
https://www.aimspress.com/journal/Math

AIMS Mathematics, 9(7): 19015–19030.
DOI: 10.3934/math.2024925
Received: 25 April 2024
Revised: 24 May 2024
Accepted: 28 May 2024
Published: 06 June 2024

Research article

Strong consistency of the nonparametric kernel estimator of the transition
density for the second-order diffusion process

Li Yue and Wang Yunyan*

School of Science, Jiangxi University of Science and Technology, Ganzhou, China

* Correspondence: Email: yywang@jxust.edu.cn; Tel: +8615216127128.

Abstract: The integrals of diffusion processes are of significant importance in the field of finance,
particularly in relation to stochastic volatility models, which are frequently employed to represent
the temporal variability of stock prices. In this paper, we consider the strong consistency of the
nonparametric kernel estimator of the transition density for second-order diffusion processes, using
the moment inequalities of ρ-mixing sequences to demonstrate the strong consistency under some
regularity conditions. Furthermore, the asymptotic mean square error is provided based on the
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compared with the conclusions of the univariate density function.
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1. Introduction

In this study, we examine the second-order diffusion process, which is defined by a stochastic
differential equation below: {

dYt = Xtdt,
dXt = µ(Xt)dt + σ(Xt)dBt,

(1.1)

where {Bt, t ≥ 0} is a standard Brownian motion, µ(·) and σ(·) are the drift coefficient and diffusion
coefficient, respectively. {Xt} is often assumed to be a stationary, continuous-time, one-dimensional
diffusion process as follows:

dXt = µ(Xt)dt + σ(Xt)dBt. (1.2)
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Although numerous popular models in econometrics and finance consider the diffusion processes (1.2)
to be solutions to stochastic differential equations, such as interest rates, stock prices, and exchange
rates, this process has inherent limitations in its application.

In recent years, statistical research based on high-frequency data has attracted the attention of
many scholars; see [1–3]. Most of the previous studies on diffusion models have assumed that the data
are stationary. However, in practice, many stochastic processes in economics and finance exhibit the
accumulation of all past perturbations and are regarded as non-stationary integral stochastic processes.
To illustrate, in a discrete-time context, the unit-root model {yt : t = 0, 1, 2, · · · } is a prototypical
example, where yt = α + yt−1 + εt(εt ∼ i.i.d.N(0, 1)). Notice that the yt can be expressed as

yt = y0 +

t∑
k=1

xk,

xt = α + εt. Obviously, the process {yt : t = 0, 1, 2, · · · } is not stationary and thus requires modeling
using a difference equation (e.g., ∆yt = α + εt) to transform it into a stationary process. Just as
Nicolau [4] says, all sample functions of a diffusion process, driven by a Brownian motion, are of
unbounded variation and nowhere differentiable. Therefore, it is not feasible to model integrated and
differentiated diffusion processes via the model (1.2).

Fortunately, in the context of the continuous case, the model (1.1) may be considered. Since the Y
in the model is a differentiable process, defined in an integral form as

Yt=Y0+

∫ t

0
Xudu.

Clearly, the second-order diffusion process is similar to the unit root model in the discrete setting,
which can be made stationary by differencing, which addresses the limitation of the diffusion process
in modeling differentiable stochastic processes.

Notably, unlike model (1.2), the estimation of model (1.1) raises new challenges. Firstly, current
financial dynamic data typically shows the accumulation of all past disturbances. It is common to
obtain the observations {Yi∆, i = 1, 2, · · ·} for model (1.1) rather than {Xi∆, i = 1, 2, · · ·}. Nevertheless,
the conditional distribution of Y is typically unidentified, even in the context of a known distribution
for X. So we cannot construct estimators based on {Yi∆, i = 1, 2, · · ·}. Secondly, we cannot compute
the value of Xti from Yti=Y0+

∫ ti
0

Xudu for a fixed sampling interval. To this end, by discrete-time
observations {Yi∆, i = 1, 2, · · ·} and given that

Yi∆ − Y(i−1)∆ =

∫ i∆

0
Xudu −

∫ (i−1)∆

0
Xudu =

∫ i∆

(i−1)∆
Xudu,

it is possible to obtain an approximation value for X at instants {ti = i∆, i = 1, 2, · · · } (where ∆ = ti−ti−1)
by the following formula:

X̃i∆ =
Yi∆ − Y(i−1)∆

∆
, i = 1, 2, · · · .

The degree of accuracy of X̃i∆ is contingent upon the size of the ∆. For more details on model (1.1),
please refer to [4–6].
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The second-order diffusion process, or the integrated diffusion process, as it is also known, is the
integral of the diffusion process. It plays a crucial role in finance, particularly in connection with
stochastic volatility models; see [7–9]. Moreover, the second-order diffusion process is also used in
physics, such as to model particle velocities on liquid surfaces [10] and the ice-core data [11]. The
statistical inference is the premise of its applications, so many authors have studied the non-parametric
statistical inference of the continuous-time second-order diffusion model based on high-frequency
sampling. For the nonparametric estimation of the coefficients µ(·) and σ(·), Nicolau [4] pioneered
the development of the Nadaraya-Watson estimators. On this basis, Wang and Lin [12] constructed the
corresponding local linear estimators, and Wang et al. [13] introduced of the innovative re-weighted
estimators of the coefficients. Subsequently, Tang et al. [14] took into account the nonparametric
deviation correction of the diffusion coefficient, and Yang et al. [15] proved that the nonparametric
kernel estimators in [4] meet strong consistency.

The transition density function, as a crucial variable that reflects the distinctive characteristics
of second-order diffusion models, has been a subject of investigation for scholars for a considerable
period. It is useful to calculate the dynamic characteristics of fundamental variables and help us solve
practical problems such as financial asset pricing and financial portfolio selection. Consequently, the
estimation of the transition density function is a meaningful research topic. For the study of the strong
consistency of the transition density estimator, Zhao and Liu [16] proposed a double kernel estimator of
the conditional density function and studied its strong consistency. Then the strong convergence rate of
this estimator was then investigated in [17] under certain mild conditions. Khardani and Semmar [18]
investigated the transition density estimation in the context of response variables subject to censoring
and derived the strong consistency of the estimator. Benkhaled et al. [19] studied local linear estimation
of the transition density of a randomly censored scalar response variable in the context of a functional
random covariate and established almost sure convergence under α-mixing dependence. The strong
uniform consistency rate of the transition density estimator in the single functional index model was
discussed in [20]. For other studies on strong consistency, see [21, 22].

Li et al. [23] initially developed the transition density estimation for the second-order diffusion
process, proposing a kernel estimator that was subsequently shown to have weak consistency and be
asymptotically normal. However, a corresponding demonstration of strong consistency has not yet
been provided. In this paper, we wish to study the strong consistency of the nonparametric kernel
estimator proposed in [23]. Strong consistent estimation has good convergence speed and stability;
therefore, it has high reliability in practical applications. It is suitable for parameter estimation in large
sample situations and can provide more accurate results.

The rest of this paper is organized into the following sections: In Section 2, we provide some
assumptions for the main results. Section 3 gives the strong consistency theorem and finds the
optimal bandwidth and convergence rate. Section 4 provides the proofs of the main results and the
necessary lemmas. Section 5 offers a simulation example comparing the kernel estimator values
with the exact transition density solutions for the second-order diffusion process. Finally, Section 6
concludes the paper.
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2. Assumptions

Let D = (l, r) (−∞ ≤ l < r ≤ +∞) be the state space of stationary process X, and p(y |x ) be the
transition density of y = Xt at a given x = Xs for model (1.1), x, y ∈ D. According to [23], for ∀x, y ∈ D,
the kernel estimator of the transition density for the second-order diffusion process is defined as:

p̂(y |x ) =

n∑
i=1

Kh(x − X̃i∆)Kh(y − X̃(i+1)∆)

n∑
i=1

Kh(x − X̃i∆)
,

where K(·) is a symmetric density function on R, h is defined as bandwidth, and Kh(·) = K(·/h)/h.
For ∀x0, x ∈ D, let s(x) = exp

{
−

∫ x

x0

2µ(u)
σ2(u)du

}
be the scale density function and m(x) = (σ2(x)s(x))−1

be the speed density function. The following assumptions will be used throughout the paper:

Assumption 1. (i) The infinitesimal coefficients µ(·) and σ(·) are time-aligned ß-measured functions
on D = (l, r) that have at least continuous second-order derivatives, where ß is the σ-fields generated
by the Borel set on D = (l, r). µ(·) and σ(·) satisfy the local linear increasing condition and the local
Lipschitz condition, namely, for an arbitrary compact subset J ∈ (l, r), there are positive constants
C1,C2 such that for ∀x, y ∈ J have

|µ(x) − µ(y)| + |σ(x) − σ(y)| ≤ C1 |x − y|

and
|µ(x)| + |σ(x)| ≤ C2 (1 + |x|) .

(ii) σ2 (x) > 0 for x ∈ (l, r).

Remark 2.1. By Theorem 5.5.15 of [24], Assumption 1 ensures that the stochastic differential equation
has a solution that is uniquely strong.

Assumption 2.
∫ x

l
s(u)du =

∫ r

x
s(u)du = ∞,

∫ r

l
m(x)dx < ∞.

Assumption 3. X0 = x has an invariant distribution P0.

Assumption 4. lim sup
x→r

(
µ(x)
σ(x) −

σ′(x)
2

)
< 0, lim sup

x→l

(
µ(x)
σ(x) −

σ′(x)
2

)
> 0.

Remark 2.2. The Assumptions 2–4 make sure that the
{
X̃i∆

}
is ergodic, stationary, and ρ-mixing [4].

Assumption 5. (i) The marginal density function p(x) is a positive, continuous, and stationary function
that possesses a continuous first derivative.
(ii) The joint density function p(x, y) is bounded by an independent constant.
(iii) The transition density function p(y |x ) may be considered a bounded, continuous function. It also
has a continuous second-order partial derivative with respect to x and y, respectively.

Assumption 6. The Kernel function, denoted K(·), is a bounded, symmetric, and continuously
differentiable function on R, and it satisfies the following properties:

∫
K (u) du = 1,

∫
uK(u)du = 0,∫

u2K(u)du = K1 < ∞, |u|K(u)→ 0(|u| → ∞),
∫
|K(u)| du < ∞,

∫
K2(u)du = K2 < ∞.
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Assumption 7. |K′(u)| ≤ C, E
∣∣∣K′(ξn,i)

∣∣∣m = O(h), where ξn,i = θ((x − Xi∆)/h) + (1 − θ)((x − X̃i∆)
/
h),

0 ≤ θ ≤ 1, h is defined as a bandwidth and m is a positive integer.

Assumption 8. (i) ∆→ 0, h→ 0, nh2 → ∞ as n→ ∞.
(ii) ∆ log(1/∆)

/
h4 → 0, ∆ log(1/∆)

/
h2 → 0 as n→ ∞.

3. Main results

The asymptotic result can be expressed as follows:

Theorem 3.1. Under Assumptions 1-8, for ∀x, y ∈ D, if there exists τ > 0 such that

∆ log(1/∆)
nh5 = O(n−τ),

then
p̂(y|x) − p(y|x) = oa.s.(1).

Remark 3.1. It is well established that the estimator of the transition density is closely related to the
choice of the kernel function and the bandwidth. A multitude of studies have demonstrated that the
selection of kernel function is no longer a particularly significant factor; conversely, we must choose
an appropriate bandwidth. Asymptotic analysis offers a straightforward approach for identifying
the optimal bandwidth h∗. The most common method is to minimize the asymptotic mean square
error (AMSE). Following, we take the estimator p̂(y |x ) for example. [23] has given the asymptotic
bias and variance of p̂(y |x ):

Bias (p̂(y |x )) =
1
2

K1h2
(
∂2 p(y |x )
∂x2 + 2

p′(x)
p(x)

∂p(y |x )
∂x

+
∂2 p(y |x )
∂y2

)
,

Var( p̂(y|x))=
K2

2 p(y|x)
nh2 p(x)

.

So we can easily write its AMSE:

1
4

K2
1h4

(
∂2 p(y |x )
∂x2 + 2

p′(x)
p(x)

∂p(y |x )
∂x

+
∂2 p(y |x )
∂y2

)2

+
K2

2 p(y|x)
nh2 p(x)

, (3.1)

the derivative of the AMSE with respect to the parameter h is given by the expression

K2
1h3

(
∂2 p(y |x )
∂x2 + 2

p′(x)
p(x)

∂p(y |x )
∂x

+
∂2 p(y |x )
∂y2

)2

−
2K2

2 p(y|x)
nh3 p(x)

. (3.2)

By setting the formula to zero, the optimal bandwidth may then be determined

h∗ = An−1/6, (3.3)

where A =

(
2K2

2 p(y|x)
Bp(x)K2

1

) 1
6
, B =

(
∂2 p(y|x )
∂x2 + 2 p′(x)

p(x)
∂p(y|x )
∂x +

∂2 p(y|x )
∂y2

)2
. In the (3.3), A is a function of unknown

marginal density p(x) and transition density p(y |x ), so h∗ can not be obtained directly. Silverman [25]
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considered a rules of thumb method that replaces the unknown function in A with a consistent estimator
to obtain a feasible, approximate optimal bandwidth hopt = 1.06S n−1/5, where S is the sample standard
deviation. In this paper, the estimation uses the smoothing parameter h in both x and y directions, then
the approximate optimal bandwidth

h∗opt = 1.06S n−1/6.

Remark 3.2. Substituting the h∗ for h in (3.1), we can get

AMS E∗ =
1
4

K2
1

(
2K2

2 p(y|x)
Bp(x)K2

1n

)2/3

B +
K2

2 p(y|x)

n
(

2K2
2 p(y|x)

Bp(x)K2
1 n

)1/3
p(x)

=
√

2

K2
2 K1 p(y|x)

√
B

p(x)

2/3

n−2/3 +
3√
2

K2
2 K1 p(y|x)

√
B

p(x)

2/3

n−2/3

=
(√

2 +
3√
2
)
C2/3n−2/3,

where B =
(
∂2 p(y|x )
∂x2 + 2 p′(x)

p(x)
∂p(y|x )
∂x +

∂2 p(y|x )
∂y2

)2
, C =

K2
2 K1 p(y|x)

√
B

p(x) . The convergence rate of the AMSE is of
order n−2/3, which is the same as the convergence rate of the kernel estimator obtained in [26].

Remark 3.3. In comparison with the results obtained for a univariate kernel density estimator, the
convergence rate of which is of order n−4/5 (see [27]), it reveals that the convergence properties are
superior in the univariate case, as a smaller sample size is required for estimation when the value of X
is given.

4. Lemmas and proofs

4.1. Lemmas

Lemma 4.1. [28] Let K(u) and g(x) are the Borel-measured functions defined in R and satisfy the
following conditions: (i) sup

−∞<u<∞
|K(u)| < ∞; (ii)

∫ ∞
−∞
|K(u)| du < ∞; (iii) lim

u→∞
|uK(u)| = 0; (iv)∫ ∞

−∞
|g(x)| dx < ∞. Define

gn(x) =
1

h(n)

∫ ∞

−∞

K
(

u
h(n)

)
g(x − u)du,

where h(n) is a sequence of positive constants that satisfy lim
n→∞

h(n) → 0. Subsequently, for each point
x of continuity of g(x),

lim
n→∞

gn(x) = g(x)
∫ ∞

−∞

K (u) du.

Lemma 4.2. [29] Suppose that {Xi : i > 1} is a ρ-mixing sequence of random variables with the mixing
coefficient ρ (n) = O

(
n−θ

)
for some constant θ > 0. If EXi = 0 and E|Xi|

r < ∞ (where r > 1), then for
any given m ≥ 1, there exists a positive constant C = C (m) such that

E

∣∣∣∣∣∣∣
n∑

j=1

X j

∣∣∣∣∣∣∣
r

≤ Cnδ(m)
n∑

j=1

E
∣∣∣X j

∣∣∣r (1 < r ≤ 2) ,
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E

∣∣∣∣∣∣∣
n∑

j=1

X j

∣∣∣∣∣∣∣
r

≤ Cnδ(m)


n∑

j=1

E
∣∣∣X j

∣∣∣r +

 n∑
j=1

E
(
X2

j

)
r/2 (r > 2) ,

where δ (m) = (r − 1)αm and 0 < α ≤ 1.

Lemma 4.3. [1, 24]

P

limn→0
sup

kn(
∆ log (1/∆)

) 1
2

= k0

 = 1,

where k0 is a constant,
kn = max

1≤i≤n
sup

(i−1)∆≤s≤i∆
|Xs − Xi∆| .

Remark 4.1. Let λn =
(
∆ log(1/∆)

)1/2. According to Lemma 4.3, we have

max
1≤i≤n

∣∣∣X̃i∆ − Xi∆

∣∣∣ = Oa.s.(λn).

Since

max
1≤i≤n

∣∣∣X̃i∆ − Xi∆

∣∣∣ = max
1≤i≤n

∣∣∣∣∣∣ 1∆
∫ i∆

(i−1)∆
Xsds − Xi∆

∣∣∣∣∣∣ ≤ 1
∆

max
1≤i≤n

∫ i∆

(i−1)∆
|Xs − Xi∆|ds.

Lemma 4.4. For ∀x, y ∈ D, let

p̃(x, y) =
1

nh2

n∑
i=1

K(
x − Xi∆

h
)K(

y − X(i+1)∆

h
),

p̃(x) =
1

nh

n∑
i=1

K(
x − Xi∆

h
),

p̃(y|x) =
p̃(x,y)
p̃(x) is the kernel estimator of the transition density for model (1.2), where K(·) is a symmetric

density function on R and h is bandwidth. Under Assumptions 1–6, Assumptions 8, if there exists τ > 0
such that

1
nh3

n
= O(n−τ),

then
p̃(y|x) − p(y|x) = oa.s.(1).

Lemma 4.5. [15] Suppose Assumptions 1–8 hold. If there exists τ > 0 such that

1
nhn

= O(n−τ),

then
p̂(x) − p(x) = oa.s.(1).
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4.2. Proofs

The proof of Lemma 4.4. Since 1/(nh)
1/(nh3)

= h2 → 0, by Lemma 5.5 of [15], we have

p̃(x) − p(x) = oa.s.(1). (4.1)

Furthermore, it is obvious that

p̃(y|x) − p(y|x) =
p̃(x, y) − p(y|x)p(x) −

[
p(y|x) ( p̃(x) − p(x))

]
p̃(x)

.

Thus, we need to prove p̃(x, y) − p(y|x)p(x) = oa.s.(1), which is equivalent to proving

p̃(x, y) − Ep̃(x, y) = oa.s. (1) , (4.2)

Ep̃(x, y)→ p(x, y). (4.3)

Firstly, we prove Eq (4.2). Let

G1,i = K(
x − Xi∆

h
)K(

y − X(i+1)∆

h
) − E

[
K(

x − Xi∆

h
)K(

y − X(i+1)∆

h
)
]
,

clearly, EG1,i = 0 and p̃(x, y) − Ep̃(x, y) = 1
nh2

n∑
i=1

G1,i. For ∀s ≥ 2, from Lemma 4.1,

1
h

E
∣∣∣∣∣K(

x − Xi∆

h
)
∣∣∣∣∣s =

1
h

∫
R

∣∣∣∣∣K (u
h

)∣∣∣∣∣s p(x − u)du→ p(x)
∫

R
|K(u)|sdu < ∞.

So by Cr inequality and Hölder inequality,

E
∣∣∣G1,i

∣∣∣s ≤ 2sE
∣∣∣∣∣K(

x − Xi∆

h
)K(

y − X(i+1)∆

h
)
∣∣∣∣∣s

≤ C
[
E
∣∣∣∣∣K ( x − Xi∆

h

)∣∣∣∣∣2s]1/2

·

E∣∣∣∣∣∣K
(
y − X(i+1)∆

h

)∣∣∣∣∣∣2s1/2

≤ Ch ·
[
1
h

E
∣∣∣∣∣K ( x − Xi∆

h

)∣∣∣∣∣2s]1/2

·

1
h

E

∣∣∣∣∣∣K
(
y − X(i+1)∆

h

)∣∣∣∣∣∣2s1/2

≤ Ch.

By Markov inequality and Lemma 4.2, yields for ε > 0, s > 2, and δ > 0,

P (| p̃(x, y) − Ep̃(x, y)| > ε) ≤
1

(nh2ε)s E

∣∣∣∣∣∣∣
n∑

i=1

G1,i

∣∣∣∣∣∣∣
s

≤
Cnδ

(nh2)s

 n∑
i=1

E
∣∣∣G1,i

∣∣∣s +

 n∑
i=1

E
∣∣∣G1,i

∣∣∣2
s
2


≤
Cnδ

(nh2)s

(
nh + (nh)

s
2
)
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≤ Cnδ
(nh)

s
2

(nh2)s

= Cnδ
(

1
nh3

) s
2

= Cnδ−τs/2 < ∞.

Taking s > max(2, 2(1 + δ)/τ) yields
n∑

i=1

P (| p̃(x, y) − Ep̃(x, y)| > ε) < ∞.

It is therefore known by the Borel-Cantelli lemma, p̃(x, y) − Ep̃(x, y) = oa.s.(1). Following
prove Eq (4.3).

According to Taylor’s expansion and Assumption 6, as h→ 0,

Ep̃(x, y) = E

 1
nh2

n∑
i=1

K(
x − Xi∆

h
)K(

y − X(i+1)∆

h
)


=

1
h2 E

[
K(

x − Xi∆

h
)K(

y − X(i+1)∆

h
)
]

=
1
h2

"
K(

x − u
h

)K(
y − v

h
)p(u, v)dudv

=
1
h

∫
K(

y − v
h

)dv ·
1
h

∫
K(

x − u
h

)p(u, v)du

=
1
h

∫
K(

y − v
h

)[p(x, y) + p′y(x, y)(v − y)

+
pyy
′′(x, y)
2

(v − y)2 + O(h2)]dv

= p(x, y)
∫

K(z)dz + hp′y(x, y)
∫

zK(z)dz

+
h2 pyy

′′(x, y)
2

∫
z2K(z)dz + O(h2)

→ p(x, y),

where the penultimate equation is because of

1
h

∫
K(

x − u
h

)p(u, v)du =
1
h

∫
K(

x − u
h

)[p(x, y) + p′x(x, y)(u − x)

+
pxx
′′(x, y)
2

(u − x)2 + p′y(x, y)(v − y)

+
pyy
′′(x, y)
2

(v − y)2 + pxy
′′(x, y)(u − x)(v − y)]du

= (p(x, y) + py
′(x, y)(v − y) +

pyy
′′(x, y)
2

(v − y)2)
∫

K(t)dt

+ h
(
p′x(x, y) + (v − y)pxy

′′(x, y)
) ∫

tK(t)dt
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+
h2 pxx

′′(x, y)
2

∫
t2K(t)dt

= p (x, y) + p′y(x, y)(v − y) +
pyy
′′(x, y)
2

(v − y)2 + O(h2).

The proof of Theorem 3.1. Notes

p̂(y|x) − p̃(y|x) =
p̂(x, y)
p̂(x)

−
p̃(x, y)
p̃(x)

.

From Eq (4.1), Lemmas 4.4 and 4.5, we have p̃(x) − p(x) = oa.s.(1), p̃(y|x) − p(y|x) = oa.s.(1) and
p̂(x) − p(x) = oa.s.(1), respectively, so we only need to prove p̂(x, y) − p̃(x, y) = oa.s.(1).

p̂(x, y) − p̃(x, y) =
1

nh2

n∑
i=1

K(
x − X̃i∆

h
)K(

y − X̃(i+1)∆

h
)

−
1

nh2

n∑
i=1

K(
x − Xi∆

h
)K(

y − X̃(i+1)∆

h
)

+
1

nh2

n∑
i=1

K(
x − Xi∆

h
)K(

y − X̃(i+1)∆

h
)

−
1

nh2

n∑
i=1

K(
x − Xi∆

h
)K(

y − X(i+1)∆

h
)

= A(x, y) + B(x, y).

Denote

G2,i =

[
K(

x − X̃i∆

h
) − K(

x − Xi∆

h
)
]

K(
y − X̃(i+1)∆

h
),

G3,i = K(
x − Xi∆

h
)
[
K(

y − X̃(i+1)∆

h
) − K(

y − X(i+1)∆

h
)
]
,

G̃2,i = G2,i − EG2,i, G̃3,i = G3,i − EG3,i.

Then A(x, y) = 1
nh2

n∑
i=1

G̃2,i + 1
nh2

n∑
i=1

EG2,i, B(x, y) = 1
nh2

n∑
i=1

G̃3,i + 1
nh2

n∑
i=1

EG3,i. Taylor’s expansion,

K
(

x − X̃i∆

h

)
= K

( x − Xi∆

h

)
+ K′(ξn,i)

X̃i∆ − Xi∆

h
,

where ξn,i = θ
(

x−Xi∆
h

)
+(1−θ)

(
x−X̃i∆

h

)
, 0 ≤ θ ≤ 1. Hence, by Assumption 6, Lemma 4.1, and Remark 4.1,

there is
1
h

E
[
K(

x − Xi∆

h
)
]

=
1
h

∫
K(

u
h

)p(x − u)du→ p(x) < ∞,

1
nh2

n∑
i=1

EG2,i =
1
h2 E

[∣∣∣∣∣∣K′(ξn,i)(Xi∆ − X̃i∆)
1
h

K(
y − X̃(i+1)∆

h
)

∣∣∣∣∣∣
]
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≤ h−3(∆ log(1/∆)
)1/2
·

[
E
∣∣∣K′(ξn,i)

∣∣∣2]1/2
·

E∣∣∣∣∣∣K(
y − X̃(i+1)∆

h
)

∣∣∣∣∣∣
21/2

= O
(
h−2(∆ log(1/∆)

)1/2
)
→ 0.

For ∀s ≥ 2, from Cr inequality, Hölder inequality, and Remark 4.1,

E
∣∣∣G̃2,i

∣∣∣s ≤ 2sE
[∣∣∣∣∣∣1hK′(ξn,i)(Xi∆ − X̃i∆)K(

y − X̃(i+1)∆

h
)

∣∣∣∣∣∣
s]

≤ Ch−s(∆ log (1/∆)
)s/2
·

[
E
∣∣∣K′(ξn,i)

∣∣∣2s
]1/2
·

E∣∣∣∣∣∣K(
y − X̃(i+1)∆

h
)

∣∣∣∣∣∣
2s1/2

≤ Ch−s+1(∆ log (1/∆)
)s/2.

Similarly, suppose ε > 0, s > 2, and δ > 0, by Markov inequality and Lemma 4.2,

P


∣∣∣∣∣∣∣ 1
nh2

n

n∑
i=1

G̃2,i

∣∣∣∣∣∣∣ > ε
 ≤ 1

(nh2ε)s E

∣∣∣∣∣∣∣
n∑

i=1

G̃2,i

∣∣∣∣∣∣∣
s

≤
Cnδ

(nh2)s

[
nh−s+1(∆ log(1/∆))

s
2 +

(
nh−1∆n log (1/∆)

) s
2
]

≤
Cnδ

(nh2)s

(
nh−1∆ log (1/∆)

) s
2

≤ Cnδ
(
∆ log (1/∆)

nh5

) s
2

≤ Cnδ−τs/2.

One of the last inequalities is given by

∆ log(1/∆)
nh5

/
1

nh3 =
∆ log(1/∆)

h2 → 0.

Taking s > max(2, 2(1 + δ)/τ) yields

n∑
i=1

P


∣∣∣∣∣∣∣ 1
nh2

n∑
i=1

G̃2,i

∣∣∣∣∣∣∣ > ε
 < ∞.

Based on the above results, from the Borel-Cantelli lemma, A(x, y) = oa.s.(1). In the same way,
B(x, y) = oa.s.(1).

5. Simulation results

As pointed out in [4], the forms for the drift and diffusion coefficients in the second-order diffusion

model can be found as µ(x) = β(τ − x) and σ(x) =

√
α2 + λ(x − µ)2, which implies that the specific
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model can be obtained by selecting the appropriate parameters. In this section, by choosing β = 10,
τ = 0, α2 = 0.1, λ = 1, and µ = 0.05, we specify the following model:{

dYt = Xtdt,
dXt = −10Xtdt +

√
0.1 + (Xt − 0.05)2dBt,

where X is the ergodic process defined by the stochastic differential equation

dXt = −10Xtdt +

√
0.1 + (Xt − 0.05)2dBt.

As computers are unable to simulate continuous orbits during the generation of sample orbital data,
an Euler discretization scheme will be employed to discretize the sampling for simulating continuous
processes. Namely, we shall take t ∈ [0,T ] = [0, 10], denote the observation time interval ∆ = T /n,
where n is the sample size, and apply the discrete model

Xt+1 = Xt − 10Xt∆ +

√
0.1 + (Xt − 0.05)2

(√
∆N (0, 1)

)
to generate the sample paths for X, where the standard normal distribution N(0, 1) is the random
numbers produced by simulation. Recall that, the integral process Yt = Y0 +

∫ t

0
Xudu, and discretizing

it, we get Yt − Yt−1 = ∆Xt. Figure 1 shows the simulated sample paths of Xt and Yt with n = 1000 and
T = 10. Obviously, the process X is consistent with the assumption of its stationarity, and the process
Y conforms to its non-stationary assumption.

0 1 2 3 4 5 6 7 8 9 10

t

-0.4

-0.3

-0.2

-0.1

0   

0.1 

0.2 

0.3 

X
t

0 1 2 3 4 5 6 7 8 9 10

t

100   

100.02

100.04

100.06

100.08

100.1 

100.12

100.14

100.16

100.18

100.2 

Y
t

Figure 1. Simulated sample paths of processes X and Y .

In what follows, we shall evaluate the validity of the kernel estimator p̂(y|x). Setting a fixed
observation time T = 10, selecting the Gaussian kernel K(u) = exp(−u2

/
2)

/√
2π, and taking the

approximately optimal bandwidth h = 1.06S n−1/6 in (3.3), where S is the standard deviation of the
sample. Figure 2 shows the comparison of the simulated curves for the exact and estimated values at
different sampling intervals for x = −0.1 and x = 0, where the exact solutions are obtained by setting
∆ = 0.0008. Evidently, when the sample size n is larger, that is, the sampling interval ∆ is smaller, the
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estimated simulation curve is closer to the exact value curve, which indicates that the kernel estimator
of the transition density of the model (1.1) is consistent.

-0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4
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-0
.1

)

exact solution
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0

5
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p
(y

|x
=

0
)

exact solution

n=10000

n=5000

n=2000

Figure 2. Kernel estimation simulation curves and exact value’s curve.

6. Conclusions

Under relatively mild conditions, we use the moment inequalities of ρ-mixing sequences to prove
that the nonparametric kernel estimator of the transition density of the second-order diffusion process
satisfies strong consistency, thereby further improving upon the discussion presented in [23] regarding
the estimator’s weak convergence. The good theoretical property provides some guarantees for its
application. In addition, we also found that the optimal bandwidth h∗ of the transition density kernel
estimator is of order n−1/6 and the convergence rate is of order n−2/3. Of course, h∗ is not a practical
bandwidth selection rule, because it contains unknown functions, but the rule may provide a guide for
use in transition density estimation. It is also possible to obtain consistent estimators by using other
nonparametric estimation techniques, including the local linear method and the re-weighted method.
We leave it as a prospect for future research.
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