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Abstract: This research explored the number of returns to the origin within the framework of a
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events to the origin by utilizing the half-normal distribution, which is chosen for its appropriateness
as a limit distribution for nonnegative values. Employing the Stein’s method in conjunction with
concentration inequalities, we derived an exponential non-uniform bound for the approximation error.
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Chaidee, and Neammanee [2], and Siripraparat and Neammanee [3].
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1. Introduction

A symmetric simple random walk is a discrete-time stochastic process applicable in various fields,
including physics, finance, biology, and probability theory. It is used to represent the movement of
a particle involving randomness. Let X1, X2, . . . , Xn be independent, identically distributed, random
variables with

P(Xi = 1) = P(Xi = −1) =
1
2
, i = 1, 2, . . . , n.
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The symmetric simple random walk is a process (S n)n≥0 defined by

S 0 = 0 and S n =

n∑
i=1

Xi for n ≥ 1.

Here, S n represents the position of the walk in the nth step.
For the sake of convenience, let us assume that n = 2m for natural number m. We are interested in

the number of returns to the origin, which is defined by

Kn = |{k ∈ N | 1 ≤ k ≤ n and S k = 0}|

with a probability mass function

P(Kn = r) =
(
n − r

n
2

)
2−n+r (1.1)

for r = 0, 1, 2, . . . ,m (see [1, p. 178]).
From the point probability formula (1.1), we are able to compute the probability distribution of the

statistic Kn directly, particularly for cases where n is relatively small. For example, we have

P(K2 ≤ 1) =
1∑

i=0

P(K2 = i) =
1
22

(
2
1

)
+

1
2

(
1
1

)
= 1.

In situations where n takes on large values, such as in this work where we assume that n ≥ 4, the
computation of the probability distribution becomes a time-consuming task and requires the utilization
of a high-performance computing system. Consequently, this leads us to consider the approximation
of the probability distribution of the statistic Kn. In [4], it is shown that

Kn =
Kn
√

n

converges in distribution to a half-normal distribution denoted by H(z) as n→ ∞,where H(z) is defined
by

H(z) =

2Φ(z) − 1, if z ≥ 0,
0, if z < 0,

and Φ is a distribution function of a standard normal random variable. This implies that we can
approximate the distribution of Kn using the half-normal distribution.

In the context of the approximation problem, it is imperative to establish a rigorous error bound
stemming from the approximation. To this end, let ϵn(z) be the distance between the probability
distribution of Kn and a half-normal distribution, i.e.,

ϵn(z) = |P (Kn ≤ z) − H(z)| ,
and let ϵn = sup

z≥0
ϵn(z).

AIMS Mathematics Volume 9, Issue 7, 19031–19048.



19033

A bound on ϵn is termed a uniform bound, while a bound on ϵn(z) is referred to as a non-uniform
bound. Döbler [1] showed in 2015 that when n is an even positive integer, the following uniform bound
holds:

ϵn ≤
1
√

n

(
3.07521 +

1.5
√

n

)
. (1.2)

Subsequently, Sama-ae, Chaidee, and Neammanee [2] further refined the error bounds by presenting
polynomial non-uniform bounds of degree 3, which exhibit greater precision compared to the uniform
bound (1.2). Their result states that if z is a nonnegative real number and n is an even positive integer,
then,

ϵn(z) ≤
1

(1 + z)3
√

n

(
107.56185 +

73.75519
√

n
+

43.14923
n

+
13.97885

n
√

n
+

2
n2

)
. (1.3)

More recently, Siripraparat and Neammanee [3] improved the bound for the number of returns to
the origin by introducing polynomial non-uniform bounds with an arbitrary degree k for any positive
integer k. Presented below is their resultant finding. If z ≥ 1, k ∈ N and n is an even positive integer
such that n ≥ 4, then,

ϵn(z) ≤
1
√

n

2.0918

e
7z2
32

+
0.8946

ze
z2
2

+
1
zk

2.0958 +
2.9166

(
4
3

)k

+ 3 · 2k

 EKk+1
n

 , (1.4)

where EKl
n ≤

⌊ l
2 ⌋−1∏
i=0

(2l−2i−1) for l = 2, 3, 4, . . . and
⌊

l
2

⌋
is the greatest integer less than or equal to

l
2

.

Notice that the bound (1.4) decreases as k increases due to the term
1
zk . However, the bound also

incorporates the term EKk+1
n , which increases with k. Consequently, in this study, we present a more

precise bound in the form of an exponential non-uniform bound. The following represents our primary
result.

Theorem 1. Let z be a nonnegative real number. For any even positive integer n such that n ≥ 4, we
have

ϵn(z) ≤
1
√

n

(
2.9469

e
7z2
32

+
2.3874

e
z2
2

+
31.4793

ez +
10.4408

e
3z
4

)
. (1.5)

The rest of this paper is structured as follows: Section 2 introduces Stein’s method for half-normal
approximation, while Section 3 presents the moment bounds for Kn and Kn. Section 4 is dedicated to
proving a concentration inequality. Section 5 provides the proof of the main result. In Section 6, we
present the application of Kn, and finally, Section 7 gives a conclusion.

2. Stein’s method on half-normal approximation

The primary technique employed to establish the main result, which provides a half-normal
approximation, is Stein’s method combined with concentration inequalities, as demonstrated by
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Döbler [1], Sama-ae, Chaidee, and Neammanee [2], and Siripraparat and Neammanee [3]. Stein [5]
introduced a method to establish the bounds in the normal approximation for random variables, a
technique known as Stein’s method. This approach has been extended to various other distributions,
including the Poisson distribution [6], binomial distribution [7], negative binomial distribution [8],
beta distribution [9], variance-gamma distribution [10], Laplace distribution [11, 12], and exponential
distribution [13–15]. Moreover, the Stein’s method can also be extended to work with random vectors
as well [16].

We introduce Stein’s method as applied to the half-normal distribution, which is employed to
approximate the distribution of any random variable Döbler [1] utilized this approach and presented
Stein’s equation for the standard half-normal approximation, outlined as follows:

f ′(x) − x f (x) = h(x) − H(z), (2.1)

where f and h are continuous, piecewise, differentiable functions on [0,∞).
To derive an equation for the distribution function from Eq (2.1), we define a function hz : [0,∞)→

R as follows for z ≥ 0:

hz(x) =

1, if 0 ≤ x ≤ z,

0, if x > z.
(2.2)

Consequently, for any random variable W, we obtain

E( f ′z (W)) − E(W fz(W)) = P(W ≤ z) − H(z), (2.3)

where fz is the Stein solution of the differential Eq (2.1) with hz in (2.2) given by

fz(x) =


√

2πe
x2
2 (1 − Φ(z))(2Φ(x) − 1), if x ≤ z,

√
2πe

x2
2 (1 − Φ(x))(2Φ(z) − 1), if x > z,

(2.4)

for z ≥ 0. Note that

f ′z (x) =

x
√

2πe
x2
2 (1 − Φ(z))(2Φ(x) − 1) + 2[1 − Φ(z)], if x ≤ z,

x
√

2πe
x2
2 (1 − Φ(x))(2Φ(z) − 1) − 2[Φ(z) − 1], if x > z,

(2.5)

and

| f ′z (x)| ≤ 1 for all x ∈ R, (2.6)

(see Döbler [1, p. 177]). From (2.3), we can bound |E( f ′z (W))−E(W fz(W))| instead of |P(W ≤ z)−H(z)|.
This technique is called Stein’s method.

In order to prove our main result, we need the following properties of fz and f ′z .

Proposition 1. Let x, z > 0.

1) 0 < fz(x) < e
x2−z2

2 for x ≤ z.

2) 0 < fz(x) < min
(
1,

1
z

)
.
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3) 0 ≤ f ′z (x) ≤ e
x2−z2

2 + 1.65e−
z2
2 for x ≤ z.

Proof. 1) Let x ≤ z. By (2.4) and the fact that

1 − Φ(x) ≤
e−

x2
2

√
2πx

for x > 0 ([17, p. 23]), (2.7)

we obtain

fz(x) ≤
√

2πe
x2
2

e−
z2
2

√
2πz

(2Φ(1) − 1) ≤ e
x2−z2

2 for z ≥ 1.

Next, we consider z < 1. By recalling (2.4) and (2.7), we get

fz(x) ≤
√

2πe
x2
2

e−
z2
2

√
2πz

(2Φ(x) − 1) ≤
e

x2−z2
2

x
(2Φ(x) − 1) ≤ e

x2−z2
2 , (2.8)

where we use the fact that

2Φ(x) − 1
x

≤ 1 for x > 0 (2.9)

in the last inequality.
2) By Sama-ae, Chaidee, and Neammanee ([2, p. 781]), we have

0 < fz(x) <
1
z
,

for x, z > 0 and z ≥ 1. In the case that z < 1, we divide the proof into two cases.
Case 1: x > z and z < 1.
By (2.4), (2.7), and (2.9), we get

fz(x) ≤
√

2πe
x2
2

e−
x2
2

√
2πx

(2Φ(z) − 1) ≤
z
x
< 1 for x > 0.

Case 2: x ≤ z and z < 1.
We get immediately from (2.8) that fz(x) < 1.

3) Let x ≤ z. By Sama-ae, Chaidee, and Neammanee ([2, p. 785]), we obtain

0 ≤ f ′z (x) ≤
x
z

e
x2−z2

2 +

√
2
π

1

ze
z2
2

≤ e
x2−z2

2 + 0.7979e−
z2
2 ,

for z ≥ 1. By (2.5), (2.7), and z < 1, we get

f ′z (x) ≤ x
√

2πe
x2
2

e−
z2
2

√
2πz

(2Φ(1) − 1) + 2(1 − Φ(0)) ≤ e
x2−z2

2 + 1 ≤ e
x2−z2

2 + 1.65e−
z2
2 . □
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3. Bounds for the moments of Kn and Kn

In this section, we consider the moments of Kn, which play a crucial role in establishing the
exponential non-uniform bound (1.5).

Let n = 2m, where m is a natural number. It is known that the number of returns to the origin Kn

with support [0,m] ∩ Z has the following characterization

E[(2m − X + 1)(g(X) − g(X − 1)) − (X + 1)g(X)] = 0, (3.1)

for all function g : [−1,m] ∩ Z→ R such that g(−1) = 0 ([1, p. 178]).
Following Lemma 3.1 in [1, p. 178], we obtain that

EKn ≤

√
2
π
. (3.2)

Using (3.1), Sama-ae, Chaidee, and Neammanee ([2, p. 783]) showed that

EK2
n ≤ 1, EK3

n ≤ 1.6, and EK4
n ≤ 3. (3.3)

Siripraparat and Neammanee ([3, p. 46]) improved the moments of Kn to the general case by using
the fact that

EKk
n = −kEKk−1

n + (n + 1)

 k−2∑
l=1

(
k − 1

l

)
(−1)k−lEKl

n + (−1)k(1 − P(Kn = 0))

 − k−3∑
l=0

(
k − 1

l

)
(−1)k−lEKl+1

n ,

(3.4)

and obtained that

EKk
n ≤

⌊ k
2 ⌋−1∏
i=0

(2k−2i−1) for k = 2, 3, 4, . . . , (3.5)

where
⌊
k
2

⌋
is the largest integer less than or equal to

k
2

.

In this paper, we need to bound EeKn by some constant. If we used (3.5), then,

EeKn =

∞∑
k=0

1
k!

⌊ k
2 ⌋−1∏
i=0

(2k−2i−1) = ∞,

which is divergent. Our aim in this section is to enhance the precision of (3.5), as in the following
proposition.

Proposition 2. For the even positive integer n, we have

1) EKk
n ≤ n

k−2
2∑

l=0

(
k − 1

2l

)
EK2l

n , where k is even and k ≥ 2;
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2) EKk
n ≤ n

k−3
2∑

l=0

(
k − 1
2l + 1

)
EK2l+1

n , where k is odd and k ≥ 3.

Proof. By (3.4), we have

EKk
n = A1 + A2, (3.6)

where A1 = −kEKk−1
n +

(
k − 1
k − 2

)
EKk−2

n +

(
k − 1
k − 3

)
EKk−2

n − n
(
k − 1
k − 3

)
EKk−3

n , (3.7)

and A2 = n(k − 1)EKk−2
n + n

k−4∑
l=1

(
k − 1

l

)
(−1)k−lEKl

n +

k−3∑
l=1

(
k − 1

l

)
(−1)k−lEKl

n

−

k−4∑
l=0

(
k − 1

l

)
(−1)k−lEKl+1

n + (n + 1)(−1)k(1 − P(Kn = 0)). (3.8)

By the facts that

Kl
n ≤ Kl+1

n for l ∈ N, (3.9)
Kl+1

n ≤ nEKl
n for l ∈ N, (3.10)

and (3.7), we obtain

A1 = −kEKk−1
n +

(
k2 − k

2

)
EKk−2

n − n
(
k2 − 3k + 2

2

)
EKk−3

n

≤ −kEKk−2
n +

(
k2 − k

2

)
EKk−2

n −

(
k2 − 3k + 2

2

)
EKk−2

n

≤ 0. (3.11)

1) If k is even, then by the fact that (n + 1)P(Kn = 0) = EKn + 1 ([1, p. 178]) and (3.8), we obtain
that

A2 = n(k − 1)EKk−2
n + n

k−4∑
l=1

(
k − 1

l

)
(−1)k−lEKl

n +

k−3∑
l=1

(
k − 1

l

)
(−1)k−lEKl

n

−

k−4∑
l=0

(
k − 1

l

)
(−1)k−lEKl+1

n + n − EKn.

Next, we utilize the facts (3.9) and (3.10) to eliminate the odd moment in the second term and the
backward terms. This results in the remaining terms being even moments as follows:

A2 ≤ n

k−2
2∑

l=0

(
k − 1

2l

)
EK2l

n . (3.12)
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2) Suppose that k is odd. By (3.8), we establish

A2 = n(k − 1)EKk−2
n + n

k−4∑
l=1

(
k − 1

l

)
(−1)k−lEKl

n +

k−3∑
l=1

(
k − 1

l

)
(−1)k−lEKl

n

−

k−4∑
l=0

(
k − 1

l

)
(−1)k−lEKl+1

n − (n + 1)(1 − P(Kn = 0)).

Using a similar technique as in (3.12), we retain the odd moments while eliminating even
moments, and thus, we establish

A2 ≤ n

k−3
2∑

l=0

(
k − 1
2l + 1

)
EK2l+1

n . (3.13)

From (3.6) and (3.11)–(3.13), we complete the proof. □

Note that we can bound additional moments by employing Proposition 2, transforming Kn into Kn,
and utilizing the initial moments presented in (3.2), (3.3), and taking into account the condition n ≥ 4.
Below are the fifth, sixth, and seventh moments for Kn:

EK5
n ≤

1
n
√

n

[(
4
1

)
EKn +

(
4
3

)
EK3

n

]
=

1
n

(
4
1

)
EKn +

(
4
3

)
EK3

n ≤ 7.1979, (3.14)

EK6
n ≤

1
n2

(
5
0

)
+

1
n

(
5
2

)
EK2

n +

(
5
4

)
EK4

n ≤ 17.5625, (3.15)

and EK7
n ≤

1
n2

(
6
1

)
EKn +

1
n

(
6
3

)
EK3

n +

(
6
5

)
EK5

n ≤ 51.4867. (3.16)

From the demonstration above, it is evident that one can calculate all moments dependent on the
forward moments. However, these calculations can be straightforward in contrast to complex. In the
next proposition, we offer a bound for the moments of Kn that relies solely on the parameter k and does
not depend on other moments. The technique used to derive this proposition is mathematical induction.

Proposition 3. Let n ≥ 4. Then,

EKk
n ≤

(k − 1)!
(k − 4)(k − 5)

,

for k ∈ N and k ≥ 6.

Proof. Let k ∈ N with k ≥ 6. The proof is divided into two cases.
Case 1: k is even and k ≥ 6.
By (3.15), we see that

EK6
n ≤ 17.5625 ≤

(k − 1)!
(k − 4)(k − 5)

for k = 6.
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Assume that

EKk
n ≤

(k − 1)!
(k − 4)(k − 5)

(3.17)

is true for k = 6, 8, 10, . . .. By Proposition 2(1), and the fact that

Kr
n =

Kr
n

(
√

n)r
for r ∈ N, (3.18)

we have

EKk+2
n ≤

1
(
√

n)k

k
2∑

l=0

(
k + 1

2l

)
EK2l

n

≤
1

(
√

n)k

(
k + 1

0

)
+

1
(
√

n)k−2

(
k + 1

2

)
EK2

n +
1

(
√

n)k−4

(
k + 1

4

)
EK4

n

+
1
n

k−2
2∑

l=3

(
k + 1

2l

)
EK2l

n +

(
k + 1

k

)
EKk

n

= Bk+2 +Ck+2 + Dk+2, (3.19)

where Bk+2 =
1

(
√

n)k

(
k + 1

0

)
+

1
(
√

n)k−2

(
k + 1

2

)
EK2

n +
1

(
√

n)k−4

(
k + 1

4

)
EK4

n, (3.20)

Ck+2 =
1
n

k−2
2∑

l=3

(
k + 1

2l

)
EK2l

n , (3.21)

and Dk+2 =

(
k + 1

k

)
EKk

n. (3.22)

To derive a bound for Bk+2, we apply the initial moments bound (3.3) while considering the

conditions k ≥ 6 and n ≥ 4. This results in the bound (3.20) taking the form
(k + 1)!

(k − 2)(k − 3)
as follows:

Bk+2 ≤
1

(
√

n)6
+

1
(
√

n)4

(k + 1)!
(k − 1)!2!

EK2
n +

1
(
√

n)2

(k + 1)!
(k − 3)!4!

EK4
n

≤ (k + 1)!
[

1
26(k + 1)!

+
1

24(k − 1)!2!
+

3
22(k − 3)!4!

]
≤ (k + 1)!

[
0.0157
(k + 1)!

+
0.0313
(k − 1)!

+
0.0313
(k − 3)!

]
≤ (k + 1)!

[
1

13125(k − 2)(k − 3)
+

1
156(k − 2)(k − 3)

+
1

15(k − 2)(k − 3)

]
≤ (k + 1)!

[
0.0732

(k − 2)(k − 3)

]
. (3.23)
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Next, to obtain a bound for Ck+2, one can prove that, for a fixed l ∈ N such that l ≥ 3, we have
k(k − 4)(k − 5)

(k − 2l + 1)!(2l)(2l − 4)(2l − 5)
≤ 1 for k ≥ 2l. From this fact, (3.21), and n ≥ 4, we obtain that

Ck+2 ≤
1
n

k−2
2∑

l=3

(k + 1)!
(k − 2l + 1)!(2l)!

·
(2l − 1)!

(2l − 4)(2l − 5)

≤
(k + 1)!

4

k−2
2∑

l=3

1
(k − 2l + 1)!(2l)(2l − 4)(2l − 5)

≤ (k + 1)!

k−2
2∑

l=3

1
4k(k − 4)(k − 5)

= (k + 1)! ·
k − 6

8
·

1
k(k − 4)(k − 5)

≤ (k + 1)!
[

0.4268
(k − 2)(k − 3)

]
. (3.24)

By (3.22), we obtain

Dk+2 ≤
(k + 1)(k − 1)!
(k − 4)(k − 5)

=
(k + 1)!

k(k − 4)(k − 5)
≤

(k + 1)!
2(k − 2)(k − 3)

. (3.25)

From (3.19), (3.23), (3.24), and (3.25), we conclude that

EKk+2
n ≤ (k + 1)!

(
0.0732

(k − 2)(k − 3)
+

0.4268
(k − 2)(k − 3)

+
1

2(k − 2)(k − 3)

)
=

(k + 1)!
(k − 2)(k − 3)

.

By mathematical induction, we have (3.17) when k is an even positive integer and k ≥ 6.
Case 2: k is odd and k ≥ 7.
By (3.16), we observe that

EK7
n ≤

(k − 1)!
(k − 4)(k − 5)

for k = 7.

Therefore, the basic step is true.
To use mathematical induction, we assume that (3.17) is true for k = 7, 9, 11, . . ..
By Proposition 2(1) and (3.18), we obatin

EKk+2
n ≤

1
(
√

n)k

k−1
2∑

l=0

(
k + 1
2l + 1

)
EK2l+1

n

≤
1

(
√

n)k−1

(
k + 1

1

)
EKn +

1
(
√

n)k−3

(
k + 1

3

)
EK3

n +
1

(
√

n)k−5

(
k + 1

5

)
EK5

n

+
1
n

k−3
2∑

l=3

(
k + 1
2l + 1

)
EK2l+1

n +

(
k + 1

k

)
EKk

n
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= Ek+2 + Fk+2 +Gk+2, (3.26)

where Ek+2 =
1

(
√

n)k−1

(
k + 1

1

)
EKn +

1
(
√

n)k−3

(
k + 1

3

)
EK3

n +
1

(
√

n)k−5

(
k + 1

5

)
EK5

n,

Fk+2 =
1
n

k−3
2∑

l=3

(
k + 1
2l + 1

)
EK2l+1

n ,

and Gk+2 =

(
k + 1

k

)
EKk

n.

To bound Ek+2, Fk+2, and Gk+2, we can directly modify the technique in (3.23), (3.24), and (3.25) to
obtain the following results:

Ek+2 ≤
0.075(k + 1)!
(k − 2)(k − 3)

, (3.27)

Fk+2 ≤
0.425(k + 1)!
(k − 2)(k − 3)

, (3.28)

and Gk+2 ≤
0.5(k + 1)!

(k − 2)(k − 3)
. (3.29)

By (3.26)–(3.29), we conclude that

EKk+2
n ≤ (k + 1)!

[
0.075

(k − 2)(k − 3)
+

0.425
(k − 2)(k − 3)

+
1

2(k − 2)(k − 3)

]
=

(k + 1)!
(k − 2)(k − 3)

.

From these two cases, we have completed the proof. □

4. Concentration inequality

To prove our main theorem, we establish a concentration inequality for Kn. Notably, Döbler [1] was
the first mathematician providing a uniform concentration inequality for Kn. His result is

P
(
z < Kn ≤ z +

1
√

n

)
≤

2
√
πn

for z > 0, (4.1)

(see [1, p. 181]). The term “uniform concentration inequality” indicates that the obtained bound
is independent of z. Subsequently, the concentration inequality (4.1) is extended to a non-uniform
concentration inequality in terms of zk for k ∈ N, as detailed in [2, 3]. In this section, we enhance the
concentration inequality for Kn in terms of ez, presented in Proposition 4.

Proposition 4. For z ≥ 0 and n ≥ 4, we have

P
(
z < Kn ≤ z +

1
√

n

)
≤

31.4793
ez
√

n
.
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Proof. Let f : R→ R be defined by

f (t) =


0, if t < z − 1

√
n ,

et+ 1√
n (t − z + 1

√
n ), if z − 1

√
n ≤ t ≤ z + 1

√
n ,

2
√

net+ 1√
n , if t > z + 1

√
n .

Then, we have f ′(t) ≥ ez > 0 for z − 1
√

n < t < z + 1
√

n , which implies that f is increasing.
We follow the argument of Sama-ae, Chaidee, and Neammanee ([2, pp. 784–785]) to obtain that

P
(
z < Kn ≤ z +

1
√

n

)
≤

1
ez

(H1 + H2) , (4.2)

where |H1| = |2EKn f (Kn)| ≤
4
√

n
E|KneKn+

1√
n | =

4
√

n
e

1√
n EKneKn , (4.3)

and |H2| =
1
√

n
|E f (Kn)| ≤

2
n
|EeKn+

1√
n | =

2
n

e
1√
n EeKn . (4.4)

By Proposition 3, we have

∞∑
k=6

EKk
n

k!
=

∞∑
k=6

1
k!

[
(k − 1)!

(k − 4)(k − 5)

]
≤

1
6
,

and
∞∑

k=6

EKk+1
n

k!
=

∞∑
k=6

1
k!

[
k!

(k − 3)(k − 4)

]
≤

1
2
.

From these facts, (3.2), (3.3), (3.14), and (3.15), we obtain:

EeKn =

∞∑
k=0

EKk
n

k!
≤ 2.9163, (4.5)

and EKneKn =

∞∑
k=0

EKk+1
n

k!
≤ 4.0442. (4.6)

By (4.2)–(4.6), we conclude that for n ≥ 4,

P
(
z < Kn ≤ z +

1
√

n

)
≤

31.4793
ez
√

n
. □

5. Proof of Theorem 1

In this section, we give an exponential non-uniform bound for Kn. From this point forward, we use
f to denote fz, which is the unique solution of (2.4).

Proof of Theorem 1: By (1.2), we see that Theorem 1 is true for z = 0. Now, we assume z > 0 and
n ≥ 4. Döbler ([1, p. 179]) and Siripraparat and Neammanee ([3, p. 51]) showed that

|E[ f ′(Kn)] − E[Kn f (Kn)]| ≤ |J1| + |J2| + |J3| + |J4|, (5.1)
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where J1 = E
[
Kn

(
f (Kn) − f

(
Kn −

1
√

n

))]
,

J2 =
1
√

n
E[ f (Kn)],

J3 =
√

nE

∫ Kn

Kn−
1√
n

∫ Kn

t
( f (s) + s f ′(s))dsdt

 ,
and J4 = P

(
z < Kn ≤ z +

1
√

n

)
.

Bounding |J1|: Applying the fundamental theorem of calculus and employing a truncation technique,
we partition |J1| into two terms. By utilizing Proposition 1(3) in the first term and applying (2.6) in the
second term, we can then obtain the following:

|J1| ≤ EKn

∫ Kn

Kn−
1√
n

| f ′(t)|I
(
Kn <

3z
4

)
dt

 + EKn

∫ Kn

Kn−
1√
n

| f ′(t)|I
(
Kn ≥

3z
4

)
dt


≤

1
√

n

(
1

e
7z2
32

+
1.65

e
z2
2

)
EKn +

1
√

n
EKnI

(
Kn ≥

3z
4

)
≤

1
√

n

(
1

e
7z2
32

+
1.65

e
z2
2

)
EKn +

1
√

n
EKneKn

e
3z
4

.

By (3.2) and (4.6), we obtain

|J1| ≤
1
√

n

(
1

e
7z2
32

+
1.65

e
z2
2

) √
2
π
+

4.0442
√

ne
3z
4

≤
1
√

n

(
0.7979

e
7z2
32

+
1.3166

e
z2
2

+
4.0442

e
3z
4

)
. (5.2)

Bounding |J2|: By Markov’s inequality, we obtain that

P
(
Kn ≥

3z
4

)
≤

EeKn

e
3z
4

. (5.3)

By employing a truncation technique together with the argument of |J1|, and utilizing Proposition 1(1),
Proposition 1(2), (4.5), and (5.3), we establish

|J2| ≤
1
√

n
E| f (Kn)|I

(
Kn <

3z
4

)
+

1
√

n
E| f (Kn)|I

(
Kn ≥

3z
4

)
≤

1
√

ne
7z2
32

P
(
Kn <

3z
4

)
+

1
√

n
P

(
Kn ≥

3z
4

)
≤

1
√

n

(
1

e
7z2
32

+
EeKn

e
3z
4

)
≤

1
√

n

(
1

e
7z2
32

+
2.9163

e
3z
4

)
. (5.4)

Bounding |J3|: Through the application of a truncation technique again, we represent J3 in the
following form:

|J3| ≤ |J31| + |J32|,
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where J31 =
√

nE

∫ Kn

Kn−
1√
n

∫ Kn

t
| f (s) + s f ′(s)|I

(
Kn <

3z
4

)
dsdt

 ,
and J32 =

√
nE

∫ Kn

Kn−
1√
n

∫ Kn

t
| f (s) + s f ′(s)|I

(
Kn ≥

3z
4

)
dsdt

 .
From Proposition 1(1), Proposition 1(3), and (3.2), we obtain

|J31| ≤
√

ne−
z2
2 E

∫ Kn

Kn−
1√
n

∫ Kn

t
e

s2
2 I

(
Kn <

3z
4

)
dsdt


+
√

n
(

1

e
7z2
32

+
1.65

e
z2
2

)
E

∫ Kn

Kn−
1√
n

∫ Kn

t
max

{
1
√

n
,Kn

}
I

(
Kn <

3z
4

)
dsdt


≤
√

ne−
7z2
32

(
1

2n

)
+

√
n

2

(
1

e
7z2
32

+
1.65

e
z2
2

) (
1

n
√

n
+

1
n

EKn

)
≤

1
√

n

(
1.1490

e
7z2
32

+
1.0708

e
z2
2

)
,

where we use (3.2) and n ≥ 4 in the last inequality.
Using (2.6), (3.3), Proposition 1(2), (4.5), and (5.3), we have

|J32| ≤
√

nE

∫ Kn

Kn−
1√
n

∫ Kn

t
(1 + Kn) I

(
Kn ≥

3z
4

)
dsdt


=

1
2
√

n
E

[
(1 + Kn)I

(
Kn ≥

3z
4

)]
≤

1
2
√

n
E(1 + Kn)eKn

e
3z
4

=
1
√

n

(
0.5EeKn + 0.5EKneKn

)
e

3z
4

≤
3.4803
√

ne
3z
4

.

Hence, we obtain that

|J3| ≤
1
√

n

(
1.1490

e
7z2
32

+
1.0708

e
z2
2

+
3.4803

e
3z
4

)
. (5.5)

Bounding |J4|: It follows immediately from Proposition 4 that

|J4| ≤
31.4793
√

nez
. (5.6)

By Stein’s equation (2.3), (5.1), and (5.2)–(5.6), we conclude that

|P(Kn ≤ z) − H(z)| ≤
1
√

n

(
2.9469

e
7z2
32

+
2.3874

e
z2
2

+
31.4793

ez +
10.4408

e
3z
4

)
. □
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6. Application

In this section, we provide an application of Theorem 1. Consider an option pricing following the
binomial model (see [18, 19] for more details) where the possible price of an option called “premium”
is either increasing or decreasing. Let the initial premium be S 0 = 0, which means that there is no
change in the price. Let a random variable Xi be the change in the premium with distribution

P(Xi = 1) = P(Xi = −1) =
1
2
, i = 1, 2, . . . , n.

Then, S n =
n∑

i=1
Xi represents the total change of the premium at period n. The premium is the same as at

the initial state if S n = 0 for some period of time n. If we need to forecast the chance that the premium
is the same as the initial state in a fixed period of time, we can approximate this by the half-normal
distribution.

By applying Theorem 1, we obtain an error bound for the half-normal approximation. We present
numerical results for (1.2)–(1.5) to emphasize the sharpness of our result compared to other bounds.
The results are displayed in Table 1. It is worth noting that our exponential non-uniform bound rapidly
decreases, especially when z is large.

Table 1. Comparison of the constants C in uniform and non-uniform bounds in the form of
C
√

n for large n.

Bounds k z = 10 z = 50 z = 500 z = 1000

(1.2) k ∈ N 3.07521 3.07521 3.07521 3.07521

(1.3) k ∈ N 0.08082 8.10864 × 10−4 8.55353 × 10−7 1.07239 × 10−7

(1.4) k = 3 0.49672 0.00398 3.97368 × 10−6 4.96711 × 10−7

k = 7 2.65978 3.40452 × 10−5 3.40452 × 10−12 2.65978 × 10−14

k = 11 4269.57975 8.74409 × 10−5 8.74409 × 10−16 4.26958 × 10−19

k = 13 1.39042 × 106 0.00114 1.13903 × 10−16 1.39042 × 10−20

(1.5) k ∈ N 0.00721 5.40375 × 10−16 1.43981 × 10−162 1.98552 × 10−325

In addition, when k = 7 is fixed and the value of z varies from 30 to 200, we obtain the constants C
in the form of C

√
n for each error bound, as shown in Figure 1. The graph is plotted on a semi-log scale

on the vertical axis. We observe that the constant C for the bound (1.3) is approximately 10−5, and the
bound (1.4) is approximately 10−9. However, our constant C for (1.5) ranges between 10−65 and 10−9,
steadily decreasing as z increases. Indeed, the constant C for (1.5) provides the best error bound.
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Figure 1. Comparison of the constant C for error bounds (1.3), (1.4) when k = 7, and (1.5)
in the form of C

√
n .

7. Conclusions

By utilizing Stein’s method, this study derived an exponential non-uniform bound for the difference
between the number of returns to the origin and a half-normal distribution in a symmetric simple
random walk. Comparing our exponential non-uniform bound with (1.2), (1.3), and (1.4), it is evident
that our bound of this study is sharper as shown in Table 1. Consequently, Theorem 1 is more suitable
for evaluating the accuracy of this approximation. We finally provided an example, an option pricing,
that supported our research and illustrated the significance of the result. In future work, we will attempt
to generalize these criteria to the scenario involving an asymmetric random walk.
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