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Abstract: Accurately estimating the number of infections that actually occur in the earliest phases
of an outbreak and predicting the number of new cases per day in various countries is crucial
for real-time monitoring of COVID-19 transmission. Numerous studies have used mathematical
models to predict the progression of infection rates in several countries following the appearance
of epidemiological outbreaks. In this study, we analyze the data reported and then study several
logistical-type phenomenological models and their application in practice for forecasting infection
evolution. When several epidemic waves follow one another, it is important to stress that a traditional
logistic model cannot necessarily be fully adapted to the data made available. New models are being
introduced to simultaneously take account of human behavior, measures taken by the government, and
epidemiological conditions. This research used a generalized logistic model based on parameters that
vary over time to describe trends in COVID-19-infected cases in countries that have undergone several
waves. In two-wave scenarios, the parameters of the model evolve dynamically over time following
a logistic function, where the first and second waves are characterized by two extreme values for the
early period and the late one, respectively.
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1. Introduction

The emergence of COVID-19, the latest global pandemic following SARS in 2003 and MERS in
2012, poses a significant threat to both human health and the global economy. COVID-19 belongs to
the coronavirus family and causes SARS in those infected. The virus is primarily transmitted through
coughing or sneezing on others. Governments worldwide have implemented drastic restrictions to
curb the spread of the virus, including strict health and economic policies tailored to this global health
emergency. However, slow-developing countries and emerging economies may not be able to
implement similar measures as developed countries. The pandemic had a significant impact on
employment, resulting in reduced production, trade barriers, global demand, and restrictions on
movement. Due to the lack of a clear understanding of the pandemic’s evolution in almost every
country, health officials have had to carry out strict policies to control the outbreak. Therefore, this
global health crisis highlights the crucial significance of scientific research, especially the use of
practical approaches, which are both efficient and lightweight to comprehensively model and
assimilate reported data to understand the disease’s spread over time.

Modeling long-term predictions based on reported data from other countries is necessary but
challenging. To describe the temporal and spatial evolution of the COVID-19 pandemic, several
mathematical models covering deterministic models, stochastic models, and both discrete-time and
continuous-time models have been developed, with varying degrees of complexity [1]. Health
authorities are increasingly relying on mathematical, statistical, and artificial intelligence techniques
to control infectious disease epidemics [2]. Mathematical models are now commonly used to forecast
the spread and dynamics of infection, determine the principle transmission pathways to be used in the
control, evaluate the effectiveness of precautionary measures to be expected like lockdown and social
distancing, as well as predict the impact of measures taken and the progression of epidemics [3–6].
Using mathematical models can help strategic decision-making to allocate optimal resources and
treatment facilities to ensure effective control of infectious disease outbreaks. Taking a look at
short-term forecasts can help to estimate and anticipate requirements in terms of material and human
resources. Nevertheless, disease transmission forecasts may be quickly overtaken because of the fast
evolution of transmission rates strongly impacted by population attitude changes, environmental
factors, and the effectiveness of control measures taken.

It is challenging to study the multiple waves that occur during an epidemic and requires
appropriate models to characterize the complex growth patterns that occur in epidemic curves.
COVID-19 data may present non-linear trends due to the nature of the dynamic evolution of the
pandemic as well as the measures applied, which may not be well captured by classical logistic
models. On the other hand, different waves of the pandemic may present distinct temporal
characteristics, such as variable growth rates, different time periods, and changing government
interventions, which can make it difficult to apply simple logistic models. A good analysis of the
multiple wave dynamics may lead to a clearer understanding of the evolution of the epidemic,
contributing to the development of strategies for reducing the propagation of the disease. To explore
multi-wave impact, a classic epidemiological model, reflecting secondary infection wave emergence
based on time-varying parameters, can be used. In this study, we present a new method to model
multiple waves of infection within the COVID-19 epidemic. To capture the intricacies of epidemic
dynamics, we propose using the generalized logistic model based on parameters varying over time.
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Several factors motivated the choice of the generalized logistic model using time-dependent
parameters for studying data relating to the COVID-19 outbreak. The nature of the COVID-19
pandemic, characterized by evolving trends and varying levels of transmission over time, necessitated
a flexible modeling approach that could capture these dynamic changes. Traditional logistic models
with fixed parameters might not adequately account for the temporal variations observed in the spread
of the virus.

The use of time-varying parameters allows for a more nuanced analysis of the epidemic curve,
enabling the model to adapt to fluctuations in infection rates, interventions, and other external factors
influencing the trajectory of the outbreak. By incorporating time-dependent parameters, the model can
better reflect the complex dynamics of the epidemic and provide more accurate predictions of future
trends. Additionally, the generalized logistic model offers greater flexibility in capturing the different
phases of the epidemic, including the initial exponential growth, the peak of transmission, and the
eventual decline in cases. This versatility makes it well-suited for modeling the various stages of the
COVID-19 pandemic and for providing insights into the effectiveness of public health measures and
interventions.

Overall, the choice of the generalized logistic model based on time-dependent parameters was
driven by the need for a robust and adaptable modeling framework capable of capturing the evolving
dynamics of the COVID-19 outbreak and providing valuable insights for public health
decision-making.

In Section 2, we present several epidemiological models, such as the Richards growth model, and
the logistic model in addition to the generalized Richards model, illustrating each model parameter’s
impact and characteristics. These three models consider only constant parameters, without taking into
account other factors such as human behavior, possible changes in the measures taken by
governments to deal with the pandemic, and the appearance of several waves. In order to accurately
reflect the dynamic aspects of the system, additional parameters representing both the effect of
changes in government prevention measures as well as changes in the population’s attitudes need to
be included in the model. Section 3 is devoted to modeling the propagation of epidemics subject to
multiple waves. All the models proposed in this section are generalizations of single-wave models
using fixed parameters, in addition to the introduction of time-varying parameters. These models
therefore incorporate the impact of public policies imposed by governments, such as social
distancing, and changes in human behavior to control the pandemic.

Section 4 discusses the numerical methods for data analysis. A variety of mathematical models are
used to carry out COVID-19 simulations, while forecasts of the propagation of the epidemic across
different countries are provided on the basis of a reliable technique.

2. Single wave logistic models

In this section, we analyze the progression of the SARS-CoV-19 epidemic across various
countries. We propose a series of logistic models to analyze the propagation of COVID-19 and
thereby provide information on the situation of the pandemic. It is assumed that the equations and
their associated parameters accurately predict and describe the cumulative progression of the infected
population, even in the absence of additional variables. This assumption implies that the selected
model adequately represents the underlying dynamics of the outbreak, thereby enabling the
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generation of reliable predictions based solely on the provided parameters.

2.1. Logistic model

To describe the evolution of an epidemic at its outset, an exponential model can be used. Such a
model has been used to characterize the initial phases of numerous epidemics, including Ebola,
influenza, and the COVID-19 pandemic. Initially, the logistic model was introduced as part of
Verhulst’s [7] research into the growth pattern of the population. Epidemiology has made great use of
this model to predict the emergence and spread of various diseases. The logistic model is defined as

d I(t)
d t

= rI(t)
[
1 −

I(t)
K

]
, (2.1)

In Eq 2.1, I(t) represents the cumulative number of infected cases confirmed every day t, while K
denotes the capacity or size limit of confirmed cases. It is well known that the solution to Eq (2.1) is
given by

I(t) =
KI(t0)

I(t0) + (K − I(t0)) exp(−r(t − t0))
(2.2)

where t0 is the time when the first case I(t0) occurred, r is the exponential growth rate, and I(t) → K
as t → ∞. We observe that for I(t) << K, Eq (2.2) behaves as an exponential growth. However, when
the total infected population I(t) approaches K, the rate of growth is slow and tends to zero, giving rise
to a symmetrical S -form curve. In other words, solution (2.2) to (2.1) is

I(t) =
K

1 + exp(−r(t − t0 − τ))
(2.3)

where τ =
1
r

log
( K
I(t0)

− 1
)

represents that the inflection point reached half of saturation, and ∆t =

log(81)
r

is the measure of the time duration of the cycle from 10% to 90% of saturation. The advantage
of this formula is that the parameters used are easy to interpret, and their value can be estimated before
the closing of the evolution process. Thanks to expression (2.3), the daily number of infected cases is
then calculated as follows:

I f (t) :=
d I(t)

d t
=

rK exp(−r(t − t0 − τ))[
1 + exp(−r(t − t0 − τ))

]2 . (2.4)

Figure 1 shows the growth of infected individuals I(t) over time for various values of the growth
rate r with a fixed value of the carrying capacity K. It is clear that as r decreases, the peak moves to
larger time values, and the maximum number of infected individuals is controlled. This leads to more
efficient management of the pandemic.
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Figure 1. The cumulative infected (top) and number of infected (bottom) individuals per day
with K = 1e6 and various values of the parameter r.

2.2. Generalized logistic(Richards model)

The preceding model depicts an S-shaped growth curve. Generalized logistic equations, however,
are capable of modeling asymmetrical growth. They provide a flexible means of defining inflection
points and describing various asymmetric degrees in the growth process. Richards’s non-linear model
is a highly versatile tool for characterizing various processes of growth [8–10], represents an extension
of the logistic model, and is typically articulated through a nonlinear differential equation [11]. The
equation representing the Richards growth model is expressed as

d I(t)
d t

= rI(t)
[
1 −

( I(t)
K

)γ]
(2.5)

where γ is a curve slope adjustment parameter. It is possible to calculate the solution by

I(t) =
K[

1 + exp(−γr(t − t0 − τ))
]1/γ (2.6)

where τ =
1
rγ

log
(( K

I(t0)
)γ
− 1

)
.

This equation also has an exponential form, however the parameter γ > 0 in the equation allows the
form of the upper part of the curve to be disconnected from the form of the lower part. The number of
infected cases per day can be computed as
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I f (t) :=
d I(t)

d t
=

rK exp(−rγ(t − t0 − τ))[
1 + exp(−rγ(t − t0 − τ))

]1+ 1
γ

. (2.7)

Figure 2. The cumulative infected (top) and the number of infected (bottom) individuals per
day with K = 1e6, r = 0.02, and various values of γ.

Figure 2 illustrates the growth of the cumulative and daily infected cases for various values of the
parameter γ with a fixed value of the growth rate r and fixed carrying capacity.

Expanding on the Richards growth model (2.5), the generalised Richards model (GRM) introduces
a supplementary parameter p as

d I(t)
d t

= rI p(t)
(
1 −

( I(t)
K

)γ)
. (2.8)

In Figure 3, we fix the values of the parameters γ, growth rate r, and carrying capacity K. We
present the growth of infected cases for different values of the parameter p.
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Figure 3. The cumulative infected (top) and number of infected (bottom) per day individuals
with K = 1e6, r = 0.6, γ = 0.02, and various values of p.

3. Multi-wave models with time-dependent parameters

The models described above are applied only to a single growth period, during which the system
undergoes a transition from rapid to slower growth upon reaching a carrying capacity K. Nevertheless,
such models do not consider the influence of the government policy changes adopted to deal with
the pandemic and human attitudes, both of which can lead to several periods of growth in various
countries. The model must therefore take into account both human behaviour and measures taken
by public authorities. To achieve this, the governing equations and systems should treat variables
such as carrying capacity and growth rates as a function of time. Therefore, any change in the public
authorities’ measures or strategies will be automatically reflected in the predicted number of infected
cases by the model.

The resulting model is a set of nonlinear coupled equations and systems. This section describes
Meyer’s bi-logistics model to simulate growth when load capacity varies [12]. The model consists of
two serial logistic growth periods, each of which can be modeled with a logistic function. The time
interval can be split into two subregions, and each subregion can be modeled with a logistic function.
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I(t) =
K1

1 + exp(−r1(t − t0 − τ1))
+

K2

1 + exp(−r2(t − t0 − τ2))
(3.1)

where τi =
1
ri

log
(( Ki

I(t0)
)
− 1

)
for i = 1, 2.

A more general approach was proposed in [13] using a combination of the Richards equations:

I(t) =

m∑
i=1

Ki[
1 + exp(−γiri(t − t0 − τi))

]1/γi
, (3.2)

where τi =
1

riγi
log

(( Ki

I(t0)
)γi − 1

)
for i = 1, ...,m.

One drawback of this approach is the difficulty in finding the appropriate time to separate the regions
and the lack of clarity in the separation between each process.

To address this issue, [13] proposed a new mathematical model (Model 1) that takes into account
changes in the strategy of the public authorities by assuming that the variable p is dependent on time t
such that

d I(t)
d t

= rI p(t)(t)
[
1 −

( I(t)
K

)γ]
. (3.3)

In the event that social distancing measures are in place, it is possible to describe human behavioral
dynamics by varying p(t) and K(t) across time. [13] introduced a more adaptive model (Model 2) given
by

d I(t)
d t

= rI p(t)
c (t)

[
1 −

( I(t)
K(t)

)γ]
. (3.4)

To improve the results obtained in [13], we propose a new mathematical model that assumes that
variables p(t) and r(t) are dependents on time t such that

p(t) =


p1 if t ≤ t1

p if t1 ≤ t ≤ t2

p2 if t ≥ t2

(3.5)

and

r(t) =


r1 if t ≤ t3

r if t3 ≤ t ≤ t4

r2 if t ≥ t4.

(3.6)

p(t) and r(t) are a piece-wise and discontinuous functions. We will now consider the regularized
nonlinear problem, which can be expressed as:

d I(t)
d t

= rε(t)I pε(t)(t)
[
1 −

( I(t)
K

)γ] (3.7)

where pε(t) := p(t) ∗ ζε(t) =
∫ ∞
−∞

p(τ)ζε(t − τ)dτ and rε(t) := r(t) ∗ ζε(t) =
∫ ∞
−∞

r(τ)ζε(t − τ)dτ are
regularizations of p(t) and r(t), respectively, and ζε(t) := 1

ε
ζ( t

ε
). ζ is defined by
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ζ(t) =


1
a

exp(
1

t2 − 1
) if − 1 ≤ t ≤ 1

0 elsewhere
(3.8)

with a =

∫ 1

−1
exp(−

1
1 − t2 )dt.

By also varying K(t) over time, a more adaptive model (Model 3) can be introduced:

d I(t)
d t

= rε(t)I pε(t)
c (t)

(
1 −

( I(t)
K(t)

)γ) (3.9)

where K(t) satisfies

d K(t)
d t

= v(K(t) − K1)
(
1 −

[K(t) − K1

K2

]µ)
. (3.10)

Let
dI(t)

dt
= I f (t), then the derivative of I f (t) is given by

dI f (t)
dt

= I pε(t)
[(d rε(t)

d t
+ rε(t)

dpε(t)
dt

log(I(t))
)(

1 −
( I(t)
K(t)

)γ)
+ γrε(t)

d log(K(t))
dt

( I(t)
K(t)

)γ
+(r2)ε(t)I pε(t)−1

(
pε(t) − (pε(t) + γ)

( I(t)
K(t)

)γ)(
1 −

( I(t)
K(t)

)γ)]
.

(3.11)

Then (3.11) becomes



dI f (t)
dt

= I pε(t)
c

[(d rε(t)
d t

+ rε(t)
dpε(t)

dt
log(I(t))

)(
1 −

( I(t)
K(t)

)γ)
+ γrε(t)

d log(K(t))
dt

( I(t)
K(t)

)γ
+(rε)2(t)I pε(t)−1

(
pε(t) − (pε(t) + γ)

( I(t)
K(t)

)γ)(
1 −

( I(t)
K(t)

)γ)]
dI(t)

dt
= rε(t)I pε(t)(t)

[
1 −

( I(t)
K(t)

)γ]
d K(t)

d t
= v(K(t) − K1)

(
1 −

[K(t) − K1

K2

]µ)
.

(3.12)

The solution to Eq (3.12) is

K(t) = K1 +
K2[

1 + exp(−µv(t − t0 − τ))]1/µ
(3.13)

where τ =
1
µv

log
([ K2

K0 − K1

]µ
− 1

)
and

K1 ≤ K0 := K(t0) ≤ K1 + K2.
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The equation of I(t) can be expressed as
dI(t)

dt
= rε(t)I pε(t)(t)

[
1 −

( I(t)
K(t)

)γ] := Fε(t, I(t))

I(0) = I0.

(3.14)

The solutions I(t) = 0 and I(t) = K(t) are the equilibrium solutions of the previous equation. For
Eq (3.14), starting with a positive initial population 0 < I0 ≤ K(t). Now let F̃ε, be defined as

F̃ε(t, I(t)) =


Fε(t, I(t)) if I(t) ≥ 0

0 else

(3.15)

and Ĩ(t), be a solution to 
dĨ(t)

dt
= F̃ε(t, Ĩ(t))

Ĩ(0) = I0.

(3.16)

Multiplying equation (3.16) by (Ĩ(t) − K(t))+ = max{Ĩ(t) − K(t), 0}, we obtain

dI(t)
dt

(Ĩ(t) − K(t))+ = F̃ε(t, Ĩ(t)) (Ĩ(t) − K(t))+.

Then we have

1
2

d
dt
|(Ĩ(t) − K(t))+|2 +

dK(t)
dt

(Ĩ(t) − K(t))+ = F̃ε(t, Ĩ(t)) (Ĩ(t) − K(t))+ ≤ 0.

We have K1 ≤ K(t) ≤ K1 + K2 and, from the last equation in (3.12), we have dK(t)
dt ≥ 0. Then

1
2

d
dt
|(Ĩ(t) − K(t))+|2 ≤ 0.

Since the initial data Ic,0 ≤ K(t), we deduce that (Ĩ(t) − K(t))+ = 0, and Ĩ(t) ≤ K(t). On the other

hand, we have 1 −
( I(t)
K(t)

)γ
≥ 0 and, from (3.16), we obtain F̃ε(t, I(t)), and

dĨ(t)
dt

≥ 0. Since the

initial data Ic,0 is nonnegative, we deduce that Ĩ(t) ≥ Ic,0 > 0. Consequently, 0 < Ĩ(t) ≤ K(t) and also
0 < I(t) ≤ K(t).

4. Numerical simulations

The objective of this section is to meticulously identify the fundamental parameters that are
necessary for the proposed epidemic models. These parameters are of paramount importance in
forecasting as they constitute the foundation of the model’s predictive capabilities. Given the dynamic
nature of public authorities’ policies and actions concerning the pandemic, it is probable that these
parameters will fluctuate over time.
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In this investigation, we utilized data sourced from a Git repository affiliated with Johns Hopkins
University, as cited in references [14–16]. The x-axis across all subsequent visualizations represents
the number of days elapsed since January 22, 2020.

Figure 4. Cumulative cases in Morocco, Algeria, Spain, Italy, Germany, and France.

The graphs depicted in Figure 4 illustrate the cumulative rise in cases during the initial stages of the
epidemic across various countries, including Morocco, Algeria, Spain, Italy, Germany, and France. It
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is evident that the pandemic is exhibiting exponential growth patterns, underscoring the necessity for
decisive interventions by public authorities to mitigate its impact.

4.1. Parameters estimation

The process of obtaining model parameters involves executing a least-squares fit on the observed
data, as outlined in [17]. This process involves identifying the parameter set that minimizes the sum
of squared variances between the actual data and the corresponding model solution. In essence, the
objective is to fine-tune the model’s parameters to achieve optimal alignment with the empirical data,
thereby optimizing the model’s predictive capability.

In order to assess the efficacy of the models applied to the data, we calculate the temporal fluctuation
of the residuals, which is represented as follows:

Residual(t j) = Iϑεc (t j) − Id(t j) (4.1)

where ϑ? is the value of the estimated parameters. To evaluate the error associated with forecasts, one
can compute the error of various models fit to the data, by using the mean absolute error (MAE)

MAE :=
1
m

m∑
j=1

|Iϑ
?

c (t j) − Id(t j)| (4.2)

or the mean squared error (MSE)

MS E :=
1
m

m∑
j=1

|Iϑ
?

c (t j) − Id(t j)|2. (4.3)

4.2. Results

To demonstrate the efficacy of the proposed model, we conducted parameter fitting using datasets
from a variety of countries, including Morocco, Algeria, Spain, Italy, Germany, and France. This
comprehensive strategy permitted the evaluation of the model’s performance across a spectrum of
epidemiological contexts and diverse public health interventions. The inclusion of a diverse array of
data sources ensures a robust assessment of the model’s adaptability and predictive capability across a
range of scenarios and geographic regions.

The research involved an extensive series of tests, utilizing over 1000 days worth of data. The
objective of these tests was to demonstrate the efficacy of the proposed models in accurately forecasting
scenarios involving multiple waves of the epidemic.

In our research, we heavily relied on two indispensable Python packages for conducting simulations:

• lmfit: This robust Python package offers a sophisticated interface tailored for curve fitting and
parameter estimation. Especially adept at fitting models to experimental data, ’lmfit’ facilitates
the extraction of significant parameters from these fits. Its flexibility allows users to define
custom models and constraints with ease, while its nonlinear least squares optimization
framework simplifies the process. Notably, ’lmfit’ employs robust fitting techniques, enhancing
resilience to outliers. This is particularly advantageous, as it provides options like the robust
parameter within the minimize function, which further fortifies its capabilities.
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• SciPy’s ’scipy.integrate.odeint’: Widely acclaimed across scientific and engineering domains,
the ’scipy.integrate.odeint’ function, housed within the SciPy library, is an indispensable tool for
numerically tackling ordinary differential equations (ODEs). Its versatility has led to its
widespread adoption in simulating dynamical systems with remarkable success.

It is worth noting that while utilizing the ’lmfit’ package, the robust fitting techniques embedded
within it contribute to greater resilience against outliers. The availability of robust fitting options, such
as the robust parameter within the minimization function, bolsters its effectiveness.

Furthermore, it is important to acknowledge that the accuracy of the results obtained may be
marginally influenced by the initial guess of the parameters.

Figures 5 and 6 serve as visual demonstrations of the superior performance of the proposed models
compared to the logistic model and Richard growth model. Unlike these traditional models, which
are limited to capturing only a single pandemic wave, the proposed models exhibit adaptability to
multiple-wave pandemics. Additionally, Figure 6 provides insight into the time-dependent parameters
p(t) and r(t) resulting from the proposed models, further illustrating their versatility and effectiveness
in modeling complex epidemic scenarios.

The process of evaluating regression models is fundamental to understanding their effectiveness in
predicting or elucidating relationships among variables. This process entails the application of various
techniques that are specifically designed to achieve this objective. In our investigation, we concentrated
on two metrics that are frequently employed in this context: The mean squared error (MSE) and the
mean absolute error (MAE) were employed.

The mean squared error (MSE) is a metric that provides a comprehensive assessment of predictive
accuracy by measuring the average squared disparity between predicted and actual values. In contrast,
MAE calculates the average absolute difference between predicted and actual values, offering a more
intuitive perspective on model performance.

Throughout the course of our investigation, we employed these metrics to assess the predictive
capabilities of a range of regression models. Lower values for both MSE and MAE indicate a closer
alignment between predicted and actual values, thereby reflecting heightened accuracy in capturing the
underlying relationships within the data. This meticulous evaluation process serves as a crucial step in
ensuring the reliability and robustness of regression models for real-world applications.

Figures 7 and 8 depict a comparison among all discussed models. It is evident that models
incorporating time-dependent parameters exhibit superior performance.

In Figures 7 and 8, a comprehensive comparison is presented among all discussed models. It is
evident that models integrating time-dependent parameters (model 1, model 2, and model 3) exhibit
superior performance. This observation highlights the necessity of accounting for temporal dynamics
in modeling processes, as it leads to more accurate predictions and a more comprehensive
understanding of complex phenomena. The visual representation provided by these figures serves to
reinforce the significance of incorporating such parameters into regression models for the purpose of
improving predictive capabilities.
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Figure 5. Application of logistic models to fit data from Morocco, Algeria, Spain, Italy,
Germany, and France.
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Figure 6. Application of logistic models with time-dependent parameters to fit data from
Morocco, Algeria, Spain, Italy, Germany, and France.
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Figure 7. Comparison of the mean absolute error of different models for different countries.

Figure 8. Comparison of the mean squared error of different models for different countries.

4.3. Implications and limitations of study

Observations reveal that various waves of the pandemic exhibit distinct behaviors; hence, a
traditional model often struggles to accurately predict and track the impacts across different waves.
Introducing supplementary variables that are time-dependent can significantly enhance the model’s
ability to manage and forecast the evolution of the pandemic more effectively. By dynamically
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adjusting these variables over time, the model becomes more adaptable, capturing the nuances and
shifts inherent in each wave of the pandemic. This approach not only improves the accuracy of
predictions but also offers a more comprehensive understanding of how the pandemic evolves over
time.

The incorporation of time-dependent parameters into our proposed model offers significant
flexibility, enabling more precise modeling and a nuanced capacity to track the pandemic’s
progression. However, in this study, we opted for piece-wise constant functions, p(t) and r(t), to
describe various phases of the pandemic. This decision permitted the determination of these values
through fitting procedures. Nevertheless, it is crucial to recognize that the broader scenario remains
highly complex, akin to an open problem that resembles an inverse problem. This implies that
inferring the underlying parameters from observed data remains a challenging task with ongoing
research implications.

5. Conclusions

The development of precise prediction techniques to anticipate and forecast the transmission of
infectious diseases represents a significant challenge. It necessitates a comprehensive examination of
contagion parameters, model uncertainty, and real-world data. This necessitates not only an
understanding of the dynamics of disease transmission but also the ability to grapple with the inherent
uncertainties in predictive modeling and the complexities of incorporating real-time data into those
models. The successful development of these techniques will greatly enhance our ability to
proactively manage and mitigate the impact of epidemics and pandemics.

This paper presents a robust suite of forecasting models aimed at predicting the trajectory of the
novel coronavirus (COVID-19) as it spreads across various countries worldwide. Specifically, we
examine the efficacy of dynamic differential equation models in capturing the complex dynamics of
the pandemic. Our approach incorporates a diverse set of forecasting tools, including logistic models
and multiple cycle models (designated as models 1, 2, and 3), which have been tailored to offer short-
term forecasts for COVID-19 epidemics.

These models are designed to adapt to the evolving nature of the pandemic by integrating flexible
epidemic growth scaling. By employing the power of differential equations and incorporating various
parameters that influence disease spread, our methodology provides a comprehensive framework for
anticipating the trajectory of COVID-19 outbreaks across different regions. Through rigorous testing
and validation, we demonstrate the effectiveness of our approach in providing timely and accurate
forecasts to aid public health decision-making and resource allocation efforts.

Using these models provides valuable information on the evolution of COVID-19, offering essential
guidance for the formulation of public health policies in order to reduce transmission of the virus.
Although the analysis is primarily focused on the second wave, the model’s flexibility allows for its
expansion to accommodate any number of subsequent waves. This adaptability renders it an invaluable
asset for understanding and addressing the complex challenges posed by the COVID-19 pandemic. The
model offers insights into the dynamics of successive waves, providing researchers and policymakers
with valuable information to devise more effective strategies for containment and mitigation efforts.

This work uses time-dependent parameters, so we used a piece-wise function. We believe that the
use of more complex functions can improve model performance. We could also extend the work by
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introducing vaccination and spatial interaction using non-local diffusion operators.
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