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Abstract: Rayleigh-Ritz discriminant analysis (RRDA) is an effective algorithm for linear
discriminant analysis (LDA), but there are some drawbacks in its implementation. In this paper, we
first improved Rayleigh-Ritz discriminant analysis (IRRDA) to make its framework more concise, and
established the equivalence theory of the solution space between our discriminant analysis and RRDA.
Second, we proposed a new model based on positive definite systems of linear equations for linear
discriminant analysis, and certificated the rationality of the new model. Compared with the traditional
linear regression model for linear discriminant analysis, the coefficient matrix of our model avoided
forming a centralized matrix or appending the original data matrix, but the original matrix itself, which
greatly reduced the computational complexity. According to the size of data matrix, we designed two
solution schemes for the new model based on the block conjugate gradient method. Experiments in
real-world datasets demonstrated the effectiveness and efficiency of our algorithm and it showed that
our method was more efficient and faster than RRDA.
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1. Introduction

Dimensionality reduction is a common technique for extracting effective information from high-
dimensional data, which can validly reduce the computational complexity and storage demands.
Therefore, dimensionality reduction has become a research hotspot in recent years [1–3]. Linear
discriminant analysis (LDA) [4–8] is a well-known method for dimensionality reduction, which has
been widely used in many applications such as face recognition [1, 9, 10], machine learning [11, 12],
image classification [13, 14], image reconstruction [15], and information retrieval [2, 16].
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Suppose n data points are divided into c classes X = [x1, x2, . . . , xn] = [X1, . . . , Xc] ∈ Rd×n, where
X j ∈ R

d×n j is the j-th class with n j being the number of samples, and
∑c

j=1 n j = n. Denote by c j the
centroid of class X j, and by c the global centroid. The within-class scatter, between-class scatter and
total scatter matrices are defined as

S w =

c∑
j=1

∑
xi∈X j

(xi − c j)(xi − c j)T , S b =

c∑
j=1

n j(c j − c)(c j − c)T , S t =

n∑
j=1

(x j − c)(x j − c)T ,

respectively. LDA looks for a classification that projects high-dimensional data onto a low-dimensional
space and achieves the maximum class separability of data [17, 18]. In order to make LDA more
suitable for dimensionality reduction, various extensions of LDA are proposed [19, 20]. Among those
extensions, one popular LDA criterion is

W = arg max
WT W=Ir

tr
(
(WT S tW)†(WT S bW)

)
. (1.1)

As S t is a symmetric positive semidefinite matrix, the regularization parameter is often used to
overcome singularity problems [19]. S t in (1.1) is replaced by S = S t + αId, which in results
the regularized linear discriminant analysis (RLDA) problem. The literature [21] proposes a
branching and binding method for solving problems in the case of reducing to one-dimensional space.
The literature [22] proposes a new dual parameter regularization BLDA (RBLDA) for MTS data
classification and develops an efficient model selection algorithm.

Generally, an LDA problem can be solved equivalently by a generalized eigenvalue problem [4,17,
18]

S bw = λS tw.

However, straightforward implementation of generalized eigenvalue decomposition is very time-
consuming and prohibitive for high-dimensional data [18, 23]. To cure this drawback, researchers
use QR decomposition, singular value decomposition, the Krylov subspace method and other
techniques to transform the large-scale generalized eigenvalue decomposition problem into a small
size matrix decomposition problem, resulting in a series of methods for high-dimensional data, such
as QRLDA [24], GSVDLDA [25], RRDA [18], and so on [3, 25–27]. Recently, random sampling [17]
and randomized SVD (RSVD) [26, 28] techniques have been used to accelerate LDA algorithms, and
it shows that RSVD is very efficient for high-dimensional and large-scale dense data. Among these
algorithms, RRDA [18] solved the generalized eigenvalue problem using a gradient-like method using
the Rayleigh-Ritz framework, showng its superiority to some popular LDA algorithms both on the
optimal target value and classification accuracy. However, RRDA is not concise in the implementation
framework, hence we are committed to studying its convenient framework in this paper.

In addition to solving LDA by eigenvalue problems, LDA can also be solved by multivariate
linear regression with a specific class indicator matrix [5, 8, 29]. In [8], the author showed that
the solution of multivariate linear regression min

M
‖ 1
√

n X̄T M − Y‖2F can solve the corresponding LDA
problem (1.1), where

Y jk =


√

n
nk
−

√
nk
n i f j ∈ Nk,

−

√
nk
n otherwise,
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is a class indicator matrix and X̄ = X(In −
1
n1n1T

n ) is the centralized data matrix. Similarly, [27]
established an equivalence between RLDA and a ridge regression, and [29] investigated the relationship
between LDA and the minimum squared error. Chen et al. [30] proposed a bidirectional linear
discriminant analysis method for image data based on low rank approximation. SRDA [23] cast LDA
into a regression framework using spectral graph analysis is a representative algorithm for solving high-
dimensional and large-scale sparse data. LDADL [20] showed an equivalence solution space between
LDA and a multivariate linear regression, and proposed an incremental method for large-scale data.
Most least square (LS) problems for LDA are based on the data matrix, not the data itself, which will
increase computational complexity. In this paper, we consider establishing the relationship between
LDA and multivariate linear regression through the original matrix itself.

The structure of this paper is as follows. In Section 2, we first introduce the RRDA method and
analyze its advantages and disadvantages, then put forward some settlements for the defects and
optimize RRDA. In Section 3, we establish the equivalence of LDA and a new linear symmetric and
positive equations system, which contains only data matrix and class indicator matrix. In Section 4,
we conduct some numerical experiments by a collection of large-scale and high-dimensional databases
from real face images, speech corpus, and video. Numerical results show the effectiveness of our
proposed method, and some concluding remarks are given in Section 5.

Here are some notations in our paper. 1i stands for the vector of all ones with dimension i, Ii is
the identity matrix whose dimension is i, 0 means a zero matrix or vector. AT , A−1 and A† are the
transposition, inverse, and Moore-Penrose inverse of A, respectively. ‖A‖2, ‖A‖F represent the 2-norm
and Frobenius norm of A. span{A} consists of the space spanned by the columns of A, rank(A) stands
for the rank of A, orth(A) is an orthonormal basis for the range of A, and tr(A) indicates the trace of A.

2. The RRDA method and its improved version

In this section, we briefly review the (RRDA) method [18] and optimize it.

2.1. RRDA

RRDA is a conjugate-gradient-like method based on the Rayleigh-Ritz framework for the
generalized eigenvalue problem S bw = λS w of RLDA, where

S = S t + αId. (2.1)

For the sake of the Rayleigh-Ritz framework, RRDA rewrote S t and S b as [18]

S t = X̄X̄T , S b = HHT , (2.2)

where

X̄ = X(In −
1
n

1n1T
n ), H = X̄Y, Y = diag(

1
√

n1
1n1 ,

1
√

n2
1n2 , · · · ,

1
√

nc
1nc). (2.3)

Therefore, RRDA solves the following problem for dimensionality reduction:

HHT w = λS w, λ > 0. (2.4)
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RRDA designs efficient subspace expansion and extraction strategy on the Rayleigh-Ritz framework
for generalized eigenvalue problems (2.4). In the expansion phase, it chooses a subspace basis
Pk satisfying

min
Pk
‖gradMk−1tr((MT

k−1S Mk−1)†MT
k−1HHT Mk−1) − Pk‖

2
F , s.t. PkS Pi = 0, i < k,

such that Vk = [Vk−1, Pk] in iteration k, where Mk−1 from the prior extraction phase with the initial
M0 = 0. Pk in the above formula can be computed by the following theorem [18].

Theorem 1. [18] Define {Pi} and {Ri} as

Ri =

{
H, i = 1
Ri−1 − S Pi−1(PT

i−1S Pi−1)†PT
i−1Ri−1, i > 1

, Pi =

{
H i = 1
Ri − Pi−1(PT

i−1S Pi−1)†PT
i−1S Ri i > 1

,

then

RT
k Pk−1 = 0, RT

k R j = 0, PT
k S P j = 0, j < k. (2.5)

In the extraction phase, it computes the eigenpair (λi, ηi) of (VT
k HHT Vk,VT

k S Vk) and computes the
Ritz vectors wi = Vkηi until convergence. Let Wk = [w1,w2, . . . ,wc], where c is the reduced dimension,
then Wk is the approximation of the eigenvectors of (2.4) associated with the first c eigenvalues.

As S is the positive definite matrix, computing the eigenpairs of (VT
k S Vk,VT

k HHT Vk) can transform
into computing the eigenpairs of λη = (VT

k S Vk)†(VT
k H)(VT

k H)Tη in the following problem [31]. It is
known that if (λ, η) is the nonzero eigenpair of BT AB, then ABBT has the eigenvector ABη with the
same eigenvalue. Hence, let Tk = HT Mk, Mk = Vk(VT

k S Vk)†VT
k H, and Uk be the eigenvectors with the

positive eigenvalues of Tk. Then, the Ritz pair of (HHT , S ) can be recovered by Vk · (VT
k S Vk)†VT

k H ·
Uk = MkUk. On the other hand, according to Theorem 1, Mk = Vk(VT

k S Vk)†VT
k H can be computed

equivalently by

Mk =

k∑
i=1

Pi(PT
i S Pi)†PT

i H. (2.6)

Thus, the specific algorithm of RRDA is shown in Algorithm 1.

Algorithm 1 Rayleigh-Ritz Discriminant Analysis (RRDA) [18].
1) Input: Data matrix X, class indicator matrix Y, and a tolerance ε.
2) Start: Initialize Rk = H, Mk = Qk = 0d×c, Tk = Lk = Ek = 0c×c, S = S t + αId.
3) Inner loop: For k=1,2,. . . , do:

3.1) Expansion: Pk = Rk − PkEkQT
k Rk.

3.2) Extraction:
3.2.1) Qk = S Pk, Ek = (PT

k Qk)†, Lk = PT
k H;

3.2.2) Mk = Mk + PkEkLk, Rk = Rk − QkEkLk, Tk = HT Mk;
3.2.3) Compute the EVD of Tk, set Wk = MkUk, Uk is the eigenvectors of Tk associated with

the positive eigenvalues.
3.3) Stop if ‖Wk −Wk−1‖F < ε.

4) End: Output Wk as the approximation of Wopt.

AIMS Mathematics Volume 9, Issue 7, 18777–18795.
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2.2. An improved algorithm of RRDA

Throughout the implementation of RRDA, there are some shortcomings and suggestions here.
First, the large-scale matrix S = X̄X̄T + αId is formed in the initial step, which results in a waste of

time and memory. Notice that S is only used in Qk = S Pk. We suggest computing Qk by its equivalent
form Qk = X̄(X̄T Pk) + αPk without forming S , which will save a lot of computing memory.

Second, Mk can be updated by Mk = Mk + PkEkLk as (2.6), and (2.6) holds because of the
orthogonality conditions of (2.5). Therefore, the premise for the effective implementation of RRDA is
the orthogonality of Pk and Rk, while their orthogonality may lose gradually during its running due to
computational error. Hence, we need to re-orthogonalize Pk in Step 3.1, i.e., set

Pk = orth(Pk).

Fortunately, [32] has proved that RT
k Pk−1 = 0, RT

k R j = 0 would still be established both on theoretical
and computational results with Pk = orth(Pk). Further, PT

k Qk is symmetric positive definite matrix
under the orthogonality of Pk, thus one can compute Ek = (PT

k Qk)−1 instead of computing the Moore-
Penrose inverse Ek = (PT

k Qk)† in Step 3.2.1.
Third, we suggest placing the term Tk = HT Mk in Steps 3.2.2 and the 3.2.3 outside the loop, as

the update of Tk and Wk is only related to Mk. This is our essential improvement proposal for RRDA.
In this way, we can reduce the CPU time of RRDA since it only computes the matrix-matrix products
Tk = HT Mk, Wk = MkUk and the eigenvalue decomposition of Tk once, while RRDA needs to compute
k times. In essence, ignoring the calculation of Tk and Wk, the expansion and extraction of RRDA
(Algorithm 1) is the process of solving positive definite equations

S M = H, (2.7)

by the block conjugate gradient method, where Pk is the descent direction, Rk is the residual term, and
Mk is the iterative solution. Therefore, the stopping criterion ‖Wk −Wk−1‖F < ε in Step 3.3 is improper.
In fact, due to the gradual loss of orthogonality of Pk, the dimensions of Wk and Wk−1 may be different
during running, resulting in the failure of the RRDA. Thus, we suggest using ‖Rk‖F < ε instead of
‖Wk −Wk−1‖F < ε as the stopping criterion.

Remark 1. The solving process of Algorithms 2 and 1 is similar, so convergence analysis can refer to
the convergence analysis of Algorithm 1. Let us briefly discuss the computational complexities of this
algorithm. The main computational complexity is in Step 3, which costs about O(dnc + d2c+) flops. In
Case 2, the main computational complexity is in Step 10, which costs about O(dnc + c3 + c2d + d2c)
flops. Generally speaking, the class number c is far less than the characteristic dimension d and the
sample number n, thus the total costs are about O(dnc + c2d + d2c) flops.

In conclusion, we summarize the improved algorithm for RRDA; see Algorithm 2. The essential
difference between RRDA and IRRDA is the handing of Tk and Wk. RRDA updates Tk and Wk

by Mk iteratively in the inner loop until Wk converges, while IRRDA calculates Tk and Wk outside
the loop. Throughout RRDA, Tk converges as long as Mk converges because of the continuity of
matrix elements. Thus, the iterations of RRDA and IRRDA may be close to each other when they
converge. However, RRDA calculates eigenvalue decompositions more than IRRDA, so IRRDA has
better computational efficiency.
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Algorithm 2 An improved algorithm of RRDA (IRRDA).
1) Input: Data matrix X and a tolerance ε.
2) Start: Initialize Rk = H, Mk = Qk = 0d×c.
% Solving S M = H by the breakdown-free block conjugate gradient (BCG) algorithm [32]

3) Inner loop: For k = 1, 2, . . ., do:
3.1) Expansion: Pk = Rk − PkEkQT

k Rk, Pk = orth(Pk).
3.2) Extraction:

3.2.1) Qk = X̄(X̄T Pk) + αPk, Ek = (PT
k Qk)−1, Lk = PT

k H;
3.2.2) Mk = Mk + PkEkLk, Rk = Rk − QkEkLk;

3.3) Stop if ‖Rk‖F < ε.
4) Compute Wk = MkUk, where Uk is the eigenvectors of Tk = HT Mk associated with the positive
eigenvalues.
5) End: Output Wk as the approximation of Wopt.

According to the implementation of IRRDA, IRRDA essentially computes w and satisfies the
following problems: 

S M = H,

HT Mu = λu, λ > 0,
w = Mu.

(2.8)

Recall that S is symmetric positive definite. We have the following result relating RRDA problem (2.4)
and IRRDA problem (2.8).

Theorem 2. Let M be the solution of S M = H, then RRDA problem (2.4) and IRRDA problem (2.8)
have the same solution.

Proof. As S M = H and S is symmetric positive definite, then M = S −1H and RRDA problem (2.4)
can be rewritten as the following eigenvalue problem:

MHT w = λw, λ > 0. (2.9)

Now, we prove that the solutions of RRDA problem (2.9) and IRRDA problem (2.8) are the same.
First, we prove that w in (2.8) solves RRDA problem (2.4). Left multiplying M from both sides of

HT Mu = λu, λ > 0 yields MHT (Mu) = λ(Mu), which implies that if u is an eigenvector of HT M
corresponding to λ, then w = Mu is an eigenvector of MHT corresponding to λ.

Second, we prove that the solution of RRDA satisfies the IRRDA problem (2.8). Left multiplying
HT from both sides of (2.9) yields

HT M(HT w) = λ(HT w), λ > 0, (2.10)

which indicates that if w is an eigenvector of MHT corresponding to λ, then HT w is an eigenvector
of HT M corresponding to λ. In other words, the eigenvectors of HT M corresponding to nonnegative
eigenvalues can be computed by u = HT w. Left multiplying M from both sides of (2.10) yields

MHT M(HT w) = λM(HT w), λ > 0, (2.11)
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which indicates that if u = HT w is an eigenvector of HT M corresponding to λ, then Mu is an
eigenvector of MHT corresponding to λ. Note w is also the eigenvector of MHT corresponding to
λ, thus w = Mu. �

Theorem 2 depicts that the solution spaces of RRDA and IRRDA are equivalent. Fortunately,
algorithm IRRDA has less computational complexity, which shows the effectiveness of the improved
algorithm IRRDA. Moreover, let U be the eigenvectors of HT M associated with the positive
eigenvalues. IRRDA and Theorem 2 indicate W = MU and solve the RLDA problem. More
importantly, it is clear that the solution space of RLDA is a subset of span{M}.

3. A new linear system solving for RLDA

Notice from [8] that the solution of LDA and S †t H are equivalent, thus M = S −1H = (S t + αId)−1H
can be used to approximate the RLDA. Computing S and H requires forming X̄ = X(In−

1
n1n1T

n ), which
is time-consuming for large-scale high-dimensional datasets. In large-scale data, the dimension d and
sample number n of data are usually huge, and 1

n will be very small and even tend to 0. In this section,
we consider replacing X̄ with X, and characterize the rationality of solving RLDA by the following
linear system:

Š M̌ = Ȟ, (3.1)

where

Š = XXT + αId, Ȟ = XY. (3.2)

It is clear that

M̌ = Š −1Ȟ

= (XXT + αId)−1XY, (3.3)
= X(XT X + αIn)−1Y. (3.4)

According to the feature of the data and the number of samples, we compute M̌ in two
different schemes:

(1) When d ≤ n, we compute M̌ by (3.3).
(2) When d > n, we first compute the solution M̌ by (3.4).
Here, we apply the breakdown-free block conjugate gradient (BCG) algorithm [32] to compute the

linear equations for the symmetric semi-positive definite matrix. The specific algorithm of our new
model for RLDA is shown in Algorithm 3.

AIMS Mathematics Volume 9, Issue 7, 18777–18795.
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Algorithm 3 A breakdown-free BCG algorithm for LDA (BBCGLDA).

Require: Data matrix X ∈ Rd×n and a tolerance ε
Ensure: Transform matrix M̌

1: Case1: If d > n
2: Initialize Řk = Y , M̌k = 0n×c, P̌k = orth(Řk).
3: while ‖Řk‖F ≥ ε do
4: Q̌k = αP̌k + XT (XP̌k), Ěk = (P̌T

k Q̌k)−1,
Ľk = Ek(P̌T

k Řk), M̌k = M̌k + P̌kĽk,
Řk = Řk − Q̌kĽk, P̌k = Řk − (P̌kĚk)(Q̌T

k Řk),
P̌k = orth(P̌k).

5: end while
6: M̌ = XM̌k

7: Case2: If d ≤ n
8: Initialize Řk = Ȟ = XY , M̌k = 0d×c,

P̌k = orth(Řk)
9: while ‖Řk‖F ≥ ε do

10: Q̌k = αP̌k + X(XT P̌k), Ěk = (P̌T
k Q̌k)−1,

Ľk = Ek(P̌T
k Řk), M̌k = M̌k + P̌kĽk,

Řk = Řk − Q̌kĽk, P̌k = Řk − (P̌kĚk)(Q̌T
k Řk),

P̌k = orth(P̌k).
11: end while
12: M̌ = M̌k

In Algorithm 3, the convergence of Cases 1 and 2 is similar. This article explains the convergence
of Case 2 and provides a convergence theorem below.

Theorem 3. Suppose Ȟ is rank deficient with rank r0 (r0 < c). Let κ = λmax/λmin, where λmax and λmin

are the maximum and nonzero minimum eigenvalues of matrix Ȟ, respectively. Let Ek = M̌∗ − M̌k =

[e(1)
k , e(2)

k , ..., e(c)
k ]. The minimum error square norm ‖e(i)

k ‖
2 is bounded as

‖e(i)
k ‖

2 ≤ t(
1 −
√
κ−1

1 +
√
κ−1

)2(i+1), (3.5)

where t is a constant only related to E1.

Proof. Because Algorithm 3 is a special case in the literature [32], the proof is trivial and we refer
to [32][Theorem 4.1]. �

Remark 2. Let us briefly discuss the computational complexities of Algorithm 3. Algorithm 3 is divided
into two cases, and their complexity is calculated separately. In Case 1, the main computational
complexity is in Step 4, which costs aboutO(dnc+nc2+cn2+c3) flops. In Case 2, the main computational
complexity is in Step 10, which costs about O(dnc + nc2 + cn2 + c3) flops. Generally speaking, the class
number c is far less than the characteristic dimension d and the sample number n, thus the total costs
are about O(dnc + cn2) flops.

Algorithm 3 could perfectly avoid the disadvantages of RRDA. For example, ŘT
k P̌k−1 = 0, ŘT

k Ř j = 0,
j < k are always held, and neither Tk, Wk nor eigenvalue decomposition need to be computed in
Algorithm 3, which saves a lot of workloads than RRDA.

LDADL [20] is an effective RLDA method for large-scale data. It also avoids forming X̄, but adds
a new component ‘1’ to each datum x j. Denote

X =

[
X
1T

n

]
, D = diag(

√
n1,
√

n2, . . . ,
√

nc), E = YD, (3.6)

AIMS Mathematics Volume 9, Issue 7, 18777–18795.
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then LDADL solves the following problem [20]:

M∗ = arg min
M∈R(d+1)×c

‖XT M − E‖2F + α‖M‖2F . (3.7)

Let M∗ =

[
M∗

mT

]
, Zhang et al. [20] showed that M∗ is a solution of LDA problem (1.1) when α = 0.

Moreover, it is known that (3.7) has a unique explicit solution given by

M∗ = (XXT + αId)−1XE = X(XT X + αIn)−1E =

[
X(XT X + 1n1T

n + αIn)−1E
1T

n (XT X + 1n1T
n + αIn)−1E

]
.

Hence,

M∗ = X(XT X + 1n1T
n + αIn)−1E, (3.8)

can solve the LDA problem.
Considering that both (3.1) and (3.7) are linear systems for solving LDA without forming

the centralized data X̄, we will focus on the connection between our model and LDADL in the
following part.

Denote by

t = [
√

n1,
√

n2, . . . ,
√

nc]T , T = t1T
n (XT X + αIn)−1Y, β = Σn

i, j=1(XT X + αIn)−1
i j . (3.9)

Then, we have the following theorem.

Theorem 4. Let M∗ =

[
M∗

mT

]
be the solution of (3.7) and M̌ be the solution of (3.1), and assume

that β, T and D satisfy the formulas (3.9) and (3.6), respectively. Then, M∗ = M̌
(
Ic −

1
1+β

T
)
D and

span{M̌} = span{M∗}.

Proof. Formula (2.3) indicates that 1n = Yt. According to (3.8), we have

M∗ = X(XT X + 1n1T
n + αIn)−1E

= X[(XT X + αIn)−1 −
(XT X + αIn)−11n1T

n (XT X + αIn)−1

1 + 1T
n (XT X + αIn)−11n

]YD

= X(XT X + αIn)−1Y · D − X(XT X + αIn)−1Y ·
t1T

n (XT X + αIn)−1Y
1 + Σn

i, j=1(XT X + αIn)−1
i j

· D

= M̌
(
Ic −

1
1 + β

T
)
D. (3.10)

Equation (3.10) implies span{M∗} ⊆ span{M̌}. Note that

rank(T ) = rank
(
t1T

n (XT X + αIn)−1Y
)

= 1,

and

trace(T ) = trace
(
t1T

n (XT X + αIn)−1Y
)

= Σn
i, j=1(XT X + αIn)−1

i j = β,

thus Ic −
1

1+β
T is full of rank. Recall that D = diag(

√
n1,
√

n2, . . . ,
√

nc) is full of rank, and there holds
rank{M̌} = rank{M∗}. Hence, span{M̌} = span{M∗}. �
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Since we are only interested in an orthogonal basis matrix of the solution space for the LDA
problem, and we know from Theorem 4 that the transformation matrix of LDADL for RLDA and the
transformation matrix of our paper for RLDA are the same, we can expect that our method shall achieve
performance similar to LDADL. Moreover, as LDADL and SRDA have the similar performance [20],
the performance of LDADL, SRDA, and our method BBCGLDA are similar. Compared BBCGLDA
with LDADL and SRDA, BBCGLDA has two advantages over LDADL and SRDA: (1) The size of
the BBCGLDA problem is smaller than that of LDADL and SRDA. (2) Our proposed model (3.1) is
a symmetric positive definite linear equation, and the SRDA and LDADL problem are least squares
problems. Since linear equations is a special case of the least squares problem, the methods for SRDA
and LDADL can also be used to solve our model. In addition, our proposed problem for LDA is similar
with the problem proposed in [28], which aims to compute (X)T Y by RSVD under the condition that
the data matrix X is full of column rank. Therefore, our algorithm is more applicable because it has
no restrictions.

4. Experiments

In this section, we perform some numerical experiments on some real-world datasets, and show the
numerical behavior of IRRDA and our new framework BBCGLDA. All the experiments are run on a
Hp workstation with 16 cores double Intel(R)Xeon(R) Platinum 8253 processors, and with CPU 2.20
GHz and RAM 256 GB. The operation system is 64-bit Windows 10. All the numerical results are
obtained from running the MATLAB R2018b software.

Five real-world databases, including video data, text documents, face images, and audio data, are
used in our experiment. The details of these databases, such as dimensionality, and the number of total
samples are summarized in Table 1.
• The AR database* contains over 4000 color images corresponding to 126 people’s faces (70 men
and 56 women). Images feature frontal view these faces with different facial expressions, illumination
conditions, and occlusions (e.g., sunglasses and scarf). The pictures were taken at the CVC under
strictly controlled conditions. No restrictions on wear (clothes, glasses, etc.), make-up, and hairstyle
were imposed to participants. A subset of 100 with 26 images per person, i.e., 2600 images are used
in our experiment. We crop and scale the images to 120 × 165 pixels.
• The Extended YaleB† dataset contains 5760 single light source images of 10 subjects, each seen
under 576 viewing conditions (9 different poses and 64 illumination conditions of each person). The
images have normal, sleepy, sad, and surprising expressions. A subset of 38 persons with 64 images
per person, i.e., 2432 images are used in the example. We crop and scale the images to 100×100 pixels
in our experiment.
• The Youtube dataset [33] is a large-scale video classification database. It contains 80 million
YouTube video links, which are labeled as 4800 knowledge graph entities. Here, we provide a link
of 5020 videos with 1595 persons’ labels. In our experiments we have employed up to 90 samples of
each class, resulting to a dataset of 124819 feature samples data and 1595 classes.
• The 20Newsgroups database‡ is a collection of approximately 20000 newsgroup documents,
partitioned (nearly) evenly across 20 different newsgroups. The data contains 18846 documents that

*http://www2.ece.ohio-state.edu/˜ aleix/ARdatabase.html
†http://cvc.yale.edu/projects/yalefacesB/yalefacesB.html
‡http://www.cad.zju.edu.cn/home/dengcai/
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are organized into 20 different newsgroups, each corresponding to a different topic.
• The original TDT2 (Nist Topic Detection and Tracking) corpus§ collects during the first half of
1998 and is taken from 6 sources. It consists of 11201 on-topic documents which are classified into
96 semantic categories. In this subset, those documents appearing in two or more categories were
removed, and only the largest 30 categories were kept, thus leaving us with 9394 documents in total.

Table 1. Details of the databases: Dimensionality (d), the number of total samples (N), class
number (c), and data type (sparse or dense).

Database Dimensionality (d) Number of total samples (N) class number (c) Type
AR 19800 2600 100 dense

Extended YaleB 10000 2432 38 dense
YouTube 102400 124819 1595 dense

TDT2 36771 9394 30 sparse
20Newsgroups 26214 18846 20 sparse

To show the efficiency of IRRDA and BBCGLDA, we compare them with some state-of-the-art
algorithms for large-scale discriminant analysis including RRDA [18], SRDA [23], LDADL [20], and
the randomized algorithm in [28]. For simplicity, we call the randomized algorithm in [28] RandLDA.
In RandLDA, we set the iteration power q = 2 and the over-sampling parameter p = 20. The target
rank r is chosen in the following way: r = 100 if the number of the training sample is less than
1000, and r = 200 if the number of the training sample is in the interval (1000, 3500], otherwise,
r = 400. For RRDA, we find that the dimension of Wk and Wk−1 may not be consistent in running.
In our experiments, we let W0 = 0d×(c−1), and let Uk be the eigenvectors of Tk associated with the first
c − 1 largest eigenvalues, then the size of Wk is always d × (c − 1). In this case, the stopping criterion
‖Wk − Wk−1‖F < ε can be valid. As for SRDA and LDADL, we exploit the lsrq package provided by
Cai et al [23], to solve the least squares problems.

For all iterative algorithms RRDA, SRDA, LDADL, and BBCGLDA, we set the maximum number
of iterations to 20, the tolerance ε ≤ 10−4, and the regularization parameter is α = 0.01. In all the
experiments, we randomly pick n = 30%N, 50%N, and 70%N samples as the training set, and the
remaining samples are used as the testing set, where N is the total number of samples. We make use of
the nearest neighbor classifier (NN) [34] for classification. Each experiment will be repeated 10 times,
and all the numerical results, i.e., the CPU time for training in seconds, the recognition rate, and the
standard deviation (Std-Dev), are the mean from the 10 runs.
Example 4.1. In this example, the AR database was employed to demonstrate the superiority of
IRRDA over RRDA and to show the efficiency of BBCGLDA both in CPU time and recognition rates.
We set α = 0.01, and Table 2 lists the numerical results of the algorithms.

First, Table 2 shows that RRDA is far inferior to other algorithms both in recognition rate and
CPU time, which shows the effectiveness and rationality of our improved algorithm IRRDA of RRDA.
Second, in terms of CPU time, RandLDA runs the fastest, followed by BBCGLDA. They are about
three times faster than IRRDA, tens times faster than RRDA, and about thirty times faster than
SRDA and LDADL. Although RandLDA is the fastest, its recognition rate is much lower than other

§http://www.cad.zju.edu.cn/home/dengcai/
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algorithms, even about 7% lower than other algorithms when the training sets are small, expect for
RRDA. In contrast, our algorithm BBCGLDA has good performance both in CPU time and recognition
rate, as the CPU time of BBCGLDA is only O(0.1)s slower than RandLDA, and the recognition rate
is only O(0.001) lower than the highest recognition rate. In practical application, these numerical gaps
can be ignored due to calculation errors and machine performance. Therefore, considering both the
recognition rate and CPU time, BBCGLDA has advantages.

On the other hand, the recognition rates of IRRDA, SRDA, LDADL, and BBCGLDA are similar,
due to the one to one relationship being established between their explicit solutions, refer to Theorem 4
in this paper, Lemma 4.3 in [20], and Theorem 3.6 in [28]. Moreover, the CPU time of SRDA and
LDADL are the slowest. In fact, the AR database is a dense matrix, while SRDA and LDADL are
aimed at large-scale sparse data.

Furthermore, we find that the more training samples, the higher recognition rates. That is, the
recognition rates for 50%N training samples are 5% higher than those for 30%N training samples, and
the recognition rates for 70%N training samples are 2% higher than those for 50%N training samples.

Table 2. Numerical results on the AR database for Example 4.1, d = 19800, N = 2600,
c = 100, α = 0.01.

Algorithms CPU Time / s ( Recognition Rate ± Std-Dev% )
(Methods) n=30%N n=50%N n=70%N

RRDA 14.35 (87.54±1.25%) 14.84 (94.12±0.31%) 15.13 (96.29±0.30%)
IRRDA 1.366 (92.24±1.91%) 1.844 (97.06±0.34%) 3.456 (98.39±0.38%)

BBCGLDA 0.547 (92.19±1.91%) 0.849 (96.95±0.23%) 1.320 (98.31±0.51%)
SRDA 15.10 (91.53±1.95%) 24.47 (96.68±0.13%) 33.76 (98.36±0.37%)

LDADL 15.26 (91.27±2.16%) 24.73 (96.69±0.24%) 34.16 (98.05±0.44%)
RandLDA 0.421 (85.36±1.09%) 0.836 (94.72±0.48%) 1.041 (96.59±0.28%)

Example 4.2. In this example, we do experiments with the Youtube databse to show that our algorithm
has an absolute advantage in high-dimensional dense large sample database. We do the numerical
experiments with α = 0.01. The numerical results are listed in Table 3.

Table 3. Numerical results on the Youtube database for Example 4.2, d = 102400, N =

124819, c = 1595, α = 0.01. Here, ‘—’ denotes that the CPU time exceeds 1 hour.

Algorithms n=30%N=37445 n=50%N=62409 n=70%N=87373
RRDA — — —

IRRDA 1645 (94.79±0.21%) — —
BBCGLDA 1155 (93.76±0.23%) 1863 (95.95±0.09%) 3521 (96.86±0.12%)

SRDA — — —
LDADL — — —

RandLDA 107.6 (91.82±0.08%) 270.9 (93.03±0.12%) 362.4 (93.31±0.21%)
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Table 3 depicts the absolute computational dominant of RandLDA for high-dimensional large-scale
dense data in terms of CPU time. When both the dimension d and the number of training samples
n are very large, say, n = 50%N, 70%N, all the algorithms do not work, except for BBCGLDA and
RandLDA. RandLDA is 10 times faster than BBCGLDA, while the recognition rates of RandLDA
are about 3% lower than that of BBCGLDA. Even with the increase of the training set, the increase
of recognition rates is very weak, and the highest recognition rates of RandLDA only reach 93%. In
fact, the recognition rate of RandLDA is closely related to the target rank r for RSVD of training
matrix X, but the optimal target rank r is difficult to choose, which is a disadvantage of algorithm
RandLDA. Next, we will explain the dependence of the algorithm RandLDA on the sampling number,
and BBCGLDA is not sensitive to parameter. Therefore, our proposed method BBCGLDA is very
powerful for high-dimensional and large-sample dense databases.
Example 4.3. In this example, we try to show the weak influence of the regularization parameter
for our proposed algorithm BBCGLDA. Note that except for RandLDA, other algorithms including
BBCGLDA, RRDA, SRDA, and LDADL have the regularization parameter. We set the regularization
parameter α = {10−4, 10−3, 10−2, 10−1, 1} and analyze the numerical performance of these algorithms
with the change of regularization parameters. Since RandLDA also needs to determine the target rank
r for RSVD of training matrix X, we set the target rank r = {50, 80, 120, 150, 180} and then focus
on its numerical results. The test data is Extended YaleB. In order to observe the numerical results
more clearly, we plot the figures of recognition rates VS regularization parameters, and CPU time VS
regularization parameters for n = {30%N, 50%N, 70%} in Figure 1.

According to Figure 1, the recognition rate of RRDA is the worst, whose recognition rates of RRDA
are about 10% lower than BBCGLDA, IRRDA, SRDA and LDADL, and the CPU time of RRDA
is about 3 times slower than IRRDA, which both again emphasize the improved method for RRDA
proposed in our paper. Next, we focus on the five algorithms except RRDA, namely, BBCGLDA,
IRRDA, SRDA, LDADL, and RandLDA.

The first line of Figure 1 shows that the recognition rates of BBCGLDA, IRRDA, SRDA, and
LDADL are comparable, which again emphasizes the validity and rationality of the Theorem 4.
It is found that when α ≤ 0.1, i.e., α = {10−4, 10−3, 10−2, 10−1}, the recognition rate of the four
algorithms is relatively stable and almost unchanged. The recognition rates decreased significantly
when α = 1, which is caused by the normalization of data. In order to avoid overflow during running
algorithms, we first normalize the columns of data, that is, the norm of each column is 1, which
means the maximum element of the dataset is far less than 1. Thus, 1 is too large for solving the
multivariate linear regression for RLDA as it drowns out the information in the dataset, and one
could result in the dynamic of recognition rate. Similarly, 0.1 may be a little large for some high-
dimensional normalized data. The second part of Figure 1 shows that the CPU time of SRDA and
LDADL is much slower than IRRDA and BBCGLDA, and BBCGLDA is the fastest algorithms of
the four LDA algorithms BBCGLDA, IRRDA, SRDA and LDADL with the regularization parameter.
This numerical performance is consistent with that of Example 4.1, which again shows the fast and
effectiveness of our proposed algorithm. With the increase of the regularization parameter, the CPU
time of IRRDA and BBCGLDA decrease gradually. Indeed, IRRDA and BBCGLDA are based on the
BCG algorithm. Theorem 4.1 in [32] indicates that the smaller condition number of the coefficient
matrix, the faster convergence of BCG, and the condition number decreases with the increase of
regularization parameter. Therefore, considering the convergence speed and recognition rate, it is
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more appropriate to set α = 0.01 for IRRDA and BBCGLDA.

Figure 1. Numerical results for Extended YaleB. The first col is the curves of recognition
rates with the regularization parameters or target rank, and the second line is that of CPU
times. Each subgraph is a graph of double x-axis, in which the curve of RandLDA is drawn
by the value corresponding to the upper x-axis, i.e., the target rank. The curve of RandLDA
is the blue dotted line with triangular mark, and the other curves are drawn by the value
corresponding to the lower x-axis, i.e., the regularization parameter.

In terms of RandLDA, its recognition rates increase with the increase of target rank. For example,
when n = 30%N, its recognition rate increases from about 75% to 92%; when n = 50%N, its
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recognition rate increases about from about 79% to 96%; when n = 70%N, its recognition rate
increases about from about 82% to 97%, in which the maximum increase of recognition rate is
about 17%. These numerical results indicate the recognition rate of RandLDA is seriously affected
by the target rank r. However, how to choose the optimal target rank is a difficulty of RandLDA.
In addition, it can be observed from the first line of Figure 1 that the highest recognition rates of
RandLDA with target rank r = 180 are still lower than that of the other four algorithms when α ≤ 0.1.
If one wants to have a higher recognition rate of RandLDA, it needs to increase the target rank r.
However, according to the second line of Figure 1, its CPU time will increase with the increase of the
target rank r. In other words, RandLDA cannot have both the higher recognition rate and faster time,
which is another disadvantage of the algorithm. Note that the recognition rate of BBCGLDA is hardly
affected by the regularization parameters, and the convergence speed increases with the increase of
the regularization parameters. Therefore, compared with RandLDA, BBCGLDA is a good choice for
large-scale discriminant analysis.
Example 4.4. In this example, we aim to show the effectiveness of BBCGLDA for high-dimensional
and sparse samples data. The TDT2 and 20Newsgroups databases are used in this example. The
numerical results are listed in Tables 4 and 5.

Table 4. Numerical results on the 20Newgroups database for Example 4.4, d = 26214,
N = 18846, c = 20.

Algorithms CPU Time / s ( Recognition Rate ± Std-Dev% )
(Methods) n=30%N n=50%N n=70%N

RRDA 24.08 (77.02±1.55%) 29.51 (78.92±1.05%) 35.27 (81.90±0.64%)
IRRDA 4.118 (84.39±0.50%) 6.323 (87.39±0.29%) 13.67 (89.36±0.43%)

BBCGLDA 0.557 (84.36±0.50%) 1.064 (87.38±0.29%) 1.506 (89.31±0.40%)
SRDA 0.620 (85.57±0.42%) 0.873 (88.88±0.28%) 1.184 (90.59±0.36%)

LDADL 0.647 (85.40±0.36%) 0.926 (88.63±0.18%) 1.222 (90.33±0.30%)
RandLDA 1.887 (77.06±0.48%) 2.985 (77.79±0.38%) 4.684 (78.12±0.64%)

Table 5. Example 4.4: Numerical results on the TDT2 database, d = 36771, N = 9394,
c = 30.

Algorithms CPU Time / s ( Recognition Rate ± Std-Dev% )
(Methods) n=30%N n=50%N n=70%N

RRDA 41.73 (96.37±0.11%) 46.80 (95.72±0.60%) 52.27 (95.57±0.67%)
IRRDA 3.835 (95.54±0.21%) 5.328 (96.13±0.12%) 6.765 (96.73±0.26%)

BBCGLDA 0.721 (95.54±0.23%) 1.144 (96.20±0.12%) 1.544 (96.66±0.30%)
SRDA 0.913 (95.72±0.23%) 1.227 (96.48±0.12%) 1.409 (97.09±0.20%)

LDADL 0.946 (95.69±0.18%) 1.270 (96.40±0.14%) 1.454 (96.97±0.18%)
RandLDA 0.914 (96.27±0.19%) 2.379 (96.66±0.19%) 3.124 (96.91±0.37%)

We can see from Tables 4 and 5 that the recognition rates of RRDA and RandLDA can be
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comparable with others on the TDT2 dataset, while those that are lowest are on the 20Newsgroups
dataset, which implies that the applicability of RRDA and RandLDA are not as wide as others. In
addition, the standard deviations and recognition rates of the other four algorithms including IRRDA,
BBCGLDA, SRDA and LDADL can be comparable, and these results are consistent with the those of
the previous examples, which again verifies and determines the correctness of the Theorem 4.

In terms of CPU time, BBCGLDA, SRDA, and LDADL are the fastest; they are about 2–4 times
faster than RandLDA, about 6 times faster than IRRDA, and about 30–40 times faster than RRDA.
In fact, RRDA computes some eigenvalue decompositions and results in a waste of time. In contrast,
IRRDA only needs to copmute one eigenvalue decomposition, and its speed is faster than RRDA.
However, it also involves matrix decomposition, and runs lower than other algorithms. Moreover,
RandLDA computes an RSVD which will destroy the sparse structure of data. We can find from
Tables 4 and 5 that the computing speed of RandLDA for sparse data is not as fast as those of dense
data, which is much slower than the other three algorithms BBCGLDA, SRDA, and LDADL, which
are based on linear systems. This is because RandLDA needs to compute a randomized singular value
decomposition, which will destroy the sparse structure of data matrix.

In general, BBCGLDA can effectively solve not only dense data, but also sparse data. Compared
with dense data, it is dozens times faster than SRDA and LDADL, and its recognition rate is higher
than that of RandLDA. Compared with sparse data, its CPU time is comparable with SRDA and
LDADL, and it is about 3–5 times faster than RandLDA. Considering comprehensively, our algorithm
BBCGLDA is a good choice for high-dimensional and large-scale discriminant analysis.

It can be seen from Tables 2–5 that the higher the sample size of the training set, the higher the
accuracy rate. Tables 2 and 5 indicate that the accuracy of our algorithm in this paper is higher when
d � N. On the contrary, when d and N are similar in size, the efficiency is lower. It shows that the
algorithm in this paper is slow for very large-scale data.

5. Conclusions

RRDA is an efficient algorithm for solving LDA, while its implementation framework has some
defects. In this paper, we improve RRDA by re-orthogonalizing the descent direction and putting
the eigenvalue decomposition outside the loop. Experiments show the numerical performance of our
improved approach IRRDA is better than RRDA in terms of the CPU time, recognition rates, and
standard deviations.

To reduce the storage requirement and computational complexity, we replace the centralized matrix
X̄ with the feature matrix X, and propose a linear system of symmetric and positive equations for
solving the RLDA problem. The equivalent of our new model and RLDA is established. Numerical
experiments show our proposed algorithm has an absolute advantage in computational efficiency and
recognition rates both for high-dimensional large-scale dense data and high-dimensional large-scale
sparse data.

Compared with other algorithms, our algorithm is the fastest, but it is slower than the RandLDA
algorithm. It can be seen from the experiment that our algorithm cannot process the super large-scale
data quickly, so the next idea is to use the random gradient of blocks for experimental research to
enhance the processing speed of super large-scale data.

AIMS Mathematics Volume 9, Issue 7, 18777–18795.



18793

Author contributions

Wenya Shi: Material preparation, Data collection, Analysis, Study conception, Design, Write
original draft; Zhixiang Chen: Material preparation, Data collection, Analysis, Study conception,
Design. All authors have read and approved the final version of the manuscript for publication.

Use of AI tools declaration

The authors declare they have not used Artificial Intelligence (AI) tools in the creation of this article.

Acknowledgments

The first author is supported by [National Natural Science Foundation of China] (Grant numbers
[12201075] ).

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships
that could have appeared to influence the work reported in this paper.

References

1. L. C. Hu, W. S. Zhang, Orthogonal neighborhood preserving discriminant analysis
with patch embedding for face recognition, Pattern Recogn., 106 (2020), 107450.
http://doi.org/10.1016/j.patcog.2020.107450

2. A. Sasithradevi, S. M. M. Roomi, Video classification and retrieval through spatio-temporal Radon
features, Pattern Recogn., 99 (2020), 107099. https://doi.org/10.1016/j.patcog.2019.107099

3. W. Y. Shi, Y. W. Lou, G. Wu, On general matrix exponential discriminant analysis methods for high
dimensionality reduction, Calcolo, 57 (2020), 18. http://doi.org/10.1007/s10092-020-00366-6

4. K. Fukunaga, Introduction to statistical pattern classification, USA: Academic Press, 1990.

5. T. Hastie, R. Tibshirani, J. Friedman, The elements of statistical learning: Data mining, inference,
and prediction, New York: Springer, 2000.

6. J. W. Chen, S. Y. Xie, H. Jiang, H. Y. Yang, F. P. Nie, A novel k-Means framework
via constrained relaxation and spectral rotation, IEEE T. Neur. Net. Lear., 2023, 1–14.
http://doi.org/10.1109/TNNLS.2023.3282938

7. Z. X. Li, F. P. Nie, R. Wang, X. L. Li, A revised formation of trace ratio LDA for small sample size
problem, IEEE T. Neur. Net. Lear., 2024, 1–7. http://doi.org/10.1109/TNNLS.2024.3362512

8. J. P. Ye, Least squares linear discriminant analysis, Proceedings of the 24th international
conference on machine learning, 2007, 1087–1093. http://doi.org/10.1145/1273496.1273633

9. R. S. S. Kramer, A. W. Young, A. M. Burton, Understanding face familiarity, Cognition, 172
(2018), 46–58. http://doi.org/10.1016/j.cognition.2017.12.005

AIMS Mathematics Volume 9, Issue 7, 18777–18795.

https://dx.doi.org/http://doi.org/10.1016/j.patcog.2020.107450
https://dx.doi.org/https://doi.org/10.1016/j.patcog.2019.107099
https://dx.doi.org/http://doi.org/10.1007/s10092-020-00366-6
https://dx.doi.org/http://doi.org/10.1109/TNNLS.2023.3282938
https://dx.doi.org/http://doi.org/10.1109/TNNLS.2024.3362512
https://dx.doi.org/http://doi.org/10.1145/1273496.1273633
https://dx.doi.org/http://doi.org/10.1016/j.cognition.2017.12.005


18794

10. Y. D. Lu, G. Wu, Fast and incremental algorithms for exponential semi-supervised discriminant
embedding, Pattern Recogn., 108 (2020), 107530. http://doi.org/10.1016/j.patcog.2020.107530

11. M. Mohri, A. Rostamizadeh, A. Talwalkar, Foundations of machine learning, Cambridge: The
MIT Press, 2018.

12. G. Wu, T. T. Feng, L. J. Zhang, M. Yang, Inexact implementation using Krylov subspace methods
for large scale exponential discriminant analysis with applications to high dimensionality reduction
problems, Pattern Recogn., 66 (2017), 328–341. http://doi.org/10.1016/J.PATCOG.2016.08.020

13. C. X. Ren, D. Q. Dai, X. F. He, H. Yan, Sample weighting: An inherent approach for
outlier suppressing discriminant analysis, IEEE T. Knowl. Data En., 27 (2015), 3070–3083.
http://doi.org/10.1109/TKDE.2015.2448547

14. Y. F. Yu, C. X. Ren, M. Jiang, M. Y. Sun, D. Q. Dai, G. D. Guo, Sparse approximation to
discriminant projection learning and application to image classification, Pattern Recogn., 96
(2019), 106963. http://doi.org/10.1016/J.PATCOG.2019.106963

15. L. Wu, C. H. Shen, A. V. D. Hengel, Deep linear discriminant analysis on sher networks:
A hybrid architecture for person re-identication, Pattern Recogn., 65 (2017), 238–250.
https://doi.org/10.1016/j.patcog.2016.12.022

16. C. Moulin, C. Largeron, C. Ducottet, M. Gery, C. Barat, Fisher linear discriminant analysis for
text-image combination in multimedia information retrieval, Pattern Recogn., 47 (2014), 260–269.
http://doi.org/10.1016/J.PATCOG.2013.06.003

17. H. S. Ye, Y. J. Li, C. Chen, Z. H. Zhang, Fast fisher discriminant analysis with randomized
algorithms, Pattern Recogn., 72 (2017), 82–92. http://dx.doi.org/10.1016/J.PATCOG.2017.06.029

18. L. Zhu, D. S. Huang, A Rayleigh-Ritz style method for large-scale discriminant analysis, Pattern
Recogn., 47 (2014), 1698–1708. http://doi.org/10.1016/j.patcog.2013.10.007

19. J. H. Friedman, Regularized discriminant analysis, J. Am. Stat. Assoc., 84 (1989), 165–175.
https://doi.org/10.1080/01621459.1989.10478752

20. X. W. Zhang, L. Chen, D. L. Chu, L. Z. Liao, M. K. Ng, R. C. E. Tan, Incremental regularized
least squares for dimensionality reduction of large-scale data, SIAM J. Sci. Comput., 38 (2016),
B414–B439. http://doi.org/10.1137/15M1035653

21. A. Beck, R. Sharon, A branch and bound method solving the max-min linear
discriminant analysis problem, Optim. Method. Softw., 38 (2023), 1031–1057.
https://doi.org/10.1080/10556788.2023.2198769

22. J. H. Zhao, H. Y. Liang, S. L. Li, Z. J. Yang, Z. Wang, Matrix-based vs. vector-based linear
discriminant analysis: A comparison of regularized variants on multivariate time series data,
Inform. Sciences, 654 (2024), 119872. https://doi.org/10.1016/j.ins.2023.119872

23. D. Cai, X. F. He, J. W. Han, SRDA: An efficient algorithm for large-scale discriminant analysis,
IEEE T. Knowl. Data En., 20 (2008), 1–12. http://dx.doi.org/10.1109/TKDE.2007.190669

24. J. P. Ye, Q. Li, LDA/QR: An efficient and effective dimension reduction
algorithm and its theoretical foundation, Pattern Recogn., 37 (2004), 851–854.
http://doi.org/10.1016/J.PATCOG.2003.08.006

AIMS Mathematics Volume 9, Issue 7, 18777–18795.

https://dx.doi.org/http://doi.org/10.1016/j.patcog.2020.107530
https://dx.doi.org/http://doi.org/10.1016/J.PATCOG.2016.08.020
https://dx.doi.org/http://doi.org/10.1109/TKDE.2015.2448547
https://dx.doi.org/http://doi.org/10.1016/J.PATCOG.2019.106963
https://dx.doi.org/https://doi.org/10.1016/j.patcog.2016.12.022
https://dx.doi.org/http://doi.org/10.1016/J.PATCOG.2013.06.003
https://dx.doi.org/http://dx.doi.org/10.1016/J.PATCOG.2017.06.029
https://dx.doi.org/http://doi.org/10.1016/j.patcog.2013.10.007
https://dx.doi.org/https://doi.org/10.1080/01621459.1989.10478752
https://dx.doi.org/http://doi.org/10.1137/15M1035653
https://dx.doi.org/https://doi.org/10.1080/10556788.2023.2198769
https://dx.doi.org/https://doi.org/10.1016/j.ins.2023.119872
https://dx.doi.org/http://dx.doi.org/10.1109/TKDE.2007.190669
https://dx.doi.org/http://doi.org/10.1016/J.PATCOG.2003.08.006


18795

25. P. Howland, H. Park, Generalizing discriminant analysis using the generalized
singular value decomposition, IEEE T. Pattern Anal., 26 (2004), 995–1006.
http://doi.org/10.1109/TPAMI.2004.46

26. E. I. G. Nassara, E. Maes, M. Kharouf, Linear discriminant analysis for
large-scale data: Application on text and image data, IEEE, 2016, 961–964.
http://doi.org/10.1109/ICMLA.2016.0173

27. Z. H. Zhang, G. Dai, C. F. Xu, M. I. Jordan, Regularized discriminant analysis, ridge regression and
beyond, J. Mach. Learn. Res., 11 (2010), 2199–2228. http://doi.org/10.5555/1756006.1859927

28. W. Y. Shi, G. Wu, New algorithms for trace-ratio problem with application to high-dimension and
large-sample data dimensionality reduction, Mach. Learn., 2021. https://doi.org/10.1007/s10994-
020-05937-w

29. C. H. Park, H. Park, A relationship between linear discriminant analysis and the
generalized minimum squared error solution, SIAM J. Matrix Anal. A., 27 (2005), 474–492.
http://doi.org/10.1137/040607599

30. X. H. Chen, T. Chen, Low-rank approximation-based bidirectional linear discriminant analysis for
image data, Multimed. Tools Appl., 83 (2024), 19369–19389. https://doi.org/10.1007/s11042-023-
16239-3

31. L. Sun, B. Ceran, J. P. Ye, A scalable two-stage approach for a class of dimensionality reduction
techniques, Proceedings of the 16th ACM SIGKDD international conference on knowledge
discovery and data mining, 2010, 313–322. http://doi.org/10.1145/1835804.1835846

32. H. Ji, Y. H. Li, A breakdown-free block conjugate gradient method, BIT Numer. Math., 57 (2017),
379–403. http://doi.org/10.1007/s10543-016-0631-z

33. L. Wolf, T. Hassner, I. Maoz, Face recognition in unconstrained videos with matched background
similarity, IEEE, 2011, 529–534. http://doi.org/10.1109/CVPR.2011.5995566

34. T. Cover, P. Hart, Nearest neighbor pattern classification, IEEE T. Inform. Theory, 13 (1967), 21–
27. http://doi.org/10.1109/TIT.1967.1053964

© 2024 the Author(s), licensee AIMS Press. This
is an open access article distributed under the
terms of the Creative Commons Attribution License
(https://creativecommons.org/licenses/by/4.0)

AIMS Mathematics Volume 9, Issue 7, 18777–18795.

https://dx.doi.org/http://doi.org/10.1109/TPAMI.2004.46
https://dx.doi.org/http://doi.org/10.1109/ICMLA.2016.0173
https://dx.doi.org/http://doi.org/10.5555/1756006.1859927
https://dx.doi.org/https://doi.org/10.1007/s10994-020-05937-w
https://dx.doi.org/https://doi.org/10.1007/s10994-020-05937-w
https://dx.doi.org/http://doi.org/10.1137/040607599
https://dx.doi.org/https://doi.org/10.1007/s11042-023-16239-3
https://dx.doi.org/https://doi.org/10.1007/s11042-023-16239-3
https://dx.doi.org/http://doi.org/10.1145/1835804.1835846
https://dx.doi.org/http://doi.org/10.1007/s10543-016-0631-z
https://dx.doi.org/http://doi.org/10.1109/CVPR.2011.5995566
https://dx.doi.org/http://doi.org/10.1109/TIT.1967.1053964
https://creativecommons.org/licenses/by/4.0

	Introduction
	The RRDA method and its improved version
	RRDA
	An improved algorithm of RRDA 

	A new linear system solving for RLDA
	 Experiments
	 Conclusions

