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1. Introduction

The interactions between predators and their prey have always been and remain the main topics
in both ecological and mathematical studies. Several researchers have established mathematical
models that depend on the interactions between predators and prey. A famous model of predator-
prey interactions was developed by Leslie [1,2]. In fact, in most ecosystems, there are many possible
food chains that make up a food web, including a number of food chain systems consisting of three
species [3]. Aziz-Alaoui therefore created a Leslie-Gower system for the tritrophic population to make
the original model more realistic [4]. To improve the performance of the three-species system, Nindjin
and Aziz-Alaoui introduced the Holling II functional response to the model [5]. Because biological
population systems are inevitably subject to environmental disturbances, we need to introduce random
noise to study them. Indeed, many studies have demonstrated that environmental noise causes a
continuous variation of some of the key parameters of ecological dynamics, such as growth rates,
around some average value [6–9].
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To simulate the parameters of a changing environment, there are two common methods. One method
is to assume that the parameters can be well represented by a linear function of white noise (see
example [10]). Gaussian white noise can also simulate complex stochastic dynamical behavior in
nonlinear systems (see example [11]). Similarly, we can assume that the growth rate or mortality rate
of a population is affected by the linear white noise. This can be written as follows:

a(t) = ā +
αdB(t)

dt
,

where ā , which can be obtained by direct calculation, represents the average value of a over the
long term. B(t) is the independent standard Brownian motion defined on a complete probability space{
Ω,F , {Ft}t≥0 ,P

}
with the σ− filtration {Ft}t≥0 satisfying the usual conditions [12], and α denotes the

noise density of B(t).
From a biological standpoint, this linear white noise is somewhat flawed. This flaw has been mildly

criticized by Zhang et al. [13] and Cai et al. [14]. Next, we will explain this unreasonable part from
both biological and mathematical perspectives. We assume that for any time interval [0, t], 〈a(t)〉 is the
time average of a(t). According to direct calculation, we obtain:

〈a(t)〉 :=
1
t

∫ t

0
a(s)ds = ā +

αB(t)
t
∼ N

(
ā,
α2

t

)
, (1.1)

where N (·, ·) is a one-dimensional Gaussian distribution. It is evident that the average state 〈a(t)〉 on
[0, t] has a variance of α2

t , which approaches infinity as t → 0+. This leads to an unreasonable outcome
where the stochastic fluctuation of the growth rate or mortality rate a(t) becomes very large for a small
time interval.

Another method is to assume that the parameters follow a mean-reverting stochastic process, i.e.,
each parameter obeys a certain stochastic differential equation (SDE). We suppose that the variable ln a
is affected by an Ornstein-Uhlenbeck process [15,16], and it is described by the following stochastic
differential equation:

d(ln a) = α [ln ā − ln a(t)] dt + σdB(t), (1.2)

where α is the speed of reversion andσ is the intensity of volatility, respectively. B(t) is the independent
standard Brownian motion, which is the same as above. As stated by Mao [17], ln a(t) has a unique
explicit solution in the form below:

ln a(t) = ln ā + [ln a(0) − ln ā]e−αt + σ

∫ t

0
e−α(t−s)dB(s), (1.3)

which shows that the variable ln a(t) ∼ N
(
ln ā + (ln a(0) − ln ā)e−αt, σ2(1− e−2αt

)
/(2α)

)
. It is

noted that
lim
t→0+
E(ln a(t)) = ln a(0), lim

t→0+
Var(ln a(t)) = 0,

lim
t→∞
E(ln a(t)) = ln ā, lim

t→∞
Var(ln a(t)) =

σ2

2α
.

In reality, many biological systems may have continuously changing environments due to the
interaction of numerous variables. Consequently, mean-reverting processes may be more appropriate
for modeling parameters. In most biological systems, both population growth and mortality rates

AIMS Mathematics Volume 9, Issue 7, 18910–18928.



18912

are limited and tend to oscillate around an average value over time. Therefore, we use mean
reversion processes to model stochastic perturbations to prevent unrealistic values of growth or
mortality rates [15].

In this paper, we are interested in a stochastic three-species food chain Leslie-Gower model with
the standard white noise and the Holling-II functional response as

dx(t) = x(t)
(
a1 − b1x(t) − v0y(t)

x(t)+d0

)
dt,

dy(t) = y(t)
(
−a2 +

v1 x(t)
x(t)+d0

−
v2z(t)

y(t)+d2

)
dt,

dz(t) = z(t)
(
a3 −

v3z(t)
y(t)+d3

)
dt.

(1.4)

All parameters a1, a2, a3, b1, v0, v1, v2, v3, d0, d2, d3 are positive. Toxin-producing phytoplankton (TPP)
has a stabilizing role in aquatic systems and can be used as a biological control mechanism [18]. We
consider a realistic three-species food chain model consisting of TPP-zooplankton-fish populations.
Since the top predator z is assumed to be a sexually reproducing species, the growth of z has two
phases: A linear phase and a quadratic phase [19]. In this specific case, the TPP population (prey) of
size x serves as the only food for the predatory zooplankton population of size y. This zooplankton
population, in turn, serves as a favorite food for the generalist vertebrate predator fish population of
size z. The predatory population dies out exponentially in the absence of its prey. And the loss to a
predatory population is proportional to the reciprocal of the per capita availability of its most favorite
food. a1 and a3 are the intrinsic growth rates of prey population TPP and top predator fish populations,
respectively, and a2 is the intrinsic mortality rate of zooplankton in the absence of the only food x. b1

measures the strength of intra-specific competition among the individuals of the prey species x(TPP).
The parameters v0, v1, v2, and v3 are the maximum values that the per capita growth rate can attain. For
example, the release of the TPP toxin reduces zooplankton growth and leads to massive zooplankton
mortality, which is the biological significance of v1 . d0 quantifies the extent to which the environment
provides protection to the prey TPP and can be thought of as a refuge or a measure of the effectiveness
of the prey in evading a predator’s attack. d2 describes the value of zooplankton when the average
mortality rate of y reaches v2

2 . The mortality of the top predator fish population due to the scarcity
of it is favorite food, zooplankton, is measured by d3 . The third term on the right-hand side in the
first equation of the system (1.4) is obtained by considering the probable effect of the density of the
TPP’s population on zooplankton’s attack rate; the third term on the right-hand side in the second
equation of the system (1.4) represents the per capita functional response of the vertebrate predator
fish population [20]; the second term on the right-hand side in the third equation of the system (1.4)
depicts the loss in the top predator (fish population).

Based on the above literature, we want to make system (6.3) more realistic. Therefore, we use the
Orenstein-Uhlenbeck process to simulate the stochastic dynamic process. We let

d(ln ai) = αi [ln āi − ln ai] dt + βidBi(t), i = 1, 2, 3,

where Bi(t) are three independent Brownian motions, αi > 0 are the speed of reversion, and βi > 0 are
the intensity of volatility. We let ri = ln ai, i=1,2,3, and then we modify system (6.3) accordingly.
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dx(t) = x(t)
(
er1(t) − b1x(t) − v0y(t)

x(t)+d0

)
dt,

dy(t) = y(t)
(
−er2(t) +

v1 x(t)
x(t)+d0

−
v2z(t)

y(t)+d2

)
dt,

dz(t) = z(t)
(
er3(t) −

v3z(t)
y(t)+d3

)
dt,

dr1(t) = α1 [r̄1 − r1(t)] dt + β1dB1(t),
dr2(t) = α2 [r̄2 − r2(t)] dt + β2dB2(t),
dr3(t) = α3 [r̄3 − r3(t)] dt + β3dB3(t).

(1.5)

We begin by demonstrating that system (1.5) has a unique global solution in Section 3.
Subsequently, the ultimate boundedness of the system (1.5) is given in Section 4. The existence of
the stationary distribution is then shown in Section 5. Additionally, the extinction of populations is
discussed in Section 6. Lastly, in Section 7, we carry out some computer numerical simulations to
verify the above theoretical results.

2. Preliminaries

We define two necessary sets: Gn = (−n, n)×(−n, n)×(−n, n) andRn
+ = {(x1, · · · , xn) ∈ Rn|xk > 0, 0 ≤

k ≤ n}, || · || is the Euclidean norm. Considering a stochastic differential equation in the following form

dX(t) = φ(t, X(t))dt +

n∑
j=1

σ j(t, X(t))dB j(t). (2.1)

The existence of a stationary solution to system (1.5) with any initial value is proved by the lemma
of Khaminskii [21].

Lemma 1. (Khasminskii). Let the vectors ψ(s, x), σ1(s, x), . . . , σl(s, x) (s ∈ [t0,T ] , x ∈ Rm) be
continuous functions of (s, x), such that, for some constants M, the following conditions hold in the
entire domain of definition:

|ψ(s, x) − ψ(s, y)| +
m∑

j=1

∣∣∣σ j(s, x) − σ j(s, y)
∣∣∣ ≤ M|x − y|,

|ψ(s, x)| +
m∑

j=1

∣∣∣σ j(s, x)
∣∣∣ ≤ M(1 + |x|).

(2.2)

Further, there exists a non-negative function V∗(x) such that

LV∗(x) ≤ −1, ∀x ∈ Rm\H, (2.3)

where H is a compact subset defined on Rm. Then the Markov process (2.1) has at least one stationary
solution X(t), which has a stationary distribution ω(·) on Rm.

3. Existence and uniqueness of the global solution

Theorem 1. For any initial value, (x0, y0, z0, ri0) ∈ R3
+ × R

3, there exists a unique solution
(x(t), y(t), z(t), ri(t)) of the system (1.5) on t > 0, where i = 1, 2, 3, and it will remain in R3

+ × R
3

with probability one.
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Proof. It is easy to verify that Eq (1.5) satisfies the linear growth condition and the local Lipschitz
condition. So there exists a locally unique solution (x(t), y(t), z(t), ri(t)) defined on t ∈ [0, τe) (see [17]).
Where i = 1, 2, 3 and τe is the explosion time, we only need to verify τe = ∞. We let n be sufficiently
large so that x0, y0 and z0 are in the interval [−n, n], defining the stopping time as

τn = inf {t ∈ [0, τe] : lnx(t) < (−n, n) or lny(t) < (−n, n) or lnz(t) < (−n, n) or ri(t) < (−n, n)} ,

where i = 1, 2, 3. Obviously, τn is monotonically increasing as n → ∞. Set τ∞ = lim
n→+∞

τn, obviously,
τ∞ ≤ τe. So, it is only necessary to prove that τ∞ = ∞. If not, then there exists a constant T > 0 and
ε ∈ (0, 1) such that P{τ∞ ≤ T } > ε. Therefore, there exists an integer n1 > n0, such that

P{τn ≤ T } ≥ ε,∀n ≥ n1. (3.1)

To simplify the proof, we omit all bracketed t. For any t ≤ τn, a non-negative Lyapunov function
V0(x, y, z, ri) is constructed as follows:

V0(x, y, z, ri) = [x + y + z − 3 − ln x − ln y − ln z] +
r4

1

4
+

r4
2

4
+

r4
3

4
. (3.2)

Applying Ito’s formula, we have

LV =(x − 1)(er1 − b1x −
v0y

x + d0
) + (y − 1)(−er2 +

v1x
x + d0

−
v2z

y + d2
) + (z − 1)(er3 −

v3z
y + d3

)

+

3∑
i=1

(αir3
i r̄i +

3
2

r2
i β

2
i − αir4

i )

≤er2 + (er1 + b1)x + er3z − b1x2 −
(v0 − v1)xy

x + d0
−

v2z(y − 1)
y + d2

−
(v1x − v0y)

x + d0
− er2y −

(v3z2 − v3z)
y + d3

+

3∑
i=1

(αir3
i r̄i +

3
2

r2
i β

2
i − αir4

i ) ≤ Π0 < ∞,

where

Π0 = sup
(x,y,z,ri)∈R3

+×R
3

{er2 + (er1 + b1)x + er3z − b1x2 −
(v0 − v1)xy

x + d0
−

v2z(y − 1)
y + d2

−
(v1x − v0y)

x + d0
− er2y

−
(v3z2 − v3z)

y + d3
+

3∑
i=1

(αir3
i r̄i +

3
2

r2
i β

2
i − αir4

i )}. i = 1, 2, 3.

After the routine calculation, it implies:

dV ≤ Π0 + β1r3
1dB1(t) + β2r3

2dB2(t) + β3r3
3dB3(t). (3.3)

Integrating both sides of inequality (3.3) from 0 to τn ∧ T and taking expectations, we get

E[V(x (τn ∧ T ) , y (τn ∧ T ) , z (τn ∧ T ) , ri (τn ∧ T ))] ≤ V (x (0) , y (0) , z (0) , ri (0)) + Π0T. (3.4)

When τn ≤ T , let Ωn = τn ≤ T . Then P(Ωn) > ε holds inequality (3.1). Notice that for any ω ∈ Ωn,
there exists i such that x(τn, ω), y(τn, ω), z(τn, ω) = −n or n.
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According to Eq (3.4), it can be deduced that

V (x (0) , y (0) , z (0) , ri (0)) + Π0T ≥E[1Ωn(ω)V (x (τn, ω) , y (τn, ω) , z (τn, ω) , ri (τn, ω))]

≥εmin
{

en − 1 − n, e−n − 1 + n,
n4

4

}
, i = 1, 2, 3,

as n→ ∞, we have

∞ > V (x (0) , y (0) , z (0) , ri (0)) + Π0T = ∞, i = 1, 2, 3, (3.5)

and Theorem 1 is proved. �

4. Ultimate boundness

Ecosystems can only support a limited number of individuals due to finite resources. When
a population exceeds this limit, the environment cannot provide enough sources for its survival.
This means that population density has an upper bound and will stabilize over time. To show
this theoretically, we need to define stochastically ultimate boundedness [22] and apply it to
the system (1.5).

Definition 1. System (1.5) is said to be stochastically ultimately bounded if for any ε ∈ (0, 1), there is
a positive constant χ = χ(ω), such that for any initial value (x0, y0, z0, ri0), where i = 1, 2, 3, and the
solution of system (1.5) has the property that

lim sup
t→∞

P
{ √

x2 + y2 + z2 > χ
}
< ε. (4.1)

Lemma 2. Let θ ∈ (0, 1), then there is a positive constant M = M(θ), which is independent of the
initial value (x0, y0, z0, ri0), where i = 1, 2, 3, such that the solution of system (1.5) has the property that

lim sup
t→∞

E
{
|(x, y, z)|θ

}
< M. (4.2)

Proof. Define the Lyapunov function W0 : R3
+ × R

3 → R

W0 =
xθ

θ
+

yθ

θ
+

zθ

θ
+

3∑
i=1

r2θ+2
i

2θ + 2
.

Applying the generalized Ito’s formula and mathematical expectation to eλtW0, we obtain

E
[
eλtW0(x, y, z, ri)

]
= E

[
W0(x(0), y(0), z(0), ri(0))

]
+

∫ t

0
E

{
L

[
eλsW0(x, y, z, ri)

]}
ds, i = 1, 2, 3,

(4.3)
where λ = θmin{α1, α2, α3}. Note that

LW0 =eλ[
λ

θ
xθ +

λ

θ
yθ +

λ

θ
zθ +

λ

2θ + 2

3∑
i=1

r2θ+2
i + xθ(er1 − b1x −

v0y
x + d0

) + yθ(−er2 +
v1x

x + d0
−

v2z
y + d2

)
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+ zθ(er3 −
v3z

y + d3
) +

3∑
i=1

(αir2θ+1
i r̄i − αir2θ+2

i +
2θ + 1

2
r2θ

i β
2
i )]

≤eλ{(α1 + er1)xθ + (α3 + er3)zθ − (er2 − α2)yθ − b1xθ+1 −
xy(v0xθ−1 − v1yθ−1)

x + d0
−

v2zyθ

y + d2
−

v3zθ+1

y + d3

+

3∑
i=1

[αir2θ+1
i r̄i −

αi

2
r2θ+2

i + (θ + 1)r2θ
i β

2
i ]} ≤ eλκ(θ),

where

κ(θ) := sup
(x,y,z,ri)∈R3

+×R
3

{(α1 + er1)xθ + (α3 + er3)zθ − (er2 − α2)yθ − b1xθ+1 −
xy(v0xθ−1 − v1yθ−1)

x + d0
−

v2zyθ

y + d2

−
v3zθ+1

y + d3
+

3∑
i=1

[αir2θ+1
i r̄i −

αi

2
r2θ+2

i + (θ + 1)r2θ
i β

2
i ]}. i = 1, 2, 3.

Thus, we can obtain

E
[
eλtW0(x, y, z, ri)

]
≤ E

[
W0(x(0), y(0), z(0), ri(0))

]
+
κ(θ)

(
eλt − 1

)
λ

.

Then we have

lim sup
t→∞

E[|(x, y, z)|θ] ≤ 3
θ
2 θ lim sup

t→∞
E[W0(x, y, z, ri)]

≤ 3
θ
2 θ lim

t→∞
e−λtE[W0(x(0), y(0), z(0), ri(0))] + 3

θ
2 θ lim

t→∞

κ(θ)(eλt − 1)
λeλt

≤ 3
θ
2 θ
κ(θ)
λ
,

(4.4)

where i = 1, 2, 3, and then the result (4.2) holds by setting M(θ) = 3
θ
2 θ κ(θ)

λ
. �

Theorem 2. The equation of system (1.5) is stochastically ultimately bounded.

Proof. By Lemma 2, there exists M such that

lim sup
t→∞

E
√
|(x, y, z)| < M.

Now, for any ε > 0, let χ =
√

3 κ(0.5)2

4ε2λ2 . Then, using Chebyshev’s inequality, we can conclude that

P(|(x, y, z)| > χ) ≤
E[

√
|(x, y, z)|]
√
χ

.

Hence,

lim sup
t→∞

P(|(x, y, z)| > χ) ≤
M
M
ε

= ε.

�
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5. Existence a stationary distribution

In biology, one of the primary goals is to comprehend the long-term behavior of systems. In this
part of the paper, we demonstrate that system (1.5) possesses a stationary distribution that can be used
to make long-term predictions for the system under the influence of stochastic perturbations. We also
derive the sufficient conditions that guarantee the existence of such a stationary distribution for the
system (1.5).

Definition 2. Define M0 to be a natural number that satisfies the following conditions

M0 ∈

max

−
√

2d2
0b1

d2
0b2

1 + v2
1 + 2d0b1v1

,
2 + Π1∑3

i=1 ri

 ,min

 d0

4v0
,

1

4
(

v2
d2

+ v3
d3

) , √ 2d2
0b1

d2
0b2

1 + v2
1 + 2d0b1v1


 ,

where

Π1 = sup
(x,y,z,ri)∈R3

+×R
3

{|er1 |x + |er3 |z +
y
2

+
z
2
−

b1x2

2
+ |er2 |y + (−er1 + er2 − er3 +

3∑
i=1

ri)M0 −
(v0 − v1)xy

x + d0

−
v2zy

y + d2
−

v3z2

y + d3
+

3∑
i=1

(αir̄ir3
i +

3
2

r2
i β

2
i −

1
2
αir4

i )},

where i = 1, 2, 3.

Theorem 3. For any initial value (x(0), y(0), z(0), ri(0)), where i = 1, 2, 3, the system (1.5) has a
stationary distribution with the definition of M0.

Proof. We divide the relevant proof into the following two steps.
Step 1. Define the Lyapunouv Function V1 : R3

+ × R
3 → R

V1 = M0[− ln x − ln y − ln z −
3∑

i=1

ri

αi
] + x + y + z +

3∑
i=1

r4
i

4
. (5.1)

Applying Ito’s formula to the definition of M0, we obtain

LV1 =(x − M0)(er1 − b1x −
v0y

x + d0
) + (y − M0)(−er2 +

v1x
x + d0

−
v2z

y + d2
) + (z − M0)(er3 −

v3z
y + d3

)

+

3∑
i=1

(−M0r̄i + M0ri + αir̄ir3
i +

3
2

r2
i β

2
i − αir4

i )

≤ − M0

3∑
i=1

r̄i + |er1 |x + |er3 |z +
y
2

+
z
2
−

b1x2

2
+ |er2 |y + (−er1 + er2 − er3 +

3∑
i=1

ri)M0

−
(v0 − v1)xy

x + d0
−

v2zy
y + d2

−
v3z2

y + d3
+

3∑
i=1

(αir̄ir3
i +

3
2

r2
i β

2
i −

1
2
αir4

i )

+ M0(b1x +
v1x

x + d0
+

v2z
y + d2

+
v3z

y + d3
+

v0y
x + d0

) −
b1x2

2
−

y
2
−

z
2
−

3∑
i=1

1
2
αir4

i
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≤ − 2 + M0(b1x +
v1x

x + d0
+

v2z
y + d2

+
v3z

y + d3
+

v0y
x + d0

) −
b1x2

2
−

y
2
−

z
2
−

3∑
i=1

1
2
αir4

i .

Noting that the function V1 tends to∞ as x, y, or z approaches the boundary of R+ or as ||(x, y, z, ri)|| →
∞. Thus, there exists a point (x0, y0, z0, r0

i ) in the interior of R3
+ ×R

3, at which the value of the function
will be minimized. A non-negative function V2(x, y, z, ri) can be constructed as

V2(x, y, z, ri) = V1(x, y, z, ri) − V1(x0, y0, z0, r0
i ). i = 1, 2, 3.

According to Ito’s formula, we have

LV2 ≤ −2 + M0(b1x +
v1x

x + d0
+

v2z
y + d2

+
v3z

y + d3
+

v0y
x + d0

) −
b1x2

2
−

y
2
−

z
2
−

3∑
i=1

1
2
αir4

i . (5.2)

Step 2. Considering a closed set Hε in the form

Hε =

{
(x, y, z, ri) ∈ R3

+ × R
3 | x ∈

[
ε2,

1
ε2

]
, y ∈

[
ε4,

1
ε4

]
, z ∈

[
ε4,

1
ε4

]
, ri ∈

[
−

1
ε
,

1
ε

]}
,

and we define

Π2 = sup
(x,y,z,ri)∈R3

+×R
3

{−2 + M0(b1x +
v1x

x + d0
+

v2z
y + d2

+
v3z

y + d3
+

v0y
x + d0

) −
b1x2

4
−

y
4
−

z
4
−

3∑
i=1

1
4
αir4

i }.

Let ε ∈ (0, 1) be a sufficiently small number, such that the following inequalities hold:

−2 + Π2 −
min{b, 1, αi}

4
(
1
ε

)4 ≤ −1, i = 1, 2, 3. (5.3)

−2 +

(
M0b1 +

v1M0

d0

)
ε2 ≤ −1. (5.4)

−2 +
1
2

M2
0b1 +

v2
1M2

0

2d2
0b1

+
v1M2

0

d0
+

M0v0

d0
ε4 ≤ −1. (5.5)

−2 +
1
2

M2
0b1 +

v2
1M2

0

2d2
0b1

+
v1M2

0

d2
0

+ M0

(
v2

d2
+

v3

d3

)
ε4 ≤ −1. (5.6)

We verify LV2(x, y, z, ri) ≤ −1 for any (x, y, z, ri) ∈
(
R3

+ × R
3
)
\Hε. Noting that

(
R3

+ × R
3
)
\Hε =⋃9

k=1H
c
k,ε, where

Hc
1,ε =

{
(x, y, z, ri) ∈ R3

+ × R
3 | x ∈

(
1
ε2 ,∞

)}
,Hc

2,ε =

{
(x, y, z, ri) ∈ R3

+ × R
3 | y ∈

(
1
ε4 ,∞

)}
,

Hc
3,ε =

{
(x, y, z, ri) ∈ R3

+ × R
3 | z ∈

(
1
ε4 ,∞

)}
,

Hc
j,ε =

{
(x, y, z, ri) ∈ R3

+ × R
3 | |ri| ∈

(
1
ε
,∞

)}
, j = 4, 5, 6; i = 1, 2, 3,
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Hc
7,ε =

{
(x, y, z, ri) ∈ R3

+ × R
3 | x ∈

(
0, ε2

)}
,Hc

8,ε =
{
(x, y, z, ri) ∈ R3

+ × R
3 | y ∈

(
0, ε4

)}
,

Hc
9,ε =

{
(x, y, z, ri) ∈ R3

+ × R
3 | z ∈

(
0, ε4

)}
.

Case 1. If (x, y, z, ri) is located in the set defined by Hc
1,ε, then one can obtain the corresponding results

by combining Eqs (5.2) and (5.3).

LV2 ≤ −2 + Π2 −
b1x2

4
≤ −2 + Π2 −

b1

4
(
1
ε

)4 ≤ −1.

Case 2. If (x, y, z, ri) is located in the set defined by Hc
2,ε and Hc

3,ε, consequently, from (5.2) and (5.3),
we can obtain the relevant result.

LV2 ≤ −2 + Π2 −
min{y, z}

4
≤ −2 + Π2 −

1
4

(
1
ε

)4 ≤ −1.

Case 3. For any (x, y, z, ri), which is located in the set defined in Hc
j,ε, according to Eqs (5.2) and (5.3),

we obtain

LV2 ≤ −2 + Π2 −
αir4

i

4
≤ −2 + Π2 −

αi

4
(
1
ε

)4 ≤ −1, j = 4, 5, 6 and i = 1, 2, 3.

Case 4. If (x, y, z, ri) ∈ Hc
7,ε, it follows from (5.2) and (5.4) that

LV2 ≤ −2 + M0b1x +
v1M0

d0
x −

(
1
4
−

M0v0

d0

)
y −

(
1
4
−

v2M0

d2
−

v3M0

d3

)
z

≤ −2 + M0b1x +
v1M0

d0
x ≤ −2 +

(
M0b1 +

v1M0

d0

)
ε2 ≤ −1.

Case 5. If (x, y, z, ri) lie within the set demarcated by Hc
8,ε, the relevant conclusion is deduced

through (5.2) and (5.5).

LV2 ≤ −2 +
1
2

M2
0b1 +

v2
1M2

0

2d2
0b1

+
v1M2

0

d0
+ M0

v0

d0
y −

(
1
4
−

v2M0

d2
−

v3M2

d3

)
z

≤ −2 +
1
2

M2
0b1 +

v2
1M2

0

2d2
0b1

+
v1M2

0

d0
+ M0

v0

d0
ε4 ≤ −1.

Case 6. In the event that (x, y, z, ri) is situated within the set defined by Hc
9,ε, the associated findings

can be calculated by (5.2) and (5.6).

LV2 ≤ −2 +
1
2

M2
0b1 +

v2
1M2

0

2d2
0b1

+
v1M2

0

d0
+ M0

(
v2

d2
+

v3

d3

)
z −

(
1
4
−

M0v0

d0

)
y

≤ −2 +
1
2

M2
0b1 +

v2
1M2

0

2d2
0b1

+
v1M2

0

d0
+ M0

(
v2

d2
+

v3

d3

)
ε4 ≤ −1.
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Defining

A =
1
2

M2
0b1 +

v2
1M2

0

2d2
0b1

+
v1M2

0

d0
,

In summary, we can obtain that there exists a sufficiently small constant ε such that LV2 (x, y, z, ri) ≤ −1
for any (x, y, z, ri) ∈

(
R3

+ × R
3
)
\Hε, where ε satisfies that

ε ≤ min

1,

√
1

M0b1 + v1 M0
d0

,
4

√
(1 − A)d0

M0v0
, 4

√
1 − A

M0

(
v2
d2

+ v3
d3

)
 ,

for any Π2 < 1. And for any Π2 > 1, we set

ε ≤ min

1, 4

√
min {1, b1, αi}

4 (Π2 − 1)

 , i = 1, 2, 3.

�

6. Extinction

Theorem 4. We define

ϕi(t) = ai −
β2

i

4αi
+
β2

i

4αi
e−2αit, ϕ̄i = lim

t→+∞
t−1

∫ t

0
ϕi(s)ds = ai −

β2
i

4αi
, i = 1, 2, 3.

When ϕ1 < 0, ϕ2 < 0, ϕ3 < 0, then x(t), y(t), z(t) are extinct.

Proof. From Eq (1.1) and the definition of the Ornstein-Uhlenbeck process, we have

ai(t) = āi + [ai(0) − āi] e−αit + βi

∫ t

0
e−αi(t−s)dBi(s), i = 1, 2, 3. (6.1)

Equation (6.1) clearly indicates that a(t) follows the Gaussian distribution N (E [ai(t)] ,VAR [ai(t)])
on [0, t]. It is easy to derive that E [ai(t)] = āi + [ai(0) − āi] e−αit and VAR [ai(t)] =
β2

i
2αi

(
1 − e−2αit

)
. Therefore, we find that the term βi

∫ t

0
e−αi(t−s)dBi(s) follows the normal distribution

N
(
0, β

2
i

2αi

(
1 − e−2αit

))
. Then, it is equivalent to βi

√
2αi

√
1 − e−2αit dBi(t)

dt . Let σi(t) =
βi
√

2αi

√
1 − e−2αit, where

Bi(t) stands for a standard Brownian motion. Thus, (6.1) can be almost surely written as follows: [23]

ai(t) = ai + (ai(0) − ai) e−αit + σi(t)
dBi(t)

dt
, i = 1, 2, 3. (6.2)

And then we modify system (1.5) accordingly.
dx(t) = x(t)

(
a1 + [a1(0) − a1] e−α1t − b1x(t) − v0y(t)

x(t)+d0

)
dt + σ1x(t)dB1(t),

dy(t) = y(t)
(
a2 + [a2(0) − a2] e−α2t +

v1 x(t)
x(t)+d0

−
v2z(t)

y(t)+d2

)
dt + σ2y(t)dB2(t),

dz(t) = z(t)
(
a3 + [a3(0) − a3] e−α3t −

v3z(t)
y(t)+d3

)
dt + σ3z(t)dB3(t).

(6.3)
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Applying Itô formula to ln x(t), ln y(t), ln z(t), we can get

d ln x(t) =

(
ϕ1 + [a1(0) − a1] e−α1t − b1x(t) −

v0y(t)
x(t) + d0

)
dt + σ1dB1(t),

d ln y(t) =

(
ϕ2 + [a2(0) − a2] e−α2t +

v1x(t)
x(t) + d0

−
v2z(t)

y(t) + d2

)
dt + σ2dB2(t),

d ln z(t) =

(
ϕ3 + [a3(0) − a3] e−α3t −

v3z(t)
y(t) + d3

)
dt + σ3dB3(t).

Integrating from 0 to t, we have

ln x(t) = ln x(0) +

∫ t

0
ϕ1(s)ds −

a1(0) − a1

α1

(
e−α1t − 1

)
− b1

∫ t

0
x(s)ds

−v0

∫ t

0

y(s)
x(s) + d0

ds +

∫ t

0
σ1(s)dB1(s),

(6.4)

ln y(t) = ln y(0) +

∫ t

0
ϕ2(s)ds −

a2(0) − a2

α2

(
e−α2t − 1

)
+ v1

∫ t

0

x(s)
x(s) + d0

ds

− v2

∫ t

0

z(s)
y(s) + d2

ds +

∫ t

0
σ2(s)dB2(s),

(6.5)

ln z(t) = ln z(0) +

∫ t

0
ϕ3(s)ds −

a3(0) − a3

α3

(
e−α3t − 1

)
+ v3

∫ t

0

z(s)
y(s) + d3

ds +

∫ t

0
σ3(s)dB3(s). (6.6)

From Eq (6.4), we obtain

t−1 ln
x(t)
x(0)

≤ ϕ̄1 + ε1 + t−1
∫ t

0
σ1(s)dB1(s) −

a1(0) − a1

tα1

(
e−α1t − 1

)
. (6.7)

Then, according to the strong law of large numbers and the definition of the Ornstein-Uhlenbeck
process, if ϕ̄1 + ε1 < 0, we have limt→+∞ x(t) = 0. Similarly, when ϕ̄2 < 0 and ϕ̄3 < 0, limt→+∞ y(t) = 0
and limt→+∞ z(t) = 0. Theorem 4 is proved. �

So far, we have proved that there is a unique global solution for the system (1.5), the solution to
the system (1.5) is stochastically ultimately bounded, the system (1.5) has a stationary distribution,
and the system (1.5) has an extinction. Next, we will perform some computer simulations to verify
our conclusions.

7. Numerical simulations

In this section, we will use numerical simulations to verify our conclusions. Using the Milstein
higher order method, we obtain the discretization equation for system (1.5). The corresponding
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discretization equation is as follows:



x j+1 = x j + x j
(
a j

1 − b1x j −
v0y j

x j+d0

)
∆t,

y j+1 = y j + y j
(
−a j

2 + v1 x j

x j+d0
−

v2z j

y j+d2

)
∆t,

z j+1 = z j + z j
(
a j

3 −
v3z j

y j+d3

)
∆t,

a j+1
1 = a j

1 + α1

(
ā1 − a j

1

)
∆t + β1

√
∆tη j,

a j+1
2 = a j

2 + α2

(
ā2 − a j

2

)
∆t + β2

√
∆tξ j,

a j+1
3 = a j

3 + α3

(
ā3 − a j

3

)
∆t + β3

√
∆tζ j,

(7.1)

where ∆t > 0 denotes the time increment, and η j, ξ j, and ζ j are three independent stochastic variables
that follow the standard Gaussian distributionN(0, 1). Besides, (x j, y j, z j, a j

i ) is the corresponding value
of the jth iteration of the discretization Eq (7.1), where i = 1, 2, 3 and j = 1, 2, · · · . We will use some
different combinations of biological parameters in Table 1.

Table 1. List of biological parameters in the system (1.5).

Parameter Description
ā1 Average growth rate of Prey
ā2 Average mortality of Predator in the lack of Prey
ā3 Average growth rate of Top Predator
b1 Intraspecific competition coefficient of prey
v0 Maximum average rate of Prey reduction
v1 Maximum average rate of Predator reduction with the effect of Prey
v2 Maximum average rate of Predator reduction with the effect of Top Predator
v3 Maximum average rate of Top Predator reduction
d0 A factor measuring the degree of protection to Prey and Predator
d2 The value of Predator when the average mortality rate of Predator reaches v2

2
d3 Mortality of Top Predator due to scarcity of its favorite food, Predator
α1 The reversion speed of a1

α2 The reversion speed of a2

α3 The reversion speed of a3

β1 The intensity of volatility of a1

β2 The intensity of volatility of a2

β3 The intensity of volatility of a3

Based on the real datasets [4,18,24–27], we use the TPP-zooplankton-fish population food chain
system as an example. After determining the range of values for each parameter of the system (1.5)
(e.g., the values of the intensity of volatility βi(i=1,2,3) belong to [0, 5] [13,14,28]), we fixed some of
the parameter values by making reasonable assumptions in combination in Table 2.
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Table 2. Several combinations of biological parameters of the system (1.5) in Table 1.

Parameter Description
(A1) ā1 = 0.1, ā2 = 0.01, ā3 = 0.25, b1 = 0.2, v0 = 1, v1 = 3, v2 = 2, v3 = 1, d0 = 2

d2 = 1, d3 = 1, α1 = 0.3, α2 = 0.2, α3 = 0.4, β1 = 0.01, β2 = 0.01, β3 = 0.01
(A2) ā1 = 0.42, ā2 = 0.04, ā3 = 0.10, b1 = 2, v0 = 1, v1 = 3, v2 = 2, v3 = 1, d0 = 2

d2 = 1, d3 = 1, α1 = 0.3, α2 = 0.2, α3 = 0.4, β1 = 0.01, β2 = 0.01, β3 = 0.01
(A3) ā1 = 0.5, ā2 = 0.05, ā3 = 0.12, b1 = 2, v0 = 1, v1 = 3, v2 = 2, v3 = 1, d0 = 2

d2 = 1, d3 = 1, α1 = 0.3, α2 = 0.2, α3 = 0.4, β1 = 0.02, β2 = 0.01, β3 = 0.03
(A4) ϕ1 = −0.01, ϕ2 = 0.01, ϕ3 = 0.1, b1 = 2, v0 = 1, v1 = 3, v2 = 2, v3 = 1, d0 = 2

d2 = 1, d3 = 1, α1 = 0.3, α2 = 0.2, α3 = 0.4, β1 = 0.02, β2 = 0.01, β3 = 0.03
(A5) ϕ1 = 0.05, ϕ2 = −0.05, ϕ3 = 0.12, b1 = 2, v0 = 1, v1 = 3, v2 = 2, v3 = 1, d0 = 2

d2 = 1, d3 = 1, α1 = 0.3, α2 = 0.2, α3 = 0.4, β1 = 0.02, β2 = 0.01, β3 = 0.03
(A6) ϕ1 = 0.1, ϕ2 = 0.02, ϕ3 = −0.25, b1 = 0.5, v0 = 1, v1 = 0.5, v2 = 0.5, v3 = 1, d0 = 3

d2 = 1, d3 = 1, α1 = 0.3, α2 = 0.2, α3 = 0.4, β1 = 0.03, β2 = 0.01, β3 = 0.01

Example 1. In Table 1, we choose the combination A1-A3 as the value of biological parameters of
the system (1.5). Clearly, it follows from Theorem 1 that the system (1.5) is stochastically ultimately
bounded. By choosing the total number of iterations, Tmax = 2000. Then, we obtain Figure 1.

Remark 1. It can be seen from Figure 1 that the growth rates are disturbed around the given mean
value, which reflects the characteristics of the mean regression of the Ornstein-Uhlenbeck process. At
the same time, it can be seen that different coefficient combinations have different solutions, and the
solutions are all existing and unique. Thus, the conclusion of Theorem 1 can be verified.

Example 2. In Table 1, we choose the combinationA1-A3 as the value of the biological parameters of
the system (1.5). Obviously, it follows from Lemma 2 that the θth order moments of the solutions of the
system (1.5) are bounded, and the solutions of the system (1.5) are ultimately bounded. By choosing
the total number of iterations, Tmax = 2000. Then, we obtain Figure 2.

Remark 2. It can be seen from Figure 2 that the expected value of the above three coefficient
combinations (A1, A2, and A3) is less than an upper bound. With the increase in time t, the probability
P is gradually stable and greater than a constant, which means lim supt→∞ P(|(x, y, z)| > χ) ≤ ε . which
verifies the conclusion of Theorem 2.

Example 3. Based on Table 1, we select the A3 combination as the biological parameters of the
system (1.5). By Theorem 3, we know that the distribution of the system (1.5) exists. We set the number
of iterations to T = 2000. From Figure 3, we can see the system (1.5) has a stationary distribution.

Example 4. In Table 1, we choose the combination A4–A6 as the value of the biological parameters
of the system (1.5). As proven in Theorem 4, the system (1.5) possesses extinction. By choosing the
total number of iterations, Tmax = 2000. Then, we obtain Figure 4.
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Figure 1. Computer simulations of the change rate and the population of prey, predator, and
top predator of system (1.5). It can be intuitively seen that the images confirm Theorem 1:
System (1.5) has a unique global solution. The relevant parameters are determined by the
combination (A1)–(A3).

Figure 2. Computer simulations the θth order of solutions of system (1.5), then found an
upper bound M = 0.67. The system (1.5) is ultimately bounded, and the probability is less
than 1. The relevant parameters are determined by the combination (A1)–(A3).
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Figure 3. Computer simulations of the stationary system (1.5). The relevant parameters are
determined by the combination (A3).

Figure 4. The computer simulated the extinction of the system (1.5). When ϕ1 < 0, the prey
goes extinct; when ϕ2 < 0, the predator goes extinct; and when ϕ3 < 0, the top predator goes
extinct. All simulation parameters were selected from combinations (A4)–(A6).
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8. Conclusions

This paper focuses on the mathematical properties of the three-species food chain stochastic Leslie-
Gower model with the Ornstein-Uhlenbeck process. On the basis of previous research on food web
models, we consider that the real dynamic environment may be affected by random factors such as
seasonal changes and natural disasters, and then random noise is introduced. Compared to using
standard white noise methods, simulations with Ornstein-Uhlenbeck processes are more realistic and
reliable. Therefore, we demonstrate the feasibility of studying a more complex Leslie-Gower model
with the Ornstein-Uhlenbeck process. The main contributions of this paper are as follows:

We investigate the good properties of stochastic mathematical models with the Ornstein-Uhlenbeck
process, providing a new approach to studying the stochastic properties of the Leslie-Gower systems.
We derive the conditions for the existence and uniqueness of the global solution under stochastic
disturbance, as well as the conditions for the stochastic ultimate boundedness, the existence of a
stationary distribution, and the extinction.

However, there are still many open questions that warrant further research. In this paper, we only
study the effect of stochastic noise driven by the Ornstein-Uhlenbeck process on the three-species food
chain Leslie-Gower model, while the study of Markov transformation and Lévy jump is still scarce,
which is one of the future directions. Most existing studies assume that the system parameters are
constant or time-invariant, or they rarely consider the case of periodic coefficients. However, in reality,
the ecological environment that supports populations often exhibits cyclical patterns. Consequently, it
would be more realistic to study stochastic population systems with periodic coefficients.
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