣∣∣∧
j

ei jζ j(u) −
∧

j

ei jζ j(v)
∣∣∣∣∣ ≤∑

j

|ei j||ζ j(u) − ζ j(v)|,∣∣∣∣∣∨
j

ki jζ j(u) −
∨

j

ki jζ j(v)
∣∣∣∣∣ ≤∑

j

|ki j||ζ j(u) − ζ j(v)|.

3. Main results

In this part, we will analyze the FTS of FOFINN by designing two new control strategies. The
controlled system is as follows:

C
0 Dµςi(t) =

1
%i
ς̄i(t) −

ξi

%i
ςi(t) + ui,

C
0 Dµς̄i(t) =(

ξi

%i
− ai)ς̄i(t) + (aiξi − bi%i −

ξ2
i

%i
)ςi(t) + %i

[∑
j

ci jζ j(ς j(t))

+
∑

j

zi jζ j(ς j(t − ϕ j(t))) +
∑

j

mi j

∫ t

−∞

H j(t − ε)ζ j(ς j(ε))dε

+
∧

j

ei jζ j(ς j(t − ϕ j(t))) +
∨

j

ki jζ j(ς j(t − ϕ j(t)))
]

+ vi.

(3.1)

For simplicity, we introduce the following convenient notations, ςi(t) = ςi, ς̄i(t) = ς̄i, and ςi(t −
ϕi(t)) = ς

ϕ
i , ς̄i(t − ϕi(t)) = ς̄

ϕ
i , ui = ui(t), vi = vi(t).

3.1. Feedback control strategy

To achieve the FTS of FOFINN (2.8), we design a feedback controller and have the following
theorem.

Theorem 3.1. Based on the Assumptions 2.1–2.2, the FOFINN (2.8) is said to achieve FTS under the
following controller:

ui = − ρi1ςi − ρi2sign(ςi)|ς̄
ϕ
i | − ρi3sign(ςi)|ςi|

−` − ρi4sign(ςi)|ςi|
−$,

vi = − ℵi1ς̄i − sign(ς̄i)
∑

j

µ̄i j|ς
ϕ
j | − %i

∑
j

mi j

∫ t

−∞

H j(t − ε)ζ j(ς j)dε

− ℵi3sign(ς̄i)|ς̄i|
−` − ℵi4sign(ς̄i)|ς̄i|

−$,

(3.2)

where i, j ∈ {1, . . . , n}, 0 ≤ `, ` < $ < 1 + 2`, ρi3, ρi4, ℵi3, ℵi4 are positive constants, if the following
conditions hold

ρi1 ≥ −
ξi

%i
+ |aiξi − bi%i −

ξ2
i

%i
| +

∑
j

% j|c ji|L j, (3.3)
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ℵi1 ≥
1
%i

+
ξi

%i
− ai, (3.4)

µ̄i j ≥ %i(|zi j| + |ei j| + |ki j|)L j, (3.5)
ρi2 ≥ 0. (3.6)

In addition, the settling time is estimated by

T ∗ =

[
Γ(1 + µ)

B2
$−2`−1

1+` (1 +$)

((
V1+`(t0) +

(
B

A

) 1+`
$−`

) 1+$
1+`

−

(
B

A

) 1+$
$−`

)] 1
µ

, (3.7)

whereA = n mini{ρi3,ℵi3}, B = n mini{ρi4,ℵi4}.

Proof. Take V = V(t) =
∑

i |ςi| +
∑

i |ς̄i|. Then, we have

C
0 DµV ≤

∑
i

sign(ςi)C
0 Dµςi +

∑
i

sign(ς̄i)C
0 Dµς̄i

≤
∑

i

sign(ςi)
{ 1
%i
ς̄i −

ξi

%i
ςi − ρi1ςi − ρi2sign(ςi)|ς̄

ϕ
i |

− ρi3sign(ςi)|ςi|
−` − ρi4sign(ςi)|ςi|

−$
}

+
∑

i

sign(ς̄i)
{
(
ξi

%i
− ai)ς̄i + (aiξi − bi%i −

ξ2
i

%i
)ςi + %i

[∑
j

ci jζ j(ς j)

+
∑

j

zi jζ j(ς
ϕ
j ) +

∧
j

ei jζ j(ς
ϕ
j ) +

∨
j

ki jζ j(ς
ϕ
j )
]
− ℵi1ς̄i

− sign(ς̄i)
∑

j

µ̄i j|ς
ϕ
j | − ℵi3sign(ς̄i)|ς̄i|

−` − ℵi4sign(ς̄i)|ς̄i|
−$

}
. (3.8)

Combined with Lemma 2.3 and Assumptions 2.1–2.2, we can obtain

C
0 DµV ≤

∑
i

{ 1
%i
|ς̄i| −

ξi

%i
|ςi| − ρi1|ςi| − ρi2|ς̄

ϕ
i | − ρi3|ςi|

−` − ρi4|ςi|
−$

}
+

∑
i

{
(
ξi

%i
− ai)|ς̄i| + |aiξi − bi%i −

ξ2
i

%i
||ςi| + %i

[∑
j

|ci j|L j|ς j|

+
∑

j

|zi j|L j|ς
ϕ
j | +

∑
j

|ei j|L j|ς
ϕ
j | +

∑
j

|ki j|L j|ς
ϕ
j |

]
− ℵi1|ς̄i| −

∑
j

µ̄i j|ς
ϕ
j | − ℵi3(t)|ς̄i|

−` − ℵi4(t)|ς̄i|
−$

}
. (3.9)

From Lemma 2.1, we can get

C
0 DµV ≤

∑
i

{ 1
%i

+
ξi

%i
− ai − ℵi1

}
|ς̄i| −

∑
i

ρi2|ς̄
ϕ
i | +

∑
i

{
−
ξi

%i
− ρi1 + aiξi − bi%i −

ξi

%i

+
∑

j

% j|c ji|Li

}
|ςi| +

∑
i

{∑
j

[
%i

(
|zi j| + |ei j| + |ki j|

)
L j − µ̄i j

]}
|ς
ϕ
j | −

∑
i

ρi3(t)|ςi|
−`
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−
∑

i

ρi4(t)|ςi|
−$ −

∑
i

ℵi3(t)|ς̄i|
−` −

∑
i

ℵi4(t)|ς̄i|
−$

≤ −
∑

i

ρi3|ςi|
−` −

∑
i

ρi4|ςi|
−$ −

∑
i

ℵi3|ς̄i|
−` −

∑
i

ℵi4|ς̄i|
−$

≤ − n min
i∈R+
{ρi3,ℵi3}

[∑
i

(|ςi| + |ς̄i|)
]−`
− n min

i∈R+
{ρi4, µi4}

[∑
i

(|ςi| + |ς̄i|)
]−$

≤ −AV(t)−` − BV(t)−$. (3.10)

From Lemma 2.2, we can obtain that FOFINN 3.1 could achieve FTS within the ST (3.7). �

3.2. Adaptive control strategy

Adaptive control provides techniques that adjust a controller for a system with parametric
uncertainty, structural uncertainty, and environmental uncertainty, where fuzzy logic is the typical
structural uncertainty. The adaptive controller can adaptively adjust the output values based on the
current state of the system, which to some extent reduces the loss of control input. Thus, we design
a type of adaptive controller to achieve the predetermined performance of FOFINN. On the basis of
controller (3.2), we replace the control parameters ρi1 and ℵi1 with variable parameters which related
to the system states, then the controller becomes an adaptive controller. Hence, we have the following
theorem.

Theorem 3.2. Assume the Assumptions 2.1–2.2 and conditions (3.4)–(3.6), FOFINN (2.8) is said to
be FTS under the following adaptive controllers

ui = − |ρi1(t)|ςi − ρi2sign(ςi)|ς̄
ϕ
i | − ρi3sign(ςi)|ςi|

−` − ρi4sign(ςi)|ςi|
−$,

vi = − |ℵi1(t)|ς̄i − sign(ς̄i)
∑

j

µ̄i j|ς
ϕ
j | − %i

∑
j

mi j

∫ t

−∞

H j(t − ε)ζ j(ς j)dε

− ℵi3sign(ς̄i)|ς̄i|
−` − ℵi4sign(ς̄i)|ς̄i|

−$.

(3.11)

Additionally, the settling time is estimated by

T ∗ =

[
Γ(1 + µ)

Υ22
$−2`−1

1+` (1 +$)

((
V1+`(t0) + 1

) 1+$
1+`

− 1
)] 1

µ

, (3.12)

where

C
0 Dµρi1(t) =

(
ρi1(t) − δsign(ρi1(t))

)
|ςi| − ρi4sign(ρi1(t))|ρi1(t)|−` − ρi3sign(ρi1(t))|ρi1(t)|−$, (3.13)

C
0 Dµℵi1(t) =

(
ℵi1(t) − δsign(ℵi1(t))

)
|ς̄i| − ℵi4sign(ℵi1(t))|ℵi1(t)|−` − ℵi3sign(ℵi1(t))|ℵi1(t)|−$, (3.14)

and Υ1 = n mini∈Z+{mini∈Z+{ρi3,ℵi3},mini∈Z+{ρi4,ℵi4}}, Υ2 = Υ1, δ ≥ maxi∈Z+{ 1
%i

+
ξi
%i
− ai,−

ξi
%i

+ |aiξi −

bi%i −
ξ2

i
%i
| +

∑
j % j|c ji|Li|}.

Proof. In order to keep it simple, we denote ρi1 = ρi1(t) and ℵi1 = ℵi1(t), respectively. Take the
following Lyapunov functional:

V = V(ςi, ς̄i, ρi1,ℵi1) =
∑

i

(
|ςi| + |ς̄i| + |ρi1| + |ℵi1|

)
. (3.15)
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Then, similarly to (3.8), we obtain

C
0 DµV ≤

∑
i

sign(ςi)C
0 Dµςi +

∑
i

sign(ς̄i)C
0 Dµς̄i +

∑
i

sign(ρi1)C
0 Dµρi1 +

∑
i

sign(ℵi1)C
0 Dµℵi1. (3.16)

From the model (2.8), Lemma 2.1, Lemma 2.3, as well as (3.11), we have

C
0 DµV ≤

∑
i

sign(ςi)
{ 1
%i
ς̄i −

ξi

%i
ςi − |ρi1(t)|ςi − ρi2sign(ςi)|ς̄

ϕ
i | − ρi3sign(ςi)|ςi|

−` − ρi4sign(ςi)|ςi|
−$

}
+

∑
i

sign(ς̄i)
{
(
ξi

%i
− ai)ς̄i + (aiξi − bi%i −

ξ2
i

%i
)ςi + %i

[∑
j

ci jζ j(ς j) +
∑

j

ui jζ j(ς
ϕ
j ) +

∧
j

ei jζ j(ς
ϕ
j )

+
∨

j

ki jζ j(ς
ϕ
j )
]
− |ℵi1(t)|ς̄i − sign(ς̄i)

∑
j

µ̄i j|ς
ϕ
j | − ℵi3sign(ς̄i)|ς̄i|

−` − ℵi4sign(ς̄i)|ς̄i|
−$

}
+

∑
i

sign(ρi1(t))
((
ρi1(t) − δsign(ρi1(t))

)
|ςi| − sign(ρi1(t))ρi4|ρi1(t)|−`

− sign(ρi1(t))ρi3|ρi1(t)|−$
)

+
∑

i

sign(ℵi1(t))
((
ℵi1(t) − δsign(ℵi1(t))

)
|ς̄i|

− sign(ℵi1(t))ℵi4|ℵi1(t)|−` − sign(ℵi1(t))ℵi3|ℵi1(t)|−$
)

≤
∑

i

{ 1
%i
|ς̄i| −

ξi

%i
|ςi| − |ρi1(t)||ςi| − ρi2|ς̄

−ϕ
i | − ρi3|ςi|

−` − ρi4|ςi|
−$

}
+

∑
i

{
(
ξi

%i
− ai)|ς̄i|

+ |aiξi − bi%i −
ξ2

i

%i
||ςi| + %i

∑
j

[
|ci j|L j|ς j| + |ui j|L j|ς

ϕ
j | + |ei j|L j|ς

ϕ
j | + |ki j|L j|ς

ϕ
j |

]
− |ℵi1||ς̄i|

−
∑

j

µ̄i j|ς
ϕ
j | − ℵi3|ς̄i|

−` − ℵi4|ς̄i|
−$

}
+

∑
i

((
|ρi1(t)| − δ

)
|ςi| − ρi4|ρi1(t)|−` − ρi3|ρi1(t)|−$

)
+

∑
i

((
|ℵi1(t)| − δ

)
|ς̄i| − ℵi4|ℵi1(t)|−` − ℵi3|ℵi1(t)|−$

)
. (3.17)

Combine with conditions (3.3)–(3.6), we have

C
0 DµV ≤

∑
i

{ 1
%i

+
ξi

%i
− ai − δ

}
|ς̄i| −

∑
i

ρi2|ς̄
ϕ
i | +

∑
i

{
−
ξi

%i
+ |aiξi − bi%i −

ξ2
i

%i
|

+
∑

j

% j|c ji|Li| − δ
}
|ςi| +

∑
i

{∑
j

[
%i

(
|zi j| + |ei j| + |ki j|

)
L j − µ̄i j

]}
|ς
ϕ
j | −

∑
i

ρi3|ςi|
−` −

∑
i

ℵi3|ς̄i|
−`

−
∑

i

ρi4|ρi1(t)|−` −
∑

i

ℵi4|ℵi1(t)|−` −
∑

i

ρi4|ςi|
−$ −

∑
i

ℵi4|ς̄i|
−$ −

∑
i

ρi3|ρi1(t)|−$

−
∑

i

ℵi3|ℵi1(t)|−$

≤ − Υ1V−` − Υ2(t)V−$. (3.18)

Hence, from Lemma 2.2, we can see that FOFINN (2.8) could achieve FTS within the settling
time (3.12). �
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Remark 3.1. Due to the inclusion of a time driven variable coefficients in the adaptive controller (3.11)
that we designed, it is more flexible than the feedback controllers in [35, 36]. At the same time, from
Lemma 2.2, it can be found that the settling time can be estimated by adjusting the size of parameters
µ, `, and $.

4. Examples

Several numerical examples are given in this part to validate the results we obtained.
Example 4.1. Take the following controlled FOFINN into consideration.

C
0 Dµz1(t) =

{ 1
η1

z̄1(t) −
ξ1

η1
z1(t)

}
+ u1,

C
0 Dµz2(t) =

{ 1
η2

z̄2(t) −
ξ2

η2
z2(t)

}
+ u2,

C
0 Dµz̄1(t) =

{
(
ξ1

η1
− a1)z̄1(t) + (a1ξ1 − b1η1 −

ξ2
1

η1
)z1(t) + η1

[∑
j

c1 jζ j(ς j(t))

+
∑

j

h1 jζ j(ς j(t − ϕ j(t))) +
∑

j

m1 j

∫ t

−∞

H j(t − ε)ζ j(ς j(ε))dε

+
∧

j

e1 jζ j(ς j(t − ϕ j(t))) +
∨

j

k1 jζ j(ς j(t − ϕ j(t)))
]}

+ v1,

C
0 Dµz̄2(t) =

{
(
ξ2

η2
− a2)z̄2(t) + (a2ξ2 − b2η2 −

ξ2
2

η2
)z2(t) + η2

[∑
j

c2 jζ j(ς j(t))

+
∑

j

h2 jζ j(ς j(t − ϕ j(t))) +
∑

j

m2 j

∫ t

−∞

H j(t − ε)ζ j(ς j(ε))dε

+
∧

j

e2 jζ j(ς j(t − ϕ j(t))) +
∨

j

k2 jζ j(ς j(t − ϕ j(t)))
]}

+ v2,

(4.1)

where %i = [1, 1], ξi = [1, 1], ai = [2, 2], bi = [3, 3], ci j = [3, 2;−5, 1], zi j = [−0.7,−0.5;−0.3, 0.9],
mi j = [−0.6, 0.3; 0.5, 0.6], ei j = [−0.3, 0.4;−0.5, 0.6], ki j = [0.7,−0.9;−0.8, 0.5] and ϕi(t) =
0.6 exp(sin(t))+0.6

exp(sin(t)) , H j(t) = exp(−t).
From Theorem 3.1, we can obtain that µ̄11 ≥ 1.7, µ̄12 ≥ 1.8, µ̄21 ≥ 1.6, µ̄22 ≥ 2, ρ11 ≥ 7, ρ21 ≥ 4,

ℵi1 ≥ 0.
Take ρ11 = 14, ρ21 = 9, ρ12 = 1.086, ρ22 = 2.5, ℵ11 = ℵ21 = 2, µ̄i j = [3.7, 3.8; 3.6, 4], ρ13 = 0.055,

ρ23 = 0.135, ρ14(t) = 0.09, ρ24(t) = 0.026, ℵ13 = ℵ23 = 0.015, ℵ14 = 0.016, ℵ24 = 0.014, ` = 0.7,
$ = 0.01, then, we can find that conditions (3.3)–(3.6) are all met. Therefore, the ST of controlled
FOFINN (3.1) is

T ∗ =

[
Γ(1 + µ)

B2
$−2`−1

1+` (1 +$)

((
V1+`(t0) +

(
B

A

) 1+`
$−`

) 1+$
1+`

−

(
B

A

) 1+$
$−`

)] 1
µ

= 45.1461. (4.2)

Figures 1 and 2 show the state trajectory of FOINN (4.1) without controller and the values of delay
function ϕ j(t), respectively. We can find that FOFINN can converge to a stable state before 1.2. This
further demonstrates the effectiveness of our designing controller.
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Figure 1. States of FOFINN (4.1) without controllers.
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Figure 2. Values of delay function ϕi(t).

Figures 3 and 4 show the state of FOFINN (4.1) under feedback controller (3.2) and the values of
controller (3.2). It can be observed that under controller (3.11), the state of FOFINN converges to a
stable state before reaching the ST, i.e., FOFINN could achieve FTS. This also proves that the feedback
controller (3.2) we designed is effective.
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Figure 3. States of FOINN (4.1) under controller (3.2).
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Figure 4. Values of controller (3.2).
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Example 4.2. We consider the same system as in Example 4.1 and consider the following adaptive
controller: 

ui = − |ρi1(t)|ςi − ρi2sign(ςi)|ς̄
ϕ
i | − ρi3sign(ςi)|ςi|

−` − ρi4sign(ςi)|ςi|
−$,

vi = − |ℵi1(t)|ς̄i − sign(ς̄i)
∑

j

µ̄i j|ς
ϕ
j | − %i

∑
j

mi j

∫ t

−∞

H j(t − ε)ζ j(ς j)dε

− ℵi3sign(ς̄i)|ς̄i|
−` − ℵi4sign(ς̄i)|ς̄i|

−$,

(4.3)

where parameters ρi2, ρi3, ρi4, µ̄i j, mi j, %i, ℵi3, ℵi4 are the same as we take in Example 4.1, and

C
0 Dµρi1(t) =

(
ρi1(t) − δsign(ρi1(t))

)
|ςi| − ρi4sign(ρi1(t))|ρi1(t)|−` − ρi3sign(ρi1(t))|ρi1(t)|−$, (4.4)

C
0 Dµℵi1(t) =

(
ℵi1(t) − δsign(ℵi1(t))

)
|ς̄i| − ℵi4sign(ℵi1(t))|ℵi1(t)|−` − ℵi3sign(ℵi1(t))|ℵi1(t)|−$. (4.5)

Take δ = 10 and after verification, the conditions (3.3) and (3.6) are still met, so, from Lemma 2.2,
the system can achieve FTS with the following ST:

T ∗ =

[
Γ(1 + µ)

Υ22
$−2`−1

1+` (1 +$)

((
V1+`(t0) + 1

) 1+$
1+`

− 1
)] 1

µ

= 46.1001. (4.6)

The state of FOFINN (4.1) under controller (3.11) is shown in Figure 5. We can find that FOFINN
converges to a stable state before reaching ST. Due to the fact that the control parameters change
with the state of FOFINN, the convergence speed to stable state is slower and the ST under adaptive
controller (3.11) is larger than under feedback controller (3.2).
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Figure 5. State of FOFINN under the controller (3.11).
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Figure 6 is the values of adaptive parameters ρ11(t), ℵ11(t), ρ21(t), ℵ21(t) in controller (3.11).
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Figure 6. Values of adaptive parameters ρ11(t), ρ21(t), ℵ11(t), ℵ21(t).

Remark 4.1. The symbol function in the controller will generate chattering effects in the control
process, increasing the control cost. To avoid the buffeting effect, sign function can be replaced by
function tanh(·).

Remark 4.2. To the best of our knowledge, the stability of FOFINNs has scarcely been explored,
particularly the fixed-time synchronization of such networks with mixed delay and neutral terms.
Therefore, the findings presented in this paper are groundbreaking.

Remark 4.3. In [30, 46], authors previously required that activation functions be bounded. However,
this paper removes the boundedness assumption, making our results more general and lessening the
conservativeness of the derived stibility criteria to some extent. The results in this paper can be
generalized to those in [30, 46], but the opposite is not true.

Remark 4.4. In [39–41], the criteria of FTS for integer order NNs have been obtained. We know that
non-integer derivatives are more widely used than integer derivatives, so fractional derivatives are
one of the factors that must be considered in modeling. In [47], the FTS criteria of memristor-based
FONN are given based on the linear controller, but the calculation expression of the settling time is
not given in detail. Compared to the results presented in [39–41,47], our results significantly enhance
and broaden their theoretical outcomes to a certain extent.

Remark 4.5. In the design of control systems and mechanical systems, the inertia term is an important
part, which affects the dynamic response and stability of the system. In the recent results [26,27,31,32],
the FTS of NN models with inertial terms is not analyzed. Compared to their results, our results are
more general.
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Remark 4.6. Since the settling time of the system is derived according to the inequality techniques,
there may be some errors in the estimation of the system settling time. In order to solve this problem,
we can consider applying the less conservative inequality techniques.

5. Conclusions

This paper delves into the FTS of FOFINNs with mixed delays. Leveraging the fractional-order
FTS theorem, properties of fractional calculus, and inequality approaches, we derive some novel
sufficient conditions to ensure the globally FTS of FOFINN. Additionally, we design two types of
controllers, namely the feedback controller and adaptive controller, and compute the settling times for
each controller. Finally, we provide two examples to validate our results. Future research will focus on
designing more concise and easy to implement controllers to achieve FTS of FONNs.
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