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Abstract: We have studied a strongly nonlinear backward stochastic partial differential equation
(B-SPDE) through an approximation method and with machine learning (ML)-based Monte Carlo
simulation. This equation is well-known and was previously derived from studies in finance. However,
how to analyze and solve this equation has remained a problem for quite a long time. The main
difficulty is due to the singularity of the B-SPDE since it is a strongly nonlinear one. Therefore,
by introducing new truncation operators and integrating the machine learning technique into the
platform of a convolutional neural network (CNN), we have developed an effective approximation
method with a Monte Carlo simulation algorithm to tackle the well-known open problem. In doing
so, the existence and uniqueness of a 2-tuple adapted strong solution to an approximation B-SPDE
were proved. Meanwhile, the convergence of a newly designed simulation algorithm was established.
Simulation examples and an application in finance were also provided.
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1. Introduction

In this paper, we study a strongly nonlinear backward stochastic partial differential equation (B-
SPDE) in (1.1) through an approximation method and with machine learning (ML)-based Monte Carlo
simulation,

V(t, x) = H(T, x) −
1
2

∫ T

t

(Vx(s, x) + V̄x(s, x))2

Vxx(s, x)
ds −

∫ T

t
V̄(s, x)dW(s), (1.1)
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which has a given terminal random field H(T, x) at time T for (t, x) ∈ [0,T ] × R and R = (−∞,∞) and
which is driven by a Brownian motion W(·) over time interval [0,T ].

The equation in (1.1) is well-known and was previously derived from studies in finance (see Musiela
and Zariphopoulou [22], ∅ksendal et al. [24], etc.), where, the primary motivation to study the B-SPDE
was to solve an optimal portfolio selection problem in an incomplete financial market modeled by a
stochastic differential equation driven by multi-dimensional Brownian motion (see, e.g., Musiela and
Zariphopoulou [22] and Kramkov and Sirbu [18]). Furthermore, the problem describes the evolution of
a related value function and seeks to maximize an expected utility from terminal wealth over admissible
strategies. To find an optimal investment policy for this stochastic optimization problem, the well-
known dynamic programming principle can be applied to determine such an optimal control policy
in a backward way with respect to the time parameter. More precisely, in this financial problem, the
random field V(t, x) denotes the value function of an investor’s target to maximize his expected utility
of terminal wealth over admissible strategy setAT (see its definition in Subsection 2.2) with t ∈ [0,T ],
i.e.,

V(t, x) = sup
β∈AT

E
[
µT (Xβ(T ))

∣∣∣∣Ft, X(t) = x
]

(1.2)

for a given trading horizon [0,T ] and the investor’s utility µT (·) : R+ → R at terminal time T (see more
explanations in Subsection 2.2). Note that, in this case, we take H(T, ·) = µT (·) in the equation of (1.1).
Furthermore, Xβ(t) denotes the present value of the investor’s aggregate investment at time t (see more
details in Subsection 2.2). In existing studies (see, e.g., Cerny and Kallsen [2] and Dai [8]), the authors
aim to find a so-called variance optimal martingale measure Q∗ such that the value function in (1.2)
has a simple expression given by the following conditional expectation,

V(t, x) = EQ∗

[
H(T, x)

∣∣∣∣Ft, X(t) = x
]
. (1.3)

In this sense, V(t, x) can be decomposed into a macro-trend part and a micro-regulating (volatility)
part as shown in (1.1) due to martingale representation theorem (see, e.g., ∅ksendal [23]). Roughly
speaking, the random field V̄(·, ·) corresponds to the volatility rate and is the Malliavin derivative of
V(t, x) with respect to the Wiener measure corresponding to the Brownian motion W (see more details
in Dai [9]).

Due to some difficulties with solving the problem in (1.2) directly and as an alternative to the
method presented in (1.3), the authors in Musiela and Zariphopoulou [22] derived the B-SPDE to
solve the optimal investment problem. In this sense, the B-SPDE might be considered as the non-
Markovian analogue of the traditional Hamilton-Jacobi-Bellman (HJB) equation in Markovian models
or in its dual formulation. Once we obtain the solution to the B-SPDE, we can determine the optimal
investment policy (see Subsection 2.2 for more details). However, how to analyze and solve Eq (1.1)
in general has remained a problem for quite a long time. The main difficulty is due to the singularity of
the B-SPDE since it is a strongly nonlinear one. To develop a method to solve this problem, we need
to go over the work in Dai [9] and make a comparison between it and our current study.

More precisely, in Dai [9], we developed a generic convolutional neural network (CNN)-based
numerical scheme to simulate the 2-tuple adapted strong solution to a unified system of B-SPDEs
driven by Brownian motions, which can be applied to many B-SPDE equations. Nevertheless, in
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proving the unique existence of the 2-tuple adapted strong solution to the unified system, we need to
impose the so-called general local Lipschitz and linear growth conditions. Furthermore, in Dai [9],
the generic numerical scheme was developed by a CNN through conditional expectation projection,
which is a completely discrete and iterative algorithm in terms of both time and space. However, in
estimating the mean-square error and proving the convergence for the CNN-based numerical scheme,
we also need the general local Lipschitz and linear growth conditions. Moreover, the generic numerical
scheme in Dai [9] does not integrate ML techniques into its computation algorithm.

Although the equation in (1.1) is a special case of our unified system of B-SPDEs in Dai [9], it is a
strongly nonlinear one with singularity. Therefore, the B-SPDE in (1.1) does not satisfy the imposed
general local Lipschitz and linear growth conditions in Dai [9], which implies that the developed
method in Dai [9] cannot be directly applied to solve the equation in (1.1). Hence, by introducing new
truncation operators and integrating the ML technique into the CNN platform in Dai [9], we develop
an effective approximation method with a Monte Carlo simulation algorithm to tackle such a
well-known open problem. Concerning a CNN, readers are also referred to Brizuela and
Merchan [12], Dai [10], LeCun et al. [20], Vaswani et al. [27], and Yamashitza et al. [28] for more
details. Note that the purpose of integrating the ML technique into our platform is to speed the
convergence of our new algorithm designed in the current study (see Algorithm 3.1 and Figure 1 for
more details).

(k+1) Layers of ML Iterations( ! + ") Layers of Backward Networks

(#$, %!)
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(#$, % ")

(#$&", %!)
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(#$&", % ")
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ɛ
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Figure 1. The flow chart of Algorithm 3.1, where the abbreviation “ML” means machine
learning.

To go further, we give some explanations about the notations used in the equation of (1.1). The
notations Vx, Vxx, and V̄x are the corresponding first-order and second-order partial derivatives of V
and V̄ in terms of position parameter x ∈ R. Since the second partial derivative Vxx appears in the
denominator of the second term on the right-hand side of (1.1), the equation in (1.1) is a strongly
nonlinear one and exhibits singularity. In addition, since both V(t, x) and V̄(t, x) are unknown random
fields, this equation is a diophantine equation (see the related explanation in Dai [9]). Therefore, one
major task in studying the equation in (1.1) is to try to obtain an adapted solution pair (V, V̄) with
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respect to a filtration {Ft, t ≥ 0} generated by the Brownian motion, i.e., Ft = σ(W(s), s ≤ t). Then,
based on this paired solution, we can get its related further optimal financial investment strategy (see
the discussions in Musiela and Zariphopoulou [22], ∅ksendal et al. [24], etc.).

Concerning the relationship between V and V̄ , we can interpret V̄ as a regulating process of V due to
the martingale representation theorem (see, e.g., ∅ksendal [23]). Furthermore, under certain conditions,
V̄ can be expressed as a functional of the Malliavin derivative of V (see Lemmas 4.6 and 4.7 in Dai [9]
for more details). However, based on the Malliavin functional relationship between V and V̄ , it is
difficult to design a direct computation algorithm to calculate (V, V̄) numerically due to its complexity.
Therefore, in Dai [9], this explicit relationship through Malliavin calculus is only used to prove the
convergence of a more directly designed computation algorithm in solving (V, V̄) numerically for B-
SPDEs under the so-called generalized linear growth and Lipschitz conditions. Nevertheless, in the
current study, our B-SPDE in (1.1) is a strongly nonlinear one that does not satisfies the generalized
linear growth and Lipschitz conditions. Thus, our main focus in this paper is on the evolution of the
study in Dai [9] to solve our current strongly nonlinear problem in terms of algorithm design, analysis,
and implementation. The Malliavin functional relationship between V and V̄ will not be directly used
in this study.

As introduced previously, to the best of our knowledge, the B-SPDE in (1.1) is still not well-solved.
Hence, we here try to develop a numerical scheme with related theory to simulate this equation in an
approximated way. More precisely, we consider an approximated analog of the equation in (1.1) as
follows,

V(t, x) = H(T, x) −
1
2

∫ T

t

(ΦK̄(Vx(s, x) + V̄x(s, x)))2

Ψϵ,K(Vxx(s, x))
ds −

∫ T

t
V̄(s, x)dW(s) (1.4)

for x ∈ D = [0, b] with b > 0, where ΦK̄(·) is a truncation map corresponding to the first-order
derivatives Vx(t, x) and V̄x(t, x) (if any) for a small number ϵ > 0 and a large number K̄ > 0. In other
words, for fx(t, x) = Vx(t, x) + V̄x(t, x), we have that

ΦK̄( fx(t, x)) ≡


K̄ if fx(t, x) > K̄,
fx(t, x) if | fx(t, x)| ≤ K̄,
−K̄ if fx(t, x) < −K̄,

(1.5)

where | · | denotes the absolute value of a number ·. Furthermore, Ψϵ,K(·) is another truncation map
corresponding to the second-order derivative Vxx(t, x) (if any) for a small number ϵ > 0 and a large
number K > 0, i.e.,

Ψϵ,K(Vxx(t, x)) ≡



Vxx(t, x) if ϵ ≤ |Vxx(t, x)| ≤ K,
ϵ if 0 ≤ Vxx(t, x) < ϵ,

−ϵ if − ϵ < Vxx(t, x) < 0,
K if Vxx(t, x) > K,
−K if Vxx(t, x) < −K.

(1.6)

From (1.6), we can see that the absolute value of the truncation map Ψϵ,K(·) is always greater or equal
to the positive number ϵ (i.e., |Ψϵ,K(·)| ≥ ϵ). Thus, the denominator appearing in (1.4) is always away
from zero, which implies that the equation for the given constants ϵ > 0, K > 0, and K̄ > 0 has the
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potential to be well-behaved. From (1.5) and (1.6), we can see that the truncation maps ΦK̄(·) and
Ψϵ,K(·) are both bounded for the given constants ϵ > 0, K > 0, and K̄ > 0. Furthermore, based on
the truncated maps in (1.5) and (1.6) and the mentioned properties, we can prove that the equation
in (1.4) satisfies the generalized local linear growth and generalized local Lipschitz conditions as given
in Dai [9]. Hence, under a suitable terminal condition, there uniquely exists a {Ft}-adapted strong
solution (Vϵ,K

K̄
(t, x), V̄ϵ,K

K̄
(t, x)) to the equation in (1.4), which implies that this equation in (1.4) is not a

singular one for the given constants ϵ > 0, K > 0, and K̄ > 0. Thus, according to the equation in (1.4),
we can develop a Monte Carlo simulation algorithm by enhancing the one developed in Dai [9] through
adding an additional machine learning (ML) loop (see Algorithm 3.1 in Section 3 for more details).
Note that the design of using a sequence of structure-preserving B-SPDEs in (1.4) to approximate the
one in (1.1) is actually motivated from the diffusion approximation for queueing networks where r is
used to index a specific network. More exactly, the diffusion approximation is to approximate a target
limit system through a sequence of physical systems when r tends to infinity (see, e.g., Dai [4, 5, 7]).
Furthermore, during the approximation, each system keeps its structure unchanged.

In summary, the contributions of our paper can be stated in two folds: theoretic contributions and
numerical contributions.

Concerning the theoretic contributions of our paper, we study the strongly nonlinear B-SPDE
in (1.1) through an approximation method by introducing new truncation operators as in (1.5)
and (1.6). The main reason for doing it in this way is due to the singularity of the B-SPDE in (1.1). To
guarantee the meaningfulness of the approximation, the existence and uniqueness of a 2-tuple adapted
strong solution to the approximation B-SPDE in (1.4) are proved. Furthermore, it is also proved that,
if the B-SPDE in (1.1) has a solution pair (V, V̄), the solution pair to the approximation B-SPDE
in (1.4) will converge to (V, V̄) as ϵ tends to zero and K, K̄ tend to the infinity in certain senses. In
addition, based on the approximated B-SPDE in (1.4), some investment policies are analytically
derived for a financial market with the aim to conduct some accuracy comparisons.

Concerning the numerical contributions of our paper, we develop a Monte Carlo simulation-based
algorithm to numerically solve the approximation B-SPDE in (1.4). In doing so, we integrate an
additional ML loop into the platform of a convolutional neural network (CNN) as studied in Dai [9].
Based on the equation in (1.4), we can prove the convergence of this newly designed algorithm in
the case that the equation in (1.1) has an adapted strong solution. The basic idea to develop such an
algorithm is to find a CNN denoted byU with an additional ML loop at each time point to approximate
(Vϵ,K

K̄
, V̄ϵ,K

K̄
) (see Figure 1 with explanations in Subsection 3.1 for more details). In this CNN, we

consider (Vϵ,K
K̄
, V̄ϵ,K

K̄
) as paired parameters to be trained at each node (t, x) (also called neuron (t, x)).

The learning strategy for this CNN is to minimize the mean-squared error (loss) between (Vϵ,K
K̄
, V̄ϵ,K

K̄
)

and U. Note that, in Dai [9], the CNN corresponding to U is expressed as a conditional expectation
projection for a given data set. To compute the conditional expectation, the well-known tower law (see,
e.g., Kallenberg [16]) is used to design the CNN U (see Subsection 3.1 for more details), which is a
backward one. Similar to a multi-layer perceptron (MLP) as studied in Cybenko [3], Haykin [13], and
Hornik et al. [14], our CNNU is a fully connected neural network. However, it is still computationally
efficient since our B-SPDE in (1.4) is a Browinian motion driven one. Therefore, the computation of
our conditional expectation does not need the additional multiple parameter training since the transition
probability and density of a Brownian motion is given. As an alternative, our conditional expectation
projection can also be presented by a linear or nonlinear regression model with parameters, which
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is closely related to the so-called Kolmogorov-Arnold network due to Kolmogorov’s superposition
theorem (see, e.g., Kolmogorov [17] and Braun and Griebel [1]) and the recent study in Liu et al. [21].
If we do in this way, we need to train additional parameters, which is time-consuming and may sacrifice
some accuracy. Thus, in Dai [9] and in our current paper, we report our achievements based on our
successfully implemented and tower-law-oriented CNN U. Furthermore, along this line, we refer
the reader to these related papers Gonon et al. [11], Kratsios et al. [19], Peluchetti [25], Sirignano and
Spiliopoulos [26], Vaswani et al. [27] for more details. Finally, concerning the numerical contributions
of this study, we also provide simulation examples supported with an application in finance.

For the reader’s convenience, the partial simulation results according to our developed simulation
scheme are shown in Figure 2, where we present the simulation results concerning the paired solution
(Vϵ,K

K̄
, V̄ϵ,K

K̄
) to the approximated B-SPDE in (1.4) with ϵ = 1/100000, K = 109, and K̄ = 264. The

computed values at time point t j0 = tn0 with n0 = 10 correspond to the input terminal values at tn0+1 = T .
The “solution error check” titled in the third plot of the first column in Figure 2 is in terms of the
difference between the two sides of the B-SPDE in (1.4) and is with respect to a particular sample
path. From the simulation results displayed in the third plot of the first column, we can see that our
algorithm is quite accurate. The three plots in the first row of Figure 2 display the simulated Vϵ,K

K̄
(tn0 , x)

together with its simulated first-order and second-order derivatives in terms of position parameter x ∈
{b/d, 2b/d..., (d − dropnum)b/d} with b = 1/6000, d = 100, and dropnum = 30. Although the
graph in the third plot is non-smooth, it is close to a smooth line. Furthermore, the three plots in the
second row of Figure 2 display the simulated V̄ϵ,K

K̄
(tn0 , x) together with its simulated first-order and

second-order derivatives. In addition, the second and third plots in the third row of Figure 2 display
the simulated terminal value Vϵ,K

K̄
(tn0+1, x) together with its simulated first-order derivative. Concerning

the simulations about the paired solution (Vϵ,K
K̄

(t, x), V̄ϵ,K
K̄

(t, x)), readers are referred to Section 4 for
more details.
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Figure 2. Simulated solution pair and pathwise error comparison to the B-SPDE in (1.4)
with ϵ = 1/100000, K = upperbound = 109, K̄ = 264, and learningrate = 1/2. Furthermore,
T = 0.1, n = 60000, hhh = 2, terminalcoe f f icient = 2 ∗ 100, Q = 2352, b = 1/6000,
d = 100, dropnum = 30, BMD = 2, bmdp = 3000, and k = 1. In this figure, we display
the evolution results of (d − dropnum) points with respect to the position parameter x ∈
{b/d, 2b/d, ..., (d − dropnum)b/d} over horizon-axes at a particular time point T (n − 1)/n.
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As pointed out previously, the primary interest in deriving the B-SPDE in (1.1) is to find the financial
investment strategy together with myopic investment and excess hedging demand (see, e.g., Dai [6,8],
Musiela and Zariphopoulou [22], and ∅ksendal et al. [24]). Therefore, based on the simulation study
conducted in this paper and the related strategy study presented in Musiela and Zariphopoulou [22],
we can also obtain the simulated financial control strategies as presented in Figure 3. In this figure,
we display the simulated investment policy, myopic policy, and excess hedging demand at time point
t j0 with j0 = n0 and n0 = 10. These policies correspond to the formula derived in Musiela and
Zariphopoulou [22]. The three graphs in the left column are corresponding to the simulated pathwise
results. The three graphs in the right column correspond to the simulated results in the mean average
sense with respect to the simulation iteration number Q. Theoretically, the myopic policy should
continue to be constant. Our simulated results support this theoretical result. However, this theoretic
result also further justifies the correctness of our algorithm and simulations. Concerning this financial
policy simulation, readers are referred to Section 4 for more details.
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Figure 3. Simulated investment policy, myopic policy, and excess hedging demand with
ϵ = 1/100000, K = upperbound = 109, K̄ = 264, and learningrate = 1/2. Furthermore,
T = 0.1, n = 60000, hhh = 2, terminalcoe f f icient = 2 ∗ 100, Q = 2352, b = 1/6000,
d = 100, dropnum = 30, BMD = 2, bmdp = 3000, and k = 1. In this figure, we display
the evolution results of (d − dropnum) points with respect to the position parameter x ∈
{b/d, 2b/d, ..., (d − dropnum)b/d} over horizon-axes at a particular time point T (n − 1)/n.

The remainder of the paper is organized as follows. In Section 2, we present the unique existence
theorem with proof of our approximated B-SPDE. Furthermore, in this section, we also present the
application of our study in finance. In Section 3, we design our Monte Carlo simulation algorithm
through CNN and ML. The convergence of our designed simulation algorithm is also proved. In
Section 4, we present our numerical simulation case studies. Finally, in Section 5, we summarize our
study conducted in this paper with conclusions.

2. Unique existence theorem with an application in finance

This section consists of two subsections. The unique existence theorem is stated in Subsection 2.1.
The financial application of our unique existence result is presented in Subsection 2.2.
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2.1. Unique existence theorem

Let C2(D,R) be the Banach space of all functions f having continuous derivatives up to the order 2
with the uniform norm,

∥ f ∥C2(D,R) = max
c∈{0,1,2}

max
j∈{1,...,r(c)}

sup
x∈D

∣∣∣∣ f (c)
j (x)

∣∣∣∣ (2.1)

for each f ∈ C2(D,R). The r(c) in (2.1) for each c ∈ {0, 1, 2} is the total number of the partial derivatives
of the cth order. Then, we can introduce our required measurable spaces used in this paper. First, we
use L2

F
([0,T ],C2(D; R)) to denote the set of all R-valued (also called C2(D; R)-valued) measurable

random fields Z(t, x) satisfying

E
[∫ T

0
∥Z(t)∥2C2(D,R)dt

]
< ∞, (2.2)

where the random field Z(t, x) is assumed to be adapted to {Ft, t ∈ [0,T ]} for each x ∈ D and Z(t, x) ∈
C2(D,R) with a fixed t ∈ [0,T ]). Second, we use L2

F ,1([0,T ],C2(D,R)) to denote the corresponding set
of predictable processes (see the definitions on pages 21 and 45 of Ikeda and Watanabe [15]). Third,
we use L2

FT
(Ω,C2(D; R)) to denote the set of all R-valued, FT -measurable random fields ζ(x, ω) for

each x ∈ D and sample point ω ∈ Ω, where ζ(x, ω) ∈ C2(D,R) for each ω ∈ Ω satisfies

∥ζ∥2L2
FT

(Ω,C2(D,R)) ≡ E
[
∥ζ∥2C2(D,R)

]
< ∞. (2.3)

Therefore, we can introduce our supporting space as follows,

Q̄2
F

([0,T ] × D) ≡ L2
F

([0,T ],C2(D,R)) × L2
F ,1([0,T ],C2(D,R)). (2.4)

Finally, before introducing our unique existence theorem, we suppose that the terminal value in (1.1)
(and hence in (1.4)) is given by

H(x) = h1(x)h2(W(T )), (2.5)

where both h1 and h2 are polynomials (interested readers are also referred to Dai [9] for more related
explanation). Then, we can state our unique existence theorem as follows.

Theorem 2.1. Under the terminal condition in (2.5), there is a unique strong {Ft}-adapted solution
pair (Vϵ,K

K̄
(t, x), V̄ϵ,K

K̄
(t, x)) to the B-SPDE in (1.4) within the space Q̄2

F
([0,T ] × D) for a small constant

ϵ > 0, a large number K > 0, and a large number K̄ > 0 with t ∈ [0,T ]. Furthermore, we have that

sup
t∈[0,T ]

E
[∥∥∥Vϵ,K

K̄
(t)

∥∥∥2

C2(D,R)

]
< ∞. (2.6)

Proof. Corresponding to the B-SPDE in (1.4), we define a second-order partial differential operator
L
ϵ,K
K̄

as follows,

L
ϵ,K
K̄

(t, x,V, V̄) =
(ΦK̄(Vx(t, x) + V̄x(t, x)))2

Ψϵ,K(Vxx(t, x))
. (2.7)
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Then, we can conclude that the operator Lϵ,K
K̄

defined in (2.7) satisfies the generalized local Lipschitz
and linear growth conditions as introduced in Dai [9], i.e.,∣∣∣∆Lϵ,K

K̄
(s, x, (u, ū), (v, v̄))

∣∣∣ ≤ KD

(
∥u − v∥C2(D,R) + ∥ū − v̄∥C2(D,R)

)
, (2.8)∣∣∣Lϵ,K

K̄
(s, x, (u, ū))

∣∣∣ ≤ KD

(
∥u∥C2(D,R) + ∥ū∥C2(D,R)

)
(2.9)

for each fixed (t, x) ∈ [0,T ]×D, and any (u, ū), (v, v̄) ∈ C2(D,R)×C2(D,R), where (u, ū) and (v, v̄) are
two pairs corresponding to the equation in (1.4). Furthermore, KD is a nonnegative constant depending
on D, ϵ, K, and K̄. In addition, the operator ∆Lϵ,K

K̄
is defined by

∆Lϵ,K
K̄

(s, x, (u, ū), (v, v̄)) ≡ Lϵ,K
K̄

(s, x, (u, ū)) − Lϵ,K
K̄

(s, x, (v, v̄)) (2.10)

for each given (t, x, (u, ū), (v, v̄))).
In fact, for any two pairs of (U, Ū) and (V, V̄) in the space Q̄2

F
([0,T ] × D), it follows from the

definition in (2.7) that we can prove the claim in (2.8) as follows,∣∣∣∆Lϵ,K
K̄

(s, x, (U, Ū), (V, V̄))
∣∣∣

≤

∣∣∣∣∣∣∣∣
(
ΦK̄(Ux(s, x) + Ūx(s, x))

)2

Ψϵ,K(Uxx(s, x))
−

(
ΦK̄(Vx(s, x) + V̄x(s, x))

)2

Ψϵ,K(Vxx(s, x))

∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣Ψϵ,K(Vxx(s, x))
(
ΦK̄(Ux(s, x) + Ūx(s, x))

)2

Ψϵ,K(Uxx(s, x))Ψϵ,K(Vxx(s, x))

−
Ψϵ,K(Uxx(s, x))

(
ΦK̄(Vx(s, x) + V̄x(s, x))

)2

Ψϵ,K(Uxx(s, x))Ψϵ,K(Vxx(s, x))

∣∣∣∣∣∣
≤

1
ϵ2

∣∣∣∣∣∣Ψϵ,K(Vxx(s, x))
((
ΦK̄(Ux(s, x) + Ūx(s, x))

)2
−

(
ΦK̄(Vx(s, x) + V̄x(s, x))

)2
) ∣∣∣∣∣∣

+
1
ϵ2

∣∣∣∣∣∣(Ψϵ,K(Uxx(s, x)) − Ψϵ,K(Vxx(s, x))
)(
ΦK̄(Vx(s, x) + V̄x(s, x))

)2
∣∣∣∣∣∣

≤ K1
D

(∣∣∣∣∣Ψϵ,K(Uxx(s, x)) − Ψϵ,K(Vxx(s, x))
∣∣∣∣∣

+

∣∣∣∣∣ΦK̄(Ux(s, x) + Ūx(s, x)) − ΦK̄(Vx(s, x) + V̄x(s, x))
∣∣∣∣∣)

≤ KD

(
∥u − v∥C2(D,R) + ∥ū − v̄∥C2(D,R)

)
,

(2.11)

where K1
D is some positive constant depending on ϵ, K, K̄, and D. Furthermore, KD is a positive

constant depending on K1
D.

Similarly, by applying the definition in (2.7), we can prove the claim in (2.9) as follows,∣∣∣LϵK(s, x, (U, Ū))
∣∣∣ ≤ 1
ϵ

(
ΦK̄(Ux(t, x) + Ūx(t, x))

)2

≤ KD

(
∥u∥C2(D,R) + ∥ū∥C2(D,R)

)
,

where the constant KD in (2.11) and (2.12) can be chosen such that the inequalities in (2.11) and (2.12)
are both true.

AIMS Mathematics Volume 9, Issue 7, 18688–18711.



18697

Finally, it follows from (2.11), (2.12), and the discussion in Dai [9] that the claims in our main
theorem are true. Hence, we complete the proof of Theorem 2.1. □

2.2. Application in finance

Consider a financial market consisting of one risky asset and one riskless asset. The risky asset is a
stock whose price dynamics is driven by the Brownian motion W(·), i.e.,

dS (t) = S (t)
(
u(t)dt + σ(t)dW(t)

)
(2.12)

with initial price S (0) > 0. Furthermore, u(·) and σ(·) are {Ft}-progressive measurable processes with
values in R = (−∞,∞). The riskless asset is with the price process R(t) with an interest rate r(t), i.e.,

dR(t) = r(t)R(t)dt. (2.13)

Then, it follows from the discussion in Musiela and Zariphopoulou [22] that the present value Xβ(t) =
β0(t) + β1(t) of the aggregate investment concerning the riskless investment strategy β0(t) and the risky
investment strategy β1(t) is given by

dXβ(t) = β(t)(u(t) − r(t))dt + σ(t)β(t)dW(t), (2.14)

where β(t) = β1(t) is the discounted strategy in the following admissibility set,

A =

{
β : β(t) is self-financing and {Ft}-progressively measurable (2.15)

satisfying E
[∫ t

0
|σ(s)β(s)|2

]
< ∞, Xβ(t) ≥ 0, t ≥ 0

}
.

Now, for a given trading horizon [0,T ] and an investor’s utility µT (·) : R+ → R at terminal time
T , which is supposed to be an increasing and convex function of his wealth, we can represent the
risk-seeking attitude of an investor (the risk-avoiding case corresponding to a concave function can be
similarly discussed, see, e.g., Musiela and Zariphopoulou [22] for a reference). The investor’s target is
to maximize the expected utility of terminal wealth over the admissible strategy setAT corresponding
to the one in (2.15) with t ∈ [0,T ], i.e., to solve the optimization problem presented in (1.2). Then, if we
take u(t) = σ(t) ≡ 1 and r(t) ≡ 0, respectively, in (2.12) and (2.13), the optimal equation corresponding
to the optimization problem in (1.2) is given by the B-SPDE in (1.1) with H(T, x) = µT (x) (concerning
the justification of this claim, readers are referred to Musiela and Zariphopoulou [22] for more details).
In this case, the optimal feedback investment strategy is given by

β∗(t) = −
Vx(t, x)
Vxx(t, x)

−
V̄x(t, x)
Vxx(t, x)

, (2.16)

where the first term (will be denoted by β∗,m(t)) on the right-hand-side of (2.16) is called a myopic
investment strategy resembling the investment policy followed by an investor in a financial market
where the investment opportunity set keeps constant through time. Furthermore, the second term
(will be denoted by β∗,h(t)) on the right-hand-side of (2.16) is referred as the excess hedging demand
denoting the additional investment due to the volatility V̄(t, x) of the performance process V(t, x). Thus,
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corresponding to the paired solution (Vϵ,K
K̄

(t, x), V̄ϵ,K
K̄

(t, x)) to the equation in (1.4), the approximated
optimal investment strategies can be denoted by β∗ϵ(t), β

∗,m
ϵ (t), and β∗,hϵ (t) (see, e.g., the simulation

results in Figures 3–5).
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Figure 4. Simulated investment policy, myopic policy, and excess hedging demand with
ϵ = 1/100000, K = upperbound = 109, K̄ = 264, and learningrate = 1/2. Furthermore,
T = 0.1, n = 60000, hhh = 2, terminalcoe f f icient = 2 ∗ 100, Q = 2352, b = 1/6000,
d = 100, dropnum = 30, BMD = 2, bmdp = 3000, and k = 1. In this figure, we display
the evolution results of (d − dropnum) points with respect to the position parameter x ∈
{b/d, 2b/d, ..., (d − dropnum)b/d} over horizon-axes at a particular time point T (n − 8)/n.

Figure 5. Simulated dynamical evolutions of investment policy, myopic policy, and excess
hedging demand with ϵ = 1/100000, K = upperbound = 109, K̄ = 264, and learningrate =
1/2. Furthermore, T = 0.1, n = 60000, hhh = 2, terminalcoe f f icient = 2 ∗ 100, Q = 2352,
b = 1/6000, d = 100, dropnum = 30, BMD = 2, bmdp = 3000, and k = 1. In this
figure, we display the evolution results of (d − dropnum) points with respect to the position
parameter x ∈ {b/d, 2b/d, ..., (d − dropnum)b/d} over horizon-axes and time parameter t ∈
{T,T (n − 1)/n, ...,T (n − 8)/n}.

AIMS Mathematics Volume 9, Issue 7, 18688–18711.



18699

3. The Monte Carlo simulation algorithm and its convergence

This section consists of two subsections concerning the design of a Monte Carlo simulation
algorithm and proving its convergence with error bound estimation.

3.1. Simulation algorithm

In this subsection, we develop a Monte Carlo simulation algorithm based on both CNN and machine
learning (see Figure 1) to simulate the 2-tuple adapted strong solution to the B-SPDE in (1.4). More
precisely, we consider a partition π for the product region of [0,T ] × D with D = [0, b] as follows,

π : 0 = t0 < t1 < · · · < tn0 = T with n0 ∈ {0, 1, ...}, (3.1)
0 = x0 < x1 < · · · < xn1 = b with n1 ∈ {0, 1, ...},

where t j0 for j0 ∈ {0, 1, 2, ..., n0} and x j1 for j1 ∈ {0, 1, ..., n1} are the points of divisions over the time
interval [0,T ] and the space interval D. Then, for all jl ∈ {1, ..., nl} with l ∈ {0, 1}, we take

∆t,π
j0
= t j0 − t j0−1, (3.2)

∆π1 = x j1 − x j1−1 =
b
n1
, (3.3)

∆πW j0 = W(t j0) −W(t j0−1). (3.4)

Furthermore, let

|π| ≡ max
j0∈{1,...,n0}

{
∆t,π

j0
, ∆π1

}
, (3.5)

D j1 ≡
[
x j1−1, x j1

)
, (3.6)

X ≡
{
x j1 : j1 ∈ {0, 1, ..., n1}

}
. (3.7)

Now, we use the forward and the backward difference techniques to approximate the partial derivatives
appearing in (1.4). More precisely, for each f ∈ {Vϵ,K

K̄
, V̄ϵ,K

K̄
}, x ∈ X, and each integer c ∈ {1, 2}, we

define the cth-quotient of differences, which corresponds to the cth-order derivative of f along the x
direction, as follows,

f (c)
π (t, x) ≡


f (c−1)
π (t,x+∆π1)− f (c−1)

π (t,x)
∆π1

if x = x j1 and j1 < n1,

−
f (c−1)
π (t,x−∆π1)− f (c−1)

π (t,x)
∆π1

if x = x j1 and j1 = n1,

(3.8)

where we adopt the convention that f (0)
π = fπ. Furthermore, to simplify the notations, we use {Vϵ , V̄ϵ}

to denote {Vϵ,K
K̄
, V̄ϵ,K

K̄
}, and we define

L
ϵ,K
K̄

(
t, x,Vϵπ(t, x)

)
≡ L

ϵ,K
K̄

(t, x, (Vϵπ(t, x),Vϵ,(1)
π (t, x),Vϵ,(2)

π (t, x)), (V̄ϵπ(t, x), V̄ϵ,(1)
π (t, x))) (3.9)

for each x ∈ X. Moreover, we use Lϵ,K
π,K̄

to denote the fully discretized version of Lϵ,K
K̄

. Then, we can
present the following Monte Carlo simulation algorithm.
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Algorithm 3.1. This algorithm consists of three parts: Part I, Part II, and Part III:
Part I. This part is an iterative one in terms of {(Vϵ(t j0 , x), V̄ϵ(t j0 , x)): x ∈ X} with j0 decreasing from
n0 to 1 in a backward way,

Vϵπ(tn0 , x) = Hπ(x), (3.10)
V̄ϵπ(tn0 , x) = 0, (3.11)

Vϵπ(t j0−1, x) = E
[
Vϵπ(t j0 , x) +Lϵ,K

π,K̄
(t j0 , x,V

ϵ
π(t j0 , x))∆t,π

j0

∣∣∣∣Ft j0−1

]
, (3.12)

V̄ϵπ(t j0−1, x) =
1
∆πj0

E
[
Vϵπ(t j0 , x)∆πW j0

∣∣∣Ft j0−1

]
(3.13)

+E
[
L
ϵ,K
π,K̄

(t j0 , x,V
ϵ
π(t j0 , x))∆πW j0

∣∣∣∣Ft j0−1

]
.

Part II. This part is a machine learning loop at time t j0−1 in order to minimize the difference concerning
the values on both sides of the equation in (1.4) along each sample path, i.e.,

Vϵ,k+1
π (t j0−1, x) = Vϵ,kπ (t j0−1, x) − α∇G(Vϵ,kπ (t j0−1, x)) (3.14)

for each k ∈ {0, 1, 2, ...} with Vϵ,0π (t j0−1, x) = Vϵπ(t j0−1, x), where α is a given learning rate and ∇G(·) is
the stochastic gradient of an optimization problem, i.e.,

min
Vϵ,kπ (t j0−1,x)∈R

G(Vϵ,kπ (t j0−1, x))

with its objective function G(Vϵ,kπ (t j0−1, x)) given by(
Vϵ,kπ (t j0−1, x) −

(
Vϵπ(t j0 , x) −

1
2
L
ϵ,K
π,K̄

(t j0−1, x,Vϵ,kπ (t j0−1, x))∆t,π
j0

)
+ V̄ϵπ(t j0−1, x)∆πW j0

)2

.

The machine learning loop in this part has a stopping rule as follows.

Choose a number (k + 1) to stop the iteration, (3.15)
then take the new Vϵπ(t j0−1, x) to be Vϵ,k+1

π (t j0−1, x).

Part III. This part is to compute the numerical derivatives at each time t j0−1, i.e.,

Compute Vϵ,(c)
π (t j0−1, x) and V̄ϵ,(c)

π (t j0−1, x) (3.16)
for each x ∈ X with c ∈ {1, 2} via the formula in (3.8).

Concerning the architecture, the loss, and the learning strategy corresponding to Algorithm 3.1, the
associated flow chart is shown in Figure 1. In this flow chart, we present a backward CNN supported
with a ML loop.

As displayed in the graph on the left-hand side of Figure 1, this CNN denoted by U has (n0 + 1)-
layers arranged in a backward way, which corresponds to Part I of Algorithm 3.1. In this CNN, a node
(also called a neuron) is indexed by (t j, xi) with j ∈ {n0, n0 − 1, ..., 1, 0} and i ∈ {0, 1, ..., n1}, where, in
our Algorithm 3.1, we take j = j0 and i = j1. Associated with each node (t j, xi), the paired solution
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(Vϵ(t j, xi), V̄ϵ(t j, xi)) is considered as a pair of parameters to be trained or estimated. The training
process is arranged in a backward way as follows,

(Vϵ(tn0 , xi), V̄ϵ(tn0 , xi))→ (Vϵ(tn0−1, xi), V̄ϵ(tn0−1, xi))→ · · · → (Vϵ(t0, xi), V̄ϵ(t0, xi))

for each i ∈ {0, 1, ..., n1}. The design rational for this CNN is the tower law for expectation (see, e.g.,
Theorem 5.1 (vii) on page 81 of Kallenberg [16]) and more explanations concerning the design rational
for a CNN can be found in Dai [9]. The learning strategy for this CNN is to minimize the mean-squared
error (loss) between (Vϵ , V̄ϵ) andU.

As displayed in the graph on the right-hand side of Figure 1, the supporting ML loop corresponds
to Part II of Algorithm 3.1. The purpose of adding this ML loop into Algorithm 3.1 is to speed up the
convergence of the algorithm in Dai [9]. Actually, in Dai [9], the algorithm is designed only through the
backward CNN corresponding to Part I of Algorithm 3.1. Interestingly, our numerical implementations
presented in this paper indicate that the convergence of Algorithm 3.1 is indeed faster after adding this
ML loop. Concerning the supporting ML loop, the iteration is only designed for Vϵπ as shown in Part
II of Algorithm 3.1. In this iteration, we keep V̄ϵπ the same for all k. In this ML loop, the learning
strategy corresponds to solve an optimization problem as presented in Part II of Algorithm 3.1, which
is to minimize the difference (loss) of the two sides of the B-SPDE in (1.4) along each sample path in
the squared error sense. In the learning iteration of (3.14), the learning rate α is designed to satisfy the
condition αK1

D < 1 for a constant K1
D (that is presented in (3.22) of this paper). It is worthwhile to point

out that, even after we add this ML loop, we still can prove the convergence of this newly designed
Algorithm 3.1, which is presented in the next subsubsection.

Finally, the associated simulation examples based on Algorithm 3.1 will be provided in Section 4.
Instead, in the next subsection, we first conduct the convergence analysis with error bound estimation.

3.2. Convergence with error bound estimation

In this subsection, we focus on the discussion concerning the convergence and error bound
estimation of Algorithm 3.1. More precisely, for each t ∈ [0,T ], x ∈ X, and j0 ∈ {n0, n0 − 1, ..., 1}, we
define

∆Vϵ,K
K̄

(t, x) = Vϵ,K
K̄

(t, x) − Vϵπ(t, x), (3.17)

∆V̄ϵ,K
K̄

(t, x) = V̄ϵ,K
K̄

(t, x) − V̄ϵπ(t, x), (3.18)
Vϵπ(t, x) = Vϵπ(t j0−1, x), t ∈ [t j0−1, t j0),
V̄ϵπ(t, x) = V̄ϵπ(t j0−1, x), t ∈ [t j0−1, t j0).

Furthermore, let

ξ(k) =
k∑

i0=1

1 +
k∑

i0=1

i0∑
i1=1

1 +
k∑

i0=1

i0∑
i1=1

i1∑
i2=1

1 + · · · +
k∑

i0=1

i0∑
i1=1

i1∑
i2=1

· · ·

2∑
im−1=1

1. (3.19)

In addition, it follows from the generalized local Lipschitz and linear growth conditions in (2.8)
and (2.9) that

|∆(∇G)(s, x, u, v)| ≤ K1
D∥u − v∥C2(D,R), (3.20)
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|∇G(s, x, u))| ≤ K1
D∥u∥C2(D,R) (3.21)

for some positive constant K1
D, where (t, x) ∈ [0,T ] × D and u, v ∈ C2(D,R) ×C2(D,R). Therefore, we

can introduce the following assumption concerning the learning rate α,

αK1
D < 1. (3.22)

Finally, let ∥ · ∥ be the largest absolute value corresponding to each used function for all x ∈ X. Then,
we can present our algorithm convergence theorem with error bound estimation as follows.

Theorem 3.1. For Algorithm 3.1 with the condition in (3.22) and a given iteration number k in (3.14),
there is a nonnegative constant C depending only on the terminal time T , the Lipschitz constant KD

in (2.8) and (2.9), and the supremum (a constant) in (2.6) such that the following mean-square error
estimation is true,

sup
t∈[0,T ]

(
E

[∥∥∥∆Vϵ,K
K̄

(t)
∥∥∥2

]
+ E

[∥∥∥∆V̄ϵ,K
K̄

(t)
∥∥∥2

])
≤ C|π| (3.23)

for all sufficiently small |π|. In addition, consider a sequence of increasing sets Xk̄ with k̄ ∈ {1, 2, ...}
(i.e., X1 ⊂ X2 ⊂ · · ·). Suppose that the corresponding maximal mesh gauge |π|k̄ along k̄ ∈ {1, 2, ...}
satisfies

|π|k̄ → 0,
∞∑

k̄=1

(
|π|k̄

) 1
3
< ∞.

Then, for a given X ∈ {X1,X2, ...}, we have the a.s. convergence for Algorithm 3.1 as k̄ → ∞,

sup
t∈[0,T ]

(∥∥∥∆Vϵ,K
K̄

(t)
∥∥∥ + ∥∥∥∆V̄ϵ,K

K̄
(t)

∥∥∥)→ 0 a.s. (3.24)

Proof. First, for the machine learning loop given by (3.14) in Part II of Algorithm 3.1, a given integer
k ∈ {0, 1, 2, ...}, and an index j0 ∈ {n0, n0 − 1, ..., 1}, it follows from the facts in (3.20) and (3.21) that

∥∥∥Vϵ,k+1
π (t j0−1) − Vϵ,0π (t j0−1)

∥∥∥ ≤ α k∑
i0=1

∥∥∥∇G(Vϵ,i0π (t j0−1))
∥∥∥ (3.25)

≤ α

k∑
i0=1

( i0∑
i1=1

∥∥∥∇G(Vϵ,i1π (t j0−1)) − ∇G(Vϵ,i1−1
π (t j0−1))

∥∥∥ + ∥∥∥∇G(Vϵ,0π (t j0−1))
∥∥∥ )

≤ α|π|K1
D

k∑
i0=1

( i0∑
i1=1

∥∥∥Vϵ,i1π (t j0−1) − Vϵ,i1−1
π (t j0−1)

∥∥∥
C2(X,R)

+
∥∥∥Vϵ,0(t j0−1)

∥∥∥
C2(X,R)

)

≤ α|π|K1
D

k∑
i0=1

( i0∑
i1=1

α|π|K1
D

( i1∑
i2=1

∥∥∥Vϵ,i2π (t j0−1) − Vϵ,i2−1
π (t j0−1)

∥∥∥
C2(X,R)

+
∥∥∥Vϵ,0π (t j0−1)

∥∥∥
C2(X,R)

)
+

∥∥∥Vϵ,0π (t j0−1)
∥∥∥

C2(X,R)

)
· · ·
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· · ·

· · ·

≤ α|π|K1
Dξ(k)

∥∥∥Vϵ,0π (t j0−1)
∥∥∥

C2(X,R)
,

where ξ(k) is given in (3.19). Thus, for the given iteration number k and t ∈ [t j0−1, t j0), it follows
from (3.25) and the discussion in Dai [9] that

E
[∥∥∥∆Vϵ,K

K̄
(t)

∥∥∥2
]
= E

[∥∥∥Vϵ,K
K̄

(t) − Vϵ,k+1
π (t)

∥∥∥2
]

≤ 2E
[∥∥∥Vϵ,K

K̄
(t, x) − Vϵ,0π (t)

∥∥∥2
]
+ 2E

[∥∥∥Vϵ,0π (t) − Vϵ,k+1
π (t)

∥∥∥2
]

≤ C1|π| +
(
α|π|K1

Dξ(k)
)2

E
[∥∥∥Vϵ,0π (t j0−1)

∥∥∥2

C2(X,R)

]
≤ C1|π| + 2

(
α|π|K1

Dξ(k)
)2
(
E

[∥∥∥Vϵ,0π (t) − Vϵ,K
K̄

(t)
∥∥∥2

C2(X,R)

]
+ E

[∥∥∥Vϵ,K
K̄

(t)
∥∥∥2

C2(X,R)

] )
≤ C1|π| + 2

(
α|π|K1

Dξ(k)
)2

(
C1|π| + sup

t∈[0,T ]
E

[∥∥∥Vϵ,K
K̄

(t)
∥∥∥2

C2(D,R)

])
,

(3.26)

where C1 is some constant depending on T and KD. Since Vϵ,0π (t j0−1, x) for each j0 ∈ {n0, n0 − 1, ..., 1}
satisfies the equation in (3.12), it follows from Theorem 2.1 and (3.26) that the claim in (3.23) is true.
Furthermore, the claim in (3.24) can be similarly proved by applying the discussion in Dai [9]. Hence,
we finish the proof of Theorem 3.1. □

Now, if the B-SPDE in (1.1) has a {Ft}-adapted solution pair (V(t, x), V̄(t, x)), then Vxx(t, x) can not
be zero a.s. at all points {(t, x) ∈ [0,T ] × D}. Therefore, the numerical procedure in Algorithm 3.1 can
also be applied to solve the equation in (1.1), e.g.,

Vπ(tn0 , x) = Hπ(x), (3.27)
V̄π(tn0 , x) = 0, (3.28)

Vπ(t j0−1, x) = E
[
Vπ(t j0 , x) +Lπ(t j0 , x,Vπ(t j0 , x))∆t,π

j0

∣∣∣∣Ft j0−1

]
, (3.29)

V̄π(t j0−1, x) =
1
∆πj0

E
[
Vπ(t j0 , x)∆πW j0

∣∣∣Ft j0−1

]
(3.30)

+E
[
Lπ(t j0 , x,Vπ(t j0 , x))∆πW j0

∣∣∣Ft j0−1

]
,

where Lπ in (3.29) and (3.30) is the discrete version of the following partial differential operator,

L(t, x,V, V̄) =
(Vx(t, x) + V̄x(t, x))2

Vxx(t, x)
. (3.31)

Then, we have the following corollary.

Corollary 3.2. Under the conditions in (3.22) with the Lipschitz constant KD in (2.8)−(2.9), if there is
a pair of {Ft}-adapted solutions (V(t, x), V̄(t, x)) in the space Q̄2

F
([0,T ] × D) to the B-SPDE in (1.1),

then we have that (
Vϵπ(t j0 , x), V̄ϵπ(t j0 , x)

)
→

(
Vπ(t j0 , x), V̄π(t j0 , x)

)
a.s. (3.32)
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E
[∣∣∣∣∣(Vϵπ(t j0 , x), V̄ϵπ(t j0 , x)

)
−

(
Vπ(t j0 , x), V̄π(t j0 , x)

)∣∣∣∣∣]→ 0 (3.33)

as K̄ → ∞ first, K → ∞ second, ϵ → 0 third for each x ∈ X and each j0 ∈ {n0, n0 − 1, ..., 1} in a
backward way, and |π|k̄ → 0 last along k̄ ∈ {1, 2, ...}.

Proof. We prove the claim in (3.32) and (3.33) by induction in terms of j0 ∈ {n0, n0 − 1, ..., 2, 1}. First,
we consider the case that j0 = n0 − 1, and it follows from (3.12) and (3.29) that∣∣∣∣∣∣Vπ(tn0−1, x) − Vϵπ(tn0−1, x)

∣∣∣∣∣∣
≤ E

[ (
(Vx(tn0 , x))2

|Vxx(tn0 , x)|
+

K̄2

|Vxx(tn0 , x)|

)
I{ϵ≤|Vxx(tn0 ,x)|≤K}I{|Vx(tn0 ,x)|>K̄}∆

t,π
n0

∣∣∣∣∣Ftn0−1

]
+ E

[ (
(Vx(tn0 , x))2

|Vxx(tn0 , x)|
+

K̄2

ϵ

)
I{|Vxx(tn0 ,x)|<ϵ}I{|Vx(tn0 ,x)|>K̄}∆

t,π
n0

∣∣∣∣∣Ftn0−1

]
+ E

[ (
(Vx(tn0 , x))2

|Vxx(tn0 , x)|
+

K̄2

K

)
I{|Vxx(tn0 ,x)|>K}I{|Vx(tn0 ,x)|>K̄}∆

t,π
n0

∣∣∣∣∣Ftn0−1

]
+ E

[ (
(Vx(tn0 , x))2

|Vxx(tn0 , x)|
+

(Vx(tn0 , x))2

ϵ

)
I{|Vxx(tn0 ,x)|<ϵ}I{|Vx(tn0 ,x)|≤K̄}∆

t,π
n0

∣∣∣∣∣Ftn0−1

]
+ E

[ (
(Vx(tn0 , x))2

|Vxx(tn0 , x)|
+

(Vx(tn0 , x))2

K

)
I{|Vxx(tn0 ,x)|>K}I{|Vx(tn0 ,x)|≤K̄}∆

t,π
n0

∣∣∣∣∣Ftn0−1

]
≤ 2E

[
(Vx(tn0 , x))2

|Vxx(tn0 , x)|
I{ϵ≤|Vxx(tn0 ,x)|≤K}I{|Vx(tn0 ,x)|>K̄}∆

t,π
n0

∣∣∣∣∣Ftn0−1

]
+ 2E

[
(Vx(tn0 , x))2

|Vxx(tn0 , x)|
I{|Vxx(tn0 ,x)|<ϵ}I{|Vx(tn0 ,x)|>K̄}∆

t,π
n0

∣∣∣∣∣Ftn0−1

]
+ E

[ (
(Vx(tn0 , x))2

|Vxx(tn0 , x)|
+

(Vx(tn0 , x))2

K

)
I{|Vxx(tn0 ,x)|>K}I{|Vx(tn0 ,x)|>K̄}∆

t,π
n0

∣∣∣∣∣Ftn0−1

]
+ 2E

[
(Vx(tn0 , x))2

|Vxx(tn0 , x)|
I{|Vxx(tn0 ,x)|<ϵ}I{|Vx(tn0 ,x)|≤K̄}∆

t,π
n0

∣∣∣∣∣Ftn0−1

]
+ E

[ (
(Vx(tn0 , x))2

|Vxx(tn0 , x)|
+

(Vx(tn0 , x))2

K

)
I{|Vxx(tn0 ,x)|>K}I{|Vx(tn0 ,x)|≤K̄}∆

t,π
n0

∣∣∣∣∣Ftn0−1

]
≤ 2E

[
(Vx(tn0 , x))2

|Vxx(tn0 , x)|
I{|Vx(tn0 ,x)|>K̄}∆

t,π
n0

∣∣∣∣∣Ftn0−1

]
+ 2E

[
(Vx(tn0 , x))2

|Vxx(tn0 , x)|
I{|Vx(tn0 ,x)|>K̄}∆

t,π
n0

∣∣∣∣∣Ftn0−1

]
+ E

[ (
(Vx(tn0 , x))2

|Vxx(tn0 , x)|
+

(Vx(tn0 , x))2

K

)
I{|Vx(tn0 ,x)|>K̄}∆

t,π
n0

∣∣∣∣∣Ftn0−1

]
+ 2E

[
(Vx(tn0 , x))2

|Vxx(tn0 , x)|
I{|Vxx(tn0 ,x)|<ϵ}∆

t,π
n0

∣∣∣∣∣Ftn0−1

]
+ E

[ (
(Vx(tn0 , x))2

|Vxx(tn0 , x)|
+

(Vx(tn0 , x))2

K

)
I{|Vxx(tn0 ,x)|>K}∆

t,π
n0

∣∣∣∣∣Ftn0−1

]
.

(3.34)
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Then, by the monotone (and conditional monotone) convergence theorem, we first let K̄ → ∞, second
let K → ∞, and third let ϵ → 0, and we can conclude that∣∣∣∣∣Vϵπ(tn0−1, x) − Vπ(tn0−1, x)

∣∣∣∣∣ → 0 a.s., (3.35)

E
[∣∣∣∣∣Vϵπ(tn0−1, x) − Vπ(tn0−1, x)

∣∣∣∣∣] → 0. (3.36)

Second, we consider the case that j0 = n0 − 2. Let Vϵ,K
π,K̄

(tn0−1, x) be the corresponding value computed
through (3.29). Then, it follows from (3.12) and (3.29) that∣∣∣∣∣∣Vπ(tn0−2, x) − Vϵπ(tn0−2, x)

∣∣∣∣∣∣ ≤ E
[∣∣∣∣∆Vϵ,K

K̄
(tn0−1, x)

∣∣∣∣∣∣∣∣∣Ftn0−2

]
+ E

[∣∣∣∣Vπ(tn0−1, x) − Vϵ,K
π,K̄

(tn0−1, x)
∣∣∣∣∣∣∣∣∣Ftn0−2

]
+ E

[ (
(Vx(tn0−1, x) + V̄x(tn0−1, x))2

|Vxx(tn0−1, x)|
+

K̄2

|Vxx(tn0−1, x)|

)
I{ϵ≤|Vxx(tn0−1,x)|≤K}I{|Vx(tn0−1,x)+V̄x(tn0−1,x)|>K̄}∆

t,π
n0−1

∣∣∣∣∣Ftn0−2

]
+ E

[ (
(Vx(tn0 , x) + V̄x(tn0−1, x))2

|Vxx(tn0 , x)|
+

K̄2

ϵ

)
I{|Vxx(tn0 ,x)|<ϵ}I{|Vx(tn0−1,x)+V̄x(tn0−1,x)|>K̄}∆

t,π
j0

∣∣∣∣∣Ftn0−2

]
+ E

[ (
(Vx(tn0−1, x) + V̄x(tn0−1, x))2

|Vxx(tn0−1, x)|
+

K̄2

K

)
I{|Vxx(tn0−1,x)|>K}I{|Vx(tn0−1,x)+V̄x(tn0−1,x)|>K̄}∆

t,π
n0−1

∣∣∣∣∣Ftn0−2

]
+ E

[ (
(Vx(tn0−1, x) + V̄x(tn0−1, x))2

|Vxx(tn0−1, x)|
+

(Vx(tn0−1, x) + V̄x(tn0−1, x))2

ϵ

)
I{|Vxx(tn0−1,x)|<ϵ}I{|Vx(tn0−1,x)+V̄x(tn0−1,x)|≤K̄}∆

t,π
n0−1

∣∣∣∣∣Ftn0−2

]
+ E

[ (
(Vx(tn0−1, x) + V̄x(tn0−1, x))2

|Vxx(tn0−1, x)|
+

(Vx(tn0−1, x) + V̄x(tn0−1, x))2

K

)
I{|Vxx(tn0−1,x)|>K}I{|Vx(tn0−1,x)+V̄x(tn0−1,x)|≤K̄}∆

t,π
n0−1

∣∣∣∣∣Ftn0−2

]
≤ E

[∣∣∣∣∆Vϵ,K
K̄

(tn0−1, x)
∣∣∣∣∣∣∣∣∣Ftn0−2

]
+ E

[∣∣∣∣Vπ(tn0−1, x) − Vϵ,K
π,K̄

(tn0−1, x)
∣∣∣∣∣∣∣∣∣Ftn0−2

]
+ 4E

[
(Vx(tn0−1, x) + V̄x(tn0−1, x))2

|Vxx(tn0−1, x)|
I{|Vx(tn0−1,x)|+V̄x(tn0−1,x)>K̄}∆

t,π
n0−1

∣∣∣∣∣Ftn0−2

]
+ 2E

[(
Vx(tn0−1, x) + V̄x(tn0−1, x)

)2
(

1
|Vxx(tn0−1, x)|

+
1
K

)
I{|Vxx(tn0−1,x)|>K}∆

t,π
n0−1

∣∣∣∣∣Ftn0−2

]
+ 2E

[
(Vx(tn0−1, x) + V̄x(tn0−1, x))2

|Vxx(tn0−1, x)|
I{|Vxx(tn0−1,x)|<ϵ}∆

t,π
n0−1

∣∣∣∣∣Ftn0−2

]
.

(3.37)
Then, by the monotone convergence theorem, we first let K̄ → ∞, second let K → ∞, and third let
ϵ → 0, and it follows from (3.35) and (3.36) that∣∣∣∣∣Vϵπ(tn0−2, x) − Vπ(tn0−2, x)

∣∣∣∣∣ (3.38)

→ E
[∣∣∣∣∆Vϵ,K

K̄
(tn0−1, x)

∣∣∣∣∣∣∣∣∣Ftn0−2

]
+ E

[∣∣∣∣Vπ(tn0−1, x) − Vϵ,K
π,K̄

(tn0−1, x)
∣∣∣∣∣∣∣∣∣Ftn0−2

]
a.s.,
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E
[∣∣∣∣∣Vϵπ(tn0−2, x) − Vπ(tn0−2, x)

∣∣∣∣∣] (3.39)

→ E
[∣∣∣∣∆Vϵ,K

K̄
(tn0−1, x)

∣∣∣∣] + E
[∣∣∣∣Vπ(tn0−1, x) − Vϵ,K

π,K̄
(tn0−1, x)

∣∣∣∣].
Finally, a similar argument can be applied to the analysis for (V̄π(tn0−1, x) − V̄ϵπ(tn0−1, x)). Then, it
follows from the induction, dominated convergence theorem, and Theorem 3.1 that the claims in (3.32)
and (3.33). Hence, we have finished the proof of Corollary 3.2. □

4. Simulation examples

In this section, we present simulation examples to show the effectiveness of Algorithm 3.1. More
precisely, we first simulate the paired solution to the approximated B-SPDE in (1.4). Since there is no
analytic solution available to the B-SPDE, we conduct numerical comparison concerning the difference
between two sides of our simulated B-SPDE to show the correctness of our computed solution. All
of the results concerning the simulated solution are presented in Figures 2, 6, and 8. Second, based
on the simulated solution of the B-SPDE, we also conduct further simulations concerning the financial
investment strategies derived in (2.16). All of the simulated results are displayed in Figures 3–5. Note
that some predicted properties in theory concerning the financial investment strategies are found in
the simulation results, which further justifies the correctness of our simulated solution to the B-SPDE
in (1.4).
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Figure 6. Simulated solution pair and pathwise error comparison to the B-SPDE in (1.4)
with ϵ = 1/100000, K = upperbound = 109, K̄ = 264, and learningrate = 1/2. Furthermore,
T = 0.1, n = 60000, hhh = 2, terminalcoe f f icient = 2 ∗ 100, Q = 2352, b = 1/6000,
d = 100, dropnum = 30, BMD = 2, bmdp = 3000, and k = 1. In this figure, we display
the evolution results of (d − dropnum) points with respect to the position parameter x ∈
{b/d, 2b/d, ..., (d − dropnum)b/d} over horizon-axes at a particular time point T (n − 8)/n.
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Figure 7. First case of the simulated dynamic evolving solution pair to the B-SPDE in (1.4)
with ϵ = 1/100000, K = upperbound = 109, K̄ = 264, and learningrate = 1/2.
Furthermore, T = 0.1, n = 60000, hhh = 2, terminalcoe f f icient = 2 ∗ 100, Q = 2352,
b = 1/6000, d = 100, dropnum = 30, BMD = 2, bmdp = 3000, and k = 1. In this
figure, we display the evolution results of (d − dropnum) points with respect to the position
parameter x ∈ {b/d, 2b/d, ..., (d − dropnum)b/d} over horizon-axes and time parameter
t ∈ {T,T (n − 1)/n, ...,T (n − 8)/n}.

Figure 8. Second case of the simulated dynamic evolving solution pair to the B-SPDE
in (1.4) with ϵ = 1/100000, K = upperbound = 109, K̄ = 264, and learningrate = 1/2.
Furthermore, T = 0.1, n = 60000, hhh = 2, terminalcoe f f icient = 2 ∗ 100, Q = 2352,
b = 1/6000, d = 100, dropnum = 30, BMD = 2, bmdp = 3000, and k = 1. In this
figure, we display the evolution results of (d − dropnum) points with respect to the position
parameter x ∈ {b/d, 2b/d, ..., (d − dropnum)b/d} over horizon-axes and time parameter
t ∈ {T,T (n − 1)/n, ...,T (n − 8)/n}.

In all of the simulations, we use the notation T to denote the terminal time, a positive integer n to
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denote the number of equally divided subintervals over [0,T ], a positive integer hhh to represent the
highest order of partial derivatives corresponding to the implemented equation, a positive integer Q to
be the total number of normally distributed random numbers, a positive number b to be the size for the
space parameter, and a positive integer d to be the number of equally divided subintervals over [0, b].
Furthermore, we use a positive number BMD to denote the upper bound of an interval such that our
driving Brownian motion W ∈ [−BMD, BMD] and use a positive integer bmdp to denote the number
of equally divided subintervals over [0, BMD]. In addition, we use an integer (n0 + 1) to denote the
number of layers of backward network as in the left part of Figure 1 and use an integer (k+1) to denote
the number of layers of reinforcement iterations as in the right part of Figure 1.

Note that the main purpose to impose the upper bounds K and K̄ in (1.4) is for the equation in (1.4)
to satisfy the general local Lipschitz and linear growth conditions. In our simulations, we take them
to be sufficiently large in order that our simulation results are stable and acceptable. Actually, we take
K̄ to be the largest number allowed by our used computer, i.e., K̄ = 264. The computed first-order
derivatives of (Vϵ,K

K̄
, V̄ϵ,K

K̄
) are much less than this upper bound K̄. In this sense, our simulations are

stable and acceptable. Concerning K, we have used different numbers for tests. Our simulation results
presented in this paper correspond to K = 109. If we used K = 107, the simulation results were not
affected by this change. For safety, we used the simulation results corresponding to K = 109 in this
paper.

However, since we are handling a B-SPDE in (1.1) with singularity, the choice of ϵ indeed has a
significant impact on our simulation results. After careful tests, we chose to present the simulation
results corresponding to ϵ = 1/100000 in this paper. If we chose ϵ > 1/100000 up to ϵ = 1/100,
the corresponding simulation results were still reasonable and acceptable. Nevertheless, if we chose
ϵ < 1/100000 significantly, our simulation results were not acceptable. Concerning the choice of the
learning rate α, we chose α = 1/2 for good simulation results. The simulation results corresponding
to α around 1/2 were also acceptable. Nevertheless, if we chose α = 1, the simulation results are not
acceptable.

In Figure 2, we present the simulation results of the paired solution (Vϵ,K
K̄
, V̄ϵ,K

K̄
) to the approximated

B-SPDE in (1.4) with ϵ = 1/100000, K = 109, and K̄ = 264. The computed values at time point
t j0 = tn0 with n0 = 10 correspond to the input terminal values at tn0+1 = T . The terminal random field
H(x) in (1.4) is taken to be the form

H(x) = C(1 +W2(T ))
(
x +

5.5
60000

)2

, (4.1)

where C is a positive constant and is taken to be terminalcoe f f icient = 2 ∗ 100 as in the explanation
for Figure 2. Note that the “solution error check” titled in the third plot of the first column in Figure 2
is in terms of the difference (denoted by “Err”) between the two sides of the B-SPDE in (1.4) and is
with respect to a particular sample path. In applying Algorithm 3.1 with the terminal time at tn0+1 = T
to solve the equation in (1.4), the corresponding Err at time tn0 has the following expression,

Err(tn0 , x) = V(tn0 , x) − H(x) +
1
2

(
T − tn0

)ΦK̄(Vx(tn0 , x) + V̄x(tn0 , x))
Ψϵ,K(Vxx(tn0 , x)

+
(
W(T ) −W(tn0)

)
V̄(tn0 , x).

From the simulation results displayed in the third plot of the first column, we can see that our
algorithm is quite accurate. Furthermore, the three plots in the first row of Figure 2 display the
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simulated Vϵ,K
K̄

(tn0 , x) together with its simulated first-order and second-order derivatives in terms of
position parameter x ∈ {b/d, 2b/d..., (d − dropnum)b/d} with d = 100 and dropnum = 30. Although
the graph in the third plot is non-smooth, it is close to a smooth line. In addition, the three plots in the
second row of Figure 2 display the simulated V̄ϵ,K

K̄
(tn0 , x) together with its simulated first-order and

second-order derivatives. Finally, the second and third plots in the third row of Figure 2 display the
simulated terminal value Vϵ,K

K̄
(tn0+1, x) together with its simulated first-order derivative. In Figure 6,

we display the similar plots as in Figure 2 but with the simulated results at time point tn0−8 = t3.
In Figure 7, we display the first case of the solution evolving as the time index j0 decreases from

n0 + 1 to 3 with n0 = 10. More precisely, the three graphs in the magenta color display the dynamic
evolving of Vϵ,K

K̄
(t j0 , x) together with their first-order and second-order derivatives. The graph in the

blue color displays the solution evolving of V̄ϵ,K
K̄

(t j0 , x). Similarly, in Figure 8, we display the second
case of the solution evolving as the time index j0 decreases from n0 + 1 to 3 with n0 = 10. More
precisely, the three graphs in the blue color display the dynamic evolving of V̄ϵ,K

K̄
(t j0 , x) together with

their first-order and second-order derivatives. The graph in the magenta color displays the solution
evolving of Vϵ,K

K̄
(t j0 , x).

In Figure 3, we display the simulated investment policy, myopic policy, and excess hedging demand
at time point t j0 with j0 = n0 and n0 = 10. These policies correspond to the formula in (2.16) and
its related explanations. The three graphs in the left column correspond to the simulated pathwise
results. The three graphs in the right column correspond to the simulated results in the mean average
sense with respect to the simulation iteration number Q. Theoretically, the myopic policy should
continue to be constant. Our simulated results support this theoretical result. However, this theoretic
result also further justifies the correctness of our algorithm and simulations. Similarly, in Figure 4,
we display the simulated investment policy, myopic policy, and excess hedging demand at time point
tn0−8 = t3 with n0 = 10. Finally, in Figure 5, we display the simulated dynamical evolutions of
investment policy, myopic policy, and excess hedging demand with respect to time parameter t ∈
{T,T (n − 1)/n, ...,T (n − 8)/n}.

5. Conclusions

In this paper, we studied a strongly nonlinear B-SPDE through an approximation method. This
equation is well-known and was previously derived from studies in finance. However, how to analyze
and solve this equation has continued to an open problem for quite a long time. Therefore, by
applying our previously established theory and numerical scheme together with CNN and ML, we
have developed an effective approximation method with a Monte Carlo simulation algorithm to tackle
the well-known open problem. In doing so, the existence and uniqueness of the 2-tuple adapted strong
solution to an approximation B-SPDE were proved. Meanwhile, the convergence of a newly designed
simulation algorithm was established. Simulation examples and applications in finance were also
provided.
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