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1. Introduction

Connectivity is one of the fundamental subjects in graph theory that is interesting to discuss
combinatorically and algorithmically. One of the concepts that researchers have developed in
connectivity is the concept of rainbow connection. Chartrand et al. developed the rainbow connection
concept in 2008, after the 9/11 attacks in 2001. The incident was thought to have occurred due
to weaknesses in the security of information transfer between secret agents [1]. Therefore, the
rainbow connection concept was developed to determine the minimum number of passwords required
to exchange encrypted information between two agents. The concept has been implemented in
general graph classes, including tree, complete, cycle, wheel, and complete multipartite graphs [2].
Researchers have intensively studied and implemented it in other classes of graphs. Rainbow
connections on graph operations, including comb product [3, 4], corona [5, 6], amalgamation [7],
direct product [8], strong product [8], lexicographic product [8], and cartesian product [9], have been
studied. The rainbow connection numbers of special graphs, for examples, flowers [10], origamis [11],
pizzas [11], n-crossed-prisms [12], stellars [13], pencils [14], subdivided-roofs [15], and rockets [16],
have also been shown. Similarly, for dense graphs [17], sparse graphs [18], and random graphs [19–22].
In this case, there may be one or more secure paths of information exchange between two agents, such
that the password used in each selected path will be different. If the information exchange involves
more than two agents from different divisions, the concept of a rainbow connection of a graph can
be extended to a hypergraph. In the context of a hypergraph, each agent in a division must have the
same password information so that when they receive the encrypted data, they can open it. As such,
Carpentier et al. developed the concept of rainbow connections in hypergraphs in 2014 [23].

The general terms and definitions in this article refer to Voloshin [24]. A hypergraph is a pairH =
(X(H),E(H)), where X(H) = {x1, x2, . . . , xn} is a non-empty finite set and E(H) = {E1, E2, . . . , Et} is a
collection of subsets of X(H) where Ei , ∅ for each i ∈ {1, 2, . . . , t}. We call X(H) and E(H) the vertex
set and the edge set of H , respectively. A hypergraph is said to be non-trivial if E(H) , ∅ [25]. The
order and the size ofH refer to the number of vertices and edges ofH , denoted by |X(H)| and |E(H)|,
respectively. If every edge contains precisely r vertices, H is called an r-uniform hypergraph. An
alternating sequence x1E1x2E2x3 . . . xℓEℓxℓ+1 with distinct vertices x1, x2, x3, . . . , xℓ, xℓ+1 and distinct
edges E1, E2, . . . , Eℓ, where {xi, xi+1} ⊆ Ei for every i ∈ {1, 2, . . . , ℓ} is called an x1-xℓ+1 path [26]. For
simplification, we write an alternating sequence x1E1x2E2x3 . . . xℓEℓxℓ+1 to x1E1 − E2 − . . .− Eℓxℓ+1. A
hypergraphH is said to be connected, if for any pair of its vertices, there is a path connecting them.

Let H = (X(H),E(H)) be a hypergraph and G = (X(G), S (G)) be a connected graph over the
vertex set X(G) = X(H) and with edge set S (G). Then, G is called a host graph of H if every
E ∈ E(H) induces a connected subgraph in G [24]. It means that the hypergraphH is spanned by the
graph G [27]. If the host graph is a class of graphs: tree, path, star, broom, double-star, caterpillar, and
centipede, they are called hypertree, hyperpath, hyperstar, broom hypergraph, double-star hypergraph,
caterpillar hypergraph, and centipede hypergraph, respectively. Paths, stars, brooms, double-stars,
caterpillars, and centipedes are tree graphs. Here, we refer to the definition of broom graphs in [28],
double-star graphs in [29], caterpillar graphs in [30], and centipede graphs in [31].

This article considers non-trivial, connected, and simple hypergraphs. The concept of a rainbow
connection in hypergraphs was introduced by Carpentier et al. [23] as follows: Let the hypergraph
H = (X(H),E(H)) be a non-trivial connected hypergraph. For µ ∈ N, an edge µ-coloring of H is a
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function c : E(H) → {1, 2, . . . , µ}. A u-v path in H is called a rainbow path if every edge of the path
has a distinct color. An edge coloring of H is said to be rainbow connected if for any two vertices u
and v in X(H), there exists a rainbow path between them. A rainbow connected µ-coloring of H is a
rainbow connected coloring ofH utilizing µ colors. An rc(H) represents the smallest positive integer
µ such that a rainbow connected µ-coloring ofH exists.

Carpentier et al. [23] obtained a lower bound for the rainbow connection number of a hypergraph.
If the diameter ofH is the maximum distance of each pair of vertices inH , denoted by diam(H), then
the rainbow connection number of a hypergraph satisfies

rc(H) ≥ diam(H). (1.1)

Inspired by Schiermeyer [32] about a lower bound of the rainbow connection number of a graph,
in this article, we improve a lower bound of the rainbow connection number of a hypergraph stated
by Carpentier et al. [23]. In a hypergraph, a pendant edge is an edge that contains a pendant vertex (a
vertex of degree 1). LetH = (X(H),E(H)) be a connected hypergraph with |E(H)| ≥ 1 and tp(H) be
the number of pendant edges inH . We show that rc(H) ≥ tp(H). Suppose that rc(H) ≤ tp(H)−1, then
at least two pendant edges are provided with the same color. This result is a contradiction since every
pendant edge must have a distinct color. Now, we show rc(H) ≥ max{diam(H), tp(H)}. If tp(H) ≤
diam(H), by the definition of rainbow connection, we get rc(H) ≥ diam(H). Conversely, if tp(H) >
diam(H), based on the previous explanation, rc(H) ≥ tp(H). We get the following Lemma 1.1. We
note that the lower bound in Lemma 1.1 is strict, and we will show the proof in Theorem 2.1 and
Corollary 2.3.

Lemma 1.1. Let H = (X(H),E(H)) be a connected hypergraph with |E(H)| ≥ 1 and tp(H) be the
number of pendant edges inH . Then, rc(H) ≥ max{diam(H), tp(H)}.

Carpentier et al. [23] have also obtained the rainbow connection number of a minimally connected
hypergraph. A minimally connected hypergraph is a connected hypergraphH with |E(H)| ≥ 1, where
H−{E} is disconnected for every E ∈ E(H). The rainbow connection number of a minimally connected
hypergraph is stated in the following theorem:

Theorem 1.1. [23] Let H be a connected hypergraph with |E(H)| ≥ 1. Then, rc(H) = |E(H)| if and
only ifH is minimally connected.

In addition, they also obtained the rainbow connection number of an r-uniform cycle hypergraph,
an r-uniform complete hypergraph, and an r-uniform complete multipartite hypergraph. Since the
rainbow connection concept has not been applied to r-uniform hypertrees, we apply it in this article.

For r ≥ 2, 1 ≤ s < r, and t ≥ 1, an s-overlapping r-uniform hypergraph with size t is r-uniform
connected hypergraph, with s being the maximum cardinality of the vertex set obtained from the
intersection of each pair of edges. The collection of s-overlapping r-uniform hypergraphs with size
t is denoted by Hr

s,t. As an example element of Hr
s,t is a hypergraphH = (X(H),E(H)) with the vertex

set X(H) = {v1, v2, v3, v4, v5, v6} and the edge set E(H) = {E1, E2, E3, E4}, where E1 = {v1, v2, v3},
E2 = {v2, v3, v4}, E3 = {v2, v5, v6}, and E4 = {v4, v5, v6}. This hypergraph is a 2-overlapping 3-
uniform hypergraph with size 4 because the maximum cardinality of the vertex set obtained from the
intersection of each pair of edges is 2. By adopting the definition of Hr

s,t, we define an s-overlapping
r-uniform hypertree with size t, denoted by T r

s,t, as an r-uniform connected hypertree, with s being the
maximum cardinality of the vertex set obtained from the intersection of each pair of edges in T r

s,t.
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2. Main results

In this section, we determine the rainbow connection numbers of six classes of s-overlapping r-
uniform hypertrees with size t. They are s-overlapping r-uniform hyperpaths, hyperstars, broom
hypergraphs, double-homogeneous star hypergraphs, homogeneous caterpillar hypergraphs, and
homogeneous centipede hypergraphs with size t. For simplification, we define [a, b] = {θ ∈ Z|a ≤
θ ≤ b}. Let x and y be two natural numbers. We define

x mod∗ y =

x mod y, if y ∤ x;
y, otherwise.

2.1. Rainbow connection number of an s-overlapping r-uniform hyperpath with size t

The definition of an s-overlapping r-uniform hyperpath with size t is as follows:

Definition 2.1. Let r, s, and t be three integers with r ≥ 2, 1 ≤ s < r, and t ≥ 1. An s-overlapping
r-uniform hyperpath with size t, denoted by Pr

s,t, is a connected hypergraph that has the vertex set
X(Pr

s,t) = {v1, v2, . . . , v(t−1)(r−s)+r} and the edge set E(Pr
s,t) = {E1, E2, . . . , Et} with

Ei = {v(i−1)(r−s)+1, v(i−1)(r−s)+2, . . . , v(i−1)(r−s)+r} for every i ∈ [1, t].

It is obvious that diam(Pr
s,1) = 1 and diam(Pr

s,2) = 2. To determine the diameter of Pr
s,t with size

t ≥ 3, we need the following Lemma 2.1:

Lemma 2.1. [33] Every connected r-uniform hypergraph contains a spanning minimally connected
subhypergraph.

Any hypergraph H ′ = (X′(H ′),E′(H ′)) is referred to as a subhypergraph of H if X′(H ′) ⊆ X(H)
and E′(H ′) ⊆ E(H). Then, the diameter of an s-overlapping r-uniform hyperpath with size t ≥ 3 is as
follows:

Lemma 2.2. Let r, s, and t be three integers with r ≥ 2, 1 ≤ s < r, and t ≥ 3. The diameter of an
s-overlapping r-uniform hyperpath with size t is diam(Pr

s,t) =
⌈

t(r−s)+s−a
r−a

⌉
, where a = r mod∗ (r − s).

Proof. Let Pr
s,t = (X(Pr

s,t),E(Pr
s,t)) be an s-overlapping r-uniform hyperpath with size t. Since Pr

s,t

is an r-uniform connected hypergraph, by Lemma 2.1, Pr
s,t contains a spanning minimally connected

subhypergraph. Next, we construct a spanning minimally connected subhypergraph that is formed
from the edges connecting the first and last edges of Pr

s,t. In this case, every two consecutive edges
intersect as many as r mod∗ (r − s) vertices, except the intersecting of the last two edges is a maximum
of s vertices. Let a = r mod∗ (r − s), b = r−a

r−s , and M be a spanning subhypergraph of Pr
s,t, where the

edge set of M is

E(M) =

{E1+kb| for k ∈ [0,m − 1]}, if 1 + (m − 1)b = t;
{E1+kb| for k ∈ [0,m − 1]} ∪ {Et}, otherwise.

It is easy to check that M is a spanning minimally connected subhypergraph of Pr
s,t. Since the order of

Pr
s,t is (t − 1)(r − s) + r and the size of M is

⌈
|X(M)|−a

r−a

⌉
, we get diam(Pr

s,t) =
⌈

t(r−s)+s−a
r−a

⌉
. □
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Let n = |X(Pr
s,t)| = (t − 1)(r − s)+ r. If s = r − 1, then Pr

s,t is called a tight r-uniform hyperpath with
order n, denoted by Pr

n [34]. In this case, a tight 2-uniform hyperpath is a path graph. We know that
the diameter of a path graph is n − 1. Therefore, by Lemma 2.2, we get the following corollary:

Corollary 2.1. Let r and n be two integers with 2 ≤ r < n. The diameter of a tight r-uniform hyperpath
with order n is diam(Pr

n) =
⌈

n−1
r−1

⌉
.

By Carpentier et al. [23], we have known the rainbow connection number of a minimally connected
hypergraph. In the following, we provide the rainbow connection number of all s-overlapping r-
uniform hyperpaths with size t, including a not minimally connected hyperpath.

By definition, Pr
s,1 and Pr

s,2 are minimally connected hypergraphs. Therefore, by Theorem 1.1, we
have rc(Pr

s,1) = 1 and rc(Pr
s,2) = 2. The following is the rainbow connection number of Pr

s,t for t ≥ 3.

Theorem 2.1. Let r, s, and t be three integers with r ≥ 2, 1 ≤ s < r, and t ≥ 3. The rainbow connection
number of an s-overlapping r-uniform hyperpath with size t is rc(Pr

s,t) = diam(Pr
s,t).

Proof. Let a = r mod∗ (r − s). For r − s ≥ r
2 , we obtain that Pr

s,t is a minimally connected hypergraph.
Therefore, by Theorem 1.1, we have rc(Pr

s,t) = t. Now, we show that diam(Pr
s,t) = t. The shortest

path connecting two vertices v1 and v(t−1)(r−s)+r is v1E1 − E2 − . . . − Et−1 − Etv(t−1)(r−s)+r. Therefore, the
diameter of Pr

s,t is the number of edges in Pr
s,t. Thus, diam(Pr

s,t) = t. Hence, rc(Pr
s,t) = diam(Pr

s,t).
For r − s < r

2 , by the inequality (1.1), we have rc(Pr
s,t) ≥ diam(Pr

s,t). Now, we show that rc(Pr
s,t) ≤

diam(Pr
s,t). By Lemma 2.2, we get diam(Pr

s,t) =
⌈

t(r−s)+s−a
r−a

⌉
. We define an edge coloring c : E(Pr

s,t) →{
1, 2, . . . ,

⌈
t(r−s)+s−a

r−a

⌉}
as c(Ei) =

⌈
i(r−s)+s−a

r−a

⌉
for i ∈ [1, t]. By the edge coloring c, we show that for any

two vertices, vi and v j in X(Pr
s,t) there exists a vi-v j rainbow path. It is trivial for two adjacent vertices,

vi and v j. Now, we consider the cases where vi and v j are not adjacent. For 1 ≤ i < j ≤ (t−1)(r− s)+ r,
let p =

⌈
i

r−s

⌉
, b = r−a

r−s , k =
⌈

p(r−s)+s−a
r−a

⌉
, D = diam(Pr

s,t), and d = d(vi, v j) =
⌈

j−i−a+i mod∗ (r−s)
r−a

⌉
. To

simplify the writing of the formula, let d̂ = d − 1, γ1 = (p + (D − k)b − 1)(r − s) + r, and γ2 =

(p + (D − k − 1)b − 1)(r − s) + r. Then, we show a vi-v j rainbow path in the following cases:
Case 1. If b | (t − 1), then a vi-v j rainbow path is

v jEt − Et−b − Et−2b − . . . − Et−d̂bvi, for i > (r − s), b ∤ (p − 1) and j > γ1;
viEp − Ep+b − Ep+2b − . . . − Ep+d̂bv j, otherwise.

Case 2. If b ∤ (t − 1), then a vi-v j rainbow path is

viEp − Ep+b − Ep+2b − . . . − Ep+d̂bv j, for i ≤ (r − s), j ≤ γ2, and p + d̂b ≤ t,

or i > (r − s), j ≤ γ1, and p + d̂b ≤ t;

v jEt − Et−b − Et−2b − . . . − Et−(d̂−1)b − Et−d̂bvi, for i > (r − s), j ≤ γ1, and p + d̂b > t,

or i > (r − a), j > γ1, and p + d̂b > t;
v jEt − Et−b − Et−2b − . . . − Et−(d̂−1)b − E1vi, otherwise.

Therefore, we get rc(Pr
s,t) ≤

⌈
t(r−s)+s−a

r−a

⌉
. Hence, rc(Pr

s,t) ≤ diam(Pr
s,t). Thus, we conclude that

rc(Pr
s,t) = diam(Pr

s,t). □
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For illustration of Theorem 2.1, we give two examples of a rainbow connected coloring of P3
1,3

and P5
4,11 in the following Figures 1(a) and 1(b), respectively. We know that P3

1,3 is a minimally
connected hypergraph with rc(P3

1,3) = 3, whereas P5
4,11 is not a minimally connected hypergraph with

rc(P5
4,11) = 4.

(a) (b)
Figure 1. (a) A rainbow connected coloring with 3 colors of P3

1,3, (b) A rainbow connected
coloring with 4 colors of P5

4,11.

If s = 1, then Pr
s,t is called a loose r-uniform hyperpath [34]. Figures 1(a) and 1(b) are also

illustrations of loose and tight r-uniform hyperpaths, respectively. By Theorem 2.1, we obtain the
rainbow connection number of a tight r-uniform hyperpath with order n as follows:

Corollary 2.2. Let r and n be two integers with 2 ≤ r < n. The rainbow connection number of a tight
r-uniform hyperpath with order n is rc(Pr

n) = diam(Pr
n).

2.2. Rainbow connection number of an s-overlapping r-uniform hyperstar with size t

In the following, we define an s-overlapping r-uniform hyperstar with size t.

Definition 2.2. Let r, s, and t be three integers with r ≥ 2, 1 ≤ s < r, and t ≥ 1. An s-overlapping
r-uniform hyperstar with size t, denoted by Sr

s,t, is a connected hypergraph that has the vertex set
X(Sr

s,t) = {v1, v2, . . . , vt(r−s)+s} and the edge set E(Sr
s,t) = {E1, E2, . . . , Et} with

Ei = {v1, v2, . . . , vs} ∪ {vi(r−s)+s, vi(r−s)+(s−1), vi(r−s)+(s−2), . . . , vi(r−s)+(s−(r−s−1))} for every i ∈ [1, t].

By definition, Sr
s,t is a minimally connected hypergraph. Since |E(Sr

s,t)| = t, by Theorem 1.1, we
get rc(Sr

s,t) = t. We can see that every edge of an s-overlapping r-uniform hyperstar with size t is a
pendant edge. Therefore, if tp(Sr

s,t) is the number of pendant edges of Sr
s,t, then we obtain the following

corollary:

Corollary 2.3. Let r, s, and t be three integers with r ≥ 2, 1 ≤ s < r, and t ≥ 1, and let Sr
s,t be an

s-overlapping r-uniform hyperstar with size t. If tp(Sr
s,t) is the number of pendant edges of Sr

s,t, then
the rainbow connection number of Sr

s,t is rc(Sr
s,t) = tp(Sr

s,t).

For illustration, we give an example of a rainbow connected coloring of S5
3,6 in the following

Figure 2. The rainbow connection number of S5
3,6 is 6.
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Figure 2. A rainbow connected coloring with 6 colors of S5
3,6.

2.3. Rainbow connection number of an s-overlapping r-uniform broom hypergraph with size y + w

An s-overlapping r-uniform broom hypergraph with size y + w is a connected hypergraph formed
from an s-overlapping r-uniform hyperpath with size y (Pr

s,y) and w pendant edges attached to the vertex
set obtained from the intersection of the first edge and the second edge Pr

s,y. We call an s-overlapping
r-uniform hyperpath with size y as the broomstick and w pendant edges as sticks. An s-overlapping
r-uniform broom hypergraph with size y + w is one of the classes in the collection of s-overlapping
r-uniform hypergraphs with size t, where t = y + w. In detail, the following is the definition of an
s-overlapping r-uniform broom hypergraph with size y + w.

Definition 2.3. Let r, s, y, and w be four integers with r ≥ 2, 1 ≤ s < r, y ≥ 2, and w ≥ 1.
An s-overlapping r-uniform broom hypergraph with size y + w, denoted by BRr

s,y,w, is a connected
hypergraph that has the vertex set X(BRr

s,y,w) = {v1, v2, . . . , v(y+w−1)(r−s)+r} and the edge set E(BRr
s,y,w) =

{E1, E2, . . . , Ei, . . . , Ey} ∪ {Ey+1, Ey+2, . . . , E j, . . . , Ey+w} with

Ei = {v(i−1)(r−s)+1, v(i−1)(r−s)+2, . . . , v(i−1)(r−s)+r} f or every i ∈ [1, y],
E j = {vr, vr−1, . . . , vr−(s−1)} ∪ {vn∗+( j−y−1)(r−s)+1, vn∗+( j−y−1)(r−s)+2, . . . , vn∗+( j−y−1)(r−s)+(r−s)}

f or every j ∈ [y + 1, y + w],

where n∗ = (y − 1)(r − s) + r.

By Definition 2.3, Ei for every i ∈ [1, y] is an edge of the broomstick. Meanwhile, E j for every
j ∈ [y + 1, y + w] is a stick. It is easy to check that the diameter of BRr

s,y,w is the same as the diameter
of Pr

s,y.
First, we consider BRr

s,y,w with size y = 2. For w ≥ 1, it is an s-overlapping r-uniform hyperstar
with size y+w. Hence, we get rc(BRr

s,y,w) = y+w. Now, we determine the rainbow connection number
of BRr

s,y,w with size y ≥ 3 as follows:

Theorem 2.2. Let r, s, y, and w be four integers with r ≥ 2, 1 ≤ s < r, y ≥ 3, and w ≥ 1. The rainbow
connection number of an s-overlapping r-uniform broom hypergraph with size y + w is

rc(BRr
s,y,w) =

⌈
y(r−s)+s−a

r−a

⌉
+ w, where a = r mod∗ (r − s).

Proof. Let BRr
s,y,w = (X(BRr

s,y,w),E(BRr
s,y,w)) be an s-overlapping r-uniform broom hypergraph with

size y + w. Therefore, we consider two cases.
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Case 1. r − s ≥ r
2

By definition, BRr
s,y,w is a minimally connected hypergraph. Therefore, by Theorem 1.1, we get

rc(BRr
s,y,w) = y + w. Now, we show that y =

⌈
y(r−s)+s−a

r−a

⌉
. Since r − s = r

2 and a = r mod∗ (r − s), we

get a = s, so r − a = r − s. Therefore, we obtain that y =
⌈

y(r−s)+s−a
r−a

⌉
. For r − s > r

2 , we have that every
edge of BRr

s,y,w is a pendant edge. Since BRr
s,y,w is formed from one Pr

s,y and w pendant edges, we have
every edge of Pr

s,y is a pendant edge. By the definition of Pr
s,y, the number of edges and vertices is y

and (y − 1)(r − s) + r, respectively. Therefore, we obtain that the number of pendant edges of Pr
s,y is⌈

(y−1)(r−s)+r−a
r−a

⌉
. Hence, y =

⌈
y(r−s)+s−a

r−a

⌉
. Thus, we get rc(BRr

s,y,w) =
⌈

y(r−s)+s−a
r−a

⌉
+ w.

Case 2. r − s < r
2

We show that rc(BRr
s,y,w) ≥

⌈
y(r−s)+s−a

r−a

⌉
+ w. Since BRr

s,y,w formed from one Pr
s,y and w pendant

edges, at least the rainbow connection numbers of BRr
s,y,w are the sum of the rainbow connection

numbers of Pr
s,y and w. By Theorem 2.1 and Lemma 2.2, rc(Pr

s,y) =
⌈

y(r−s)+s−a
r−a

⌉
. Hence, we get

rc(BRr
s,y,w) ≥

⌈
y(r−s)+s−a

r−a

⌉
+ w.

Now, we show that rc(BRr
s,y,w) ≤

⌈
y(r−s)+s−a

r−a

⌉
+ w by defining an edge coloring c : E(BRr

s,y,w) →{
1, 2, . . . ,

⌈
y(r−s)+s−a

r−a

⌉
+ w
}

as follows:

c(Ei) =


⌈

i(r−s)+s−a
r−a

⌉
, for every i ∈ [1, y];

i − y +
⌈

y(r−s)+s−a
r−a

⌉
, for every i ∈ [y + 1, y + w].

Let n∗ = (y − 1)(r − s) + r and b = r−a
r−s . In the proof of Theorem 2.1, we showed that there exists a

vi-v j rainbow path for 1 ≤ i < j ≤ (y − 1)(r − s) + r. Now, we show that there exists a vi-v j rainbow
path for other i and j. It is trivial for two adjacent vertices, vi and v j. We consider the subcases where
vi and v j are not adjacent as follows:

Subcase 2.1. 1 ≤ i ≤ r − s and n∗ + 1 ≤ j ≤ n∗ + w(r − s)

In this case, the vertices vi and v j are the pendant vertices on the pendant edge. Therefore, by edge
coloring c, every pendant edge has a distinct color, so that there is a vi-v j rainbow path with length 2.
The same reasoning applies to n∗ + 1 ≤ i < j ≤ n∗ + w(r − s).

Subcase 2.2. r + 1 ≤ i ≤ n∗ and n∗ + 1 ≤ j ≤ n∗ + w(r − s)
If (r − s) | r, then the distance of two vertices vi and v j is d(vi, v j) =

⌈
i−1
r−a

⌉
. If (r − s) ∤ r, then

d(vi, v j) =
⌈

i−a
r−a

⌉
. Let d = d(vi, v j), p =

⌈
i

r−s

⌉
, q = y +

⌈
j−n∗

r−s

⌉
, and b = r−a

r−s . For every two vertices vi

and v j, there is a vi-v j rainbow path in the following form:

viEp − Ep−b − Ep−2b − . . . − Ep−(d−1)b − Eqv j, if i ≤ n∗ − r;
viEy − Ey−b − Ey−2b − . . . − Ey−(d−1)b − Eqv j, if n∗ − r < i ≤ n∗ − r + s;

viEy − Ey−b − Ey−2b − . . . − Ey−(d−2)b − E1 − Eqv j, otherwise.

Therefore, we get rc(BRr
s,y,w) ≤

⌈
y(r−s)+s−a

r−a

⌉
+ w.

Thus, we conclude that rc(BRr
s,y,w) =

⌈
y(r−s)+s−a

r−a

⌉
+ w.

□
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For illustration of Theorem 2.2, we provide two examples of a rainbow connected coloring ofBR3
1,5,2

and BR3
2,7,2 in the following Figures 3(a) and 3(b), respectively. We know that BR3

1,5,2 is a minimally
connected hypergraph with rc(BR3

1,5,2) = 7, whereas BR3
2,7,2 is not a minimally connected hypergraph

with rc(BR3
2,7,2) = 6.

(a) (b)
Figure 3. (a) A rainbow connected coloring with 7 colors ofBR3

1,5,2, (b) A rainbow connected
coloring with 6 colors of BR3

2,7,2.

2.4. Rainbow connection number of an s-overlapping r-uniform double-homogeneous star
hypergraph with size y + 2w

An s-overlapping r-uniform double-homogeneous star hypergraph with size y + 2w is a connected
hypergraph formed from an s-overlapping r-uniform broom hypergraph with size y+w and w pendant
edges attached to the vertex set obtained from the intersection of the last edge and the edge before the
last of the broomstick. Therefore, the number of sticks is 2w. An s-overlapping r-uniform double-
homogeneous star hypergraph with size y + 2w is one of the classes in the collection of s-overlapping
r-uniform hypergraphs with size t, where t = y + 2w. The definition of an s-overlapping r-uniform
double-homogeneous star hypergraph with size y + 2w is as follows:

Definition 2.4. Let r, s, y, and w be four integers with r ≥ 2, 1 ≤ s < r,
y ≥ 3, and w ≥ 1. An s-overlapping r-uniform double-homogeneous star hypergraph
with size y + 2w, denoted by DSr

s,y,w, is a connected hypergraph that has the vertex set
X(DSr

s,y,w) = {v1, v2, . . . , v(y+2w−1)(r−s)+r} and the edge set E(DSr
s,y,w) = {E1, E2, . . . , Ei, . . . , Ey} ∪

{Ey+1, Ey+2, . . . , E j, . . . , Ey+w} ∪ {Ey+w+1, Ey+w+2, . . . , Ek, . . . , Ey+2w} with

Ei = {v(i−1)(r−s)+1, v(i−1)(r−s)+2, . . . , v(i−1)(r−s)+r} f or every i ∈ [1, y],
E j = {vr, vr−1, . . . , vr−(s−1))} ∪ {vn∗+( j−y−1)(r−s)+1, vn∗+( j−y−1)(r−s)+2, . . . , vn∗+( j−y−1)(r−s)+(r−s)}

f or every j ∈ [y + 1, y + w], and

Ek = {vn∗−r+1, vn∗−r+2, . . . , vn∗−r+s} ∪ {vn∗+(k−y−1)(r−s)+1, vn∗+(k−y−1)(r−s)+2, . . . , vn∗+(k−y−1)(r−s)+(r−s)}

f or every k ∈ [y + w + 1, y + 2w],

where n∗ = (y − 1)(r − s) + r.

By Definition 2.4, Ei for every i ∈ [1, y] is an edge of the broomstick. Meanwhile, E j for every
j ∈ [y+ 1, y+w] and Ek for every k ∈ [y+w+ 1, y+ 2w] is a stick. It is easy to check that the diameter
of DSr

s,y,w is the same as the diameter of Pr
s,y and BRr

s,y,w. Now, we determine the rainbow connection
number of an s-overlapping r-uniform double-homogeneous star hypergraph with size y + 2w.
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Theorem 2.3. Let r, s, y, and w be four integers with r ≥ 2, 1 ≤ s < r, y ≥ 3, and w ≥ 1. The
rainbow connection number of an s-overlapping r-uniform double-homogeneous star hypergraph with
size y + 2w is

rc(DSr
s,y,w) =

2 + 2w, if y < 2r−s
r−s ;⌈

y(r−s)+s−a
r−a

⌉
+ 2w, otherwise,

where a = r mod∗ (r − s).

Proof. LetDSr
s,y,w = (X(DSr

s,y,w),E(DSr
s,y,w)) be an s-overlapping r-uniform double-homogeneous star

hypergraph with size y + 2w. We consider two cases.

Case 1. r − s ≥ r
2

According to Definition 2.4, there is not an s-overlapping r-uniform double-homogeneous star
hypergraph with size y + 2w for y < 2r−s

r−s . Therefore, we considerDSr
s,y,w with y ≥ 2r−s

r−s . By definition,
DS

r
s,y,w is a minimally connected hypergraph. Therefore, by Theorem 1.1, we get DSr

s,y,w = y + 2w.
Now, we show that y =

⌈
y(r−s)+s−a

r−a

⌉
. Since DSr

s,y,w is formed from one Pr
s,y and 2w pendant

edges, the proof of y =
⌈

y(r−s)+s−a
r−a

⌉
is similar to the proof of Theorem 2.2 Case 1. Thus, we get

DS
r
s,y,w =

⌈
y(r−s)+s−a

r−a

⌉
+ 2w.

Case 2. r − s < r
2

We consider two subcases.
Subcase 2.1. y < 2r−s

r−s

Since the diameter of DSr
s,y,w is equal to the diameter of Pr

s,y, we get diam(DSr
s,y,w) = 2. On the

other side, since y < 2r−s
r−s , we get an s-overlapping r-uniform double-homogeneous star hypergraph

with every pair of pendant edges intersecting such that the number of pendant edges is 2w + 2. By
Lemma 1.1, we obtain rc(DSr

s,y,w) ≥ 2w + 2. Next, since every vertex is contained in a pendant
edge and each pendant edge has a distinct color, we get a vi-v j rainbow path with length 2 for every
1 ≤ i < j ≤ (y+2w−1)(r− s)+ r. Therefore, we get rc(DSr

s,y,w) ≤ 2w+2. Thus, rc(DSr
s,y,w) = 2w+2.

Subcase 2.2. y ≥ 2r−s
r−s

Similar to the proof of the lower bound of the rainbow connection number in Case 2 of Theorem 2.2,
we get rc(DSr

s,y,w) ≥
⌈

y(r−s)+s−a
r−a

⌉
+ 2w. Next, we show that rc(DSr

s,y,w) ≤
⌈

y(r−s)+s−a
r−a

⌉
+ 2w by defining

an edge coloring c : E(DSr
s,y,w)→

{
1, 2, . . . ,

⌈
y(r−s)+s−a

r−a

⌉
+ 2w

}
as follows:

c(Ei) =


⌈

i(r−s)+s−a
r−a

⌉
, for every i ∈ [1, y];

i − y +
⌈

y(r−s)+s−a
r−a

⌉
, for every i ∈ [y + 1, y + 2w].

Let n∗ = (y − 1)(r − s) + r and b = r−a
r−s . It is trivial for two adjacent vertices, vi and v j. Now, we

consider the subsubcases where vi and v j are not adjacent. In the proof of Theorem 2.1, we show that
there exists a vi-v j rainbow path for 1 ≤ i < j ≤ (y − 1)(r − s) + r. In the proof of Theorem 2.2, we
show that there exists a vi-v j rainbow path for

(1) 1 ≤ i ≤ r − s and n∗ + 1 ≤ j ≤ n∗ + w(r − s),
(2) n∗ + 1 ≤ i < j ≤ n∗ + w(r − s),
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(3) r + 1 ≤ i ≤ n∗ and n∗ + 1 ≤ j ≤ n∗ + w(r − s).

By using the same reasoning as Theorem 2.2 in Subcase 2.1, we show a vi-v j rainbow path for
(1) n∗ − (r − s − 1) ≤ i ≤ n∗ and n∗ + w(r − s) + 1 ≤ j ≤ n∗ + 2w(r − s),
(2) n∗ + w(r − s) + 1 ≤ i < j ≤ n∗ + 2w(r − s).
Next, we show a vi-v j rainbow path for other i and j as follows:

Subsubcase 2.2.1. 1 ≤ i ≤ n∗ − r and n∗ + w(r − s) + 1 ≤ j ≤ n∗ + 2w(r − s)

If (r − s) | r, then the distance between two vertices vi and v j is d(vi, v j) =
⌈

n∗−i
r−a

⌉
. If (r − s) ∤ r, then

d(vi, v j) =
⌈

n∗−i−a+i mod∗ (r−s)
r−a

⌉
. Let d = d(vi, v j), p =

⌈
i

r−s

⌉
, q = y +

⌈
j−n∗

r−s

⌉
, and b = r−a

r−s . For every two
vertices vi and v j, we get viEp − Ep+b − Ep+2b − . . . − Ep+(d−2)b − Eqv j as a vi-v j rainbow path.

Subsubcase 2.2.2. n∗ + 1 ≤ i ≤ n∗ + w(r − s) and n∗ + w(r − s) + 1 ≤ j ≤ n∗ + 2w(r − s)

The distance between two vertices vi and v j is diam(DSr
s,y,w) =

⌈
y(r−s)+s−a

r−a

⌉
. Let D = diam(DSr

s,y,w),

q1 = y +
⌈

i−n∗
r−s

⌉
, q2 = y +

⌈
j−n∗

r−s

⌉
, and b = r−a

r−s . For every two vertices vi and v j, we get viEq1 − E1+b −

E1+2b − . . . − E1+(D−2)b − Eq2v j as a vi-v j rainbow path.
Therefore, we get rc(DSr

s,y,w) ≤
⌈

y(r−s)+s−a
r−a

⌉
+ 2w.

Thus, we conclude that rc(DSr
s,y,w) =

⌈
y(r−s)+s−a

r−a

⌉
+ 2w. □

In the following Figure 4, we give an illustration of Theorem 2.3. Figures 4(a) and 4(b) are a rainbow
connected coloring of DS3

1,5,2 and DS3
2,7,2, respectively. The hypergraph of DS3

1,5,2 is a minimally
connected hypergraph with rc(DS3

1,5,2) = 9, whereasDS3
2,7,2 is not a minimally connected hypergraph

with rc(DS3
2,7,2) = 8.

(a) (b)
Figure 4. (a) A rainbow connected coloring with 9 colors of DS3

1,5,2, (b) A rainbow
connected coloring with 8 colors ofDS3

2,7,2.

2.5. Rainbow connection number of an s-overlapping r-uniform homogeneous caterpillar
hypergraph with size (z + 1)w + z

An s-overlapping r-uniform homogeneous caterpillar hypergraph with size (z+1)w+z is a connected
hypergraph formed from an s-overlapping r-uniform hyperpath with size z Pr

s,z and w pendant edges
attached to the first edge, the last edge, and the vertex set from the intersection of any two consecutive
edges inPr

s,z. We call the edge inPr
s,z as a backbone, a pendant edge intersection with the set of vertices

obtained from the intersection of any two edges in Pr
s,z as a leg base, and a pendant edge that is not a

subhypergraph of Pr
s,z as a leg. Therefore, we have z + 1 leg bases and w legs. An s-overlapping r-

uniform homogeneous caterpillar hypergraph with size (z+1)w+z is one of the classes in the collection
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of s-overlapping r-uniform hypergraphs with size t, where t = (z + 1)w + z. In detail, the following is
the definition of an s-overlapping r-uniform homogeneous caterpillar hypergraph with size (z+1)w+z.

Definition 2.5. Let r, s, z, and w be four integers with r ≥ 2, 1 ≤ s < r, z ≥ 1, and w ≥ 1.
An s-overlapping r-uniform homogeneous caterpillar hypergraph with size (z + 1)w + z, denoted by
HC

r
s,z,w, is a connected hypergraph that has the vertex set X(HCr

s,z,w) = {v1, v2, . . . , v(z−1)(r−s)+r} ∪

{u1
α,β, u

2
α,β, . . . , u

r−s
α,β } for every α ∈ [1, z+ 1] and β ∈ [1,w] and the edge set E(HCr

s,z,w) = {Ei|i ∈ [1, z]} ∪
{Eα,β|α ∈ [1, z + 1], β ∈ [1,w]} with

Ei = {v(i−1)(r−s)+1, v(i−1)(r−s)+2, . . . , v(i−1)(r−s)+r} f or every i ∈ [1, z] and

Eα,β = {u1
α,β, u

2
α,β, . . . , u

r−s
α,β } ∪ {v(α−1)(r−s)+1, v(α−1)(r−s)+2, . . . , v(α−1)(r−s)+s}

f or every α ∈ [1, z + 1] and β ∈ [1,w].

By Definition 2.5, Ei for every i ∈ [1, z] is an edge of the backbone. Meanwhile, Eα,β for
every α ∈ [1, z + 1], β ∈ [1,w] is a leg. For an example, consider an 2-overlapping 3-uniform
homogeneous caterpillar hypergraph with size 9 in Figure 5(b), denoted by HC3

2,4,1. We can see
that the hypergraph has 5 leg bases and 1 leg for every leg bases. In detail, the hypergraph
has X(HC3

2,4,1) = {v1, v2, v3, v4, v5, v6} ∪ {u1
1,1}∪, {u

1
2,1} ∪ {u

1
3,1} ∪ {u

1
4,1} ∪ {u

1
5,1} and E(HC3

2,4,1) =
{E1, E2, E3, E4} ∪ {E1,1, E2,1, E3,1, E4,1, E5,1} where E1 = {v1, v2, v3}, E2 = {v2, v3, v4}, E3 = {v3, v4, v5},
E4 = {v4, v5, v6}, E1,1 = {v1, v2}∪{u1

1,1}, E2,1 = {v2, v3}∪{u1
2,1}, E3,1 = {v3, v4}∪{u1

3,1}, E4,1 = {v4, v5}∪{u1
4,1},

E5,1 = {v5, v6} ∪ {u1
5,1}.

Now, we show the rainbow connection number of an s-overlapping r-uniform homogeneous
caterpillar hypergraph with size (z + 1)w + z as follows:

Theorem 2.4. Let r, s, z, and w be four integers with r ≥ 2, 1 ≤ s < r, z ≥ 1, and w ≥ 1. The
rainbow connection number of an s-overlapping r-uniform homogeneous caterpillar hypergraph with
size (z + 1)w + z is

rc(HCr
s,z,w) =

(z + 1)w + z, if r − s ≥ r
2 ;

(z + 1)w, otherwise.

Proof. Let HCr
s,z,w = (X(HCr

s,z,w),E(HCr
s,z,w) be an s-overlapping r-uniform homogeneous caterpillar

hypergraph with size (z + 1)w + z. We consider two cases.
Case 1. r − s ≥ r

2

By definition, HCr
s,z,w is a minimally connected hypergraph. Therefore, by Theorem 1.1,

rc(HCr
s,z,w) = |E(HCr

s,z,w)| = (z + 1)w + z.
Case 2. r − s < r

2

By definition,HCr
s,z,w is not a minimally connected hypergraph. First, we show the lower bound of

rc(HCr
s,z,w). For z ≥ 1, we get diam(HCr

s,z,w) ≤ tp(HCr
s,z,w). Since every pendant edge has a distinct

color, we get (z + 1)w colors. By Lemma 1.1, we obtain rc(HCr
s,z,w) ≥ (z + 1)w. Next, we determine

the upper bound of rc(HCr
s,z,w). We define an edge coloring c : E(HCr

s,z,w) → {1, 2, . . . , (z + 1)w} as
follows:

c(Ei) = 1, for every i ∈ [1, z];
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c(Eα,β) = (α − 1)w + β + z − 2, for every α ∈ [1, z + 1] and β ∈ [1,w].

It is trivial for two adjacent vertices, vi and v j. We consider the cases where vi and v j are not
adjacent. Since each pendant edge is assigned a distinct color, we can show a u-v rainbow path for any
pair of vertices u and v in X(HCr

s,z,w). For every two vertices u and v, there exists a u-v rainbow path
of the form uEα,β − Eα+1,β − Eα+2,β, . . . , Eα+ℓ,βv, where ℓ+ 1 is the number of pendant edges. Therefore,
we get rc(HCr

s,z,w) ≤ (z + 1)w. Thus, we conclude that rc(HCr
s,z,w) = (z + 1)w. □

For illustration of Theorem 2.4, we give two examples of a rainbow connected coloring of HC3
1,4,2

and HC3
2,4,1 in the following Figures 5(a) and 5(b), respectively. The hypergraph of HC3

1,4,2 is a
minimally connected hypergraph with rc(HC3

1,4,2) = 14, whereasHC3
2,4,1 is not a minimally connected

hypergraph with rc(HC3
2,4,1) = 5.

(a) (b)
Figure 5. (a) A rainbow connected coloring with 14 colors of HC3

1,4,2, (b) A rainbow
connected coloring with 5 colors ofHC3

2,4,1.

2.6. Rainbow connection number of an s-overlapping r-uniform homogeneous centipede hypergraph
with size (z + 1)w + z + 2

An s-overlapping r-uniform homogeneous centipede hypergraph with size (z + 1)w + z + 2 is a
connected hypergraph formed from an s-overlapping r-uniform homogeneous caterpillar with size
(z + 1)w + z HCr

s,z,w and one pendant edge attached to the first edge of the backbone and one pendant
edge attached to the last edge of the backbone. We refer to the two pendant edges added as a head
and a tail, respectively. An s-overlapping r-uniform homogeneous centipede hypergraph with size
(z + 1)w + z + 2 is one of the classes in the collection of s-overlapping r-uniform hypergraph with
size t, where t = (z + 1)w + z + 2. Next, we define an s-overlapping r-uniform homogeneous centipede
hypergraph with size (z + 1)w + z + 2 as follows:

Definition 2.6. Let r, s, z, and w be four integers with r ≥ 2, 1 ≤ s < r, z ≥ 1, and w ≥ 1.
An s-overlapping r-uniform homogeneous centipede hypergraph with size (z + 1)w + z + 2, denoted
by CPr

s,z,w, is a connected hypergraph that has the vertex set X(CPr
s,z,w) = {v1, v2, . . . , v(z+1)(r−s)+r} ∪

{u1
α,β, u

2
α,β, . . . , u

r−s
α,β } for every α ∈ [1, z + 1] and β ∈ [1,w], and the edge set E(HCr

s,z,w) = {Ei|i ∈
[1, z + 2]} ∪ {Eα,β|α ∈ [1, z + 1], β ∈ [1,w]} with

Ei = {v(i−1)(r−s)+1, v(i−1)(r−s)+2, . . . , v(i−1)(r−s)+r} f or every i ∈ [2, z + 1] and

Eα,β = {u1
α,β, u

2
α,β, . . . , u

r−s
α,β } ∪ {vα(r−s)+1, vα(r−s)+2, . . . , vα(r−s)+s} f or every α ∈ [1, z + 1] and β ∈ [1,w].
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By Definition 2.6, Ei for every i ∈ [2, z + 1] is an edge of the backbone. Meanwhile, E1 and Ez+2

are the head and the tail, respectively. In addition, Eα,β for every α ∈ [1, z + 1] and β ∈ [1,w] is a leg.
Since CPr

s,z,w are HCr
s,z,w which added one pendant edge on the first edge and the last edge of the

backbone, and each pendant edge is assigned a distinct color, we get rc(CPr
s,z,w) = rc(HCr

s,z,w) + 2.
Therefore, we obtain the rainbow connection number of an s-overlapping r-uniform homogeneous
centipede hypergraph with size (z + 1)w + z + 2 as follows:

Corollary 2.4. Let r, s, z, and w be four integers with r ≥ 2, 1 ≤ s < r, z ≥ 1, and w ≥ 1. The
rainbow connection number of an s-overlapping r-uniform homogeneous centipede hypergraph with
size (z + 1)w + z + 2 is

rc(CPr
s,z,w) =

(z + 1)w + z + 2, if r − s ≥ r
2 ;

(z + 1)w + 2, otherwise.

In the following Figure 6, we give an illustration of Corollary 2.4. Figures 6(a) and 6(b) are a
rainbow connected coloring of CP3

1,4,2 and CP3
2,4,1, respectively. We know that CP3

1,4,2 is a minimally
connected hypergraph with rc(CP3

1,4,2) = 16, whereas CP3
2,4,1 is not a minimally connected hypergraph

with rc(CP3
2,4,1) = 7.

(a) (b)
Figure 6. (a) A rainbow connected coloring with 16 colors of CP3

1,4,2, (b) A rainbow
connected coloring with 7 colors of CP3

2,4,1.

3. Conclusions and open problems

We obtained the rainbow connection numbers of six classes of s-overlapping r-uniform hypertrees
with size t. If r = 2, then we confirm that the rainbow connection numbers of them are equal to the
rainbow connection numbers of trees which have been obtained by Chartrand et al. [2]. Moreover,
we provided the best lower bound of the rainbow connection numbers of s-overlapping r-uniform
hypertrees with size t, namely their diameter or their number of pendant edges. We have shown that the
rainbow connection number of an s-overlapping r-uniform hyperpath with size t equals to its diameter.
Meanwhile, the rainbow connection number of T r

s,t equals its number of pendant edges if T r
s,t is an s-

overlapping r-uniform homogeneous caterpillar hypergraph with size t for r − s < r
2 , an s-overlapping

r-uniform homogeneous centipede hypergraph with size t for r − s < r
2 , or an s-overlapping r-uniform

hyperstar with size t. This research can be continued by determining the rainbow connection numbers
of other classes of s-overlapping r-uniform hypergraphs with size t where the rainbow connection
numbers of their host graphs have been obtained. In addition, there is the issue of determining the best
upper bound for the rainbow connection numbers of non-minimally connected hypergraphs.
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