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Abstract: We investigated the phenomenon of pseudo-Hopf bifurcation in a Filippov Hindmarsh-Rose
neuronal system with threshold switching, and the existence of crossing limit cycles was proved by
constructing the half-return mapping. Through the threshold control, the firing state of the system
could be switched, allowing transitions from a non-periodic state to a periodic state, as well as the
evolution from spiking to bursting. Furthermore, through threshold switching, the system exhibited
the coexistence of multiple attractors, the system could be in multiple stable states, or have multiple
stable sets that could attract system trajectories. This meant that neuronal system could exhibits diverse
dynamical behaviors than being limited to a single stable state. The phenomenon of period-doubling
bifurcation also indicated that the system will eventually enter a chaotic state. By extending the analysis
to nonlinear neuronal systems, this study contributes to a deeper understanding of complex dynamics
and provides valuable insights for designing state switching in the application of neural dynamics.

Keywords: Hindmarsh-Rose; pseudo-Hopf bifurcation; crossing limit cycle; Filippov neuronal system;
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1. Introduction

Hopf bifurcation is a classic phenomenon in nonlinear dynamics. It occurs when an unstable
equilibrium point in a system transitions to a stable or unstable limit cycle oscillation at a specific
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parameter value. This bifurcation has wide-ranging applications in fields such as biology, physics,
chemistry, and engineering. This periodic oscillation phenomenon is commonly observed in many
natural and engineering systems, such as biological rhythms and circuit oscillations. In the field of
signal processing, Hopf bifurcation is used to explain the interaction between signals and analyze their
frequency characteristics. During Hopf bifurcation, characteristic values appear in conjugate complex
pairs with a real part of zero. At the bifurcation point, these characteristic values cross the imaginary
axis, resulting in the emergence of periodic solutions in the system. For further information on Hopf
bifurcation, you can refer to the literature [1–4].

Filippov systems are a type of nonsmooth dynamical system that exhibit multiple regions in their
state space. The dynamic equations of the system are smooth in each region. However, the dynamic
equations may experience abrupt changes when transitioning among different regions [5–9]. Filippov
systems, characterized by their nonsmooth and discontinuous nature, exhibit distinct characteristics in
generating bifurcation phenomena. Among these, the pseudo-Hopf bifurcation is commonly observed
in Filippov systems, as demonstrated by many studies [2, 10–13]. It is called “pseudo-Hopf bifurcation”
because its discontinuity differs from that of a true Hopf bifurcation. The pseudo-Hopf bifurcation is a
process where a crossing limit cycle is created, such a orbit intersecting transversally the discontinuous
boundary at least twice. However, despite its significance, a formal demonstration of this phenomenon
is not provided in [6]. The pseudo-Hopf bifurcation indeed finds various application fields, including
dynamical systems, control engineering, and pattern recognition. The pseudo-Hopf bifurcation can
be used to describe nonlinear oscillatory phenomena, such as circuit oscillators and stability analysis
of mechanical systems. It also plays a role in control system design, aiding in determining system
stability, dynamic behavior, and periodic oscillations for optimizing control algorithms. In the domain
of pattern recognition, the pseudo-Hopf bifurcation can be utilized to analyze the periodic structures
and phase transitions of signals. Overall, the pseudo-Hopf bifurcation provides a tool for understanding
and analyzing periodic phenomena and dynamic behavior in complex systems.

The pseudo-Hopf bifurcation have primarily concentrated on identifying multiple limit cycles
crossings, The existence of crossing limit cycles with various types of equilibrium points have been
considered in many non-smooth systems [10, 13–19]. Liping Li offers a equivalent canonical form
to prove the existence of limit cycles in a planar Filippov system, revealing that three crossing limit
cycles can originate from the singularities of the discontinuous saddle-focus type [14]. Enrique Ponce
et al. demonstrate the emergence of limit cycles via the focus-saddle bifurcation by investigating
the oscillation behavior in an electronic circuit containing a single memristor cell [15]. Wang et al.
investigate the number of limit cycles in a general planar piecewise linear differential system of saddle-
focus type using a Liénard-like canonical form [16]. Huan SongMei investigate the existence and
number of limit cycles in a class of general planar piecewise linear systems consisting of two linear
subsystems with saddle-saddle dynamics [17], and they also furtherly study the the number of limit
cycles in planar piecewise linear systems of node–node types [18]. Wang Jiafu et al. study the number
and stability of limit cycles for planar piecewise linear systems of node-saddle type [19]. For more
knowledge about crossing limit cycle, readers can refer to the literature [20–27].

In the study of limit cycles, it is frequently observed that multiple cycles emerge through the collision
of two invisible tangencies, this singularity is referred to as the Teixeira singularity [13, 28–31]. A.
Colombo et al. [28] discussed the Teixeira singularity in discontinuous control systems, providing
analytical conditions to study its existence. It is noted that this singularity is present only in MIMO
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systems of the Lur’e form. The Teixeira singularity’s presence in real applications promises to aid in
the design of robust and efficient controllers. A. Colombo and M. R. Jeffrey [29] reviewed the local
description of a two-fold singularity formed when a three-dimensional piecewise smooth vector field is
tangent to both sides of a switching manifold. Their analysis centered on the dynamics of orbits within
sliding regions and identified the conditions under which a pseudoequilibrium traverses the singularity.
This represents a novel bifurcation that is fundamentally different from the well-known boundary
equilibrium bifurcations in Filippov systems, as it involves a collision between a pseudoequilibrium and
a boundary of a sliding or escaping region. The researchers [30] modeled a DC-DC boost converter
controlled using a sliding mode control strategy as a discontinuous piecewise linear system, and under
certain circuit parameter conditions, the analyzed model may exhibit a Teixeira singularity-bifurcation.
This bifurcation can occur in two different forms: supercritical and subcritical. The supercritical case
is particularly significant as it pertains to the desired operating point of the boost converter. In their
work presented in [31], they filled a gap in both practical and theoretical aspects with a computational
procedure. They proposed and detailed a canonical form for discontinuous piecewise linear systems,
characterized the topological type of degeneration, and clarified the need for third-order terms in
return maps.

However, researchers focusing on the crossing limit cycles have primarily focused on linear systems
and demonstrated limited practical applications. Our goal is to extend the analysis to nonlinear neuronal
system incorporating Teixeira singularities. Neuronal systems exhibit a wide range of firing patterns,
and by implementing threshold control, the system can more easily switch among different firing
states, thereby influencing the system’s trajectory and firing peak. In neuronal systems, “crossing limit
cycle” typically refers to the neurons’s periodic firings, such as spiking or bursting, which cross two
or more subregions within the system. This paper is based on a single neuron model, but it will be
necessary to consider the interactions among multiple nodes in networks in the future to explore more
complex phenomena, such as [32–36]. Different nodes adopt different threshold switching strategies,
or consider a dual threshold strategy within the same node, which divides thresholds into upper and
lower thresholds. Thresholds exhibit complex behavior in individual nodes, and in neural networks, the
control of thresholds becomes more intricate due to interactions among nodes.

2. An overview of Filippov systems in R3

Let us consider a generic 3D-Filippov system expressed by

ẋ =

{
g−(x) = A1x + b1 if h(x) < 0,
g+(x) = A2x + b2 if h(x) > 0,

(2.1)

such that R3 = Σ− ∪ Σ ∪ Σ+, where

Σ =
{
x ∈ R3 : h(x) = ωT x − c0 = 0

}
,

x = (x1, x2, x3)T , A1, A2 ∈ M3×3, b1, b2, ω ∈ R
3, and c0 ∈ R. Σ denotes the switching manifold.

The switching manifold Σ can be divided into regions with distinct dynamical behaviors: (i) crossing
regions (Σc), where one vector field points towards Σ, the other points away from the manifold; (ii)
attractive sliding regions (Σas), where both vector fields g+and g− point towards Σ from opposite sides;
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(iii) repulsive sliding regions (Σrs), where both vector fields g+ and g− point away from Σ from opposite
sides. Therefore, we differentiate the following regions on Σ:

(i)Σc =
{
x ∈ Σ :

(
ωT g−(x)

) (
ωT g+(x)

)
> 0

}
;

(ii)Σas =
{
x ∈ Σ : ωT g+(x) < 0 < ωT g−(x)

}
;

(iii)Σrs =
{
x ∈ Σ : ωT g−(x) < 0 < ωT g+(x)

}
.

When x ∈ Σas ∪ Σrs, we define the sliding vector field. Following Filippov’s convention [5], the sliding
vector field associated with system (2.1) is denoted as gs and is tangent to Σ. It can be calculated using
the formula

gs(x) =

(
ωT g−(x)

)
g+(x) −

(
ωT g+(x)

)
g−(x)

ωT (g−(x) − g+(x))
. (2.2)

Let us define the planes πi =
{
x ∈ R3 : ωT (Aix + bi) = 0

}
, for i = 1, 2. These planes intersect with

the switching plane Σ, resulting in tangency lines Li = πi ∩ Σ, for i = 1, 2. If these lines intersect
transversely, there will be a point x̂ ∈ Σ where tangencies occur on both sides of Σ. This point is called a
double-tangency singularity. Therefore, the existence of a double tangency singularity in system (2.1) is
determined by the existence of a unique solution to the algebraic system

T x = b, T =


ωT

ωT A1

ωT A2

 , b =


c0

−ωT b1

−ωT b2

 .
To classify the tangency points, we compute the successive derivatives of h(x) with respect to time at
the contact point.

Definition 1. A tangency point p ∈ Σ is a fold singularity of system (2.1) if either
(i) ωT g−(p) = 0 and ωT A1g−(p) , 0 or
(ii) ωT g+(p) = 0 and ωT A2g+(p) , 0.
A tangency point p ∈ Σ is a cusp singularity of system (2.1) if either
(i) ωT A1g−(p) = 0 and ωT A2

1g−(p) , 0 or
(ii) ωT A2g+(p) = 0 and ωT A2

2g+(p) , 0.

Definition 2. A fold singularity can be classified as visible or invisible, as follows:
(i) p ∈ Σ is an invisible (visible) fold singularity for f − if

ωT f −(p) = 0 and ωT A1 f −(p) > 0(< 0).

(ii) p ∈ Σ is an invisible (visible) fold singularity for f +if

ωT f +(p) = 0 and ωT A2 f +(p) < 0(> 0).

AIMS Mathematics Volume 9, Issue 7, 18984–19014.



18988

A double-tangency singularity that exhibits quadratic tangency on both sides is termed a two-fold
singularity. In particular, when the tangency on both sides is invisible, this specific two-fold singularity
is referred to as a Teixeira singularity.

We assume that system (2.1) satisfies the following generic hypothesis:
(H1) rank(T ) = 3, based on hypothesis (H1), the tangency lines L1 and L2 intersect at a unique

double-tangency singularity x̂.

Lemma 1. [13] According to the assumption (H1), the mapping defined by

y = f (x) = T (x − x̂), (2.3)

where T =


ωT

ωT A1

ωT A2

 and x̂ the double-tangency singularity, changes the differential system (2.1) into

the following system

ẏ =

{
g̃−(y) = Ã1y + b̃1 if y1 < 0,
g̃+(y) = Ã2y + b̃2 if y1 > 0,

(2.4)

where Ã1 =


0 1 0
c1 c2 c3

c4 c5 c6

 , Ã2 =


0 0 1
d1 d2 d3

d4 d5 d6

 , b̃1 =


0
r1

s1

, and b̃2 =


0
s2

r2

, with ri =

ωT Ai (Ai x̂ + bi), for i = 1, 2.

The following lemma demonstrates the Σ-equivalence property when applying the coordinate
transformation (2.3).

Lemma 2. [13] f (Σu) = Σ̃u, for u ∈ {as, rs, c}.

The lemma presented below establishes the topological equivalence between the new sliding vector
field g̃s(y) defined in Σ̃s and the original sliding vector field gs(x).

Lemma 3. [13] g̃s(y) = Tgs(x), for x ∈ Σs and y ∈ Σ̃s.

Proof. Let y ∈ Σ̃s be, that is,

y =


0
y2

y3

 =


0

ωT A1(x − x̂)
ωT A2(x − x̂)

 ,
where x ∈ Σs. Next, by formula (2.2),

g̃s(y) =

(
eT

1 g̃−(y)
)

g̃+(y) −
(
eT

1 g̃+(y)
)

g̃−(y)

eT
1 (g̃−(y) − g̃+(y))

, (2.5)

besides, based on Lemma 2 , we have

eT
1 g̃∓(y) = ωT g∓(x),

where eT
1 = (1, 0, 0), eT

2 = (0, 1, 0), eT
3 = (0, 0, 1) and considering that

ẏ = T ẋ ⇔ g̃∓(y) = Tg∓(x),
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then formula (2.5) is rewritten as

g̃s(y) =

(
ωT g−(x)

)
Tg+(x) −

(
ωT g+(x)

)
Tg−(x)

ωT (g−(x) − g+(x))
= Tgs(x).

The proof is completed.

Lemma 4. [13] Consider the Poincaré map given by the composition of the left-return map ϕ−and the
right-return map ϕ+(see Appendix A for details). That is, Ω : {Σ̃ : u, v < 0} 7→ {Σ̃ : u, v < 0} given by

Ω(u, v, µ) = ϕ+ (
ϕ−(u, v, µ)

)
=

(
Ω1(u, v, µ)
Ω2(u, v, µ)

)
,

where Ω1 and Ω2 are given as Taylor series at u = v = 0 by

Ω1(u, v, u) =

(
4s2sµ
r1rµ

− 1
)

u −
2s2

rµ
v +

[4s2

(
c6r1 − c3sµ

)
r2

1rµ
+

2
(
d2rµ − d5s2

)
r2
µ

−
8s2sµ

(
(3d2 + d6) rµ − 2d5s2

)
3r1r3

u

]
uv +

[2
(
c2r1 + c3sµ

)
3r2

1

−
4s2sµ

(
c2r1 + 3c6r1 − 2c3sµ

)
3r3

1rµ
−

4sµ
(
d2rµ − d5s2

)
r1r2

µ

+
8s2s2

µ

(
(3d2 + d6) rµ − 2d5s2

)
3r2

1r3
µ

]
u2 +

2s2

(
(3d2 + d6) rµ − 2d5s2

)
3r3

µ

v2 + · · ·

Ω2 (u, v, µ) =
2sµ
r1

u − v +

2
(
c6r1 − c3sµ

)
r2

1

−
8sµ

(
d5s2 + d6rµ

)
3r1r2

µ

 uv

+

8s2
µ

(
d5s2 + d6rµ

)
3r2

1r2
µ

−
2sµ

(
c2r1 + 3c6r1 − 2c3sµ

)
3r3

1

 u2

+
2
(
d5s2 + d6rµ

)
3r2

µ

v2 + · · ·

Then the fixed points (u, v) of this Poincaré map are determined by the following formula{
Ω1(u, v, µ) = u,
Ω2(u, v, µ) = v.

The sliding vector field g̃s(y) has the form

g̃s(y) =
g̃r(y)
∆̃(y)

,
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where g̃r(y) is

g̃r(y) = eT
1




0 1 0
c1 c2 c3

c4 c5 c6




0
y2

y3

 +


0
r1

s1


 ×




0 0 1
d1 d2 d3

d4 d5 d6




0
y2

y3

 +


0
s2

r2




− eT
1




0 0 1
d1 d2 d3

d4 d5 d6




0
y2

y3

 +


0
s2

r2






0 1 0
c1 c2 c3

c4 c5 c6




0
y2

y3

 +


0
r1

s1




= eT
1


y2

c2y2 + c3y3 + r1

c5y2 + c6y3 + s1




y3

d2y2 + d3y3 + s2

d5y2 + d6y3 + r2

 − eT
1


y3

d2y2 + d3y3 + s2

d5y2 + d6y3 + r2




y2

c2y2 + c3y3 + r1

c5y2 + c6y3 + s1


= y2


y3

d2y2 + d3y3 + s2

d5y2 + d6y3 + r2

 − y3


y2

c2y2 + c3y3 + r1

c5y2 + c6y3 + s1


=


0

d2y2
2 + (d3 − c2) y2y3 − c3y2

3 + s2y2 − r1y3

d5y2
2 + (d6 − c5) y2y3 − c6y2

3 + r2y2 − s1y3


and ∆̃(y) is

∆̃(y) = eT
1
(
g̃−(y) − g̃+(y)

)
=

(
1 0 0

) 


y2

(·)
(·)

 −


y3

(·)
(·)


 = y2 − y3.

To simplify and facilitate numerical simulation implementation, we will consider a two-dimensional
system in this paper.

For the pseudo-Hopf bifurcation to occur, it is necessary for system (2.1) to satisfy another hypothesis:
(H2) There exists a parameter ε such that for the critical value ε = ε0, the vector fields g∓(x, ε) satisfy

the condition g+ (x̂, ε0) = kg− (x̂, ε0), with k < 0.
In light of hypothesis (H2), the vector fields g∓(x, ε) exhibit antiparallel behavior at the Teixeira

singularity when the bifurcation parameter ε reaches the critical value ε0. Recent studies have shown
that this condition is necessary for the emergence of a crossing limit cycle as the parameter transitions
away from ε0.

By Eq (2.4), it can be derived that

f̃ + (0, ε0) = k f̃ − (0, ε0) , k < 0,

thus,
s2 (ε0) = kr1 (ε0) and r2 (ε0) = ks1 (ε0) .

We can assume that k =
r2(ε0)
s1(ε0) , subsequently,

f̃ − (0, ε0) =


0

r1 (ε0)
s1 (ε0)

 and f̃ + (0, ε0) =


0

r1(ε0)r2(ε0)
s1(ε0)

r2 (ε0)

 .
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In other words, by perturbing the constant components of the vector fields in the normal form (2.4), we
can disrupt the antiparallel behavior. To achieve this, we consider the unfolding of the system

ẏ =




0 1 0
c1 c2 c3

c4 c5 c6

 y +


0
r1

s1 + µ

 if y1 < 0,


0 0 1
d1 d2 d3

d4 d5 d6

 y +


0

r1r2
s1

r2 + µ

 if y1 > 0.

(2.6)

3. The existence of crossing limit cycle

Theorem 1. Consider the unfolding system (2.6). Since r1 > 0, r2 < 0 and s1 > 0, then system (2.6) has
a crossing limit cycle for µ (3r2ε1 + r1ε2) > 0 and µ sufficiently small, where

ε1 = c6d5r3
1 + c6d6r2

1 s1 − c2c6r2
1r2 − c3c6r1r2s1 + c2c3r1r2s1 + c2

3r2s2
1,

ε2 = 2c2d5r2
1r2 + 2c2d6r1r2s1 − 2d2

5r3
1 − 2d2

6r1s2
1 − 4d5d6r2

1 s1 − c3d5r1r2s1 − c3d6r2s2
1,

furtherly, since u < − 2
θ1+θ2

(− 2
θ1+θ2

< u < 0), where u is defined by Poincaré map (5.11), the crossing
limit cycle is stable(unstable) of node type if

θ1 + θ2 > 0, θ1θ2 > θ3θ4, 3θ2 − θ1 + 2(
r1

s1
θ4 −

s1

r1
θ3) < 0,

(θ1 + θ2)2 > 4 (θ1θ2 − θ3θ4) , (θ1 − θ2) <
(

r1

s1
θ4 −

s1

r1
θ3

)
,

since u < − 2
θ1+θ2

(− 2
θ1+θ2

< u < 0), the crossing limit cycle is stable(unstable) of focus type if

θ1 + θ2 > 0, θ1θ2 > θ3θ4, 3θ2 − θ1 + 2(
r1

s1
θ4 −

s1

r1
θ3) < 0,

(θ1 + θ2)2 < 4 (θ1θ2 − θ3θ4) , (θ1 − θ2) >
(

r1

s1
θ4 −

s1

r1
θ3

)
,

since u < 0 the crossing limit cycle is of saddle type if

θ1θ2 > θ3θ4, 3θ2 − θ1 + 2(
r1

s1
θ4 −

s1

r1
θ3) > 0,

where θ1, θ2, θ3, θ4 are defined in expression (3.6).

Proof. We define the functions
P1(u, v, µ) = Ω1(u, v, µ) − u,

P2(u, v, µ) = Ω2(u, v, µ) − v.
(3.1)

where Ω1(u, v, µ) and Ω2(u, v, µ) are defined by Lemma 4. Hence, solving (3.1) is identical to solving
P1(u, v, µ) = 0 and P2(u, v, µ) = 0. Substituting sµ = s1 + µ, rµ = r2 + µ and s2 = r1r2

s1
in to P1, it is

obvious that
P1(0, 0, 0) = 0 and

∂P1

∂v
(0, 0, 0) = −

2r1

s1
.
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then, by the implicit function theorem (IFT), there exists a function ρ(u, µ) such that P1(u, ρ(u, µ), µ) ≡ 0
in a neighborhood of (0, 0, 0). This function is defined by

v = ρ(u, µ) = a1µu + a2µu2 + O
(
|u|3

)
. (3.2)

Substituted into P1

P1(u, v, µ) = Ω1(u, v, µ) − u

=

(
4s2sµ
r1rµ

− 2
)

u −
2s2

rµ

(
a1µu + a2µu2 + · · ·

)
+

[2
(
c2r1 + c3sµ)

3r2
1

−
4s2sµ

(
c2r1 + 3c6r1 − 2c3sµ

)
3r3

1rµ

−
4sµ

(
d2rµ − d5s2

)
r1r2

µ

+
8s2s2

µ

(
(3d2 + d6) rµ − 2d5s2

)
3r2

1r3
µ

]
u2

+
[4s2

(
c6r1 − c3sµ

)
r2

1rµ
+

2
(
d2rµ − d5s2

)
r2
µ

−
8s2sµ

(
(3d2 + d6) rµ − 2d5s2

)
3r1rµ3

]
× u

(
a1µu + a2µu2 + · · ·

)
+

2s2
(

(3d2 + d6) rµ − 2d5s2
)

3r3
µ

(
a1µu + a2µu2 + · · ·

)2

=

(
4s2sµ
r1rµ

−
2s2

rµ
a1µ − 2

)
u +

[
δ1 + δ2a1µ + δ3a2

1µ −
2s2

rµ
a2µ

]
u2 + · · ·

where

δ1 =
[2

(
c2r1 + c3sµ)

3r2
1

−
4s2sµ

(
c2r1 + 3c6r1 − 2c3sµ

)
3r3

1rµ
−

4sµ
(
d2rµ − d5s2

)
r1r2

µ

+
8s2s2

µ

(
(3d2 + d6) rµ − 2d5s2

)
3r2

1r3
µ

]
,

δ2 =
[4s2

(
c6r1 − c3sµ

)
r2

1rµ
+

2
(
d2rµ − d5s2

)
r2
µ

−
8s2sµ

(
(3d2 + d6) rµ − 2d5s2

)
3r1rµ3

]
,

δ3 =
2s2

(
(3d2 + d6) rµ − 2d5s2

)
3r3

µ

,

for P1 ≡ 0, thus,

4s2sµ
r1rµ

−
2s2

rµ
a1µ − 2 = 0, δ1 + δ2a1µ + δ3a2

1µ −
2s2

rµ
a2µ = 0,

therefore,

a1µ =
r2 (s1 + 2µ) − s1µ

r1r2
, a2µ ==

s1

(
d5r2

1 + d6s1r1 − c2r1r2 − c3s1r2

)
3r3

1r2
.

Next, we substitute (3.2) into P2, resulting in

AIMS Mathematics Volume 9, Issue 7, 18984–19014.
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P2(u, ρ(u, µ), µ) =

[
2s1

r1
−

2r2s1 + 4r2µ − 2s1µ

r1r2

]
u +

[
6r2

2(c6r1 − c3s1) − 8s1r1(d5s2 + d6r2)
3r2

1r2
2

×
r2s1 + 2r2µ − s1µ

r1r2
−

2s1(d5r2
1 + d6s1r1 − c2r1r2 − c3s1r2)

3r3
1r2

+
8s2

1r1 (d5s2 + d6r2) − 2s1r2
2 (c2r1 + 3c6r1 − 2c3s1)

3r3
1r2

2

+
2 (d5s2 + d6r2)

3r2
2

×

(
r2 (s1 + 2µ) − s1µ

)2

r2
1r2

2

]
u2 +

[
6r2

2 (c6r1 − c3s1) − 8s1r1 (d5s2 + d6r2)

3r2
1r2

2

×
s1

(
d5r2

1 + d6s1r1 − c2r1r2 − c3s1r2

)
3r3

1r2
+

2 (d5s2 + d6r2)
3r2

2

×
2
(
r2 (s1 + 2µ) − s1µ

)(
s1

(
d5r2

1 + d6s1r1 − c2r1r2 − c3s1r2

) )
r1r2 × 3r3

1r2

]
u3 + · · ·

=
−18 (2r2 − s1) r4

1r3
2

9r5
1r4

2

µu +

[
3∆1 (2r2 − s1) r2

1r2

9r5
1r4

2

+
3∆4 (2r2s1 (2r2 − s1)) r3

1

9r5
1r4

2

]
µu2

+
2∆2∆4 (2r2 − s1) r1

9r5
1r4

2

µu3 +

[
3∆1s1r2

1r2
2

9r5
1r4

2

+
3∆3r2

1r2
2

9r5
1r4

2

+
3∆4s2

1r3
1r2

2

9r5
1r4

2

−
6∆2r2

1r3
2

9r5
1r4

2

]
u2

+

[
∆1∆2r2

9r5
1r4

2

+
2∆2∆4s1r1r2

9r5
1r4

2

]
u3 + · · ·

where

∆1 = 6r2
2 (c6r1 − c3s1) − 8s1r1 (d5s2 + d6r2) , ∆2 = s1

(
d5r2

1 + d6s1r1 − c2r1r2 − c3s1r2

)
,

∆3 = 8s2
1r1 (d5s2 + d6r2) − 2s1r2

2 (c2r1 + 3c6r1 − 2c3s1) , ∆4 = 2 (d5s2 + d6r2) ,

thus,
P2(u, ρ(u, µ), µ) = −

u
9r5

1r4
2

P∗(u, µ),

P∗(u, µ) = 18r4
1r3

2 (2r2 − s1) µ − M1uµ − M2u2µ − M3u − M4u2 + O
(
|u|3

)
,

where

M1 = 3r2
1r2 (2r2 − s1) ∆1 + 6r3

1r2s1 (2r2 − s1) ∆4, M2 = 2r1 (2r2 − s1) ∆2∆4,

M3 = 3r2
1r2

2 s1∆1 + 3r2
1r2

2∆3 + 3r3
1r2

2 s2
1∆4 − 6r2

1r3
2∆2, M4 = r2∆1∆2 + 2r1r2s1∆2∆4.

Since P∗(0, 0) = 0 and ∂P∗
∂µ

(0, 0) = 18r4
1r3

2 (2r2 − s1) , 0, so again by the IFT, supposing there exists a
function

µ = h(u) = εu2 + O
(
|u|3

)
, (3.3)

such that P∗(u, h(u)) = 0 in a neighborhood of the point (0, 0), and P2(u, ρ(u, h(u)), h(u)) = 0 in a
neighborhood of the point (0, 0, 0), substituting into P∗(u, µ), we could obtain that

ε =
s1

9r4
1r2 (2r2 − s1)

(3r2ε1 + r1ε2) , (3.4)
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where

ε1 = c6d5r3
1 + c6d6r2

1 s1 − c2c6r2
1r2 − c3c6r1r2s1 + c2c3r1r2s1 + c2

3r2s2
1,

ε2 = 2c2d5r2
1r2 + 2c2d6r1r2s1 − 2d2

5r3
1 − 2d2

6r1s2
1 − 4d5d6r2

1 s1 − c3d5r1r2s1 − c3d6r2s2
1.

Since r1 > 0, r2 < 0 and s1 > 0, then for every µ sufficiently small with µ (3r2ε1 + r1ε2) =
s1

9r4
1r2(2r2−s1) (3r2ε1 + r1ε2)2 u2 > 0, there is a u < 0, such that

Ω(u, ρ(u), h(u)) = (u, ρ(u))T .

In other words, a crossing limit cycle has been identified. Finally, to analyze the stability of the
CLC, we compute the eigenvalue of the Jacobian matrix of Ω(u, ρ(u), h(u)). The Jacobian matrix of
Ω(u, ρ(u), h(u)) is given by

DΩ(u, ρ(u), h(u)) =


4s2sµ
r1rµ

− 1 + m1v + 2m2u,
−2s2

rµ
+ m1u + 2m3v

2sµ
r1

+ n1v + 2n2u, −1 + n1u + 2n3v

 , (3.5)

where

m1 =
4s2

(
c6r1 − c3sµ

)
r2

1rµ
+

2
(
d2rµ − d5s2

)
r2
µ

−
8s2sµ

(
(3d2 + d6) rµ − 2d5s2

)
3r1r3

µ

,

m2 =
2
(
c2r1 + c3sµ

)
3r2

1

−
4s2sµ

(
c2r1 + 3c6r1 − 2c3sµ

)
3r3

1rµ
−

4sµ
(
d2rµ − d5s2

)
r1r2

µ

+
8s2s2

µ

(
(3d2 + d6) rµ − 2d5s2

)
3r2

1r3
µ

,

m3 =
2s2

(
(3d2 + d6) rµ − 2d5s2

)
3r3

µ

,

n1 =
2
(
c6r1 − c3sµ

)
r2

1

−
8sµ

(
d5s2 + d6rµ

)
3r1r2

µ

,

n2 =
8s2

µ

(
d5s2 + d6rµ

)
3r2

1r2
µ

−
2sµ

(
c2r1 + 3c6r1 − 2c3sµ

)
3r3

1

,

n3 =
2
(
d5s2 + d6rµ

)
3r2

µ

,

thus the eigenvalues are

λ1,2 = 1 +
θ1 + θ2

2
u + O

(
|u|2

)
±

√
ϑu +

[
(θ1 + θ2)2

4
− (θ1θ2 − θ3θ4)

]
u2 + O

(
|u|3

)
, (3.6)

where
ϑ = 2(θ1 − θ2) + 2(

s1

r1
θ3 −

r1

s1
θ4), θ1 = m1

s1

r1
+ 2m2,

θ2 = n1 + 2n3
s1

r1
, θ3 = m1 + 2m3

s1

r1
, θ4 = n1

s1

r1
+ 2n2.
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Then, since u < − 2
θ1+θ2

(− 2
θ1+θ2

< u < 0), the CLC is stable(unstable) of node type if

θ1 + θ2 > 0, θ1θ2 > θ3θ4, 3θ2 − θ1 + 2(
r1

s1
θ4 −

s1

r1
θ3) < 0,

(θ1 + θ2)2 > 4 (θ1θ2 − θ3θ4) , (θ1 − θ2) <
(

r1

s1
θ4 −

s1

r1
θ3

)
,

since u < − 2
θ1+θ2

(− 2
θ1+θ2

< u < 0), the CLC is stable(unstable) of focus type if

θ1 + θ2 > 0, θ1θ2 > θ3θ4, 3θ2 − θ1 + 2(
r1

s1
θ4 −

s1

r1
θ3) < 0,

(θ1 + θ2)2 < 4 (θ1θ2 − θ3θ4) , (θ1 − θ2) >
(

r1

s1
θ4 −

s1

r1
θ3

)
,

since u < 0 the CLC is of saddle type if

θ1θ2 > θ3θ4, 3θ2 − θ1 + 2(
r1

s1
θ4 −

s1

r1
θ3) > 0.

The proof is completed.

4. Dynamics and bifurcation for a Hindmarsh and Rose neuronal model

The three-dimensional Hindmarsh Rose neuron model [37] is a mathematical model describing the
electrical activity of neurons, which contains three nonlinear differential equations:

dx
dt

= y − ax3 + bx2 − f z + I,

dy
dt

= c − dx2 − y,

dz
dt

= r (s (x − x0) − z) ,

(4.1)

the system is described by three variables x(t), y(t), and z(t). These variables represent the membrane
potential, spiking variable (fast current), and bursting variable (slow current), respectively. The behavior
of these variables is determined by the transport of ions through ion channels present in the membrane.
There are several parameters involved in this system, namely a, b, c, d, f , r, s, I, and x0. Each
parameter plays a different role: I determines the level of excitability or external forcing current for
biological neurons, b allows the switching between bursting and spiking behaviors and controlling
spiking frequency. The parameter r regulates the change rate of the slow variable z(t) and is usually
considered to be a small positive real number, Last, x0 represents the resting potential of the system.

In this paper, on the basis of the above three-dimensional neuron system, we consider taking control
strategies to the membrane potential. That is, when variable x(t) does not reach a critical level c0, b and
I may take the larger values denoted by bmax and Imax, respectively, otherwise, b and I should take the
smaller values, bmin and Imin, to make sure x(t) decreases once the membrane potential x(t) is above the
threshold c0. The switching function is given byb = bmax, I = Imax, x < c0,

b = bmin, I = Imin, x > c0.
(4.2)
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The proof of crossing the limit cycle in the previous section applies to linear systems. For nonlinear
systems, it cannot be directly applied and it is necessary to transform the nonlinear system into a linear
system. In order to linearize this nonlinear system of equations, we need to transform them into a set of
linear equations. The specific operation is as follows: First, we perform first-order Taylor expansion
on x:

x(t + ∆t) = x(t) +
dx
dt

∆t.

Combining the first equation of the system (4.1) yields:

x(t + ∆t) = x(t) + y(t)∆t +
(
−ax3(t) + bx2(t) − f z(t) + I

)
∆t.

Perform the first derivative on both sides of the above equation simultaneously to obtain:

x(t + ∆t) − x(t)
∆t

= y(t) +

(
−3ax2(t) + 2bx(t) −

f z(t)
x(t)

+ I
)

∆t
x(t)

.

Similarly, we perform first-order Taylor expansions on y and z:

y(t + ∆t) = y(t) +
dy
dt

∆t, z(t + ∆t) = z(t) +
dz
dt

∆t.

Combining the second and third equations of system (4.1) yields:

y(t + ∆t) = y(t) +
(
c − dx2(t) − y(t)

)
∆t, z(t + ∆t) = z(t) + r (s (x(t) − x0) − z(t)) ∆t.

Perform the first derivative of the above two equations to obtain:

y(t + ∆t) − y(t)
∆t

= −2x(t)y(t) − y(t) + c,
z(t + ∆t) − z(t)

∆t
= −rsz(t) + rsx(t).

Organize the above several formulas into matrix form:
x(t+∆t)−x(t)

∆t
y(t+∆t)−y(t)

∆t
z(t+∆t)−z(t)

∆t

 =


y(t) ∆t

x(t)
∆tc
2 −

∆ty(t)
2 −

∆tx2(t)
2

−rsz(t)∆t +
rsx(t)∆t

x(t)

 +


(
−3ax2(t) + 2bx(t) − f z(t)

x(t) + I
)

∆t
x(t)

c
2∆t
0

 .
Substitute the equilibrium points x0, y0, z0 for x(t), y(t), z(t) respectively in the above equation,

∆x
∆t
∆y
∆t
∆z
∆t

 =


0 ∆t

x0
0

−∆t
2 −1 0

rs∆t
x0

0 −rs∆t




x − x0

y − y0

z − z0

 +


(
−3ax2

0 + 2bx0 −
f z0
x0

+ I
)

∆t
x0

c
2∆t
0

 , (4.3)

replace x − x0, y − y0 and z − z0 with x1, x2 and x3, respectively, the equation above is equivalent to
dx1
dt

dx2
dt

dx3
dt

 =


0 1 0
−

x0
2 −

x0
∆t 0

rs 0 −rsx0




x1

x2

x3

 +


(
−3ax2

0 + 2bx0 −
f z0
x0

+ I
)

c
2 x0

0

 . (4.4)
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In this way, we obtain the linearized equation of system (4.1). In practical applications, The time step
size ∆t is usually determined based on the specific problem being studied and the numerical simulation
method being used. it should be small enough to ensure numerical convergence to the true solution,
it should not be too small to avoid excessive computational cost and time. In this article, ∆t is taken
as 0.01.

According to system (4.4), we can construct the Filippov system with two zones separated by the
switching line Σ =

{
x ∈ R3 : h(x) = ωT x − c0 = 0

}
, where x = (x1, x2, x3)T , ωT = (ω1, ω2, ω3), and the

corresponding Filippov system can be expressed in the following form:

ẋ =

{
g−(x) = A1x + b1 if h(x) < 0,
g+(x) = A2x + b2 if h(x) > 0,

(4.5)

where

A1 =


0 1 0
−

x0
2 −

x0
∆t 0

rs 0 −rsx0

 , b1 =


−3ax2

0 + 2bmaxx0 −
f z0
x0

+ Imax
c
2 x0

0

 ,
A2 =


0 1 0
−

x0
2 −

x0
∆t 0

rs 0 −rsx0

 , b2 =


−3ax2

0 + 2bminx0 −
f z0
x0

+ Imin
c
2 x0

0

 .
Then, according to the mapping y = f (x) = T (x − x̂) in Lemma 1 of the second section, we need to

calculate T and x̂ where T =


ωT

ωT A1

ωT A2

 and x̂ is the double-tangency singularity. We can express the

following set of equations: 
A1x + b1 − λω = 0,
A2x + b2 − λω = 0,

ωT x − c0 = 0,

here, λ is a Lagrange multiplier. To find the double-tangential singularity x̂, we need to transform the
above set of equations into a linear system of equations with respect to x. By multiplying the first and
second equations with ωT and subtracting them, we obtain:

(A1 − A2) x + (b1 − b2) − (λ1 − λ2)ω = 0.

Similarly, by multiplying the first and third equations with A2 and −ωT , respectively, and adding them,
we can get (

A1 + AT
2

)
x +

(
b1 − AT

2 x̂
)
− λ1ω = 0.

By replacing λ2 with λ1 in the above equation and substituting it into the previous equation, we obtain

(A1 − A2) x + (b1 − b2) +
(
AT

2 x̂ − b1

)
− λ1ω = 0.

Combining the above two equations yields:[
A1 − A2 − (λ1 − λ2) I3 0
A1 + AT

2 −λ1I3 −AT
2

] 
x
ω

x̂

 =

 − (b1 − b2)
−

(
b1 − AT

2 x̂
)  ,
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where I3 is 3 × 3 identity matrix. Solving the above linear system of equations yields expressions for x
and x̂. Next, we need to determine Ã1, Ã2, b̃1, b̃2. Based on the mapping y = f (x) = T (x − x̂), we can
obtain

Ã1 = T A1T−1, Ã2 = T A2T−1, b̃1 = Tb1 − Ã1 x̂, b̃2 = Tb2 − Ã2 x̂,

supposing x̂ = (x̂1, x̂2, x̂3), by substituting the specific forms of A1, A2, b1 and b2 into the above
expressions, we obtain the following expressions for Ã1, Ã2, b̃1 and b̃2,

Ã1 =
1

ω2
1 + ω2

2 + ω2
3


0 ω2 0
−

x0ω1
2 −

x0ω2
∆t 0

rsω1 + rsx0ω3 rsω2 −rsx0ω1

 ,
Ã2 =

1
ω2

1 + ω2
2 + ω2

3


0 0 ω2

−
x0ω1

2 −
x0ω2
∆t 0

rsω1 + rsx0ω3 rsω2 −rsx0ω1

 ,
b̃1 =

1
ω2

1 + ω2
2 + ω2

3


−3ax2

0+2bmax x0− f z0/x0+Imax

∆t
−cx0ω2

2

rsx0ω1 x̂3 − rsx̂1x0ω3 +
cx2

0
2 ω2

 ,

b̃2 =
1

ω2
1 + ω2

2 + ω2
3


−3ax2

0+2bmin x0− f z0/x0+Imin

∆t
−

cx0ω2
2

rsx0ω1 x̂3 − rsx̂1x0ω3 +
cx2

0
2 ω2

 ,

(4.6)

thus, the mapping y = f (x) = T (x − x̂) change system (4.5) into the following system

ẏ =

{
f̃ −(y) = Ã1y + b̃1 if y1 < 0,
f̃ +(y) = Ã2y + b̃2 if y1 > 0.

(4.7)

In the subsequent numerical simulation, we consider taking ωT = (1, 0, 0).
The neuronal system can exist in various states, such as the resting state characterized by stable

membrane potential and no action potential firing, the spiking state where the membrane potential
rapidly rises at a threshold followed by a quick fall, triggering an action potential in a period, the
bursting state involving the firing of multiple action potentials within one period, and the chaotic state
where the membrane potential displays irregular and complex fluctuations, potentially arising from
intricate neuron-to-neuron interactions [32–34, 38, 39]. Without considering the control strategy, the
phase plot and time series plot of system (4.1) as shown in Figure 1, if the parameters are fixed as
a = 1, b = 3, c = 6, d = 5, f = 1, r = 0.009, s = 3.966, I = 2, x0 = −1.6, and initial conditions
(x(0), y(0), z(0)) = (−1.5, 0.5, 0.1), where subfigure a) is the phase plot of x and y, and subfigure b) is
the corresponding time series plot of x. According to the time series plot of the membrane potential in
Figure 1, the membrane potential exhibits a quasi-periodic state. However, when the control switching
threshold is set at c0 = 1, bmax = 3, Imax = 2, bmin = 2.5, Imin = 1, and the other parameters are as
same as Figure 1, It can be seen from Figure 2 that the system is in a non-periodic irregular state and
the membrane potential oscillates around the switching threshold. Therefore, the decision to adopt or
abandon control strategies can significantly impact the state of the system.
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Figure 1. (a) The phase portrait of system (4.1) without control policy and (b) the time portrait
of system (4.1) without control policy, the time series waveform approaches a quasi-periodic
state. The parameters are set at a = 1, b = 3, c = 6, d = 5, f = 1, r = 0.009, s = 3.966, I =

2, x0 = −1.6, the initial value (x(0), y(0), z(0)) = (−1.5, 0.5, 0.1).
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Figure 2. (a) The phase portrait of system (4.1) with control policy (4.2) and (b) the time
portrait of system (4.1) with control policy (4.2). The system is in a non-periodic irregular
state and the membrane potential oscillates around the switching threshold 1. The parameters
are set at a = 1, c = 6, d = 5, f = 1, r = 0.009, s = 3.966, bmax = 3, Imax = 2, bmin = 2.5, Imin =

1, x0 = −1.6, c0 = 1, the initial value (x(0), y(0), z(0)) = (−1.5, 0.5, 0.1).
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Supposing the system parameters have been modified as a = 1, c = 1, d = 2, f = 1, r = 0.002, s = 4,
bmax = 4, Imax = 1, bmin = 1, Imin = 0.5, x0 = −1.6, c0 = 3, and initial conditions (x(0), y(0), z(0)) =

(−1.6, 1, 0), then the system’s phase diagram displays a limit cycle curve in Figure 3, while the
corresponding time series graph of membrane potential shows spiking discharge states, with one
action potential fired in a period. However, the limit cycles of Filippov systems differ from the ones of
ODE, because the switching threshold c0 alters the system’s trajectory, resulting in a jagged shape for
the irregular limit cycle. The firing peak of action potentials in the time series graph may be truncated
due to the switching threshold c0. Beyond spiking, bursting is another prevalent firing phenomenon
in neuronal systems. When the parameters are adjusted to a = 1, c = 4, d = 6, f = 2, r = 0.01, s = 4,
with bmax = 3, Imax = 1, bmin = 1, Imin = 0.5, and initial conditions (x(0), y(0),z(0))=(-1.6, 1, 0), and
x0 = −1.6, c0 = 1.5, the system exhibits bursting behavior, characterized by multiple action potentials
fired within a single period. The corresponding phase diagram with transient state and time series plot
are shown in Figure 4. Similarly, the firing peak of bursting is influenced by the switching threshold. If
the firing peak exceeds the threshold, the system trajectory will contract towards the direction below the
switching threshold due to the switching effect of the Filippov system. The crossing limit cycle implies
that the trajectory of the limit cycle passes through the switching line (or plane), spanning at least two
subsystems. In neuronal systems, a limit cycle in the phase portrait implies that the corresponding
membrane potential state variable of neurons are in a periodic spiking state.
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(b) time portrait

time trajectory

Figure 3. (a) The phase portrait of system (4.1) with control policy (4.2) and (b) the time
portrait of system (4.1) with control policy (4.2). The phase portrait exhibits irregular limit
cycles, while the time series plot shows spiking phenomena. The parameters are set at
a = 1, c = 1, d = 2, f = 1, r = 0.002, s = 4, bmax = 4, Imax = 1, bmin = 1, Imin = 0.5, x0 =

−1.6, c0 = 3, the initial value (x(0), y(0), z(0)) = (−1.6, 1, 0).
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If the values of the other parameters are fixed as shown in Figure 4, and the switching threshold is
adjusted to c0 = 0.7, the resulting Poincare section at x = 0 of the scatter plot in the y − z plane, as
shown in Figure 5. The scatter plot contains four fixed points, indicating the coexistence of multiple
attractors in the system. Additionally, Figure 6 shows the corresponding three-dimensional Poincare
section with the same parameters as Figure 5. The periodic solutions appear as four closed orbits in a
three-dimensional space, contrasted with the four fixed points observed in the two-dimensional plane.
The coexistence of multiple attractors refers to the existence of multiple attractors that can attract the
system state towards different stable states or periodic orbits. This phenomenon indicates that the system
has multiple stable states, and transitions or mutual influences may exist among these states. Note that
Figures 4–6, where the switching threshold values differ (Figure 4: c0 = 1.5, Figures 5 and 6: c0 = 0.7)
while the remaining parameter values are the same, the system’s dynamical behavior is completely
different. Figure 4 exhibits a single stable state, whereas Figures 5 and 6 depict multiple stable states.
The switching threshold can cause the system to switch between different states and greatly alter the
system’s state.
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−20
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y

(a) phase portrait

phase trajectory

0 50 100 150 200 250 300
t
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2

4

x

(b) time portrait
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Figure 4. (a) The phase portrait of system (4.1) with control policy (4.2) and (b) the time
portrait of system (4.1) with control policy (4.2). The phase portrait represents limit cycles
(with transient state preserved), while the time series plot shows bursting phenomena. The
parameters are set at a = 1, c = 4, d = 6, f = 2, r = 0.01, s = 4, bmax = 3, Imax = 1, bmin =

1, Imin = 0.5, x0 = −1.6, c0 = 1.5, the initial value (x(0), y(0), z(0)) = (−1.6, 1, 0).
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Figure 5. The 2D Poincare section of system (4.1) with control policy (4.2). The four dots
in the figure indicate the coexistence of four attractors in the system. The parameters are set
at a = 1, c = 4, d = 6, f = 2, r = 0.01, s = 4, bmax = 3, Imax = 1, bmin = 1, Imin = 0.5, x0 =

−1.6, c0 = 0.7, the initial value (x(0), y(0), z(0)) = (−1.6, 1, 0).
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Figure 6. The 3D Poincare section of system (4.1) with control policy (4.2). The four closed
curves in the figure indicate the coexistence of four limit cycles in the system. The parameters
are set at a = 1, c = 4, d = 6, f = 2, r = 0.01, s = 4, bmax = 3, Imax = 1, bmin = 1, Imin =

0.5, x0 = −1.6, c0 = 0.7, the initial value (x(0), y(0), z(0)) = (−1.6, 1, 0).
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The parameter b is another key parameter that influences the dynamical behavior of the Hindmarsh-
Rose neuron system. b serves as the bifurcation parameter, and three bifurcation diagrams are used to
illustrate the trends of the state variables as b changes within a certain range. Figure 7 illustrates the
bifurcation diagram on the b − x plane, revealing a period-doubling bifurcation phenomenon occurring
for the values of b between around 5 and 6. When there are two membrane potential values for the same
parameter value b, it indicates that the system is in a bistable state. This means that the system can
simultaneously exist in two stable states, each with a different membrane potential value. The system
can switch between these two states, and within the given parameter range, this switching is reversible.
This phenomenon is common in dynamical systems and indicates that the system can exhibit multiple
stable patterns under specific conditions. Likewise, when there are four distinct membrane potential
values for the same parameter value b, it indicates the system entering a multistable state. This implies
that the system can exist in four stable states simultaneously, each characterized by a different membrane
potential value, with the ability to switch between them. Figures 8 and 9 depict the bifurcation diagrams
on the b − y plane and b − z plane, respectively, for the same parameters as in Figure 7. The bifurcation
phenomenon on the b − y plane exhibits similarities with the bifurcation pattern observed on the b − x
plane, period-doubling bifurcation emerges near 5 to 6 for b. However, the bifurcation patterns on the
b − z plane are less pronounced. At b values around 5 and 6, there is no bifurcation phenomenon, but
the rate of increase in the z value becomes accelerated. This could be attributed to the fact that y is a fast
variable, while z is a slow variable. The role of the recovery variable y is more significant, while the
regulatory effect of the slow variable z is limited.
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Bifurcation Diagram (b-x plane)

Figure 7. The bifurcation diagram of system (4.1) with control policy (4.2) on b − x plane.
The system exhibits period-doubling bifurcations, transitioning from a single period to double
period, and then to quadruple period. The parameters are set at a = 1, c = 1, d = 5, f = 5, r =

0.009, s = 4, bmax ∈ [0, 8], Imax = 1, bmin = 0.25bmax, Imin = 0.5, x0 = −1.6, c0 = 1, the initial
value (x(0), y(0), z(0)) = (−1.6, 0.5, 0.1).
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Figure 8. The bifurcation diagram of system (4.1) with control policy (4.2) on b − y plane.
The system exhibits period-doubling bifurcations, transitioning from a single period to
double period. The parameters are set at a = 1, c = 1, d = 5, f = 5, r = 0.009, s =

4, bmax ∈ [0, 8], Imax = 1, bmin = 0.25bmax, Imin = 0.5, x0 = −1.6, c0 = 1, the initial value
(x(0), y(0), z(0)) = (−1.6, 0.5, 0.1).
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Figure 9. The bifurcation diagram of system (4.1) with control policy (4.2) on b − z plane.
The variable z is directly proportional to the parameter b. The parameters are set at a = 1, c =

1, d = 5, f = 5, r = 0.009, s = 4, bmax ∈ [0, 8], Imax = 1, bmin = 0.25bmax, Imin = 0.5, x0 =

−1.6, c0 = 1, the initial value (x(0), y(0), z(0)) = (−1.6, 0.5, 0.1).
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5. Summary and conclusions

In this paper, we study the pseudo-Hopf bifurcation in Filippov Hindmarsh-Rose neuron system, the
existence of crossing limit cycles is proved by constructing half-return mapping. While research on
crossing limit cycles have primarily focused on linear systems, we expand the analysis to nonlinear
neuronal system. The trajectory of crossing limit cycle in Filippov neuron systems differs from that
in ordinary differential equations (ODEs) mainly in the sense that its trajectory crosses discontinuous
boundaries and is distributed in two or more subsystems. The periodic firing phenomenon of membrane
potential (spiking or bursting) is altered or truncated due to the threshold switching, which means
changes in the threshold can alter or even cut off the waveform of action potential of a neuron.

Neuronal systems are inherently complex, exhibiting a diverse range of firing patterns, and threshold
control further alters the system’s firing states. By implementing threshold control, it becomes possible
to switch the system’s firing state, such as transitioning from a non-periodic state to a periodic state
or evolving from spiking to bursting. Additionally, the system exhibits the coexistence of multiple
attractors and period-doubling bifurcation through threshold control. Within specific ranges of parameter
values, the system can generate multiple stable states, allowing for the membrane potential to transition
among these states. In period-doubling bifurcation, as the system parameter changes, the system
transitions from stable periodic behavior to increasingly complex periodic behavior. Eventually, as the
bifurcation progresses, the system enters a highly sensitive to initial conditions, seemingly random, and
unpredictable chaotic state. We focus on neuronal systems, and in the future, we will explore various
threshold control strategies for network nodes, as well as the implications of multiple thresholds on
neural networks.
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Appendix: The half-return maps

To establish the existence of a crossing limit cycle, we need to identify vectors q1 =


0
u1

v1

 and

q2 =


0
u2

v2

, where u1, v1 < 0 and u2, v2 > 0. Furthermore, we should determine the corresponding

times t1, t2 such that the system
q2 = ϕ−t1 (q1) , (5.1a)

q1 = ϕ+
t2 (q2) , (5.1b)
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has a solution, where ϕ−t1 (q1) is defined as

ϕ−t1 (q1) = et1Ã1

(
q1 +

∫ t1

0
e−sÃ1 b̃1ds

)
. (5.2)

Additionally, according to the properties of the exponential matrix, we can state that

e−sÃ1 = I − sÃ1 +
s2

2!
Ã2

1 −
s3

3!
Ã3

1 + · · ·

et1Ã1 = I + t1Ã1 +
t2
1

2!
Ã2

1 +
t3
1

3!
Ã3

1 + · · ·

thus,∫ t1

0
e−sÃ1 b̃1ds =

∫ t1

0

[
I − sÃ1 +

s2

2!
Ã2

1 −
s3

3!
Ã3

1 + · · ·

]
b̃1ds =

∫ t1

0

[
b̃1 − sÃ1b̃1 +

s2

2!
Ã2

1b̃1 −
s3

3!
Ã3

1b̃1 + · · ·

]
ds

= b̃1t1 −
1
2

Ã1b̃1t2
1 +

1
2!
·

1
3

t3
1Ã2

1b̃1 −
1
3!
·

1
4

t4
1Ã3

1b̃1 + . . .

and

et1Ã1

(
q1 +

∫ t1

0
e−sÃ1 b̃1ds

)
=

[
I + t1Ã1 +

t2
1

2!
Ã2

1 +
t3
1

3!
Ã3

1 + · · ·

]
×

[
q1 + b̃1t1 −

1
2!

Ã1b̃1t2
1 +

1
3!

t3
1Ã2

1b̃1 −
1
4!

t4
1Ã3

1b̃1 + · · ·

]
= q1 + b̃1t1 −

1
2!

Ã1b̃1t2
1 +

1
3!

Ã2
1b̃1t3

1 −
1
4!

Ã3
1b̃1t4

1 + Ã1q1t1 + Ã1b̃1t2
1 −

1
2!

Ã2
1b̃1t3

1

+
1
3!

Ã3
1b̃1t4

1 −
1
4!

Ã4
1b̃1t5

1 +
1
2!

Ã2
1q1t2

1 +
Ã2

1

2!
b̃1t3

1 −
Ã3

1

2!2!
b̃1t4

1 +
Ã4

1

2!3!
b̃1t5

1 −
Ã5

1

2!4!
b̃1t6

1

+
Ã3

1

3!
q1t3

1 +
Ã3

1

3!
b̃1t4

1 −
Ã4

1

3!2!
b̃1t5

1 +
Ã5

1

3!3!
b̃1t6

1 −
Ã6

1

3!4!
b̃1t7

1 + · · ·

therefore, the mapping (5.1a) can be rewritten as the following

q2 = q1 + t1N1 (t1) g̃ (q1) , (5.3)

the equation is equivalent to 
0
u2

v2

 =


0
u1

v1

 +


t1eT

1 N1(t1)g̃ (q1)
t1eT

2 N1 (t1) g̃ (q1)
t1eT

3 N1 (t1) g̃ (q1)

 , (5.4)

where

N1 (t1) = I +
t1

2!
Ã1 +

t2
1

3!
Ã2

1 +
t3
1

4!
Ã3

1 + · · ·

thus,

q1 + t1N1 (t1) g̃− (q1) =q1 +

[
t1 +

t2
1

2!
Ã1 +

t3
1

3!
Ã2

1 +
t4
1

4!
Ã3

1 + · · ·

] [
Ã1q1 + b̃1

]
=q1 + b̃1t1 +

t2
1

2!
Ã1b̃1 +

t3
1

3!
Ã2

1b̃1 +
t4
1

4!
Ã3

1b̃1 + Ã1q1t1 +
t2
1

2!
Ã2

1q1

+
t3
1

3!
Ã3

1q1 +
t4
1

4!
Ã4

1q1 +
t5
1

5!
Ã5

1q1 +
t5
1

5!
Ã4

1b̃1 + · · ·
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by comparing it’s obvious that

et1Ã1

(
q1 +

∫ t1

0
e−sÃ1 b̃1ds

)
= q1 + t1N1 (t1) g̃ (q1) .

According to the first equation of (5.4),

t1eT
1 N1 (t1) g̃− (q1) = 0, (5.5)

that is
G1 (t1, u1, v1) = eT

1 N1 (t1) g̃− (q1)

=
(

1 0 0
) [

I +
t1

2!
Ã1 +

t2
1

3!
Ã2

1 +
t3
1

4!
Ã3

1 + · · ·

]
×

[
Ã1 (q1) + b̃1

]
=

(
1 0 0

) 


1 0 0
0 1 0
0 0 1

 +
t1

2!


0 1 0
c1 c2 c3

c4 c5 c6


+

t2
1

3!


c1 c2 c3

c1c2 + c3c4 c1 + c2
2 + c3c5 c2c3 + c3c6

c1c5 + c4c6 c4 + c2c5 + c5c6 c3c5 + c2
6

 + · · ·

 ×



0 1 0
c1 c2 c3

c4 c5 c6




0
u1

v1

 +


0
r1

sµ




=

[(
1 0 0

)
+

t1

2!

(
0 1 0

)
+

t2
1

3!

(
c1 c2 c3

)
+ · · ·

]
×




u1

c2u1 + c3v1

c5u1 + c6v1

 +


0
r1

sµ




= u1 +
t1

2
(r1 + c2u1 + c3v1) +

t2
1

6

[
c1u1 + c2

(
c2u1 + c3v1 + r1

)
+ c3

(
c5u1 + c6v1 + sµ

)]
+ · · ·

= u1 +
t1

2
(r1 + c2u1 + c3v1) +

t2
1

6
η1 + · · ·

(5.6)
where η1 = c2r1 + c3sµ +

(
c1 + c3c5 + c2

2

)
u1 + c3 (c2 + c6) v1, sµ = s1 + µ. Simple calculation shows that

G1 (0, 0, 0) = 0 and ∂G1
∂t1

(0, 0, 0) = r1
2 , 0. Thus, by the implicit function theorem, there exists a function

t1 (u1, v1) = a1u1 + a2v1 + a3u1v1 + a4u2
1 + a5v2

1 + a6u2
1v1 + a7u1v2

1 + · · · ,

such that G1 (t1 (u1, v1) , u1, v1) ≡ 0 in a neighborhood of (0, 0, 0). Substituting t1 (u1, v1) into
G1 (t1, u1, v1), thus

G1 (t1 (u1, v1) , u1, v1) = u1 +
1
2

(
a1u1 + a2v1 + a3u1v1 + a4u2

1 + a5v2
1 + a6u2

1v1 + a7u1v2
1 + · · ·

)
× (r1 + c2u1 + c3v1)

+
1
6

(
a1u1 + a2v1 + a3u1v1 + a4u2

1 + a5v2
1 + a6u2

1v1 + a7u1v2
1 + · · ·

)2
η1

≡ 0.

Since G1 (t1 (u1, v1) , u1, v1) ≡ 0, we can infer that the coefficients associated with u and v are all zero.
By calculation, it can be determined

a1 = −
2
r1
, a2 = 0, a3 =

2c3

r2
1

, a4 =
2 (c2r1 − 2c3su)

3r3
1

,

a5 = 0, a6 =
12c2

3su − 4c3 (c2 + c6) r1

3r4
1

, a7 =
−2c2

3

r3
1

,
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thus, t1 (u1, v1) is represented as

t1 (u1, v1) = −
2u1

r1
+

2c3u1v1

r2
1

+
2
(
c2r1 − 2c3sµ

)
u2

1

3r3
1

−
4c3u2

1v1

(
(c2 + c6) r1 − 3c3sµ

)
3r4

1

−
2c2

3u1v2
1

r3
1

+ · · · .

By substituting t1 into the second and third equations of (5.4), we obtain(
u2

v2

)
=

(
ϕ−11 (u1, v1)
ϕ−12 (u1, v1)

)
=

(
u1 + t1 (u1, v1) eT

2 N1 (t1 (u1, v1)) g̃− (q1)
v1 + t1 (u1, v1) eT

3 N1 (t1 (u1, v1)) g̃− (q1)

)
. (5.7)

Firstly, let’s calculate ϕ−11 (u1, v1)

ϕ−11 (u1, v1) = u1 + t1 (u1, v1) eT
2 N1 (t1 (u1, v1)) g̃− (q1)

= u1 + t1

(
0 1 0

) [
I +

t1

2!
Ã1 +

t2
1

3!
Ã2

1 + · · ·

]
×

Ã1


0
u1

v1

 +


0
r1

sµ




= u1 +



t1

(
0 1 0

)
+

t21
2!

(
0 1 0

) 
0 1 0
c1 c2 c3

c4 c5 c6


+

t31
3!

(
0 1 0

) 
0 1 0
c1 c2 c3

c4 c5 c6


2

+ · · ·


×


u1

c2u1 + c3v1 + r1

c5u1 + c6v1 + su



= u1 + t1
(
c2u1 + c3v1 + r1

)
+

t2
1

2!

[
c1u1 + c2 (c2u1 + c3v1 + r1) + c3

(
c5u1 + c6v1 + sµ

) ]
+

t3
1

3!

[
(c1c2 + c3c4) u1 +

(
c1 + c2

2 + c3c5
)
× (c2u1 + c3v1 + r1) + (c2c3 + c3c6) (c5u1 + c6v1 + su)

]
+ · · ·

= u1 +
[
−

2u1

r1
+

2c3u1v1

r2
1

+
2
(
c2r1 − 2c3sµ

)
u2

1

3r3
1

−
2c2

3u1v2
1

r3
1

−
4c3 ((c2 + c6) r1 − 3c3su) u2

1v1

3r4
1

]
×

(
c2u1 + c3v1 + r1

)
+

1
2!

[
−

2u1

r1
+

2c3u1v1

r2
1

+
2
(
c2r1 − 2c3sµ

)
u2

1

3r3
1

−
2c2

3u1v2
1

r3
1

−
4c3

(
(c2 + c6) r1 − 3c3sµ

)
u2

1v1

3r4
1

]2
×

[
c1u1 + c2 (c2u1 + c3v1 + r1) + c3

(
c5u1 + c6v1 + sµ

) ]
+

1
3!

[
−

2u1

r1
+

2c3u1v1

r2
1

+
2
(
c2r1 − 2c3sµ

)
u2

1

3r3
1

−
2c2

3u1v2
1

r3
1

−
4c3

(
(c2 + c6) r1 − 3c3sµ

)
u2

1v1

3r4
1

]3

×
[(

c1c2 + c3c4)u1 +
(
c1 + c2

2 + c3c5
)(

c2u1 + c3v1 + r1
)

+
(
c2c3 + c3c6

)(
c5u1 + c6v1 + sµ

)]
+ · · ·
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= u1 −
2c2

r1
u2

1 +
2c2c3

r2
1

u2
1v1 +

2c2

(
c2r1 − 2c3sµ

)
3r3

1

u3
1 −

2c3

r1
u1v1 +

2c2
3

r2
1

u1v2
1

+
2c3

(
c2r1 − 2c3sµ

)
3r3

1

u2
1v1 −

2r1

r1
u1 +

2c3r1

r2
1

u1v1 +
2r1

(
c2r1 − 2c3sµ

)
3r3

1

u2
1

−
4c3r1

(
(c2 + c6) r1 − 3c3sµ

)
3r4

1

u2
1v1 −

2c2
3r1

r3
1

u1v2
1 +

2c1

r2
1

u3
1 +

2c2
2

r2
1

u3
1

+
2c2c3

r2
1

u2
1v1 +

2c2r1

r2
1

u2
1 +

2c3c5

r2
1

u3
1 +

2c3c6

r2
1

u2
1v1 +

2c3sµ
r2

1

u2
1 −

4c2c3r1

r3
1

u2
1v1

−
4c2

3sµ
r3

1

u2
1v1 −

4c2r1

(
c2r1 − 2c3sµ

)
3r4

1

u3
1 −

4c3sµ
(
c2r1 − 2c3sµ

)
3r4

1

u3
1

−
4u3

1

3r3
1

[ (
c1 + c2

2 + c3c5

)
r1 + (c2c3 + c3c6) sµ

]
+ · · ·

= −u1 +
2
(
c2r1 + c3sµ

)
3r2

1

u2
1 −

2c3

(
c2r1 − c6r1 + 2c3sµ

)
3r3

1

u2
1v1

−
2
[
2c3sµr1 (c2 + c6) − r2

1 (c1 + c3c5) − 4c2
3s2
µ

]
3r4

1

u3
1 + · · ·

Similarly,

ϕ−12 (u1, v1) =v1 −
2sµ
r1

u1 −
2
(
c6r1 − c3sµ

)
r2

1

u1v1 +
2sµ

(
c2r1 + 3c6r1 − 2c3sµ

)
3r3

1

u2
1 −

2c3

(
c3sµ − c6r1

)
r3

1

u1v2
1

+
2ξ1

3r4
1

u2
1v1 −

2
[
2c3sµr1 (c2 + c6) − r2

1 (c1 + c3c5) − 4c2
3s2
µ

]
3r4

1

u3
1 + · · · ,

with ξ1 = c6r2
1 (c2 + 3c6) − 2r1c3 (c2 + 5c6) sµ + 6c2

3s2
µ.

We define the left-return map ϕ− :
{
Σ̄ : u1, v1 < 0

}
7→ {Σ̃ : u2, v2 > 0} as

ϕ− (u1, v1, µ) =

(
ϕ−11 (u1, v1, µ)
ϕ−12 (u1, v1, µ)

)
.

Using a similar approach, we can write (5.1b) as the system

q1 = q2 + t2N2 (t2) g̃+ (q2) , (5.8)

the equation is equivalent to 
0
u1

v1

 =


0
u2

v2

 +


t2eT

1 N2 (t2) g̃ (q2)
t2eT

2 N2 (t2) g̃ (q2)
t2eT

3 N2 (t2) g̃ (q2)

 , (5.9)
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where

N2 (t2) = I +
t2

2!
Ã2 +

t2
2

3!
Ã2

2 +
t3
2

4!
Ã3

2 + · · · .

From the Eq (5.9), we could obtain

t2eT
1 N2 (t2) g̃+ (q2) = 0.

Upon observation, we note that the function

G2 (t2, u2, v2) = eT
1 N2 (t2) g̃+ (q2) = v2 +

t2

2

(
rµ + d5u2 + d6v2

)
+

t2
2

6
η2 + · · ·

where η2 = d6rµ + d5s2 + (d2 + d6) d5u2 +
(
d4 + d3d5 + d2

6

)
v2, with rµ = r2 + µ and s2 = r1r2

s1
, satisfies

G2(0, 0, 0) = 0 and ∂G2
∂t2

(0, 0, 0) =
rµ
2 , 0. Therefore, by the implicit function theorem(IFT), there exists

a function related to t2 (u2, v2) such that G2 (t2 (u2, v2) , u2, v2) ≡ 0 in a neighborhood of (0, 0, 0). This
function is expressed as

t2 (u2, v2) = −
2v2

rµ
+

2d5u2v2

r2
µ

+
2
(
d6rµ − 2d5s2

)
v2

2

3r3
µ

−
2d2

5u2
2v2

r3
µ

−
4d5

(
(d2 + d6) rµ − 3d5s2

)
u2v2

2

3r4
µ

+ · · · .

By substituting t2 into the second and third equations of (5.9), we obtain(
u1

v1

)
=

(
ϕ+

21 (u2, v2)
ϕ+

22 (u2, v2)

)
, (5.10)

where

ϕ+
21 (u2, v2) =u2 −

2s2v2

rµ
−

2
(
d2rµ − d5s2

)
u2v2

r2
µ

+
2s2

(
(3d2 + d6) rµ − 2d5s2

)
v2

2

3r3
µ

+
2d5

(
d2rµ − d5s2

)
u2

2v2

r3
µ

+
2ξ2u2v2

2

3r4
µ

+
2
[
r2
µ (d2d3 − 2d1) + 2d2s2

(
2d5s2 − d6rµ − d2rµ

) ]
3r4

µ

v3
2 + · · ·

ϕ+
22 (u2, v2) = − v2 +

2
(
d5s2 + d6rµ

)
v2

2

3r2
µ

+
2d5

(
(d2 − d6) rµ − 2d5s2

)
u2v2

2

3r3
µ

−
2
(
2d5s2rµ(d2 + d6) − r2

µ(d4 + d3d5) − 4d2
5 s2

2

)
v3

2

3r4
µ

+ · · ·

where ξ2 = 6d2
5 s2

2 − 2d5s2 (5d2 + d6) rµ + d2 (3d2 + d6) r2
µ. We define the right-return map

ϕ+ :
{
Σ̃ : u2, v2 > 0

}
7→

{
Σ̃ : u1, v1 < 0

}
as

ϕ+ (u2, v2, µ) =

(
ϕ+

21 (u2, v2, µ)
ϕ+

22 (u2, v2, µ)

)
.
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The Poincaré map is defined as the composition of the half-return maps ϕ− and ϕ+. It maps the set
Ω : {Σ̃ : u, v < 0} to {Σ̃ : u, v < 0} given by

Ω(u, v, µ) = ϕ+ (
ϕ−(u, v, µ)

)
=

(
Ω1(u, v, µ)
Ω2(u, v, µ)

)
, (5.11)

where Ω1 and Ω2 are given as

Ω1(u, v, u) =

(
4s2sµ
r1rµ

− 1
)

u −
2s2

rµ
v +

[4s2

(
c6r1 − c3sµ

)
r2

1rµ
+

2
(
d2rµ − d5s2

)
r2
µ

−
8s2sµ

(
(3d2 + d6) rµ − 2d5s2

)
3r1r3

u

]
uv +

[2
(
c2r1 + c3sµ

)
3r2

1

−
4s2sµ

(
c2r1 + 3c6r1 − 2c3sµ

)
3r3

1rµ
−

4sµ
(
d2rµ − d5s2

)
r1r2

µ

+
8s2s2

µ

(
(3d2 + d6) rµ − 2d5s2

)
3r2

1r3
µ

]
u2 +

2s2

(
(3d2 + d6) rµ − 2d5s2

)
3r3

µ

v2 + · · ·

Ω2 (u, v, µ) =
2sµ
r1

u − v +

2
(
c6r1 − c3sµ

)
r2

1

−
8sµ

(
d5s2 + d6rµ

)
3r1r2

µ

 uv

+

8s2
µ

(
d5s2 + d6rµ

)
3r2

1r2
µ

−
2sµ

(
c2r1 + 3c6r1 − 2c3sµ

)
3r3

1

 u2

+
2
(
d5s2 + d6rµ

)
3r2

µ

v2 + · · · .

Then, the fixed points (u, v) of this map are determined byΩ1(u, v, µ) = u,

Ω2(u, v, µ) = v.
(5.12)
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