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Abstract: In the realm of the four-dimensional Minkowski space L4, the focus is on hypersurfaces
classified as right conoids and defined by light-like axes. Matrices associated with the fundamental
form, Gauss map, and shape operator, all specifically tailored for these hypersurfaces, are currently
undergoing computation. The intrinsic curvatures of these hypersurfaces are determined using the
Cayley-Hamilton theorem. The conditions of minimality are addressed by the analysis. The Laplace-
Beltrami operator for such hypersurfaces is computed, accompanied by illustrative examples aimed
at fostering a more profound understanding of the involved mathematical principles. Additionally,
scrutiny is applied to the umbilical condition, and the introduction of the Willmore functional for these
hypersurfaces is presented.
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1. Introduction

The given parametric equation, represented as

c(u, v) = a (v) + ub (v)
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can be alternatively expressed as

c(u, v) =

(
− f g,

(
1 −

1
2

f 2
)

g,−
1
2

f 2g
)

+ u
(

f ,
1
2

f 2, 1 +
1
2

f 2
)
,

where u , 0, f = f (v), g = g(v), and 〈b, b〉 = −1. This equation defines an intriguing ruled surface
within the expansive three-dimensional Minkowski space L3. The particular surface, characterized by
its distinct geometric properties, is precisely recognized as a right conoid. It is distinguished by a
light-like axis, defined by the vector (0, 1, 1), and adheres to the metric signatures (+,+,−) intrinsic
to L3.

To untangle the complexities inherent in this parametric representation, we deconstruct its elements.
The curve denoted by a(v) serves as a reference axis or curve in the (0, 1, 1)-direction. Concurrently,
the vector function b(v) delineates the generating vector that shapes the ruled surface. The parameter
u dynamically dictates the position along this generating vector, while the parameter v effectively
parametrizes the curve a(v), playing a crucial role in determining the overall configuration of the ruled
surface.

This parametric expression not only captures the essential geometric intricacies inherent in the right
conoid, but also serves as a mathematical gateway for understanding its behavior within the confines
of three-dimensional Minkowski space. The distinct interplay among the reference curve, generating
vector, and parametric controls establishes a framework that facilitates the exploration of the geometric
complexities and properties displayed by this ruled surface in the Minkowski space setting.

For a more in-depth understanding, one may refer to the research conducted by Berger and
Gostiaux [1] in the context of three-dimensional Euclidean space E3.

This research effort is dedicated to thoroughly exploring the inherent characteristics displayed by
hypersurfaces falling into the category of right conoids with a light-like axis (RCH-L) within the
extensive domain of four-dimensional Minkowski space, denoted as L4. Our primary focus involves
the careful computation of matrices associated with the fundamental form, Gauss map, and shape
operator that are intrinsic to these hypersurfaces. By utilizing the strong framework provided by the
Cayley-Hamilton theorem, our overarching goal is to discern and quantify the intrinsic curvatures of
these specific hypersurfaces.

In addition to our exploration of curvature properties, a fundamental component of our research
agenda involves establishing conditions that govern minimality within the specific geometric context
under consideration. This requires a nuanced examination of factors that contribute to minimizing
particular geometric properties, thereby deepening our understanding of how RCH-L behaves within
the extensive domain of four-dimensional Minkowski space.

A critical dimension of our inquiry centers around revealing the intricate relationship that RCH-L
shares with the Laplace-Beltrami (L-B) operator within the expansive landscape of L4. By delving
into this connection, our objective is to offer insights into the intrinsic geometric properties of
these hypersurfaces, further enriching our comprehension of their behavior within the framework of
Minkowski space.

Moreover, we extend our analysis to incorporate the presentation of the umbilical condition,
shedding light on specific geometric characteristics that RCH-L may exhibit. To provide a
comprehensive overview of the geometric properties, we introduce the Willmore functional for the
RCH-L, allowing for a quantitative assessment of their shape characteristics.
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In Section 2, an in-depth exploration is undertaken to elucidate the fundamental principles and
concepts that form the basis of four-dimensional Minkowski geometry. Section 3 is specifically
dedicated to providing curvature formulas that are applicable to hypersurfaces in L4. Moving forward
to Section 4, a comprehensive definition of hypersurfaces classified as right conoids with a light-like
axis is presented. This section emphasizes their distinctive properties and characteristics. Section 5
shifts the focus back to the discussion of the L-B operator for a smooth function in L4 and explores
the utilization of the previously examined hypersurfaces in its computation.

The exploration of umbilical right conoid hypersurfaces with a light-like axis in L4 is undertaken in
Section 6. The presentation of the Willmore functional for right conoid hypersurfaces with a light-like
axis in L4 is provided in Section 7. Finally, the study concludes in the last section.

2. Preliminaries

In Minkowski (n+1)-space Ln+1, we define s j as σ j(k1, k2, . . . , kn), where σ j denotes the j-th
elementary symmetric function given by

σ j(a1, a2, . . . , an) =
∑

1≤i1<i2<...<i j≤n

ai1ai2 . . . ai j ,

and use the following notation

r j
i = σ j(k1, k2, . . . , ki−1, ki+1, ki+2, . . . , kn).

By definition, we have r0
i = 1 and sn+1 = sn+2 = · · · = 0. The function sk is referred to as the k-th

mean curvature of M. It is noteworthy that the functions H = 1
n s1 and K = sn are denoted as the mean

curvature and the Gauss-Kronecker curvature of M, respectively. Particularly, M is termed j-minimal
if s j ≡ 0. See also Chen et al. [2] for details.

Within the intricate domain of Minkowski 4-space L4, we contemplate an oriented hypersurface
denoted as M. In the exploration of various geometric measures associated with this hypersurface, we
employ the shape operator, denoted by S =

(
si j

)
3×3

.

Consider r j
i = σ j(k1, k2, k3) with the specified definition, resulting in r0

i = 1. The function sk is
recognized as the k-th mean curvature of the oriented hypersurface M. Specifically, the mean curvature
H is articulated as H = 1

3 s1. Moreover, the Gauss-Kronecker (G–K) curvature of M is denoted by
K = s3.

Let us investigate the concept of j-minimality concerning the hypersurface M. If s j ≡ 0, we
designate this hypersurface as j-minimal. This term indicates a distinctive geometric characteristic
where the j-th mean curvature consistently equals zero.

The notations and definitions introduced facilitate a thorough examination of geometric measures,
mean curvatures, and the concept of j-minimality for the oriented hypersurface M within the intricate
and rich context of L4.

In the realm of Minkowski 4-space, we derive curvature formulas denoted asKi, where i = 0, 1, 2, 3.
Refer to Chen et al. [2], Güler [3, 4], Li and Güler [7–9], and O’Neill [10] for detailed explanations.

The characteristic polynomial, denoted as PS(λ) =
3∑

k=0
(−1)k skλ

3−k, of S is determined by

det(S − λI3) = 0. (2.1)
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Here, I3 represents the identity matrix. Consequently, the curvature formulas are uncovered as
(

3
i

)
Ki =

si.
In this investigation, a vector is regarded as equivalent to its transpose. We scrutinize an immersion

x = x(u, v,w) mapping from M3 ⊂ E3 to L4.

Definition 2.1. Consider two vectors l1 = (l1
1, l

1
2, l

1
3, l

1
4) and l2 = (l2

1, l
2
2, l

2
3, l

2
4) in L4. The inner product

between them is given by the expression〈
l1, l2

〉
= l1

1l2
1 + l1

2l2
2 + l1

3l2
3 − l1

4l2
4.

Definition 2.2. In L4, the triple vector product for three vectors l1 = (l1
1, l

1
2, l

1
3, l

1
4), l2 = (l2

1, l
2
2, l

2
3, l

2
4), and

l3 = (l3
1, l

3
2, l

3
3, l

3
4) is defined by the determinant

l1 × l2 × l3 =

∣∣∣∣∣∣∣∣∣∣∣
l1 l2 l3 −l4

l1
1 l1

2 l1
3 l1

4
l2
1 l2

2 l2
3 l2

4
l3
1 l3

2 l3
3 l3

4

∣∣∣∣∣∣∣∣∣∣∣ ,
where the base elements within L4 are represented by lk.

Definition 2.3. In Minkowski 4-space L4, let S be the shape operator matrix associated with the
hypersurface x. This matrix is determined by the product of

(
gi j

)−1
·
(
hi j

)
, where

(
gi j

)
3×3

and
(
hi j

)
3×3

denote the first and second fundamental form matrices, respectively.
The matrix components are defined as gi j =

〈
xi, x j

〉
and hi j =

〈
xi j,G

〉
, for i, j = 1, 2, 3. The Gauss

map of x is derived from the expression

G =
xu × xv × xw

‖xu × xv × xw‖
. (2.2)

3. Curvatures in L4

In the realm of L4, in this section we unveil the curvature formulas pertaining to a hypersurface
parametrized by the function φ = φ(u, v,w).

Proposition 3.1. Within L4, the subsequent curvature formulas are linked to a hypersurface φ =

φ(u, v,w)
K0 = 1, 3K1 = −

m2

m3
, 3K2 =

m1

m3
, K3 = −

m0

m3
, (3.1)

where the polynomial equation m3λ
3 +m2λ

2 +m1λ +m0 = 0 represents the characteristic polynomial
PS(λ) = 0 of the shape operator matrix S. m3 = det

(
gi j

)
and m0 = det

(
hi j

)
,
(
gi j

)
,
(
hi j

)
denote the first

and second fundamental form matrices, respectively.

Proof. The proof revolves around the characteristic polynomial equation of S in L4, detailing the
curvatures as follows:

K0 = 1,

3K1 = k1 + k2 + k3 = −
m2

m3
,
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3K2 = k1k2 + k1k3 + k2k3 =
m1

m3
,

K3 = k1k2k3 = −
m0

m3
.

�

Definition 3.2. In the context of L4, a hypersurface φ is classified as j-minimal if K j = 0 holds true
for j = 1, 2, 3.

4. RCH-L in L4

In this section, we elucidate the characteristics of the conoid hypersurface with a light-like axis
within Minkowski 4-space L4. Subsequently, we explore its geometric properties.

In L4, our focus is on a ruled hypersurface defined by the expression:

φ(u, v,w) = α (v,w) + uβ (v,w)

=

(
− f Φ,−gΦ,

(
1 −

1
2

(
f 2 + g2

))
Φ,−

1
2

(
f 2 + g2

)
Φ

)
+u

(
f , g,

1
2

(
f 2 + g2

)
, 1 +

1
2

(
f 2 + g2

))
,

where α, β represent surfaces, u ∈ R− {0}, 〈β, β〉 = −1, f = f (v) , g = g (w) , Φ = Φ (v,w) are
differentiable functions, and 0 ≤ f , g < 2π. The subsequent definition characterizes the hypersurface
φ = O·ΓT , where the generating hypersurface Γ = (0, 0,Φ, u) rotates about the light-like axis ` =

(0, 0, 1, 1) through

O(v,w) =


1 0 − f f
0 1 −g g
f g 1 − 1

2

(
f 2 + g2

)
1
2

(
f 2 + g2

)
f g −1

2

(
f 2 + g2

)
1 + 1

2

(
f 2 + g2

)
 ,

where O ∈ S O (4) , O·`T = `T , OT ·ε·O = O·ε·OT = ε, and ε = diag(1, 1, 1,−1).

Definition 4.1. We define a conoid hypersurface with a light-like axis immersed in L4, given by the
parametrization:

φ(u, v,w) =


f (u − Φ)
g (u − Φ)

Φ + 1
2

(
f 2 + g2

)
(u − Φ)

u + 1
2

(
f 2 + g2

)
(u − Φ)

 . (4.1)

Here, u ∈ R− {0}, f = f (v), g = g (w), and Φ = Φ (v,w).

The determination of the first fundamental form matrix
(
gi j

)
is achieved through the computation

of the first derivatives of the conoid hypersurface parametrization, represented by Eq (4.1), concerning
the variables u, v, and w. This computation yields the following matrix:

(
gi j

)
=


−1 0 0
0 f 2

v (u − Φ)2 + Φ2
v ΦvΦw

0 ΦvΦw g2
w (u − Φ)2 + Φ2

w

 . (4.2)

AIMS Mathematics Volume 9, Issue 7, 18732–18745.



18737

The partial derivatives are denoted as fv =
∂ f
∂v , f 2

v = (∂ f
∂v )2, and so on. Consequently, the determinant

of the first fundamental form matrix
(
gi j

)
is expressed as det

(
gi j

)
= − (u − Φ)2W, whereW = f 2

v Φ2
w +

g2
wΦ2

v + f 2
v g2

w (u − Φ)2 . The categorization of RCH-L, as defined by Eq (4.1), into a space-like (or
time-like, light-like) hypersurface depends on the sign of det

(
gi j

)
.

Definition 4.2. A hypersurface is described as space-like if det
(
gi j

)
> 0, time-like if det

(
gi j

)
< 0, and

light-like if det
(
gi j

)
= 0.

SinceW > 0, then det
(
gi j

)
< 0. Hence, RCH-L is a time-like hypersurface.

Applying the Gauss map formula denoted by (2.2), we ascertain the Gauss map of the RCH-L by
utilizing Eq (4.1). The derivation process unfolds in the subsequent steps, offering a detailed insight
into the determination of the Gauss map

G =
1
W1/2


gw (Φv + f fv (u − Φ))
fv (Φw + ggw (u − Φ))

f gwΦv + fv

(
gΦw + gw

(
1
2

(
f 2 + g2

)
− 1

)
(u − Φ)

)
f gwΦv + fv

(
gΦw + 1

2gw

(
f 2 + g2

)
(u − Φ)

)
 . (4.3)

Upon computing the second derivatives concerning u, v, and w for the RCH-L defined through Eq (4.1)
and incorporating the Gauss map expressed in Eq (4.3), we derive the ensuing matrix that represents
the second fundamental form

(
hi j

)
=


0 fvgwΦv

W1/2
fvgwΦw
W1/2

fvgwΦv
W1/2 −

gw(( fvΦvv−Φv fvv)(u−Φ)+ fv(2Φ2
v+ f 2

v (u−Φ)2))
W1/2 −

fvgw((u−Φ)Φvw+2ΦvΦw)
W1/2

fvgwΦw
W1/2 −

fvgw((u−Φ)Φvw+2ΦvΦw)
W1/2 −

fv((gwΦww−Φwgww)(u−Φ)+gw(2Φ2
w+g2

w(u−Φ)2))
W1/2

 , (4.4)

fuu =
∂2 f
∂u2 , fuv =

∂2 f
∂u∂v , etc.. By utilizing Eqs (4.2) and (4.4), we proceed with the computation of

the shape operator matrix denoted as S =
(
si j

)
3×3

for the expression given in (4.1). Subsequently,
employing Eq (3.1) along with (4.2) and (4.4), we determine the curvatures of the RCH-L defined
by Eq (4.1).

Theorem 4.3. Consider an RCH-L denoted by φ defined by the equation provided in (4.1) within the
space L4. The associated curvatures of φ are elucidated, where K0 defaults to a value of 1,

K1 =
1

3 (u − Φ)W3/2

[
fvgw

(
Φ2

wΦvv − 2ΦvΦwΦvw + Φ2
vΦww

)
+ (u − Φ)2

(
fvgw

(
f 2
v Φww + g2

wΦvv

)
−

(
fvvg3

wΦv + f 3
v gwwΦw

))
+3 fvgw (u − Φ)

(
f 2
v Φ2

w + g2
wΦ2

v

)
− ( fvgwwΦv + fvvgwΦw) ΦvΦw

+2 f 3
v g3

w (u − Φ)3
]
,

K2 =
fvgw

3 (u − Φ)W2

[
− (u − Φ) ( fvgwwΦwΦvv + gw ( fvvΦv + fvΦvv) Φww)

+2 fvgw

(
Φ2

wΦvv + Φ2
vΦww

)
− 2 ( fvgwwΦv + gw fvvΦw) ΦvΦw
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+ (u − Φ)2
(

fvgw

(
f 2
v Φww + g2

wΦvv

)
−

(
g3

w fvvΦv + f 3
v gwwΦw

))
+ fvgw (u − Φ)

(
3
(

f 2
v Φ2

w + g2
wΦ2

v

)
− Φ2

vw

)
− 4 fvgwΦvΦwΦvw

+ fvvgww (u − Φ) ΦvΦw + f 3
v g3

w (u − Φ)3
]
,

K3 =
f 2
v g2

w

(u − Φ)W5/2

[
− fvgw

((
Φ2

wΦvv + Φ2
vΦww

)
+ (u − Φ)

(
f 2
v Φ2

w + g2
wΦ2

v

))
+ ( fvgwwΦv + gw fvvΦw + 2 fvgwΦvw) ΦvΦw

]
,

whereW = f 2
v Φ2

w + g2
wΦ2

v + f 2
v g2

w (u − Φ)2 .

Proof. Through the application of the Cayley-Hamilton theorem, the curvatures Ki linked to φ are
established. This establishment involves the exploration of the characteristic polynomial denoted as
PS(λ) = 0, which is associated with the RCH-L defined by Eq (4.1):

K0λ
3 − 3K1λ

2 + 3K2λ − K3 = 0.

�

Corollary 4.4. Consider φ as an RCH-L defined by Eq (4.1) within L4. φ is characterized as 1-minimal
if the following partial differential equation arises:

fvgw

(
Φ2

wΦvv − 2ΦvΦwΦvw + Φ2
vΦww

)
+ 2 f 3

v g3
w (u − Φ)3

+ (u − Φ)2
(

fvgw

(
f 2
v Φww + g2

wΦvv

)
−

(
fvvg3

wΦv + f 3
v gwwΦw

))
+3 fvgw (u − Φ)

(
f 2
v Φ2

w + g2
wΦ2

v

)
− ( fvgwwΦv + fvvgwΦw) ΦvΦw = 0,

where u , Φ, f 2
v Φ2

w + g2
wΦ2

v + f 2
v g2

w (u − Φ)2 , 0.

Corollary 4.5. Let φ represent an RCH-L defined by Eq (4.1) in the context of L4. φ is considered to
be 2-minimal if the following partial differential equation is met:

− (u − Φ) ( fvgwwΦwΦvv + gw ( fvvΦv + fvΦvv) Φww)
+2 fvgw

(
Φ2

wΦvv + Φ2
vΦww

)
− 2 ( fvgwwΦv + gw fvvΦw) ΦvΦw

+ (u − Φ)2
(

fvgw

(
f 2
v Φww + g2

wΦvv

)
−

(
g3

w fvvΦv + f 3
v gwwΦw

))
+ fvgw (u − Φ)

(
3
(

f 2
v Φ2

w + g2
wΦ2

v

)
− Φ2

vw

)
− 4 fvgwΦvΦwΦvw

+ fvvgww (u − Φ) ΦvΦw + f 3
v g3

w (u − Φ)3 = 0,

where u , Φ, f 2
v Φ2

w + g2
wΦ2

v + f 2
v g2

w (u − Φ)2 , 0.

Corollary 4.6. Let φ represent an RCH-L defined by Eq (4.1) within the space L4. φ is deemed to be
3-minimal if the ensuing partial differential equation is presented:

− fvgw

((
Φ2

wΦvv + Φ2
vΦww

)
+ (u − Φ)

(
f 2
v Φ2

w + g2
wΦ2

v

))
+ ( fvgwwΦv + gw fvvΦw + 2 fvgwΦvw) ΦvΦw = 0,

where u , Φ, f 2
v Φ2

w + g2
wΦ2

v + f 2
v g2

w (u − Φ)2 , 0.

It is important to highlight that the solutions for Φ in the corollaries pose unresolved challenges that
require attention.
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5. Laplace-Beltrami operator of the RCH-L in L4

Within this section, attention is directed to the application of the L-B operator to a smooth function
within L4. The subsequent steps involve the computation of this operator using the RCH-L defined by
the equation in (4.1).

Definition 5.1. The Laplace-Beltrami operator is established for a smooth function ϕ in domain D,(
D ⊂ R3

)
of class C3 relies on the first fundamental form

(
gi j

)
, and is defined by

∆ϕ =
1

g1/2

3∑
i, j=1

∂

∂xi

(
g1/2
g

i j ∂ϕ

∂x j

)
, (5.1)

where ϕ = ϕ
(
x1, x2, x3

)
,
(
gi j

)
= (gkl)−1 and g = det

(
gi j

)
.

Refer to Chen et al. [2] and Lawson [5] for the Laplace-Beltrami operator details. Consequently,
the following is presented.

Theorem 5.2. The Laplace-Beltrami operator for the RCH-L φ described by Eq (4.1) is given by
∆φ = 3K1G, where K1 denotes the mean curvature, and G represents the Gauss map of φ.

Proof. The expression for the L-B operator acting on the RCH-L, as specified by Eq (4.1), is given by

∆φ =
1

g1/2

[
∂

∂u

(
g1/2
g

11∂φ

∂u

)
+
∂

∂v

(
g1/2
g

22∂φ

∂v

)
+
∂

∂v

(
g1/2
g

23 ∂φ

∂w

)
+

∂

∂w

(
g1/2
g

32∂φ

∂v

)
+

∂

∂w

(
g1/2
g

33 ∂φ

∂w

)]
, (5.2)

where (
g

i j
)

=
1

(u − Φ)2W


−1 0 0
0 g2

w (u − Φ)2 + Φ2
w −ΦvΦw

0 −ΦvΦw f 2
v (u − Φ)2 + Φ2

v

 , (5.3)

W = f 2
v Φ2

w + g2
wΦ2

v + f 2
v g2

w (u − Φ)2. By substituting the derivatives of the components, as determined
by Eq (5.3), into the formula given by Eq (5.2), the formation of ∆φ = (∆φ1,∆φ2,∆φ3,∆φ4), along with
its individual components, is achieved:

∆φ1 =
gw(Φv+ f fv(u−Φ))

(u−Φ)W2 A,

∆φ2 =
fv(Φw+g(u−Φ)gw)

(u−Φ)W2 A,

∆φ3 =
f gwΦv+ fv(gΦw+gw( 1

2 ( f 2+g2)−1)(u−Φ))
(u−Φ)W2 A,

∆φ4 =
f gwΦv+ fv(gΦw+ 1

2 gw( f 2+g2)(u−Φ))
(u−Φ)W2 A,

where

A = fvgw

(
Φ2

wΦvv − 2ΦvΦwΦvw + Φ2
vΦww

)
+ 2 f 3

v g3
w (u − Φ)3
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+ (u − Φ)2
(

fvgw

(
f 2
v Φww + g2

wΦvv

)
−

(
fvvg3

wΦv + f 3
v gwwΦw

))
+3 fvgw (u − Φ)

(
f 2
v Φ2

w + g2
wΦ2

v

)
− ( fvgwwΦv + fvvgwΦw) ΦvΦw.

�

Definition 5.3. The hypersurface φ is characterized as harmonic if each component of ∆φ is zero.

Example 5.4. By substituting f (v) = v, g (w) = w, and Φ (v,w) = w into an RCH-L defined by Eq (4.1)
within L4, the Gauss map and the shape operator matrix are described by

G =
1(

(u − w)2 + 1
)1/2


(w − u) v

(w − u) w − 1
1
2

(
v2 + w2

)
(w − u) + (u − 2w)

1
2

(
v2 + w2

)
(w − u) − w

 ,

S =


0 0 1

((u−w)2+1)1/2

0 1

((u−w)2+1)1/2 0

− 1

((u−w)2+1)3/2 0 (u−w)2+2

((u−w)2+1)3/2

 .
Following this, the curvatures are determined via

K1 =
2 (u − w)2 + 3

3
(
(u − w)2 + 1

)3/2 ,

K2 = −
(u − w)2 + 3

3
(
(u − w)2 + 1

)2 ,

K3 =
1(

(u − w)2 + 1
)5/2 .

Then,

∆φ =
2 (u − w)2 + 3(
(u − w)2 + 1

)2


(w − u) v

(w − u) w − 1
1
2

(
v2 + w2

)
(w − u) + u − 2w

1
2

(
v2 + w2

)
(w − u) − w

 .
In summary, the hypersurface is not both minimal and harmonic.

Example 5.5. Opting for f (v) = v, g (w) = w, and Φ (v,w) = v for an RCH-L defined by Eq (4.1)
within L4, φ exhibits the Gauss map

G =
1(

(u − v)2 + 1
)1/2


(v − u) v − 1

(v − u) w
1
2

(
v2 + w2

)
(v − u) + u − 2v

1
2

(
v2 + w2

)
(v − u) − v

 .
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Hence, the shape operator matrix is established as

S =


0 1

((u−v)2+1)1/2 0

− 1

((u−v)2+1)3/2
(u−v)2+2

((u−v)2+1)3/2 0

0 0 1

((u−v)2+1)1/2

 .
The curvatures are expressed as

K1 =
2 (u − v)2 + 3

3
(
(u − v)2 + 1

)3/2 ,

K2 = −
(u − v)2 + 3

3
(
(u − v)2 + 1

)2 ,

K3 =
1(

(u − v)2 + 1
)5/2 .

Finally,

∆φ =
2 (u − v)2 + 3(
(u − v)2 + 1

)2


(v − u) v − 1

(v − u) w
1
2

(
v2 + w2

)
(v − u) + u − 2v

1
2

(
v2 + w2

)
(v − u) − v

 .
This indicates that the hypersurface is neither minimal nor harmonic. Exploring hypersurfaces that do
not conform to the minimal or harmonic categories reveals the complexity of geometric structures and
contributes to the development of new mathematical techniques.

Such hypersurfaces may play a significant role in various mathematical theories and applications.

6. Umbilical condition of the RCH-L in L4

In this section, the umbilical condition for the right conoid hypersurface with the light-like axis is
presented.

Definition 6.1. In the context of a hypersurface in L4, a point denoted as p is labeled umbilical if
and only if its principal curvatures ki are identical, i.e., k1 = k2 = k3. This condition leads to the
equivalence K1

3 = K3.

Theorem 6.2. For a point p on the hypersurface associated with the right conoid, φ : M3 ⊂ E3 −→ L4,
having a light-like axis, the point is deemed umbilic if and only if it satisfies the partial differential
equation

K1
3 − K3 = 0.

In this context, K1 and K3 denote the mean and Gauss-Kronecker curvatures, respectively.
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Proof. Through the utilization of the curvatures inherent in the hypersurface of the right conoid,
in conjunction with the light-like axis φ, one acknowledges the equivalency of the ensuing partial
differential equation

A
3 − 27 (u − Φ)2W2 f 2

v g2
wC = 0, (6.1)

where

A = fvgw

(
Φ2

wΦvv − 2ΦvΦwΦvw + Φ2
vΦww

)
+ 2 f 3

v g3
w (u − Φ)3

+ (u − Φ)2
(

fvgw

(
f 2
v Φww + g2

wΦvv

)
−

(
fvvg3

wΦv + f 3
v gwwΦw

))
+3 fvgw (u − Φ)

(
f 2
v Φ2

w + g2
wΦ2

v

)
− ( fvgwwΦv + fvvgwΦw) ΦvΦw,

C = − fvgw

((
Φ2

wΦvv + Φ2
vΦww

)
+ (u − Φ)

(
f 2
v Φ2

w + g2
wΦ2

v

))
+ ( fvgwwΦv + gw fvvΦw + 2 fvgwΦvw) ΦvΦw,

W = f 2
v Φ2

w + g2
wΦ2

v + f 2
v g2

w (u − Φ)2 .

�

The above mentioned theorem reveals a notable geometric characteristic of points on the
hypersurface. In particular, it is stated that a point on the right conoid hypersurface with a light-like
axis attains the status of being umbilic precisely when it complies with the specified partial differential
equation. The unresolved issue concerns the identification of solutions Φ for the partial differential
equations indicated by (6.1) .

7. Willmore functional of the RCH-L in L4

The Willmore property of RCH-L is presented in this section.

Definition 7.1. Consider a smooth immersion s : M ⊂ E2 −→ Rn such that W(s) < ∞. We designate
s as a critical point for W if

∀n ∈ C∞(M,Rn),
d

dq
W(s + qn)

∣∣∣q=0 = 0.

An immersion meeting this criterion is identified as Willmore.

Refer to Li and Yau [6], Toda [11], and Willmore [12, 13] for in-depth information on Euclidean
aspects. The utilization of the Willmore functional is extended to the RCH-L framework within
Minkowski 4-space.

Theorem 7.2. For an immersion φ : M3 ⊂ E3 −→ L4, the condition of being Willmore is equivalent to
satisfying the partial differential equation

∆K1 + 3K1(K1
3 − K3) = 0,

where ∆ represents the Laplace-Beltrami operator, and K1,K3 denote the mean and Gauss-Kronecker
curvatures, respectively.
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Proof. By employing the term ∆K1 = (K1)uu + (K1)vv + (K1)ww and including the umbilical constraint
K1

3 −K3 = 0, we expose that the ensuing partial differential equation equation is unveiled by using the
curvatures given by Theorem 4.3:

(K1)uu + (K1)vv + (K1)ww + 3A
(
A

3 − 27 (u − Φ)2W2 f 2
v g2

wC
)

= 0, (7.1)

where

A = fvgw

(
Φ2

wΦvv − 2ΦvΦwΦvw + Φ2
vΦww

)
+ 2 f 3

v g3
w (u − Φ)3

+ (u − Φ)2
(

fvgw

(
f 2
v Φww + g2

wΦvv

)
−

(
fvvg3

wΦv + f 3
v gwwΦw

))
+3 fvgw (u − Φ)

(
f 2
v Φ2

w + g2
wΦ2

v

)
− ( fvgwwΦv + fvvgwΦw) ΦvΦw,

C = − fvgw

((
Φ2

wΦvv + Φ2
vΦww

)
+ (u − Φ)

(
f 2
v Φ2

w + g2
wΦ2

v

))
+ ( fvgwwΦv + gw fvvΦw + 2 fvgwΦvw) ΦvΦw,

W = f 2
v Φ2

w + g2
wΦ2

v + f 2
v g2

w (u − Φ)2 .

�

This theorem establishes a significant link between the hypersurface’s immersion and its Willmore
property. The assertion is that the immersion φ mapping a three-dimensional Euclidean space into
the four-dimensional Minkowski space L4 attains Willmore status exclusively when it adheres to the
prescribed equation. The quest for solutions Φ to the partial differential equation denoted as (7.1)
continues to be an unresolved issue. Note that solutions of Eq (7.1) cannot generally be obtained
explicitly due to it being a fourth-order highly non-linear equation.

8. Conclusions

This research undertakes an exploration of hypersurfaces in the four- dimensional Minkowski
space L4 specifically categorized as right conoids with a light-like axis (RCH-L). Through meticulous
scrutiny, we have effectively computed fundamental matrices associated with the fundamental form,
Gauss map, and shape operator inherent to these hypersurfaces. The application of the Cayley-
Hamilton theorem has facilitated the unveiling of curvatures distinctive to these hypersurfaces, thereby
advancing our understanding of their intricate geometric attributes.

The foundational investigation into fundamental principles and concepts in four-dimensional
Minkowski geometry establishes a sturdy foundation. Essential curvature formulas relevant to
hypersurfaces in L4 are presented, offering pivotal insights into the mathematical complexities
involved. A comprehensive delineation of RCH-L is provided, highlighting their unique properties
that distinguish them within the realm of hypersurfaces.

The focus then shifts to the Laplace-Beltrami operator, establishing its correlation with the
previously examined hypersurfaces and showcasing its practical application in computations.
Umbilical right conoid hypersurfaces are introduced, further broadening the scope of our exploration.
Lastly, the study delves into the Willmore functional, introducing an additional layer of analysis and
understanding to the RCH-L in L4.
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