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Abstract: This paper explored the topic of extended dissipativity analysis for Markovian jump neural
networks (MJNNs) that were influenced by time-varying delays. A distinctive Lyapunov functional,
distinguished by a non-zero delay-product types,was presented. This was achieved by combining
a Wirtinger-based double integral inequality with a flexible matrix set. This novel methodology
addressed the limitations of the slack matrices found in earlier research. As a result, a fresh condition
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example was included to demonstrate the effectiveness of the proposed methodology.
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1. Introduction

Neural networks (NNs) are rooted in the emulation of the human brain’s intricate architecture.
These computational models have been effectively employed across various domains, including
medical diagnostics, the financial industry, and signal processing [1, 2], in which the versatility and
efficacy underscore the transformative potential of NNs in advancing these fields. Stability holds
significant importance as a prerequisite in various applications [3]. Nevertheless, the implementation
of (large-scale) neural networks unavoidably introduces time-varying delays (TVDs) arising from finite
amplifier switching speeds and inter-neuron communication rates. These delays can potentially lead
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to instability and oscillations within the NN [4, 5]. Therefore, analyzing the dynamic performance of
NNs with TVDs is a meaningful topic [6–8].

Additionally, abrupt parameter changes in the structures of many NNs may occur due to sudden
environmental changes, components or interconnection failures. These NNs can exhibit distinct modes
that transition or switch unpredictably between each other, and such switching can be determined by
a Markov chain, leading to MJNNs [9, 10]. It is noted that, dissipativity, recognized as a critical
dynamic performance metric, has been proven to be a potent tool for the analysis of nonlinear systems,
particularly when leveraging energy-related input-output characteristics, as highlighted in [11]. While
the traditional notion of dissipativity encompasses both passivity and H∞ performances, it falls short
in addressing the l2 − l∞ performance. Addressing this lacuna, the seminal work in [12] marked the
first stride toward reconciling this gap. Consequently, the concept of “extended dissipativity” emerged,
which has been widely applied to practical systems, presenting a more comprehensive performance
index [13, 14]. This innovative index effectively amalgamates the features of passivity, traditional
dissipativity, H∞ performance, and the l2− l∞ performance. To further harness the potential and expand
the applicability of MJNNs, there’s been an increasing scholarly focus on this domain. For example, the
delay-product-type (DPT) functional approach is presented to analyze MJNNs [15–17]. Nevertheless,
the matrices that were introduced had a constraint imposed upon them, requiring them to be positive
definite. This constraint was imposed to guarantee the positive definiteness of the Lyapunov function,
which in turn led to certain limitations in the conditions established. In response to this concern,
an attempt was made in [18] to mitigate the situation. This involved creating two innovative DPT
functionals, aiming to support the extended dissipativity analysis of MJNNs. Nevertheless, it’s worth
noting that only the DPT Lyapunov functional based on a single integral was developed in [18]. This,
in turn, prompted the proposal of an enhanced approach in [19]. In this later work, a double integral-
based DPT (DIDPT) functional was introduced. This new functional featured augmented forms of
double integrals to provide a more comprehensive solution. The TVDs-dependent components in the
DIDPT are efficient for capturing TVDs information but suffer from incomplete zero components,
limiting their utilization in system information. This insufficiency motivates the current study.

Moreover, the traditional method for estimating the integral term −
∫ t

t−ς
§̇T (s)R§̇(s)ds involves

handling the TVDs in the denominators using the traditional reciprocally convex inequality
(TRCI) [20]. To improve the conservatism of the TRCI, an improved version known as the improved
reciprocally convex inequality (IRCI) was proposed in [21, 22]. Furthermore, to achieve even less
conservative results without introducing additional decision variables, the exponential type reciprocally
convex inequality (ETRCI) is first introduced in the exponential-type parameters introduced in [23],
which quickly approaches the left-hand side of the inequality and also covers [21,22] as special cases.
In the existing works, there have been no related studies exploring the use of ETRCI for reducing
conservatism in the analysis of MJNNs, warranting further investigation in this direction.

Building upon the preceding analysis, this paper directs its attention toward the extended
dissipativity analysis concerning MJNNs that exhibit TVDs. Through the application of the S-
procedure lemma, coupled with the utilization of adaptable matrices, a fresh approach is formulated.
Drawing upon the ETRCI and the innovative DIDPT functional, a novel criterion is introduced. This
criterion serves to ensure both the stochastic stability and extended dissipativity of MJNNs. The main
contributions are as follows:

• By employing the S-procedure lemma and integrating the use of adaptable matrices, we propose
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the DIDPT functional, which overcomes the zero components in [19]. As a result, the newly
formulated DIDPT functional optimally captures the intricate interplay of coupling dynamics
among states and TVD, offering a robust solution in the realm of state dynamics.
• Drawing upon the ETRCI and the innovative DIDPT functional, a novel criterion is introduced.

This criterion serves to ensure both the stochastic stability and extended dissipativity of MJNNs.

Notation. In this paper, Rl means the l-dimensional Euclidean space; RT denotes the transpose of R; ‘*’
represents the symmetric term in linear matrix inequalities (LMIs); He[R] represents R + RT ; diag{...}
and col[...] denote a block-diagonal matrix and a block-column vector, respectively; Co{...} represents
a convex set; E[·] represents the expectation operator; λmax(X) and λmin(X) represent the maximum and
minimum eigenvalue of X, respectively.

2. Problem formulations

Consider the ensuing MJNNs exhibiting TVDs:{
§̇(t) = −A(rt)§(t) + W0(rt)π(W2ρ(t)) + W1(rt)π(W2§(t − σ(t))) + B1ρ(t),
†(t) = C§(t) + D1§(t − σ(t)) + D2π(W2§(t)) + B2ρ(t),

(2.1)

where the state vector §(t) ∈ Rn, the disturbance input w(t) ∈ Rw, and the output †(t) ∈ Ry are
defined for the system. The disturbance input ρ(t) belongs to L2[0,+∞). Additionally, the system
parameters include the known interconnection weight matrices A(rt), W0(rt), W1(rt), B1, B2, C, D1, D2,
and W2 = col[W21,W22, · · · ,W2n]. The Markov chain rt(t ≥ 0), which operates for t greater than or
equal to zero, exhibits right continuity and takes on values within a finite set S = {1, 2, ...,m}. The
transition rate matrix (TRM), denoted as Π and defined as [τi j], characterizes this chain for δ > 0,

lim
δ→0

o(δ)/δ = 0, τi j ≥ 0, τii = −
m∑

j=1, j,i
τi j( j , i), and

Pr{rt+δ = j|rt = i} =

{
τi jδ + o(δ), j , i,
1 + τiiδ + o(δ), j = i.

(2.2)

The TVD σ(t) is subject to the following constraints:

0 ≤ σ(t) ≤ ς, − ν ≤ σ̇(t) ≤ ν, (2.3)

where ς and ν are constants. For constants k−l and k+
l (l = 1, 2, · · · , n), the neuron activation function

π(W2(§(t))) satisfies the following conditions:

k−l ≤
πl(a1) − πl(a2)

a1 − a2
≤ k+

l , a1 , a2, (2.4)

k−l ≤
πl(a)

a
≤ k+

l , a , 0. (2.5)

In this paper, a less conservative sufficient condition will be proposed to ensure the extended
dissipativity of the MJNNs (2.1). To accomplish this, the subsequent preconditions are established.

From the standpoint of practical application, the extended disspativity can embody more
performance indices for physical systems such as H∞, passivity, dissipativity, and l2 − l∞
performance [13, 14]. The definition is given as follows:
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Definition 1. [12] MJNNs (2.1) are considered extended dissipative if there exist prescribed matrices
Ψ1, Ψ2, Ψ3, and Ψ4, satisfying

Ψ1 = ΨT
1 ≤ 0, Ψ3 = ΨT

3 , Ψ4 = ΨT
4 , (2.6)

BT
2 Ψ1B2 + He[BT

2 Ψ2] + Ψ3 > 0, (2.7)
(||Ψ1|| + ||Ψ2||) · ||Ψ4|| = 0, (2.8)

and a scalar % can be found such that the following condition holds:∫ T

0
(†T (t)Ψ1†(t) + 2†T (t)Ψ2ρ(t) + ρT (t)Ψ3ρ(t))dt ≥ ρT (t)Ψ4†(t) + %. (2.9)

Lemma 1. [24] Let us denote the set G = {g}, and introduce the notations: F(g), X1(g), X2(g), ...,
Xk(g) are defined as functionals or functions. The domain H is specified as

H = {g ∈ Z : X1(g) ≥ 0, X2(g) ≥ 0, ..., Xk(g) ≥ 0}.

We proceed to examine two specific conditions:
(I) The initial condition states that F(g) ≥ 0 holds for every g ∈ H.
(II) Additionally, we consider the existence of nonnegative values λ1 ≥ 0, λ2 ≥ 0, ..., λk ≥ 0 such that
the inequality holds:

It can be established that condition (II) implies condition (I).

Lemma 2. [23] For real constants β ∈ (0, 1), κ1 ≥ 0, κ2 ≥ 0, and real symmetric positive definite
matrices R1, R2 ∈ R

m×m, the matrix inequality below is satisfied in the presence of a real matrix
S ∈ Rm×m:  1

β
R1 0
0 1

1−βR2

 ≥ [
R1 + (1 − β)eκ1T1 S

∗ R2 + βeκ2T2

]
,

where T1 = R1 − S R−1
2 S T , T2 = R2 − S T R−1

1 S .

Remark 1. Different from the unknown slack matrix S in [17], parameters κ1 and κ2 are prespecified,
which can be freely chosen. Thus, the flexible tuning can lead to less conservatism.

In this section, our emphasis lies in introducing an adequate criterion to ensure both the stochastic
stability and extended dissipativity of the system (2.1).

Let’s begin by revisiting the DIDPT functional denoted as V∗(§t), which was introduced in [19].
The DIDPT functional is defined as follows:

V∗(§t) = VU(§t) + VT (§t), (2.10)

where

VU(§t) =
σ(t)

2

∫ 0

−σ(t)

∫ t

t+θ
§̇T (s)U1§̇(s)dsdθ +

ςσ(t)
2

∫ −σ(t)

−ς

∫ t−σ(t)

t+θ
§̇T (s)U2§̇(s)dsdθ,

VT (§t) = −
σ(t)
ς2 χT

4 (t)T1χ4(t) −
ςσ(t)
ς2 χT

5 (t)T2χ5(t),
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Tk =


3
2Uk 0 −3Uk

∗ 3Uk −6Uk

∗ ∗ 18Uk

 , k = 1, 2,

where the positive definite matrices U1 and U2 are denoted with appropriate dimensions and

ςσ(t) = ς − σ(t),

x1(t) =
1
σ(t)

∫ t

t−σ(t)
§(s)ds,

x2(t) =
1

ςσ(t)

∫ t−σ(t)

t−ς
§(s)ds,

x3(t) =
1

σ2(t)

∫ 0

−σ(t)

∫ t

t+θ
§(s)dsdθ,

x4(t) =
1

ς2
σ(t)

∫ −σ(t)

−ς

∫ t−σ(t)

t+θ
§(s)dsdθ,

χ1(t) = col[§(t), π(W2§(t)), §̇(s)],
χ2(t) = col[§(t), §(t − σ(t)), x1(t)],
χ3(t) = col[§(t − σ(t)), §(t − ς), x2(t)],
χ4(t) = col[§(t), x1(t), x3(t)],
χ5(t) = col[x(t − σ(t)), x2(t), x4(t)],
ξ1(t) = [§(t), §(t − σ(t)), §(t − ς)],
ξ2(t) = [π(W2§(t)), π(W2x(t − σ(t))), π(W2§(t − ς))],
ξ3(t) = [x1(t), x2(t), x3(t), x4(t)],
ξ4(t) = [§̇(t), §̇(t − σ(t)), §̇(t − ς)],
η(t) = col[ξ1(t), ξ2(t), ξ3(t), ξ4(t)].

It should be pointed out that the DIDPT functional constructed in [19] increases the delay
information. However, it lacks consideration of the coupling information. This is due to the existence
of zero components in Tk, which results in insufficient cross terms among §(t), §(t − σ(t)), x1(t), and
x2(t). To address this, we use the S-procedure lemma and introduce semi-positive definite matrices

Xk =

[
0 Xk

Xk 0

]
. By deducing Gk, if there exist scalars µk ≥ 0, we can express it as follows:

Gk = Tk − µk

[
Xk 0
0 0

]
=


3
2Uk −µkXk −3Uk

∗ 3Uk −6Uk

∗ ∗ 18Uk

 ≥ 0. (2.11)

Then, we have

σ(t)
2

∫ 0

−σ(t)

∫ t

t+θ
§̇T (s)U1§̇(s)dsdθ ≥

1
σ(t)

χT
4 (t)G1χ4(t) ≥

σ(t)
ς2 χT

4 (t)G1χ4(t),

ςσ(t)
2

∫ −σ(t)

−ς

∫ t−σ(t)

t+θ
§̇T (s)U2§̇(s)dsdθ ≥

1
ςσ(t)

χT
5 (t)G2χ5(t) ≥

ςσ(t)
ς2 χT

5 (t)G1χ5(t).
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Further, we can construct the following nonzeoro DPT (NDPT) functional.

Proposition 1. The provided functional V0(§t) is positive definite for the MJNNs (2.1)
incorporating (2.3), under the conditions of matrices U1 > 0 and U2 > 0, along with matrices X1

and X2 that fulfill (2.11).

V0(§t) = VU(§t) + VG(§t), (2.12)

where

VU(§t) =
σ(t)

2

∫ 0

−σ(t)

∫ t

t+θ
§̇T (s)U1§̇(s)dsdθ +

ςσ(t)
2

∫ −σ(t)

−ς

∫ t−σ(t)

t+θ
§̇T (s)U2§̇(s)dsdθ,

VG(§t) = −
σ(t)
ς2 χT

4 (t)G1χ4(t) −
ςσ(t)
ς2 χT

5 (t)G2χ5(t).

Remark 2. It is shown from [25] that the conservatism of stability criterion can be reduced by
increasing the ply of integral terms in the LKF. Thus, a novel NDPT Lyapunov functional with double
integrals is introduced in Proposition 1 with the subsequent benefits:

(i) The novel NDPT functional (2.12) strengthens the connections among the variables σ̇(t), x3(t),
and x4(t), as compared to the existing Lyapunov functionals in [9, 15, 18].

(ii) In addressing the challenge posed by zero components, this paper leverages the double
integral condition presented in [5] combined with the S-procedure lemma as outlined in Lemma 1.
By establishing a direct relationship between the functional VG(§t) and VU(§t), the introduction of
supplementary variables becomes superfluous. Moreover, by incorporating nonintegral components
possessing negative attributes, there is a reduction in the prerequisite for matrices to maintain strict
positive definiteness. This methodological relaxation not only curtails conservatism but also lessens
the computational complexity inherent in the analysis.

(iii) DIDPT functional presented in [19], the innovative NDPT formulation, as defined in Eq (2.12)
circumvents the inclusion of zero components. This design choice facilitates the comprehensive
integration of additional information among the variables §(t), §(t−σ(t)), x1(t), and x2(t). For example,
the term −µk§

T (t)X1x1(t) in (2.12) instead of 0 in [19], thereby preserving the connectivity information
between §T (t) and x1(t). Consequently, the novel NDPT (2.12) yields less conservative results.

(iv) It is essential to highlight that the number of decision variables (NDVs) plays a pivotal role in
the stability analysis, directly influencing the computational complexity. Within the NDPT framework,
a delicate balance between conservatism and complexity can be achieved by judiciously selecting
different values of µk. Opting for nonzero µk , 0 values aligns with a preference for conservatism,
enhancing the robustness of the analysis. Conversely, setting µk = 0 to zero caters to computational
efficiency, streamlining the process. This flexibility allows for tailored approaches to stability analysis,
accommodating diverse research needs and computational resources.

Based on Proposition 1 and Lemma 2, the following theorem provides a sufficient condition for the
extended dissipativity of MJNN (2.1).

Theorem 1. Setting el = [0n×(l−1)n, In, 0n×(14−l)n], l = 1, 2, · · · , 14, the MJNNs (2.1) achieve
stochastically stable and extended dissipative if there exist matrices Pi ∈ R

3n×3n > 0, Qk ∈ R
3n×3n > 0,

Rk > 0, Hk > 0, Mk > 0, Uk > 0, Li ∈ R
n×n ≥> 0, Ni ∈ R

nw×nw > 0, positive definite diagonal matrices
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Λc, ∆c, Vk = diag{vk1, vk2, · · · , vkn} ∈ R
3n×3n, and any matrices Xk satisfying the following conditions,

including the inequalities for all i ∈ S , c = 1, 2, 3, and k = 1, 2, with the provided scalars α ∈ (0, 1), ς,
and ν, and given µk ≥ 0, κk ≥ 1, as well as matrices Ψ1, Ψ2, Ψ3, Ψ4

(1 − ν)R1 + ςH1 − νM1 > 0, (2.13)

R2 − νM2 > 0,H2 −
ν

2
U1 > 0,H2 −

ν

2
U2 > 0, (2.14)[

(℘⊥i )T Ω(0, 0)℘⊥i
√
κ1(℘⊥i )T ΠT

14S
∗ −ς<2(0, 0)

]
< 0, (2.15)[

(℘⊥i )T Ω(0, ν)℘⊥i
√
κ1(℘⊥i )T ΠT

14S
∗ −ς<2(0, ν)

]
< 0, (2.16)[

(℘⊥i )T Ω(ς, 0)℘⊥i
√
κ2(℘⊥i )T ΠT

15S T

∗ −ς<2(ς, 0)

]
< 0, (2.17)[

(℘⊥i )T Ω(ς,−ν)℘⊥i
√
κ2(℘⊥i )T ΠT

15S T

∗ −ς<2(ς,−ν)

]
< 0, (2.18)

Γ11 Γ12 −CT Ψ4D2 −CT Ψ4B2

∗ Γ22 −DT
1 Ψ4D2 −DT

1 Ψ4B2

∗ ∗ Γ33 −DT
2 Ψ4B2

∗ ∗ ∗ Γ44

 > 0, (2.19)

where

Ω(σ, σ̇) =

7∑
l=1

Ωl, σ = σ(t), ςσ = ς − σ(t),

Ω1 = ΠT
1

∑
j∈S

τi jP jΠ1 + He[ΠT
1 PiΠ2],

Ω2 = ΠT
3 Q1Π3 − ΠT

5 Q2Π5 − (1 − ḋ)ΠT
4 (Q1 − Q2)Π4,

Ω3 = He[eT
4 (V1 − V2)W2e11 + eT

1 WT
2 (K2V2 − K1V1)W2e11],

Ω4 = eT
11

(
σ(R1 + M1) +

ς2

2
T +

σς

2
G1

)
e11 + eT

12

(
(1 − σ̇)(ςσM2 − σM1)

+ςσ(1 − σ̇)R2 + ς(1 − σ̇)
ςσ
2

G2)
)
e12 − ςσeT

13M2e13

−
σ̇

ς

(
ΠT

6 U1Π6 − ΠT
7 U2Π7

)
−

1
ς

He[ΠT
6M1Π8 + ΠT

7M2Π9]

−
σ̇

ς2 (ΠT
10G1Π10 − ΠT

11G2Π11) −
1
ς2 He[ΠT

10G1Π12 + ΠT
11G2Π13],

Ω5 =−
1
ς

ΠT
16<Π16 − ΠT

17T1(σ, σ̇)Π17 − ΠT
18T2(σ, σ̇)Π18,

Ω6 =

3∑
l=1

He[(el+3 − K1W2el)T Λl(K2W2el − el+3)]

+

2∑
l=1

He
[(

(el+3 − el+4) − K1W2(el − el+1)
)T

× ∆l

(
K2W2(el − el+1) − (el+3 − el+4)

)]
AIMS Mathematics Volume 9, Issue 7, 19049–19067.
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+He
[(

(e4 − e6) − K1W2(e1 − e3)
)T

× ∆3

(
K1W2(e1 − e3) − (e4 − e6)

)]
,

Ω7 =−eT
0 Ψ1e0 − He[eT

0 Ψ2e14] − eT
14Ψ3e14,

<=

[
τ̄<1(σ, σ̇) S

∗ (1 + τeκ2
ς

)<2(σ, σ̇)

]
,

τ̄= (1 +
(ς − τ)eκ1

ς
),

<1(σ, σ̇) = diag{<0
1(t), 3<0

1(t)},
<2(σ, σ̇) = diag{<0

2(t), 3<0
2(t)},

T1(σ, σ̇) = diag{2T0
1, 4T

0
1},T2(σ, σ̇) = diag{2T0

2, 4T
0
2},

<0
1(t) = (1 − σ̇)R1 + ςσT +

(1 − σ̇)σ
2

G1 − σ̇M1,

<0
2(t) = R2 + σ̇M2 +

ςσ
2

G2,

T
0
1(t) = H −

σ̇

2
U1,T

0
2(t) = H +

σ̇

2
U2,

K1 = diag{k−1 , k
−
2 , · · · , k

−
n },

K2 = diag{k+
1 , k

+
2 , · · · , k

+
n },

P1i = [I, 0, 0]Pi[I, 0, 0]T ,

Γ11 =αP1i −CT Ψ4C,Γ12 = −CT Ψ4D1,

Γ22 = (1 − α)P1i − DT
1 Ψ4D1,

Γ33 = Li − DT
2 Ψ4D2,Γ44 = Ni − BT

2 Ψ4B2,

Π1 = col[e1, e2, e3],
Π2 = col[e11, (1 − σ̇)e12, e13],

Πl+3 = col[el+1, el+4, el+11], l = 0, 1, 2,
Π6+l = col[el+1, el+2, el+7], l = 0, 1,

Π8 = col[σe11, d(1 − σ̇)e12, e1 − (1 − σ̇)e2 − σ̇e7],
Π9 = col[ςσ(1 − σ̇)e12, ςσe13, (1 − σ̇)e2 − e3 + σ̇e8],

Πl+10 = col[el+1, el+7, el+9], l = 0, 1,
Π12 = col[σe11, e1 − (1 − σ̇)e2 − σ̇e7, e1 − (1 − σ̇)e7 − 2σ̇e9],
Π13 = col[ςσe12, (1 − σ̇)e2 − e3 + σ̇e8, (1 − σ̇)e2 − e8 + 2σ̇e10],
Π14 = col[e1 − e2, e1 + e2 − 2e7],
Π15 = col[e2 − e3, e2 + e3 − 2e8],
Π16 = col[Π14,Π15],

Π17 = col[e1 − e7,−
1
2

e1 − e7 + 3e9],

Π18 = col[e2 − e8,−
1
2

e2 − e8 + 3e10],

℘i =−Aie1 + W0ie4 + W1ie5 + B1e14 − e11,
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e0 = Ce1 + D1e2 + D2e4 + B2e14.

Proof. Select the subsequent LKF candidate:

V(§t) =

6∑
l=0

Vl(§t), (2.20)

where

V1(§t) = ηT
1 (t)Piη1(t),

V2(§t) =

∫ t

t−σ(t)
χT

1 (s)Q1χ1(s)ds +

∫ t−σ(t)

t−ς
χT

1 (s)Q2χ1(s)ds,

V3(§t) = 2
n∑

l=1

∫ W2l§l(t)

0
[v1l(πl(s) − k−l s) + v2l(k+

l s − πl(s))]ds,

V4(§t) =

∫ 0

−σ(t)

∫ t

t+θ
§̇T (s)R1§̇(s)dsdθ +

∫ −σ(t)

−ς

∫ t−σ(t)

t+θ
§̇T (s)R2§̇(s)dsdθ,

V5(§t) =

∫ 0

−ς

∫ 0

θ

∫ t

t+u
§̇T (s)H§̇(s)dsdudθ,

V6(§t) = σ(t)
∫ t

t−σ(t)
§̇T (s)M1§̇(s)ds + ςσ(t)

∫ t−σ(t)

t−ς
§̇T (s)M2§̇(s)ds

−
σ(t)
ς
χT

2 (t)M1χ2(t) −
ςσ(t)
ς

χT
3 (t)M2χ3(t).

The infinitesimal operator along system (2.1) is denoted by L. One has

3∑
c=1

LVc(§t) = ξT (t)(Ω1 + Ω2 + Ω3)ξ(t), (2.21)

5∑
l=4

LVl(§t) = §̇T (t)(σ(t)R1 +
ς2

2
H)§̇(t) + ςσ(t)(1 − σ̇(t))§̇T (t − σ(t)) × R2§̇(t − σ(t))

−(1 − σ̇(t))
∫ t

t−σ(t)
§̇T (s)R1§̇(s)ds −

∫ t−σ(t)

t−ς
§̇T (s)R2§̇(s)ds

−

∫ 0

−ς

∫ t

t+θ
§̇T (s)H§̇(s)dsdθ, (2.22)

LV6(§t) = σ̇(t)
∫ t

t−σ(t)
§̇T (s)M1§̇(s)ds − σ̇(t)

∫ t−σ(t)

t−ς
§̇T (s)M2§̇(s)ds + σ(t)§̇T (t)M1§̇(t) − ςσ(t)§̇T (t − h)

×M2§̇(t − ς) − (1 − σ̇(t))§̇T (t − σ(t)) × (σ(t)M1 − ςσ(t)M2)§̇(t − σ(t)) −
σ̇(t)
ς
χT

2 (t)M1χ2(t)

−
2σ(t)
ς

χT
2 (t)M1χ̇2(t) +

σ̇(t)
ς
χT

3 (t)M2χ3(t) −
2ςσ(t)
ς

χT
3 (t)M2χ̇3(t), (2.23)

LV0(§t)≤ §̇T (t)
σ(t)ς

2
G1§̇(t) + (1 − σ̇(t))§̇T (t − σ(t))

ςσ(t)ς
2

G2§̇(t − σ(t)) −
σ̇(t)
ς2 ξT

4 (t)Z1ξ4(t)
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−
2σ(t)
ς2 ξT

4 (t)Z1ξ̇4(t) +
σ̇(t)
ς2 ξT

5 (t)Z2ξ5(t) −
2ςσ(t)
ς2 ξT

5 (t)Z2ξ̇5(t)

−
(1 − σ̇(t))σ(t)

2

∫ t

t−σ(t)
§̇T (s)G1§̇(s)ds −

ςσ(t)
2

∫ t−σ(t)

t−ς
§̇T (s)G2§̇(s)ds

+
σ̇(t)

2

∫ 0

−σ(t)

∫ t

t+θ
§̇T (s)G1§̇(s)dsdθ −

σ̇(t)
2

∫ −σ(t)

−ς

∫ t−σ(t)

t+θ
§̇T (s)G2§̇(s)dsdθ. (2.24)

Referring to (2.22), to enhance the incorporation of TVDs information, we divide [0, ς] into [0, σ(t)]∪
[σ(t), ς], resulting in the following expression:

−

∫ 0

−ς

∫ t

t+θ
§̇T (s)H§̇(s)dsdθ

= −

∫ 0

−σ(t)

∫ t

t+θ
§̇T (s)H§̇(s)dsdθ

−ςσ(t)
∫ t

t−σ(t)
§̇T (s)H§̇(s)ds

−

∫ −σ(t)

−ς

∫ t−σ(t)

t+θ
§̇T (s)H§̇(s)dsdθ. (2.25)

Combining with (2.22)–(2.25), one has

6∑
c=4

LVc(§t) + LV∗(§t) ≤ ξT (t)Ω4ξ(t) −
∫ t

t−σ(t)
§̇T (s)R0

1(t)§̇(s)ds

−

∫ t−σ(t)

t−ς
§̇T (s)R0

2(t)§̇(s)ds −
∫ 0

−σ(t)

∫ t

t+θ
§̇T (s)T0

1(t)§̇(s)dsdθ

−

∫ −σ(t)

−ς

∫ t−σ(t)

t+θ
§̇T (s)T0

2(t)§̇(s)dsdθ. (2.26)

Taking into account (2.3), (2.13), and (2.14), alongside the presence of positive definite matrices Rk,
Mk, Uk, and Hk (for k = 1, 2), we obtain

R
0
1(t) > 0,R0

2(t) > 0,T0
1(t) > 0,T0

2(t) > 0.

By utilizing the inequality condition in [4], we can approximate the single integral terms in (2.26) that
depend on R, M, U, and H as follows:

−

∫ t

t−σ(t)
§̇T (s)R0

1(t)§̇(s)ds ≤ −
1
σ(t)

ξT (t)ΠT
14<1(σ(t), σ̇(t))Π14ξ(t) (2.27)

and

−

∫ t−σ(t)

t−ς
ẋT (s)R0

2(t)ẋ(s)ds ≤ −
1

ςσ(t)
ξT (t)ΠT

15<2(σ(t), σ̇(t))Π15ξ(t). (2.28)
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By applying Lemma 2, one has

−
1
σ(t)

ΠT
14<1(σ(t), σ̇(t))Π14 −

1
ςσ(t)

ΠT
15 ×<2(σ(t), σ̇(t))Π15

≤ −
1
ς

[
Π14

Π15

]T [
<1(σ(t), σ̇(t)) + T1 S

∗ T2

] [
Π14

Π15

]
≤ −

1
ς

ΠT
16(<− =)Π16, (2.29)

where

T1 = (1 −
eκ1ςσ(t)

ς
T11),

T2 = <2(σ(t), σ̇(t) +
eκ2σ(t)
ς
T12,

T11 = <1(σ(t), σ̇(t)) − S<−1
2 (σ(t), σ̇(t))S T ,

T12 = <2(σ(t), σ̇(t)) − S T<−1
1 (σ(t), σ̇(t))S ,

= = diag{
eκ1ςσ(t)

ς
S<−1

2 (σ(t), σ̇(t))S T ,
eκ2σ(t)
ς

S T<−1
1 (σ(t), σ̇(t))S }.

By employing the inequality in [5], we can respectively estimate the H- and U-dependent terms
in (2.26) as follows:

−

∫ 0

−σ(t)

∫ t

t+θ
§̇T (s)T0

1(t)§̇(s)dsdθ ≤ −ξT (t)Π17T1(σ(t), σ̇(t))Π17ξ(t), (2.30)

−

∫ −σ(t)

−ς

∫ t−σ(t)

t+θ
§̇T (s)T0

2(t)§̇(s)dsdθ = −ξT (t)Π18T2(σ(t), σ̇(t))Π18ξ(t). (2.31)

Combining (2.26) and (2.29)–(2.31), we obtain:

6∑
c=4

LVc(§t) + LV0(§t) ≤ ξT (t)(Ω4 + Ω5 +
1
ς

ΠT
16=Π16)ξ(t). (2.32)

By considering (2.4) and (2.5), we can obtain the following inequalities for a = 1, 2, 3.

λa(s) = 2[π(W2x(s)) − K1W2§(s)]T × Λc[K2W2§(s) − π(W2§(s))] ≥ 0,
δa(s1, s2) = 2[π(W2§(s1)) − π(W2§(s2)) − K1W2(§(s1) − §(s2))]T

×∆c[K2W2(§(s1) − §(s2)) − π(W2§(s1)) + π(W2§(s2))] ≥ 0.

Thus, we can obtain

λ1(t) + λ2(t − σ(t)) + λ3(t − ς)
= 2[π(W2ρ(s)) − K1W2ρ(s)]T × Λi[K2W2ρ(s) − π(W2ρ(s))] ≥ 0,

δ(t, t − σ(t)) + δ(t − σ(t), t − ς) + δ(t, t − ς)
= 2[π(W2ρ(s1)) − π(W2ρ(s2)) − K1W2(ρ(s1) − ρ(s2))]T
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× ∆i[K2W2(ρ(s1) − ρ(s2)) − π(W2ρ(s1)) + π(W2ρ(s2))] ≥ 0. (2.33)

Further, the cost function can be expressed as follows:

JT =

∫ T

0
(†T (t)Ψ1†(t) + 2†T (t)Ψ2ρ(t) + ρT (t)Ψ3ρ(t))dt. (2.34)

Considering (2.21) and (2.32)–(2.34), it yields∫ T

0
LV(§t)dt − JT ≤

∫ T

0
ξT (t)Υ(σ(t), σ̇(t))ξ(t)dt, (2.35)

where

Υ(σ(t), σ̇(t)) =

7∑
l=1

Ωl +
1
ς

ΠT
16=Π16.

In the context of the problem, `l (l = 1, 2, ..., 4) are real matrix combinations that do not depend on
σ(t) and σ̇(t). Therefore, following the approach presented in [26], we have Υ(σ(t), σ̇(t)) < 0.

Considering the condition ℘iξ(t) = 0, and applying Finsler’s Lemma [3], we can deduce

(℘⊥i )T Υ(σ(t), σ̇(t))℘⊥i < 0⇒ ξT (t)Υ(σ(t), σ̇(t))ξ(t) < 0.

When Ψ1 ≤ 0, a nonnegative scalar ε can be found, satisfying the subsequent inequality for the case of
w(t) = 0.

LV(§t) < −ε |ξ(t)|2.

This indicates the stochastic stability of MJNNs (2.1).
From (2.35), one has

JT ≥

∫ T

0
LV(§t)dt = V(§t) − V(§0) ≥ §T (T )P1i§(t) − V(§0). (2.36)

Based on (2.19), it can be observed that Γ33 = Li−DT
2 Ψ4D2 > 0 and Γ44 = Ni−BT

2 Ψ4B2 > 0. Given that
Li and Ni stand as symmetric positive definite matrices, the condition Ψ4 ≥ 0 is assured. Furthermore,
it becomes apparent that Ψ4 < 0 is valid for all instances involving matrices Li ≥ 0 and Ni ≥ 0.
Regarding the unrestricted parameter Ψ4, we will explore two distinct scenarios as outlined below:

a: In the case of Ψ4 = 0, by setting % ≤ −V(§0), we can derive from (2.9) and (2.36) the following
result:

JT ≥ %. (2.37)

b: In the case of Ψ4 , 0, based on Ψ1 = Ψ2 = 0 and Ψ3 > 0, along with (2.36), we obtain the
following result:

JT =

∫ T

0
ρT (t)Ψ3ρ(t)dt ≥ 0. (2.38)
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For 0 ≤ t ≤ T and 0 ≤ t − σ(t) ≤ T , and considering matrices Li > 0, Ni > 0, and Ψ3 > 0, we have the
following result for all i ∈ S :

JT ≥ Jt ≥ §
T (t)P0i§(t) − V(§0)

≥ §T (t)P0i§(t) − V(§0) − πT (W2§(t))Liπ(W2§(t)) − ρT (t)Niρ(t), (2.39)
JT ≥ Jt−σ(t)

≥ §T (t − σ(t))P0i§(t − σ(t)) − V(§0) − πT (W2§(t))Liπ(W2§(t)) − ρT (t)Niρ(t). (2.40)

Therefore, by choosing a constant 0 < α < 1, we obtain

JT ≥ (1 − α)§T (t − σ(t))P0i§(t − σ(t)) + α§T (t)P0i§(t) − V(§0)
−πT (W2§(t))Liπ(W2§(t)) − ρT (t)Niρ(t). (2.41)

Then, one has

†T (t)Ψ4†(t) = (1 − α)§T (t − σ(t))P0i§(t − σ(t)) + α§T (t)P0i§(t) + ρT (t)Niρ(t)
+πT (W2§(t))Liπ(W2§(t)) − ϕT (t)Θϕ(t), (2.42)

where

ϕ(t) = col[§(t), §(t − σ(t)), π(W2§(t)), ρ(t)],

Θ =


Γ11 Γ12 −CT Ψ4D2 −CT Ψ4B2

∗ Γ22 −DT
1 Ψ4D2 −DT

1 Ψ4B2

∗ ∗ Γ33 −DT
2 Ψ4B2

∗ ∗ ∗ Γ44

 .
Combining Θ > 0, (2.41), and (2.42), one has

JT ≥ †T (ts)Ψ4†(t) − 2πT (W2§(t))Liπ(W2§(t)) − 2ρT (t)Niρ(t) − V(§0). (2.43)

Recalling (2.5), we find that |π(W2§(t))| ≤ ||K2W2|| · |§(t)|. Now, let’s consider two cases for Ψ4 , 0:
b(1): For Ψ4 > 0, considering ρ(t) ∈ L2[0,∞), there exists a constant % ≤ 0 such that

†T (t)Ψ4†(t) ≥ sup
0≤t≤T

†T (t)Ψ4†(t) + %. (2.44)

Recalling (2.43), one has

JT ≥ sup
0≤t≤T

†T (t)Ψ4†(t) + %. (2.45)

b(2): For Ψ4 < 0, one has

sup
0≤t≤T

†T (t)Ψ4†(t) ≤ 0. (2.46)

Combining (2.38) and (2.46), one has

JT =

∫ T

0
ρT (s)Ψ3ρ(s)ds ≥ sup

0≤t≤T
†T (t)Ψ4†(t) + %. (2.47)
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Recalling (2.45) and (2.47), we have

JT =

∫ T

0
ρT (s)Ψ3ρ(s)ds ≥ sup

0≤t≤T
†T (t)Ψ4†(t) + %. (2.48)

Based on Definition 1, we can conclude the extended dissipativity of system (2.1), which completes
the proof. �

Remark 3. Theorem 1 proposes a new condition with the help of NDPT and ETRCI, ensuring the
stochastically stable and extended dissipative behavior of MJNNs (2.1). The advantages of Theorem 1
can be highlighted.

(i) The condition captures more information about TVDs, involving its derivative in association
with σ(t), ς, σ̇(t), x1(t), x2(t), x3(t), and x4(t). Additionally, the incorporation of double integrals and
the elimination of zero components result in outcomes that are less conservative when contrasted with
those presented in [18, 19].

(ii) The ETRCI is introduced to deal with the term −
∫ t

t−ς
§̇T (s)R§̇(s)ds, which distinguishes it from

the approaches in [18,19]. The flexibility of two parameters κ1 and κ2 in Theorem 1 allows independent
adjustments, leading to better solutions.

(iii) It is noted that extended dissipativity [13, 14] includes strict dissipativity [11] and
passivity [27], which enhances the generality of the proposed method. Furthermore, based on
the NDPT and ETRCI, the dissipative characteristics are superior compared with some existing
works [27, 28].

(iv) The NDPT and ETRCI presented in this paper primarily enhances the interconnectedness
between time-delay information and the slack matrices, thereby reducing conservativeness.
Consequently, the approach is well-suited for time delayed systems such as delayed semi-Markovian
NNs.

Remark 4. Note that theoretical proof in [25] shows that the conservatism of a stability criterion can
be reduced by increasing the ply of integral terms in LKF. Thus, a suitable multiple integral-type LKF
can further reduce the conservatism of the stability criterion. Consequently, employing a multiple
integral-type LKF can further diminish the conservatism of the stability criterion. Additionally,
the literature [8] reveals the introduction of exponentially extended dissipativity, which not only
consolidates various performance measures-such as extended dissipative, exponential H∞, l2 − l∞
performance within a cohesive framework, but also delineates both the extended dissipativity and the
transient behavior of switched NNs with greater clarity upon establishing the decay rate. Therefore,
future research endeavors should focus on the analysis of less conservative exponentially extended
dissipativity employing multiple DPT, which promises to yield significant insights.

3. Example

We consider MJNNs (2.1) with parameters presented in [18]

A1 =

[
2 0
0 2

]
, A2 =

[
2.2 0
0 1.8

]
,K1 = D2 = 0,

W01 =

[
1 1
−1 −1

]
,W02 =

[
−1 −1
0.5 −1

]
,
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W11 =

[
0.88 1

1 1

]
,W12 =

[
−0.5 0.6
0.7 0.8

]
,

W2 =

[
1 0
0 1

]
, B1 =

[
0.0403
0.6771

]
,K2 = diag{0.4, 0.8},

C =
[
−0.3775 −0.2959

]
,D1 =

[
0.2532 −0.1684

]
.

We choose Π =

[
−4 4
5 −5

]
and Ψl(l = 1, 2, 3, 4) from Table 1. For simplicity, we set µ = µ1 = µ2

and κ = κ1 = κ2, and consider the following two cases as special cases of extended dissipativity.

Table 1. Extended dissipative performance.

Performance Ψ4 Ψ1 Ψ2 Ψ3

H∞ 0 -I 0 γ2I
L2 − L∞ I 0 0 γ2I

Case 1. The H∞ performance is investigated by selecting B2 = 0.1184, and Table 2 presents the
minimum H∞ performance of γ and NDVs computed using different techniques.

Table 2. Minimum values γ for ς = 3 under H∞ performance.

Criteria ν = 0.8 ν = 0.9 NDVs
[18, Theorem 3] 0.8429 2.7968 125
[19, Theorem 1] 0.6113 1.7642 252
Theorem 1(µ = 0, κ = 0.1) 0.6541 1.7712 252
Theorem 1(µ = 1, κ = 0.1) 0.5917 1.7504 266
Theorem 1(µ = 0.4, κ = 0.1) 0.6571 1.8154 266
Theorem 1(µ = 0.2, κ = 0.1) 0.6897 1.8401 266
Theorem 1(µ = 0.2, κ = 0.3) 0.6994 1.8577 266

Case 2. The L2 − L∞ performance is evaluated under the condition that B2 = 0. Table 3 presents the
minimum L2 − L∞ performance of γ and NDVs computed using different techniques.

Table 3. Minimum values γ for ς = 3 under L2 − L∞ performance.

Criteria ν = 0.8 ν = 0.9 NDVs
[18, Theorem 3] 0.6684 1.3591 125
[19, Theorem 1] 0.4241 0.8744 252
Theorem 1(µ = 0, κ = 0.1) 0.4271 0.8794 252
Theorem 1(µ = 2, κ = 0.1) 0.4012 0.8514 266
Theorem 1(µ = 0.4, κ = 0.1) 0.4475 0.8651 266
Theorem 1(µ = 0.2, κ = 0.1) 0.4794 0.8841 266
Theorem 1(µ = 0.2, κ = 0.3) 0.5047 0.8924 266

Based on Cases 1 and 2, the subsequent observations can be made:
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(i) Tables 2 and 3 effectively illustrate the adaptable nature of the NDPT approach (2.12), which
can be tailored according to distinct values of τ.

(ii) The ETRCI assumes a pivotal role in mitigating excessive caution.
(iii) The proposition presented in this paper regarding MJNNs (2.1) showcases a comparatively

diminished level of conservatism in contrast to the outcomes derived in [18, 19].
Although MJNNs have been implemented in various fields such as biomolecules [29], this paper

primarily focuses on theoretical methodological innovation. By introducing a novel time-delay product
approach, it aims to reduce the conservativeness of time-delay Markovian neural systems. Therefore,
extending the method presented in this paper to practical applications is not only meaningful but also
constitutes a worthwhile direction for future research.

4. Conclusions

This paper delves into the issue of extended dissipative analysis of MJNNs using the delay-
product-type functional method. The approach introduced here involves the creation of a novel NDPT
functional, achieved through the utilization of Wirtinger-based double integral inequality combined
with the S-procedure lemma. Unlike the approach in [19], this fresh functional overcomes the
presence of incomplete components, thereby facilitating enhanced integration of supplementary system
information. By melding the exponential type reciprocally convex inequality with the Wirtinger-based
integral inequality, we are able to estimate the derivative of the constructed Lyapunov-Krasovskii
function. This leads to the derivation of a delay-dependent extended dissipativity condition tailored
to address the specificities of delayed MJNNs. The effectiveness of the proposed methodology is
demonstrated convincingly through a numerical example.
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