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Abstract: Neural networks (NNs) with values in multidimensional domains have lately attracted the
attention of researchers. Thus, complex-valued neural networks (CVNNs), quaternion-valued neural
networks (QVNNs), and their generalization, Clifford-valued neural networks (ClVNNs) have been
proposed in the last few years, and different dynamic properties were studied for them. On the other
hand, time scale calculus has been proposed in order to jointly study the properties of continuous time
and discrete time systems, or any hybrid combination between the two, and was also successfully
applied to the domain of NNs. Finally, in real implementations of NNs, time delays occur inevitably.
Taking all these facts into account, this paper discusses ClVNNs defined on time scales with leakage,
time-varying delays, and infinite distributed delays, a type of delays which have been relatively rarely
present in the existing literature. A state feedback control scheme and a generalization of the Halanay
inequality for time scales are used in order to obtain sufficient conditions expressed as algebraic
inequalities and as linear matrix inequalities (LMIs), using two general Lyapunov-like functions, for
the exponential synchronization of the proposed model. Two numerical examples are given in order to
illustrate the theoretical results.
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delays; infinite distributed delays
Mathematics Subject Classification: 93C10, 93C43, 93D23

1. Introduction

Recently, neural networks (NNs) defined on multidimensional domains have been considered as
an extension of real-valued neural networks (RVNNs). As such, complex-valued neural networks
(CVNNs), for which the domain is the 2D complex numbers algebra, and quaternion-valued neural
networks (QVNNs), for which the domain is the 4D quaternion algebra, were introduced and different
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dynamic properties were studied for them. Then, they were generalized to Clifford-valued neural
networks (ClVNNs), for which the domain can be any 2n-dimensional Clifford algebra, with n ≥ 1.

ClVNNs were first introduced, in their feedforward variant, in [1]. Then, in their recurrent Hopfield
variant, ClVNNs were introduced in [2]. Because of their generality, it is expected that ClVNNs will
have applications in problems related to high-dimensional data processing and analysis.

Starting from paper [3], different dynamic properties have been researched for recurrent
ClVNNs, such as stability [4–14], synchronization [15, 16], fixed/finite-time synchronization [17–19],
dissipativity [20], etc.

The finite reaction time of circuit components causes time delays in real-world NN
implementations, which may result in undesirable behavior. Time delays must thus be incorporated
into the models that are used to analyze the dynamic properties of NNs [21–23]. One type of delay,
which appears in the self-feedback term of NNs, is the leakage delay, and it has been discussed, in the
context of ClVNNs, in [5, 6, 13, 16, 24–27]. Then, the dispersion of conduction speeds throughout an
NN’s implementation pathways may give rise to distributed delays. Finite distributed delays are the
most common types of distributed delays, which were added to models of ClVNNs in [14,17,18]. They
are called mixed delays when they appear in conjunction with time-varying delays and were considered
as part of ClVNN models in [20, 28, 29]. However, infinite distributed delays have been more rarely
discussed in the literature concerning NNs in general, and, for ClVNNs, were only present as a part of
the model in [18], to our awareness.

On the other hand, the majority of the papers involving the study of the dynamics of NNs in general
are done in continuous time. Nonetheless, when implementing NNs in circuits, discretization is a
necessary step, and it’s possible that the dynamics of the discrete time model differs from that of its
continuous time counterpart. This observation led to the idea of discussing NNs directly in discrete
time for the first time in [30]. Discrete time NNs have since then become a topic in their own right,
attracting more and more research avenues with the passing of time. To the best of our knowledge,
discrete time ClVNNs have not been yet discussed in the available scientific literature.

A method to unify the study of continuous and discrete time systems, or any hybrid combination
of them, has been put forward in the form of time scale calculus, which was developed for the first
time in [31]. Time scale calculus was later expanded and summarized in the books [32–34], which
represent important references for further developments regarding time scales. Time scales were also
added to the study of NNs for the first time in [35]. Since then, time scale NNs have also become an
increasingly popular field of study. ClVNNs defined on time scales were the focus of [15, 24, 26].

Since time scale calculus is more general and has to encompass the characteristics of both
differential and difference systems, the classical Lyapunov theory is not applicable for systems defined
on time scales. Alternatively, Halanay inequalities have been used to study the dynamics of such
systems. Different types of Halanay inequalities have been proposed over time; see [36–40]. These
inequalities have also been extended to time scales, yielding Halanay inequalities for time scales
(see [41–44]), which have been used to study the dynamics of NNs defined on time scales, for example,
in [45–51].

Considering all the above observations, this paper has the subsequent key contributions:

1. A very general model of ClVNNs defined on time scales is put forward, encompassing leakage,
time-varying, and infinite distributed delays, which were rarely present in the literature.

2. Two types of Lyapunov-like functions are defined, which allow the application of a Halanay
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inequality on time scales.
3. Based on these functions, sufficient conditions expressed as algebraic inequalities and linear

matrix inequalities (LMIs) which ensure the exponential synchronization of the proposed model
are formulated, using a general state feedback control scheme.

4. One numerical example is provided for each of the two theorems, both in the discrete and
continuous time contexts.

5. The proposed model is so general that it is possible to particularize it for discrete time or
continuous time ClVNNs, or even for CVNNs or QVNNs, for which no comparable results have
been reported in the literature, to our awareness.

The remaining part of the paper has the following organization. The presentation of the Clifford
algebras, the basics of time scale calculus, the discussed model and its transformation to a real-valued
one, and the necessary assumptions and lemmas all together form Section 2. Afterward, in Section
3, two kinds of Lyapunov-like functions are used in order to obtain sufficient conditions expressed
as algebraic inequalities and LMIs, respectively, which ensure the exponential synchronization of the
proposed NNs, based on a state feedback control scheme. Two numerical examples are put forward
in Section 4 to illustrate the results presented in the previous section. Finally, Section 5 draws the
conclusions of the present research.

Notations: R – reals, R+ – positive reals, Cℓp,q – Clifford algebra, RN (CℓN
p,q) – real (Clifford)

vectors of dimension N, RN×N (CℓN×N
p,q ) – real (Clifford) N×N-dimensional matrices, λmin(A) – smallest

eigenvalue of A, AT – transpose of A, A < 0 – A is negative definite, || · ||p – Lp norm, p ∈ {1, 2}.

2. Preliminaries

We begin by introducing Clifford algebras. Let {e1, . . . , en} be an orthonormal basis of Rn, where
n ≥ 1. Let p, q ∈ {0, . . . , n} with n = p + q, and define the operation ⊗p,q as:

ei ⊗p,q ei =

1, 1 ≤ i ≤ p

−1, p + 1 ≤ i ≤ p + q
,

ei ⊗p,q e j + e j ⊗p,q ei = 0, ∀i, j ∈ {1, . . . , n}, i , j.

Define
I := { {i1, . . . , is} ∈ P({1, . . . , n})| 1 ≤ i1 < · · · < is ≤ n} ,

where P({1, . . . , n}) is the power set, i.e., the set of all subsets, of {1, . . . , n}.
For any I ∈ I, we define:

eI := ei1 ⊗p,q · · · ⊗p,q eis .

Particularly, e∅ = 1R. In what follows, when there is no danger of confusion, we will denote eI = e{i1,...,is}

with ei1···is .
With these notations, the Clifford number set Cℓp,q is defined as:

Cℓp,q =

 x =
∑
I∈I

xIeI

∣∣∣∣∣∣∣ xI ∈ R, ∀I ∈ I

 .
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It can be proved that, together with the operation ⊗p,q, defined above, Cℓp,q represents an associative
real algebra of dimension 2n, called a Clifford algebra.

For each Clifford number x ∈ Cℓp,q, its conjugate is defined as x :=
∑

I∈I xIeI , where eI =

(−1)
|I|(|I|+1)

2 eI , and |I| denotes the cardinality of set I. Then, we define the norm of Clifford number
x ∈ Cℓp,q as |x|Cℓp,q :=

√
x ⊗p,q x =

√∑
I∈I(xI)2.

On the other hand, we give a basic introduction to time scale calculus mainly based on [32]. “A
nonempty closed subset of the real number set R, from which the topology and ordering are inherited,
is called a time scale T. ∀t ∈ T, the forward jump operator is defined as σ(t) := inf{ s ∈ T| s > t}, and
the backward jump operator as ρ(t) = sup{ s ∈ T| s < t}. The forward graininess function is defined as
µ : T→ [0,+∞), µ(t) := σ(t) − t, ∀t ∈ T. Also, put µ̂ = sup{µ(t)| t ∈ T}.

Once this is established, a point t ∈ T is right (left)-dense if σ(t) = t (ρ(t) = t) and right (left)-
scattered if σ(t) > t (ρ(t) < t). Tκ := T\{m}, where m is the left-scattered maximum of T, if it exists,
otherwise Tκ := T. If f (t1) = limζ→t+1

f (ζ) for any right-dense t1 ∈ T, and limζ→t−2
f (ζ) exists for any

left-dense t2 ∈ T, then the function f : T → R is called rd-continuous. Crd(T,R) designates the set of
all functions f : T → R which are rd-continuous. The jump operators are defined as f σ(t) = f (σ(t))
and f ρ(t) = f (ρ(t)), respectively, for a function f : T → R. If p ∈ Crd(T,R) and 1 + µ(t)p(t) , 0,
∀t ∈ Tκ, then function p : T → R is said to be regressive, and we denote by R(T,R) the set of all
regressive functions. The set R+(T,R) denotes all positively regressive functions, which are functions
p : T → R for which p ∈ Crd(T,R) and 1 + µ(t)p(t) > 0, ∀t ∈ Tκ. We establish the following formula:
∀p ∈ R(T,R), ⊖p(t) := −p(t)/(1 + µ(t)p(t)), ∀t ∈ T. For any set S ⊆ R, we define S T = S ∩ T.

Given a function f : T→ R, the number denoted by f ∆(t) for t ∈ Tκ such that ∀ε > 0, there exists a
δ > 0 so that the subsequent inequality is valid ∀s ∈ (t − δ, t + δ)T:

| f (σ(t)) − f (s) − f ∆(t)(σ(t) − s)| ≤ ε|σ(t) − s|,

represents, if it exists, the ∆-derivative of f at t. The function f is said to be ∆-differentiable if the
∆-derivative exists ∀t ∈ Tκ.

The inverse operation of ∆-differentiation is ∆-integration, i.e., if F∆(t) = f (t), then∫ b

a
f (s)∆s = F(b) − F(a), ∀a, b ∈ T.

Lastly, for any regressive function p ∈ R(T,R), the ∆-exponential function ep : T × T → R is
defined by the formula:

ep(a, b) = e
∫ b

a ξµ(s)(p(s))∆s, ∀a, b ∈ T,

where ξµ(s) represents the cylinder transformation, given as:

ξh(z) =

 log(1+zh)
h , h , 0

z, h = 0
.”

Define the following ClVNN with leakage, time-varying, and infinite distributed delays on time
scale T, which will serve as the drive system:

x∆i (t) = −cixi(t − γ) +
N∑

j=1

ai j ⊗p,q f j(x j(t)) +
N∑

j=1

bi j ⊗p,q f j(x j(t − σ(t)))

AIMS Mathematics Volume 9, Issue 7, 18796–18823.



18800

+

N∑
j=1

gi j ⊗p,q

∫ ∞

0
K(s) f j(x j(t − s))∆s + Ei, (1)

∀i ∈ {1, . . . ,N}, ∀t ∈ [0,+∞)T, where x(t) = (x1(t), . . . , xN(t))T ∈ CℓN
p,q represents the vector of states

at t ∈ [0,+∞)T, C = diag(c1, . . . , cN) ∈ RN×N (with ci > 0, ∀i ∈ {1, . . . ,N}) represents the self-feedback
weight matrix, A = (ai j)1≤i, j≤N ∈ Cℓ

N×N
p,q is the weight matrix without delay, B = (bi j)1≤i, j≤N ∈ Cℓ

N×N
p,q is

the weight matrix with delay, G = (gi j)1≤i, j≤N ∈ Cℓ
N×N
p,q is the infinite distributed delay weight matrix,

K : [0,+∞)T → R is the infinite distributed delay kernel function, f j : Cℓp,q → Cℓp,q represent the
activation functions, ∀ j ∈ {1, . . . ,N}, and E = (E1, . . . , EN)T ∈ CℓN

p,q is the external inputs vector.
The time-varying delays are σ : [0,+∞)T → [0,+∞)T. Assume that there exists σ ∈ (0,+∞)T with
σ(t) ≤ σ, ∀t ∈ [0,+∞)T, and the leakage delay is γ ∈ [0,+∞)T. The notation φ := max{γ, σ} is made.
Also, assume that the activation functions f j have the form f j(x) =

∑
I∈I f I

j (x)eI , ∀x ∈ Cℓp,q, where
f I

j : Cℓp,q → R, ∀ j ∈ {1, . . . ,N}, ∀I ∈ I.
For NN (1), the initial conditions are expressed as:

xi(t) = ψi(t), ∀t ∈ [−φ, 0]T,

where ψi ∈ C([−φ, 0]T,Cℓp,q), ∀i ∈ {1, . . . ,N}. On set C([−φ, 0]T,CℓN
p,q), the norm is defined as ||ψ|| :=∑N

i=1 sup[−φ,0]T |ψi(t)|.
The response NN, which is needed in order to analyze synchronization, will correspondingly be

defined as:

y∆i (t) = −ciyi(t − γ) +
N∑

j=1

ai j ⊗p,q f j(y j(t)) +
N∑

j=1

bi j ⊗p,q f j(y j(t − σ(t)))

+

N∑
j=1

gi j ⊗p,q

∫ ∞

0
K(s) f j(y j(t − s))∆s + Ei − ui(t), (2)

∀i ∈ {1, . . . ,N}, ∀t ∈ [0,+∞)T; y(t) = (y1(t), . . . , yN(t))T ∈ CℓN
p,q is the state vector at t ∈ [0,+∞)T; and

u(t) = (u1(t), . . . , uN(t))T ∈ CℓN
p,q is the vector of control inputs at t ∈ [0,+∞)T.

The NN (2) has its initial conditions defined as:

yi(t) = ϕi(t), ∀t ∈ [−φ, 0]T,

where ϕi ∈ C([−φ, 0]T,Cℓp,q), ∀i ∈ {1, . . . ,N}.
Taking into account relations (1) and (2), and denoting zi(t) = yi(t) − xi(t), ∀i ∈ {1, . . . ,N}, ∀t ∈

[0,+∞)T, the error system will have the following expression:

z
∆
i (t) = −cizi(t − γ) +

N∑
j=1

ai j ⊗p,q f̃ j(z j(t)) +
N∑

j=1

bi j ⊗p,q f̃ j(z j(t − σ(t)))

+

N∑
j=1

gi j ⊗p,q

∫ ∞

0
K(s) f̃ j(z j(t − s))∆s − ui(t), (3)

∀i ∈ {1, . . . ,N}, ∀t ∈ [0,+∞)T, where f̃ j(z j(t)) = f j(z j(t) + x j(t)) − f j(x j(t)), ∀t ∈ [0,+∞)T, ∀ j ∈
{1, . . . ,N}.
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Now, NN (3) will have the initial conditions expressed as:

zi(t) = χi(t) = ϕi(t) − ψi(t), ∀t ∈ [−φ, 0]T,

where χi ∈ C([−φ, 0]T,Cℓp,q), ∀i ∈ {1, . . . ,N}.
Taking into account that ∀K, I ∈ I, ∃J ∈ I, such that eK = (−1)ρ[I·J]eI ⊗p,q eJ, where ρ[I · J] =0, eK = eI ⊗p,q eJ

1, eK = −eI ⊗p,q eJ
, and, if we denote xI·J := (−1)σ[I·J]xK , we have that xKeK = xI·JeI ⊗p,q eJ, and

system (3) can be equivalently written as:∑
I∈I

z
∆I
i (t)eI = −

∑
I∈I

ciz
I
i (t − γ)eI +

N∑
j=1

∑
K∈I

aK
i jeK

 ⊗p,q

∑
J∈I

f̃ J
j (z j(t))eJ


+

N∑
j=1

∑
K∈I

bK
i jeK

 ⊗p,q

∑
J∈I

f̃ J
j (z j(t − σ(t)))eJ


+

N∑
j=1

∑
K∈I

gK
i jeK

 ⊗p,q

∑
J∈I

[∫ ∞

0
K(s) f̃ J

j (z j(t − s))∆s
]

eJ

 −∑
I∈I

uI
i (t)eI

= −
∑
I∈I

ciz
I
i (t − γ)eI +

N∑
j=1

∑
I∈I

aI·J
i j eI ⊗p,q eJ

 ⊗p,q

∑
J∈I

f̃ J
j (z j(t))eJ


+

N∑
j=1

∑
I∈I

bI·J
i j eI ⊗p,q eJ

 ⊗p,q

∑
J∈I

f̃ J
j (z j(t − σ(t)))eJ


+

N∑
j=1

∑
I∈I

gI·J
i j eI ⊗p,q eJ

 ⊗p,q

∑
J∈I

[∫ ∞

0
K(s) f̃ J

j (z j(t − s))∆s
]

eJ

 −∑
I∈I

uI
i (t)eI

= −
∑
I∈I

ciz
I
i (t − γ)eI +

N∑
j=1

∑
I∈I

∑
J∈I

aI·J
i j f̃ J

j (z j(t))eI ⊗p,q eJ ⊗p,q eJ

+

N∑
j=1

∑
I∈I

∑
J∈I

bI·J
i j f̃ J

j (z j(t − σ(t)))eI ⊗p,q eJ ⊗p,q eJ

+

N∑
j=1

∑
I∈I

∑
J∈I

gI·J
i j

[∫ ∞

0
K(s) f̃ J

j (z j(t − s))∆s
]

eI ⊗p,q eJ ⊗p,q eJ −
∑
I∈I

uI
i (t)eI

= −
∑
I∈I

ciz
I
i (t − γ)eI +

∑
I∈I

 N∑
j=1

∑
J∈I

aI·J
i j f̃ J

j (z j(t))

 eI

+
∑
I∈I

 N∑
j=1

∑
J∈I

bI·J
i j f̃ J

j (z j(t − σ(t)))

 eI

+
∑
I∈I

 N∑
j=1

∑
J∈I

gI·J
i j

∫ ∞

0
K(s) f̃ J

j (z j(t − s))∆s

 eI −
∑
I∈I

uI
i (t)eI . (4)

The system of equations (3) will now be converted into 2n real-valued systems. This is accomplished
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by using the following 2n equations to represent each equation in (3), based on relation (4):

z
∆I
i (t) = −ciz

I
i (t − γ) +

N∑
j=1

∑
J∈I

aI·J
i j f̃ J

j (z j(t)) +
N∑

j=1

∑
J∈I

bI·J
i j f̃ J

j (z j(t − σ(t)))

+

N∑
j=1

∑
J∈I

gI·J
i j

∫ ∞

0
K(s) f̃ J

j (z j(t − s))∆s − uI
i (t),

∀I ∈ I, ∀i ∈ {1, . . . ,N}.
If we now denote:

mat(x) :=



x0·0 x0·1 · · · x0·J · · · x0·12...n

x1·0 x1·1 · · · x1·J · · · x1·12...n

...
...

. . .
...

. . .
...

xI·0 xI·1 · · · xI·J · · · xI·12...n

...
...

. . .
...

. . .
...

x12...n·0 x12...n·1 · · · x12...n·J · · · x12...n·12...n


∈ R2n×2n

,

and vec(x) := ((xI)I∈I)T ∈ R2n
, the expression of system (3) will be the following:

vec(z∆i (t)) = −civec(zi(t − γ)) +
N∑

j=1

mat(ai j)vec( f̃ j(z j(t))) +
N∑

j=1

mat(bi j)vec( f̃ j(z j(t − σ(t))))

+

N∑
j=1

mat(gi j)
∫ ∞

0
K(s)vec( f̃ j(z j(t − s)))∆s − vec(ui(t)),

∀i ∈ {1, . . . ,N}, ∀t ∈ [0,+∞)T.
Lastly, if we make the following notations:

Č := diag(c1I2n , . . . , cN I2n) ∈ R2nN×2nN , Ǎ :=
(
mat(ai j)

)
1≤i, j≤N

∈ R2nN×2nN ,

B̌ :=
(
mat(bi j)

)
1≤i, j≤N

∈ R2nN×2nN , Ǧ :=
(
mat(gi j)

)
1≤i, j≤N

∈ R2nN×2nN ,

ž(t) := (vec(z1(t))T , . . . , vec(zN(t))T )T ∈ R2nN , f̌ (ž(t)) := (vec( f̃1(z1(t)))T , . . . , vec( f̃N(zN(t)))T )T ∈ R2nN ,

ǔ(t) := (vec(u1(t))T , . . . , vec(uN(t))T )T ∈ R2nN ,

the expression of system (3) will be:

ž
∆(t) = −Čž(t − γ) + Ǎ f̌ (ž(t)) + B̌ f̌ (ž(t −σ(t))) + Ǧ

∫ ∞

0
K(s) f̌ (ž(t − s))∆s − ǔ(t), ∀t ∈ [0,+∞)T. (5)

We have to make the following assumptions:

Assumption 1. ( [52]) “The activation functions f j satisfy ∀x, x′ ∈ Cℓp,q, the following Lipschitz
conditions:

| f I
j (x) − f I

j (x′)| ≤ lI
j|x − x′|Cℓp,q ,

∀I ∈ I, ∀ j ∈ {1, . . . ,N}, where lI
j > 0 represent the Lipschitz constants. Furthermore, we denote

Ľ := diag((lI
1)I∈I, . . . , (lI

N)I∈I) ∈ R2nN×2nN .”
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Assumption 2. The infinite distributed delay kernel function K : [0,+∞)T → R satisfies:∫ ∞

0
K(s)∆s = 1 and

∫ ∞

0
K(s)es∆s < ∞.

We will also need the following lemmas regarding time scales in order to conduct the proofs of our
theorems:

Lemma 1. ( [32]) “If f , g : T→ R are ∆-differentiable, then
(i) ( f (t) + g(t))∆ = f ∆(t) + g∆(t);
(ii) ( f (t)g(t))∆ = f ∆(t)g(t) + f (σ(t))g∆(t) = f (t)g∆(t) + f ∆(t)g(σ(t)).”

Lemma 2. ( [51]) “Let y(t) be a nonnegative rd-continuous function on T, and

y∆(t) ≤ −α1y(t) + α2 sup
s∈[t−τ,t]T

y(s) + α3

∫ ∞

0
K(s)y(t − s)∆s + β

holds for t ∈ [t0,+∞)T, t0, t− s ∈ T, where α1, α2, α3, and β are four positive constants, K(s) ≥ 0 holds
for s ∈ [0,∞)T, and

∫ ∞
0

K(s)es∆s < ∞. If −α1 ∈ R
+, α1 > α2 + α3

∫ ∞
0

K(s)∆s, then

y(t) ≤ γ + sup
s∈[t0−τ,t0]T

y(s)e⊖λ(t, t0)

for any t ∈ [t0,+∞)T, where γ = β/(α1 − α2 − α3

∫ ∞
0

K(s)∆s), λ > 0 satisfies the inequality

− ⊖ λ ≤ α1 − α2eλτ − α3

∫ ∞

0
K(s)eλs∆s.”

Lemma 3. ( [51]) “Suppose that x(t) ∈ Rn is rd-continuous and f (·) ∈ Crd is a ∆-differentiable convex
function. If

∫ ∞
0

K(s)∆s = 1, then

f
(∫ ∞

0
K(s)x(t − s)∆s

)
≤

∫ ∞

0
K(s) f (x(t − s))∆s

holds for ∀t ∈ T, where K(s) ≥ 0 holds for s ∈ [0,∞)T.”

Lemma 4. ( [46]) “If −λ ∈ R+, y ∈ Crd(T,R), z ∈ Crd(T,R), then ∀t ∈ T,

y∆(t) ≤ −λy(t) + z(t)

implies
|y(t)|∆ ≤ −λ|y(t)| + |z(t)|.”

3. Main results

In order to realize synchronization between drive system (1) and response system (2), we design the
following state feedback controller:

u(t) = K1z(t) + K2z(t − γ) + K3z(t − σ(t)) + K4

∫ ∞

0
K(s)z(t − s)∆s, ∀t ∈ [0,+∞)T, (6)
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in which the real positive diagonal matrices K1, . . . ,K4 ∈ R
N×N are the control gain matrices. By

incorporating this controller, system (5) becomes:

ž
∆(t) = −Ǩ1ž(t) − (Č + Ǩ2)ž(t − γ) − Ǩ3ž(t − σ(t)) − Ǩ4

∫ ∞

0
K(s)ž(t − s)∆s

+Ǎ f̌ (ž(t)) + B̌ f̌ (ž(t − σ(t))) + Ǧ
∫ ∞

0
K(s) f̌ (ž(t − s))∆s, ∀t ∈ [0,+∞)T, (7)

where Ǩ1 := diag(k11I2n , k21I2n , . . . , kN1I2n) ∈ R2nN×2nN , Ǩ2 := diag(k12I2n , k22I2n , . . . , kN2I2n) ∈ R2nN×2nN ,
Ǩ3 := diag(k13I2n , k23I2n , . . . , kN3I2n) ∈ R2nN×2nN , Ǩ4 := diag(k14I2n , k24I2n , . . . , kN4I2n) ∈ R2nN×2nN .

Theorem 1. Drive NN (1) is exponentially synchronized with response NN (2) under control scheme
(6) if Assumptions 1 and 2 are satisfied and the subsequent LMIs are true:

Ω < 0, ĽT R3Ľ − α3P < 0, (8)

where Ω1,1 = −PǨ1 − Ǩ1P + (µ̂ + α1)P + ĽT R1Ľ − N2Ǩ1 − Ǩ1NT
2 , Ω1,2 = −N2 − Ǩ1NT

1 , Ω1,3 =

−P(Č + Ǩ2) − N2(Č + Ǩ2) − Ǩ1NT
3 , Ω1,4 = −PǨ3 − N2Ǩ3 − Ǩ1NT

4 , Ω1,5 = PǍ + N2Ǎ + Ǩ1NT
6 , Ω1,6 =

PB̌ + N2B̌ + Ǩ1NT
7 , Ω1,7 = −PǨ4 − N2Ǩ4 − Ǩ1NT

5 , Ω1,8 = PǦ + N2Ǧ + Ǩ1NT
8 , Ω2,2 = −N1 − NT

1 ,
Ω2,3 = −N1(Č+ Ǩ2)−NT

3 , Ω2,4 = −N1Ǩ3−NT
4 , Ω2,5 = N1Ǎ+NT

6 , Ω2,6 = N1B̌+NT
7 , Ω2,7 = −N1Ǩ4−NT

5 ,
Ω2,8 = N1Ǧ + NT

8 , Ω3,3 = −N3(Č + Ǩ2) − (Č + Ǩ2)NT
3 − α21P, Ω3,4 = −N3Ǩ3 − (Č + Ǩ2)NT

4 , Ω3,5 =

N3Ǎ+ (Č + Ǩ2)NT
6 , Ω3,6 = N3B̌+ (Č + Ǩ2)NT

7 , Ω3,7 = −N3Ǩ4 − (Č + Ǩ2)NT
5 , Ω3,8 = N3Ǧ + (Č + Ǩ2)NT

8 ,
Ω4,4 = ĽT R2Ľ−N4Ǩ3 − Ǩ3NT

4 −α22P, Ω4,5 = N4Ǎ+ Ǩ3NT
6 , Ω4,6 = N4B̌+ Ǩ3NT

7 , Ω4,7 = −N4Ǩ4 − Ǩ3NT
5 ,

Ω4,8 = N4Ǧ + Ǩ3NT
8 , Ω5,5 = −N6Ǎ − ǍT NT

6 − R1, Ω5,6 = −N6B̌ − ǍT NT
7 , Ω5,7 = ǍT NT

5 + N6Ǩ4,
Ω5,8 = −N6Ǧ − ǍT NT

8 , Ω6,6 = −R2 − N7B̌ − B̌T NT
7 , Ω6,7 = B̌T NT

5 + N7Ǩ4, Ω6,8 = −N7Ǧ − B̌T NT
8 ,

Ω7,7 = −N5Ǩ4− Ǩ4NT
5 , Ω7,8 = N5Ǧ+ Ǩ4NT

8 , Ω8,8 = −R3−N8Ǧ− ǦT NT
8 , matrix P ∈ R2nN×2nN is positive

definite, matrices R1, R2, R3 ∈ R
2nN×2nN are diagonal positive definite, N1, . . . ,N8 ∈ R

2nN×2nN are any
matrices, and real positive numbers α1, α21, α22, α3 satisfy −α1 ∈ R

+ and

α1 > α21 + α22 + α3

∫ ∞

0
K(s)∆s.

Proof. We start by putting forward the subsequent Lyapunov-like function:

V(t) = ž(t)T Pž(t).

Taking into account Lemma 1 and the expression of system (7), the ∆-derivative of V for the positive
half trajectory of system (7) has the following expression:

V∆(t) ≤ ž(t)T Pž∆(t) + ž∆(t)T Pž(t) + µ̂ž∆(t)T Pž∆(t)

= ž(t)T P
(
−Ǩ1ž(t) − (Č + Ǩ2)ž(t − γ) − Ǩ3ž(t − σ(t)) − Ǩ4

∫ ∞

0
K(s)ž(t − s)∆s

+Ǎ f̌ (ž(t)) + B̌ f̌ (ž(t − σ(t))) + Ǧ
∫ ∞

0
K(s) f̌ (ž(t − s))∆s

)
+

(
−Ǩ1ž(t) − (Č + Ǩ2)ž(t − γ) − Ǩ3ž(t − σ(t)) − Ǩ4

∫ ∞

0
K(s)ž(t − s)∆s
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+Ǎ f̌ (ž(t)) + B̌ f̌ (ž(t − σ(t))) + Ǧ
∫ ∞

0
K(s) f̌ (ž(t − s))∆s

)T

Pž(t)

+µ̂ž∆(t)T Pž∆(t). (9)

On the other hand, Assumption 1 guarantees the existence of diagonal positive definite matrices
R1,R2 ∈ R

2nN×2nN such that ∀t ∈ [0,+∞)T:

0 ≤ ž(t)T ĽT R1Ľž(t) − f̌ (ž(t))T R1 f̌ (ž(t)), (10)

0 ≤ ž(t − σ(t))T ĽT R2Ľž(t − σ(t)) − f̌ (ž(t − σ(t)))T R2 f̌ (ž(t − σ(t))). (11)

Also, from Lemma 3 and Assumption 1, we get that there exists positive definite matrix R3 ∈

R2nN×2nN such that ∀t ∈ [0,+∞)T:

0 ≤
(∫ ∞

0
K(s)ž(t − s)T ĽT R3Ľž(t − s)∆s

)
−

(∫ ∞

0
K(s) f̌ (ž(t − s))∆s

)T

R3

(∫ ∞

0
K(s) f̌ (ž(t − s))∆s

)
.

(12)
Moreover, for any matrices N1, . . . ,N8 ∈ Cℓ

N×N
p,q , the next identity is true:ž∆(t)T N1 + ž(t)T N2 + ž(t − γ)T N3 + ž(t − σ(t))T N4 +

(∫ ∞

0
K(s)ž(t − s)∆s

)T

N5

− f̌ (ž(t))T N6 − f̌ (ž(t − σ(t)))T N7 −

(∫ ∞

0
K(s) f̌ (ž(t − s))∆s

)T

N8


×

[
−ž∆(t) − Ǩ1ž(t) − (Č + Ǩ2)ž(t − γ) − Ǩ3ž(t − σ(t)) − Ǩ4

∫ ∞

0
K(s)ž(t − s)∆s

+Ǎ f̌ (ž(t)) + B̌ f̌ (ž(t − σ(t))) + Ǧ
∫ ∞

0
K(s) f̌ (ž(t − s))∆s

]
= 0. (13)

Now, in Lemma 2, we take ∀t ∈ [0,+∞)T:

y(t) := V(t) = ž(t)T Pž(t),

and, using relations (9)–(13), we have that:

y∆(t) ≤ −α1y(t) + α21y(t − γ) + α22y(t − σ(t)) + α3

∫ ∞

0
K(s)y(t − s)∆s + ξ(t)TΩξ(t)

≤ −α1y(t) + (α21 + α22) sup
s∈[t−φ,t]T

y(s) + α3

∫ ∞

0
K(s)y(t − s)∆s,

where, for the last inequality, we used the hypotheses (8) and

ξ(t) =
[
ž(t)T ž∆(t)T ž(t − γ)T ž(t − σ(t))T f̌ (ž(t))T f̌ (ž(t − σ(t)))T(∫ ∞

0
K(s)ž(t − s)∆s

)T (∫ ∞
0

K(s) f̌ (ž(t − s))∆s
)T

]T
.

This means that the first inequality in Lemma 2 holds.
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From the hypothesis of the theorem, we have that the second inequality in Lemma 2 is also true,
which means that we can apply Lemma 2 to obtain:

λmin(P)||ž(t)||22 ≤ ž(t)
T Pž(t)

≤ sup
s∈[−φ,0]T

y(s)e⊖λ(t, 0),

or, equivalently,

||ž(t)||2 ≤

√
sups∈[−φ,0]T y(s)

λmin(P)
(e⊖λ(t, 0))

1
2 ,

which shows that drive NN (1) is exponentially synchronized with response NN (2) under control
scheme (6), exactly what we wanted to prove. □

Theorem 2. Provided that positive numbers ωi, 0 ≤ i ≤ 2nN, exist, the following inequality is true:

α1 > α2 + α3

∫ ∞

0
K(s)∆s,

and −α1 ∈ R
+, where

α1 = min1≤i≤2nN

{
ǩ1i −

∑2nN
j=1 |ǎ ji|

ω j

ωi
ľi

}
,

α2 = max1≤i≤2nN

{
či + ǩ2i + ǩ3i +

∑2nN
j=1 |b̌ ji|

ω j

ωi
ľi

}
,

α3 = max1≤i≤2nN

{
ǩ4i +

∑2nN
j=1 |ǧ ji|

ω j

ωi
ľi

}
,

and, also, Assumptions 1 and 2 are satisfied, then drive NN (1) is exponentially synchronized with
response NN (2) under state feedback controller (6).

Proof. The following Lyapunov-like function is put forward:

V(t) =
2nN∑
i=1

ωi|ži(t)|.

For the positive half trajectory of system (7), employing Lemma 4, the ∆-derivative of V has the
following explicitation:

V∆(t) ≤ −
2nN∑
i=1

ǩ1iωi|ži(t)| +
2nN∑
i=1

(či + ǩ2i)ωi|ži(t − γ)| +
2nN∑
i=1

ǩ3iωi|ži(t − σ(t))|

+

2nN∑
i=1

ǩ4iωi

∫ ∞

0
K(s)|ži(t − s)|∆s +

2nN∑
i=1

2nN∑
j=1

|ǎi j|ωi| f̌ j(ž j(t))| +
2nN∑
i=1

2nN∑
j=1

|b̌i j|ωi| f̌ j(ž j(t − σ(t)))|

+

2nN∑
i=1

2nN∑
j=1

|ǧi j|ωi

∫ ∞

0
K(s)| f̌ j(ž j(t − s))|∆s

≤ −

2nN∑
i=1

ǩ1iωi|ži(t)| +
2nN∑
i=1

(či + ǩ2i)ωi|ži(t − γ)| +
2nN∑
i=1

ǩ3iωi|ži(t − σ(t))|

+

2nN∑
i=1

ǩ4i

∫ ∞

0
K(s)ωi|ži(t − s)|∆s +

2nN∑
i=1

2nN∑
j=1

|ǎ ji|ω jľi|ži(t)| +
2nN∑
i=1

2nN∑
j=1

|b̌ ji|ω jľi|ži(t − σ(t))|
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+

2nN∑
i=1

2nN∑
j=1

|ǧ ji|ω j

∫ ∞

0
K(s)ľi|ži(t − s)|∆s

≤ −

2nN∑
i=1

ǩ1i −

2nN∑
j=1

|ǎ ji|
ω j

ωi
ľi

ωi|ži(t)| +
N∑

i=1

(
či + ǩ2i

)
sup

s∈[t−φ,t]T
ωi|ži(s)|

+

2nN∑
i=1

ǩ3i +

2nN∑
j=1

|b̌ ji|
ω j

ωi
ľi

 sup
s∈[t−φ,t]T

ωi|ži(s)|

+

2nN∑
i=1

∫ ∞

0
K(s)

ǩ4i +

2nN∑
j=1

|ǧ ji|
ω j

ωi
ľi

ωi|ži(t − s)|∆s. (14)

At this point, in Lemma 2, we take

y(t) := V(t) =
2nN∑
i=1

ωi|ži(t)|,

Now, relation (14) allows us to write ∀t ∈ [0,+∞)T, that:

y∆(t) ≤ −α1y(t) + α2 sup
s∈[t−φ,t]T

y(s) + α3

∫ ∞

0
K(s)y(t − s)∆s,

where α1, α2, α3 are given in the hypothesis of the theorem. This means that the first inequality in
Lemma 2 holds. The second inequality in Lemma 2 also holds, based on the hypothesis of the theorem.

Thus, we can apply Lemma 2, which gives:

min
1≤i≤2nN

{ωi}||ž(t)||1 ≤
2nN∑
i=1

ωi|ži(t)|

≤ sup
s∈[−φ,0]T

y(s)e⊖λ(t, 0),

which is equivalent with:

||ž(t)||1 ≤
sups∈[−φ,0]T y(s)

min1≤i≤2nN{ωi}
e⊖λ(t, 0),

meaning that drive NN (2) is exponentially synchronized with response NN (3) under state feedback
controller (6), precisely what we had to prove. □

4. Numerical examples

Example 1. For the first example, consider the time scale T = 0.1Z, from which we get that µ̂ = 0.1.
Also, consider that the NNs are defined on the 8D Clifford algebra Cℓ0,3, which has the following

multiplication table:
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⊗0,3 e0 e1 e2 e3 e12 e13 e23 e123

e0 e0 e1 e2 e3 e12 e13 e23 e123

e1 e1 −e0 e12 e13 −e2 −e3 e123 −e23

e2 e2 −e12 −e0 e23 e1 −e123 −e3 e13

e3 e3 −e13 −e23 −e0 e123 e1 e2 −e12

e12 e12 e2 −e1 e123 −e0 e23 −e13 −e3

e13 e13 e3 −e123 −e1 −e23 −e0 e12 e2

e23 e23 e123 e3 −e2 e13 −e12 −e0 −e1

e123 e123 −e23 e13 −e12 −e3 e2 −e1 e0

Consider the subsequent ClVNN with two neurons, with leakage, time-varying, and infinitely
distributed delays defined on time scale T as the drive system:

x∆i (t) = −cixi(t−γ)+
2∑

j=1

ai j⊗0,3 f j(x j(t))+
2∑

j=1

bi j⊗0,3 f j(x j(t−σ(t)))+
2∑

j=1

gi j⊗0,3

∫ ∞

0
K(s) f j(x j(t−s))∆s+Ei,

(15)
and the corresponding response system:

y∆i (t) = −ciyi(t−γ)+
2∑

j=1

ai j⊗0,3 f j(y j(t))+
2∑

j=1

bi j⊗0,3 f j(y j(t−σ(t)))+
2∑

j=1

gi j⊗0,3

∫ ∞

0
K(s) f j(y j(t−s))∆s+Ei−ui(t),

(16)
∀i ∈ {1, 2}, ∀t ∈ [0,∞)T.

Taking into account relations (15) and (16) and denoting zi(t) = yi(t) − xi(t), ∀i ∈ {1, 2}, ∀t ∈
[0,+∞)T, the error system will have the following expression:

z
∆
i (t) = −cizi(t−γ)+

2∑
j=1

ai j⊗0,3 f̃ j(z j(t))+
2∑

j=1

bi j⊗0,3 f̃ j(z j(t−σ(t)))+
2∑

j=1

gi j⊗0,3

∫ ∞

0
K(s) f̃ j(z j(t−s))∆s−ui(t),

(17)
∀i ∈ {1, 2}, ∀t ∈ [0,+∞)T, and f̃ j(z j(t)) = f j(z j(t) + x j(t)) − f j(x j(t)), ∀t ∈ [0,+∞)T, ∀ j ∈ {1, 2}.

In order to achieve synchronization between drive system (15) and response system (16), we design
the following controller of state feedback type:

u(t) = K1z(t) + K2z(t − γ) + K3z(t − σ(t)) + K4

∫ ∞

0
K(s)z(t − s)∆s, (18)

where the real positive diagonal matrices K1, . . . ,K4 ∈ R
2×2 are the control gain matrices. Using this

control scheme, NN (17) can be equivalently written as:

ž
∆(t) = −Ǩ1ž(t) − (Č + Ǩ2)ž(t − γ) − Ǩ3ž(t − σ(t)) − Ǩ4

∫ ∞

0
K(s)ž(t − s)∆s

+Ǎ f̌ (ž(t)) + B̌ f̌ (ž(t − σ(t))) + Ǧ
∫ ∞

0
K(s) f̌ (ž(t − s))∆s. (19)

The parameters of the model are:

C =
[

0.3 0
0 0.4

]
,

AIMS Mathematics Volume 9, Issue 7, 18796–18823.



18809

A =
[

a11 a12

a21 a22

]
,

a11 = −0.7e0 + 0.9e1 − 0.2e2 + 0.4e3 + 0.2e12 + 0.8e13 + 0.3e23 + 0.9e123,

a12 = 0.3e0 + 0.9e1 − 0.2e2 − 0.2e3 + 0.5e12 + 0.8e13 + 0.8e23 − 0.9e123,

a21 = −0.2e0 − 0.4e1 + 0.2e2 − 0.2e3 + 0.3e12 + 0.2e13 − 0.5e23 + 0.2e123,

a22 = 0.4e0 + 0.3e1 + 0.1e2 + 0.4e3 − 0.2e12 − 0.8e13 + 0.8e23 + 0.9e123,

B =
[

b11 b12

b21 b22

]
,

b11 = −0.4e0 + 0.7e1 + 0.2e2 + 0.5e3 − 0.9e12 + 0.9e13 − 0.8e23 + 0.9e123,

b12 = 0.8e0 + 0.5e1 + 0.3e2 − 0.5e3 + 0.8e12 + 0.9e13 − 0.9e23 + 0.8e123,

b21 = 0.3e0 + 0.2e1 − 0.2e2 + 0.1e3 + 0.8e12 + 0.9e13 + 0.7e23 + 0.9e123,

b22 = −0.5e0 + 0.5e1 + 0.2e2 + 0.4e3 + 0.8e12 − 0.9e13 − 0.8e23 + 0.7e123,

G =
[

g11 g12

g21 g22

]
,

g11 = −0.2e0 + 0.4e1 + 0.5e2 + 0.3e3 − 0.6e12 + 0.2e13 − 0.4e23 + 0.5e123,

g12 = 0.3e0 + 0.5e1 + 0.2e2 − 0.5e3 + 0.3e12 + 0.1e13 − 0.2e23 + 0.3e123,

g21 = 0.1e0 + 0.3e1 − 0.2e2 + 0.1e3 + 0.2e12 + 0.1e13 + 0.3e23 + 0.4e123,

g22 = −0.3e0 + 0.1e1 + 0.2e2 + 0.5e3 + 0.4e12 − 0.2e13 − 0.1e23 + 0.5e123,

f j(x) =
1

2
√

2

∑
I∈I

f I
j (x)eI =

1

2
√

2

∑
I∈I

1
1 + exp(−xI)

eI , ∀x ∈ Cℓ0,3, ∀ j ∈ {1, 2},

which allows us to conclude that L =
[
0.25 0

0 0.25

]
, meaning that Assumption 1 is satisfied.

The time-varying delays are σ(t) = 0.9| cos t| and the leakage delay is γ = 0.7, which means
that σ = 0.9 and φ = max{σ, γ} = 0.9. The infinite distributed delay kernel function is given by
K(s) = 2e2(0, s), ∀s ∈ [0,∞)T, which it can be easily verified that it satisfies Assumption 2.

The control gain matrices are designed as:

K1 =

[
10.2 0

0 10.1

]
, K2 =

[
0.2 0
0 0.3

]
, K3 =

[
0.3 0
0 0.2

]
, K4 =

[
0.4 0
0 0.3

]
.

Also, we take α1 = 5.1, α21 = 1, α22 = 2, α3 = 2, which satisfy α1 > α21 + α22 + α3

∫ ∞
0

K(s)∆s
and −α1 ∈ R

+. Taking all of the above into consideration, we can conclude that all the conditions
of Theorem 1 are met and the LMIs in (8) are solved to give R1 = diag(1.1976I8, 1.2841I8),
R2 = diag(1.3380I8, 1.3591I8), R3 = diag(1.0237I8, 1.0259I8), (the values of the other matrices are
omitted so as not to clutter the paper), which allows us to reach the conclusion that drive NN (15) is
exponentially synchronized with response NN (16) under control scheme (18).

Figures 1 (a), 1 (b), 2 (a), 2 (b) depict the Clifford components of the state trajectories of ž1 and ž2,
starting from 8 initial values.
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Figure 1 (a). State trajectories for the components of Clifford number ž1 in Example 1. The
8 colors in each graph depict the 8 initial values.
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Figure 1 (b). State trajectories for the components of Clifford number ž1 in Example 1. The
8 colors in each graph depict the 8 initial values.
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Figure 2 (a). State trajectories for the components of Clifford number ž2 in Example 1. The
8 colors in each graph depict the 8 initial values.
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Figure 2 (b). State trajectories for the components of Clifford number ž2 in Example 1. The
8 colors in each graph depict the 8 initial values.
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Example 2. Now, consider the time scale T = R, which means that µ̂ = 0. Also, take the same systems
(15) and (16) and the same controller (18), defined on the same 8D algebra Cℓ0,3, but with the following
parameters:

C =
[

0.2 0
0 0.3

]
,

A =
[

a11 a12

a21 a22

]
,

a11 = −0.7e0 + 0.9e1 − 0.2e2 + 0.4e3 + 0.2e12 + 0.8e13 + 0.3e23 + 0.9e123,

a12 = 0.3e0 + 0.9e1 − 0.2e2 − 0.2e3 + 0.5e12 + 0.8e13 + 0.8e23 − 0.9e123,

a21 = −0.2e0 − 0.4e1 + 0.2e2 − 0.2e3 + 0.3e12 + 0.2e13 − 0.5e23 + 0.2e123,

a22 = 0.4e0 + 0.3e1 + 0.1e2 + 0.4e3 − 0.2e12 − 0.8e13 + 0.8e23 + 0.9e123,

B =
[

b11 b12

b21 b22

]
,

b11 = −0.4e0 + 0.7e1 + 0.2e2 + 0.5e3 − 0.9e12 + 0.9e13 − 0.8e23 + 0.9e123,

b12 = 0.8e0 + 0.5e1 + 0.3e2 − 0.5e3 + 0.8e12 + 0.9e13 − 0.9e23 + 0.8e123,

b21 = 0.3e0 + 0.2e1 − 0.2e2 + 0.1e3 + 0.8e12 + 0.9e13 + 0.7e23 + 0.9e123,

b22 = −0.5e0 + 0.5e1 + 0.2e2 + 0.4e3 + 0.8e12 − 0.9e13 − 0.8e23 + 0.7e123,

G =
[

g11 g12

g21 g22

]
,

g11 = −0.4e0 + 0.7e1 + 0.2e2 + 0.5e3 − 0.9e12 + 0.9e13 − 0.8e23 + 0.9e123,

g12 = 0.9e0 + 0.5e1 + 0.3e2 − 0.5e3 + 0.8e12 + 0.9e13 − 0.9e23 + 0.7e123,

g21 = 0.3e0 + 0.2e1 − 0.2e2 + 0.1e3 + 0.8e12 + 0.9e13 + 0.8e23 + 0.9e123,

g22 = −0.5e0 + 0.5e1 + 0.2e2 + 0.4e3 + 0.9e12 − 0.9e13 − 0.8e23 + 0.7e123,

f j(x) =
1

2
√

2

∑
I∈I

f I
j (x)eI =

1

2
√

2

∑
I∈I

1
1 + exp(−xI)

eI , ∀x ∈ Cℓ0,3, ∀ j ∈ {1, 2},

which allows us to conclude that L =
[
0.25 0

0 0.25

]
, meaning that Assumption 1 is satisfied.

The time-varying delays are σ(t) = 0.8| sin t| and the leakage delay is γ = 0.6, which means that
σ = 0.8 and φ = max{σ, γ} = 0.8. The infinite distributed delay kernel function is given by K(s) =
2e−2s, ∀s ∈ [0,∞)T, which it can be easily verified that it satisfies Assumption 2.

The control gain matrices are designed as:

K1 =

[
9.1 0
0 9.1

]
, K2 =

[
0.1 0
0 0.1

]
, K3 =

[
0.2 0
0 0.2

]
, K4 =

[
0.4 0
0 0.4

]
.

AIMS Mathematics Volume 9, Issue 7, 18796–18823.



18815

Also, we compute α1 = 6.9750, α2 = 3.1750, α3 = 3, which satisfy −α1 ∈ R
+ and α1 − α2 −

α3

∫ ∞
0

K(s)∆s = 0.8 > 0. All the conditions of Theorem 2 are met, which allows us to reach the
conclusion that drive NN (15) is exponentially synchronized with response NN (16) under control
scheme (18), with the above-defined parameters.

Figures 3 (a), 3 (b), 4 (a), 4 (b) depict the Clifford components of the state trajectories of ž1 and ž2,
starting from 8 initial points.

Figure 3 (a). State trajectories for the components of Clifford number ž1 in Example 2. The
8 colors in each graph depict the 8 initial values.
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Figure 3 (b). State trajectories for the components of Clifford number ž1 in Example 2. The
8 colors in each graph depict the 8 initial values.
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Figure 4 (a). State trajectories for the components of Clifford number ž2 in Example 2. The
8 colors in each graph depict the 8 initial values.
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Figure 4 (b). State trajectories for the components of Clifford number ž2 in Example 2. The
8 colors in each graph depict the 8 initial values.

5. Conclusions

The aim of this paper was to present a general model of ClVNNs defined on time scales,
encompassing leakage, time-varying, and infinite distributed delays, which were rarely added to
NN models in the existing literature. A Halanay inequality for time scales was used together with
Lyapunov-like functions of two types in order to deduce sufficient conditions expressed as algebraic
inequalities and as LMIs for the exponential synchronization of the model put forward, on the basis
of a general state feedback control scheme. Numerical examples defined both in discrete time and
continuous time were put forward to illustrate the obtained theoretical results.

The theorems presented in the paper are general enough that they can be particularized for both
continuous time and discrete time ClVNNs, or any hybrid combination of the two. They can also be
particularized for CVNNs or QVNNs, for which the respective results are not present in the available
literature, to our awareness. Also, the methods used in the paper can be employed to deduce sufficient
criteria for other dynamic properties, such as stability, dissipativity, passivity, etc., for other types of
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models defined on time scales, for instance, for NNs with Markov jump parameters, inertial terms,
impulsive effects, or reaction–diffusion terms. These represent promising avenues for future works.
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