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Abstract: In this study, we explored an asymmetric multivariate stochastic difference volatility
model that extends various probabilistic and statistical properties previously discussed in the literature.
We rigorously established that the model exhibits periodic stationarity and periodic ergodicity.
Additionally, we delved into the robust consistency and asymptotic normality of the Quasi-Maximum
Likelihood Estimator (QMLE), providing a comprehensive analysis of its theoretical underpinnings.
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1. Introduction

Since Engle’s groundbreaking work on the univariate ARCH model [12], and the subsequent
generalization to the GARCH model by Bollerslev [9], as well as the introduction of the threshold
GARCH by Glosten et al. [20], these models have become fundamental tools for capturing the key
stylized facts of financial time series. The capability to model the co-movements of multiple series is
of paramount practical importance. Analyzing them as components of a multivariate process is of
particular benefit, especially in the presence of temporal or contemporaneous dependencies. The
spectrum of multivariate (A)GARCH models is expanding, with a substantial body of literature
already established [3, 15, 26, 28]. This includes significant probabilistic, structural, and asymptotic
findings that support various estimation methods for a wide range of multivariate GARCH models and
their extensions.

https://www.aimspress.com/journal/Math
https://dx.doi.org/ 10.3934/math.2024902


18529

Engle and Kroner [13] set the groundwork for covariance stationarity in multivariate generalized
ARCH models. The existence of a 4th-moment structure in the CCC-GARCH model was validated
by He and Terasvirta [22] and Aue et al. [1]. Jeantheau [23] demonstrated the robust consistency of
the Quasi-Maximum Likelihood Estimator (QMLE) in multivariate ARCH models. Ling and
McAleer [25] furthered this by establishing the asymptotic properties of the QMLE for vector
ARMA-GARCH models, contingent on the finiteness of the 4th-moment of the observed process.
Notably, while asymptotic results for some asymmetric models were known, the works of [2]
extended these to a broader class of multidimensional causal processes, including asymmetries.
McAleer et al. [27] contributed to the structure and asymptotic theory of the VARMA-AGARCH
model, a direction further expanded by Francq and Zakoı̈an [14, 15], who provided results for a
variety of multivariate (A)GARCH models without relying on moment assumptions for the observed
process. Extensions of the EGARCH model to the multivariate context were also proposed by
Koutmos and Booth [24]. In terms of more recent developments, stationary multivariate GARCH
models have evolved from time-invariant to time-varying coefficients. These models allow
coefficients to depend on an unobservable, time-homogeneous Markov chain, as demonstrated in the
multivariate MS-GARCH model by Haas and Liu [21].

Francq and Zakoı̈an (2010, [14]) investigated the quasi-maximum likelihood estimation of a class
of symmetric multivariate GARCH models without imposing moment conditions for the observed
process. They extended this study to multivariate asymmetric GARCH models in their subsequent
paper (Francq and Zakoı̈an, 2012, [15]). In [5], Bibi (2018) extended the symmetric multivariate
GARCH models studied by Francq and Zakoı̈an (2010, [14]) by investigating the asymptotic
properties of QML estimation for symmetric multivariate periodic CCC-GARCH models. Maı̈nassara
et al. (2022, [26]) made additions that can be considered an extension of Francq and Zakoı̈an’s
models by studying the estimation of multivariate asymmetric power GARCH models.

We extend the work undertaken in these studies. On the one hand, we extend the standard models
by introducing coefficients related to time-varying and periodicity (for more details, see Ghezal
et al. [16, 17]); on the other, we extend Bibi’s paper by incorporating the effect of asymmetry. More
accurately, in our paper, we expanded the standard models to include the effects of temporal and
periodic factors on the model coefficients. Additionally, we incorporate the effects of asymmetry in
multivariate GARCH models, allowing for cross-leverage effects, which was not considered in Bibi’s
paper, which focused solely on symmetric models. Moreover, our paper illustrates our major findings
by application to a bivariate exchange rates series, while Bibi’s paper focused solely on the theoretical
aspects of periodic multivariate CCC-GARCH models. Furthermore, our primary contribution lies in
providing asymptotic results for this model category without imposing moment assumptions for the
observed process, a topic further explored by Ghezal et al. [7, 16]. These differences highlight the
unique contribution of our research to the development of multivariate GARCH models.

In this context, the following symbols are utilized:

- I(n) represents the n × n identity matrix and O(k,l) represents a matrix of size k × l with all entries
being zeros. For clarity, let us consider: O(k) := O(k,1) and O(k) := O(k,k).

- A⊗s signifies A ⊗ A ⊗ ... ⊗ A repeated s times, where ⊗ represents the usual Kronecker product
of matrices. Vec (A) denotes the vector stacking operator. If (A(k), k ∈ K) is a sequence of n × n

matrices, it is important to note that for any integers m and t,
t∏

i=m

A(i) = A(m)A(m + 1) . . . A(t) if
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m ≤ t, and I(n) otherwise.
- ρ (A) represents the spectral radius of the squared matrix A, det (A) (resp. Tr(A)) denotes the

determinant (resp. trace) of A. Moreover, for any matrices A, B, and C with suitable dimensions,
Tr (B′A) = Vec (B)′ Vec (A) and Vec (BAC) = (C′ ⊗ B) Vec (A). Let ∥.∥ represent any induced
matrix norm on the set of r × p and r × 1 matrices. This norm verifies, for any p × r matrix A and
r × p matrix B, that |Tr (AB)| ≤

√
nm ∥A∥ ∥B∥ , ∥A∥2 ≤ Tr (A′A) ≤ m ∥A∥2, and |A′A| ≤ ∥A∥2m .

- ∇θ represents the vector of first-order partial derivatives with respect to θ, ∇2
θ represents the

matrix of second-order partial derivatives with respect to θ, and⇝ represents convergence in the
distribution.

- Recall that if g (B) is a real-valued function of a matrix B depending on some parameter θ, then
∇θg (B) = Tr

(
∂g(B)
∂B′ ∇θB

)
. Furthermore, assuming the invertibility of matrix A, the following holds

true for any vector x and matrices B and C with suitable dimensions:

∇θA−1 = −A−1
(
∇θA

)
A−1

and

∂x′Ax
∂A′

= xx′,
∂ log |det (A)|

∂A′
= A−1,

∂Tr (BAC)
∂A′

= CB,

∂Tr
(
BA−1C

)
∂A′

= −A−1CBA−1,

∂Tr (BA′CA′)
∂A′

= B′AC′ +C′AB′.

2. The multivariate periodic asymmetric GARCH model

We begin with the CCC-PAGARCH models defined for a r−dimensional{
Xt = (X1t, ..., Xrt)′

}
as follows

Xt = V1/2
t η

t
,

Var
{
Xt |Ft−1

}
= Vt = HtMHt, Ht = diag

(
σ1/2

t

)
,

σt = a0 (t) +
q∑

k=1

(
Ak (t) X+t−k + Bk (t) X−t−k

)
+

p∑
j=1

C j (t)σt− j.

, (2.1)

where στ
t :=

(
στ

1t, ..., σ
τ
rt

)′
, τ ∈ R∗+, X+t :=

(
X+2

1t , ..., X
+2
rt

)′
, X−t :=

(
X−2

1t , ..., X
−2
rt

)′
, z− = (−z)+ = (−z) ∨

0, z±2 = (z±)2 , Ft := σ
{
Xt−i, i ≥ 0

}
, M represents a constant conditional correlation matrix, a0 (.)

represents a r×1 vector whose entries are strictly positive, the Ai (.) , Bi (.) and C j (.) for all i, j are r× r
matrices with positive entries, the functions a0 (t) , Ai (t) , Bi (t) and C j (t) exhibit periodicity in t with a
period of s, and

(
η

t

)
is an i.i.d. random vector with a mean and covariance matrix

(
O(r), I(r)

)
. Now, it is

important to emphasize that this model is limited to the periodic case, i.e., by setting t = ns + v, where
v = 1, ..., s and n ∈ Z. Consequently, the model (2.1) can be expressed in the following form
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
Xns+v = V1/2

ns+vηns+v
,

Vns+v = Hns+vMHns+v, Hns+v = diag
(
σ1/2

ns+v

)
,

σns+v = a0 (v) +
q∑

k=1

(
Ak (v) X+ns+v−k + Bk (v) X−ns+v−k

)
+

p∑
j=1

C j (v)σns+v− j.

. (2.2)

CCC-PAGARCH is a comprehensive framework that encompasses several models previously
explored in the literature. This includes standard CCC-AGARCH models when s = 1, as discussed
in [15], conventional symmetric CCC−PeriodicGARCH models when A. (.) = B. (.) , as explored
in [5], and periodic asymmetric GARCH models when r = 1, as studied by Ghezal et al. [6]. Now,
such as seen in several time series models, it is usually beneficial to express (2.1) as an analogous
stochastic recurrence equation to facilitate a more streamlined analysis (see [17–19]). For this reason,
we write Xt = Htη̃t

, X+t = G+t σt and X−t = G−t σt, where η̃
t
= M1/2η

t
and G±t = diag

(
η̃

t
±2

)
, and we

consider the r (2q + p) × r (2q + p) matrix

∆t :=


(
G+Aq

)
t

(
G+q Bq

)
t

(
G+q Cp

)
t(

G−q Cq

)
t

(
G−Aq

)
t

(
G−q Cp

)
t(

IpAq

)
t

(
IpBq

)
t

(
IAp

)
t

 ,
where

(
Φ+nΨm

)
t =

(
Φ+t Ψ1 (t) · · · Φ+t Ψm (t)
O(r(n−1),rm)

)
, (Φ+Ψm)t =

(
Φ+t Ψ1 (t) · · · Φ+t Ψm (t)
I(r(m−1)) O(r(m−1),r)

)
.

Consequently, we have Xt = Gtσt and σt = F′Λt, such that

Λt = ∆tΛt−1 + Πt, (2.3)

where
Λ′t :=

((
X+t

)′
, . . .

(
X+t−q+1

)′
,
(
X−t

)′
, . . . ,

(
X−t−q+1

)′
, σ′t , . . . , σ

′

t−p+1

)
,

F′ :=
(
O(r,2rq)

...I(r)
...O(r,r(p−1))

)
,

and
Π′t :=

(
a′0 (t) G+′t ,O

′

(r(q−1)), a
′

0 (t) G−′t ,O
′

(r(q−1)), a
′

0 (t) ,O′(r(p−1))

)
.

Now, iterating (2.3) stimes, we get

Γt := Λst = ΩtΓt−1 + Ξt, (2.4)

in which Ωt =
s−1∏
j=0
∆st− j and Ξt =

s−1∑
i=0

{
i−1∏
l=0
∆st−l

}
Πst−i where, as is customary, emptied products are

defined to be equal to I(r(2q+p)). Note here that (Ωt) (resp.
(
Ξt

)
) represents a sequence of i.i.d. positive

random matrices (resp. vectors), independent of Γn, n < t. Therefore, a causal, periodically ergodic,
and strictly periodical solution (short form: PE and SPS) for Eq (2.3), with an equivalent representation
in (2.2), holds true if Eq (2.4) has a causal, ergodic, and strictly stationary (short form: SS) solution.
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Observe that according to (2.3) and (2.4) are correct for all integer t, through recursive substitution, we
derive formal series solutions denoted, respectively, by

Γt (1) =
∑
i≥0

 i−1∏
l=0

∆t−l

Πt−i

and

Γt (2) =
∑
i≥0

 i−1∏
l=0

Ωt− j

Ξt−i.

3. Probabilistic properties of periodic CCC-AGARCH models

The uniqueness of the non-anticipative S S solution (Γt) to the model (2.4) appears in a form
comparable to that of Bougerol and Picard [10] through the use of the top−Lyapunov exponent γΩ
linked to the sequence of stochastic matrices Ω = (Ωt) defined by

γΩ := inf
m≥1

{
1
m

E
{
log ∥ΩmΩm−1...Ω1∥

}}
= lim

m→∞

1
m

log ∥ΩmΩm−1...Ω1∥ a.s.

Furthermore, since E
{
log+ ∥Ω1∥

}
≤ E {∥Ω1∥} < +∞ where log+ z represents log z ∨ 0, ∀z > 0,

this ensures the existence of γΩ. Building upon the preceding discussion, we are ready to unveil the
following outcomes.

Theorem 1. Consider the process
(
Xt

)
t∈Z

defined by the model (2.1) with a periodic vector

representation (2.3), and suppose that E
{∥∥∥∥ηt

∥∥∥∥} < +∞. The following statements are thus equivalent:

• The Eq (2.4) having a unique, strictly stationary, causal and ergodic solution provided by Γt (2) .
• The Eq (2.3) having a unique, S PS , causal and PE solution provided by Γt (1) .
• γΩ < 0.

Furthermore, for all t ∈ Z, the series Γt (1) and Γt (2) converge absolutely almost surely, Γt (1) a.s
=

Γt (2).

We also need the subsequent simple outcome which characterizes a necessary condition for S S .

Corollary 1. If the CCC-PAGARCH (p, q) model described in (2.1) satisfies γΩ < 0, thus ρ
(

s−1∏
v=0

Cs−v

)
<

1, where Ct =

(
C1 (t) · · · Cp (t)
I(r(p−1)) O(r(p−1),r)

)
.

Now, the subsequent proposition introduces conditions that are slightly more robust, guaranteeing
the negativity of γΩ.

Proposition 1. Consider the CCC-PAGARCH (p, q) model, then

a. ρ (E {Ω1}) < 1 implies that γΩ < 0.
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b. E
{

log

∥∥∥∥∥∥t−1∏
i=0
Ωt−i

∥∥∥∥∥∥
}
< 0 or E

{∥∥∥∥∥∥t−1∏
i=0
Ωt−i

∥∥∥∥∥∥
}
< 1 for some t ≥ 1 =⇒ γΩ < 0.

Moreover, if γΩ < 0, then there is ς > 0 such that ∀t, E
{∥∥∥σt

∥∥∥ς} < +∞, E
{∥∥∥Xt

∥∥∥ς} < +∞.
The following results establish the geometric ergodicity and β−mixing of Markov chain

(
Γt

)
with

state space Rr(2q+p) whose n−step transition probability is given by Pn
x0

(D) = P
(
Γt ∈ D

∣∣∣Γ0 = x0

)
for

any Borel set D ∈ BRr(2q+p) .

Theorem 2. If
(
Xt

)
t∈Z

is the process governed by (2.1), characterized by a state-space representation
as described in (2.4) , then

i. ρ (E {Ω1}) < 1 entails the existence of only one invariant distribution of Px (.) , ∀x, a
non-negative Borel measurable function h ≥ 1 defined on Rr(2q+p), a compact set W in BRr(2q+p) , a
constant κ and δ ∈ ]0, 1[ such that for any x ∈ Wc, E

{
h
(
Γn+1

) ∣∣∣Γn = x
}
≤ δh

(
x
)
− κ and

supx∈W E
{
h
(
Γn+1

) ∣∣∣Γn = x
}
< +∞.

ii. The chain
(
Γn

)
is geometrically ergodic and β−mixing property with exponential decay rate with

E
{
Γn

}
< +∞ if, and only if, ρ (E {Ω1}) < 1.

iii. sup1≤v≤s ρ

(
q∑

i=1
(Ai (v) + Bi (v)) +

p∑
j=1

C j (v)
)
< 1 implies that the chain

(
Γn

)
is geometrically ergodic.

4. Estimation

In this section, we consider the QMLE for estimating the parameters of the CCC-PAGARCH (p, q)
model assembled in

θ = (θ1, ..., θl)′ :=
(
θ′1, ..., θ

′

s,m
′
)
∈ Θ ⊂

(
]0;+∞[r × [0;+∞[r2(p+2q)

)s
× ]−1; 1[r(r−1)/2

where

l = s̃r + r (r − 1) /2, θ′v := (θ1 (v) , ..., θ̃r (v) , 1 ≤ v ≤ s) :=
(
a′0 (v) , α′ (v) , β′ (v) , γ′ (v)

)
and

r̃ = r + r2 (2q + p)

with

α′ (v) :=
(
Vec′ (A1 (v)) , ...,Vec′

(
Aq (v)

))
, β′ (v) :=

(
Vec′ (B1 (v)) , ...,Vec′

(
Bq (v)

))
,

γ′ (v) :=
(
Vec′ (C1 (v)) , ...,Vec′

(
Cp (v)

))
,

for all 1 ≤ v ≤ s, θi (v) = a0,i (v) , i = 1, ..., r, θr+i jk (v) = αi jk (v) , i, j = 1, ..., r, k = 1, ..., q, θr+r2q+i jk (v) =
βi jk (v) , i, j = 1, ..., r, k = 1, ..., q, θr+2r2q+i jk (v) = γi jk (v) , i, j = 1, ..., r, k = 1, ...p and M =

(
mi j

)
is

the symmetric matrix with mii = 1 (i.e., m′ := (m21, ...,mr1,m32, ...,mr2, ...,mrr−1)). The true parameter
value, symbolized by θ0 and belonging to the parameter spaceΘ, is unknown and needs to be estimated.
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In pursuit of this, consider that the observations X1, ..., Xn=sN constitute a time series from the unique,
S PS and causal solution of (2.1) . A QMLE of θ is defined as any measurable solution θ̂n of

θ̂n = Argmax
θ∈Θ

L̃Ns

(
θ
)
= Argmin

θ∈Θ

(
−L̃Ns

(
θ
))
. (4.1)

For initial values X0, ..., X1−q, σ̃0

(
θ
)
, ..., σ̃1−p

(
θ
)
, the Gaussian log−likelihood function for θ ∈ Θ

is given up to an additive constant by

L̃Ns

(
θ
)
= − (Ns)−1

∑N

t=1

∑s−1

v=0
l̃st+v

(
θ
)
, (4.2)

with l̃t

(
θ
)
= log det

(
Ṽt

)
+ X′tṼ

−1
t Xt, where Ṽt is recursively defined for t ≥ 1 by

Ṽns+v = H̃ns+vMH̃ns+v, H̃ns+v = diag
(
σ̃1/2

ns+v

)
,

σ̃ns+v = a0 (v) +
q∑

i=1

(
Ai (v) X+ns+v−i + Bi (v) X−ns+v−i

)
+

p∑
j=1

C j (v) σ̃ns+v− j,
.

Due to the strong dependency of Ṽt

(
θ
)

on initial values, the process
(̃
lt

(
θ
))

is neither an S PS

nor PE process. Hence, it would be appropriate to replace the process
(̃
lt

(
θ
))

with its S PS and PE

version. Therefore, we introduce an approximate version LNs

(
θ
)
= − (Ns)−1 ∑N

t=1
∑s−1

v=0 lst+v

(
θ
)

of the

likelihood (4.2) with lt

(
θ
)
= log det (Vt) + X′tV

−1
t Xt. The upcoming findings in this paper confirm the

robust consistency of θ̂Ns and its asymptotic normality.

4.1. Robust consistency of QMLE

Take into account the regularity assumptions listed below:

A0 θ0 ∈ Θ and Θ is compact.
A1 Consider the polynomials A0,v (z) =

∑q
i=1 A0,i (v) zi, B0,v (z) =

∑q
i=1 B0,i (v) zi and C0,v (z) = I(r) −∑p

j=1 C0, j (v) z j adheres to the convention A0,v (z) = B0,v (z) = O(r) if q = 0 and C0,v (z) = I(r) if
p = 0, for all v ∈ {1, ..., s} . If p > 0, A0,v (1) + B0,v (1) , O, A0,v (z), B0,v (z) and C0,v (z) are
left-coprime and

[
A0,q (v) B0,q (v) C0,p (v)

]
has full rank r for all v ∈ {1, ..., s} .

A2 γΩ0 < 0 with Ω0 in place of Ω to confirm that the unknown parameter is θ0 and ρ
(

s−1∏
v=0

C0,s−v

)
< 1.

A3 The distribution of the components of η̃
t
isn’t focused on two points and

P (̃ηit ∈ (0,+∞)) ∈ (0, 1) for i = 1, . . . , r.
A4 M represents a correlation matrix that is positive-definite.

Currently, we have the capability to articulate our initial finding.

Theorem 3. Assuming the specified Assumptions, A0–A4, θ̂Ns exhibits robust consistency, meaning
that

P
(̂
θNs −→N→∞

θ0

)
= 1.

To establish the proof of Theorem 3, we articulate the subsequent technical statements encapsulated
in the following lemma.
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Lemma 1. Assuming the specified Assumptions, A0–A4, we obtain

I. sup
θ∈Θ

∣∣∣∣(L̃Ns − LNs

) (
θ
)∣∣∣∣ a.s.
−→

N
0.

II. There exists an integer t ∈ Z such that σt

(
θ
) a.s.
= σt

(
θ0

)
and M = M0 ⇒ θ = θ0.

III.
∑s

v=1 Eθ0

{
lst+v

(
θ0

)}
< ∞ and

∑s
v=1 Eθ0

{
lst+v

(
θ
)}

is minimized at θ = θ0.

IV. ∀θ , θ0, there exists a neighborhoodV
(
θ
)

such that
∑s

v=1 Eθ0

{
lst+v

(
θ0

)}
< lim inf

N→∞
inf
θ̃∈Θ

(
L̃Ns

(̃
θ
))

a.s.

4.2. Asymptotic normality (AN) of QMLE

To demonstrate the AN of θ̂Ns, the analysis relies on additional assumptions.

A5 θ0 ∈ Θ̊, where Θ̊ represents the interior of the parameter space Θ.

A6 E
{∥∥∥∥ηt

η′
t

∥∥∥∥2}
< ∞.

These supplementary assumptions are essential to establishing the required conditions under which
the estimator θ̂Ns exhibits asymptotic normality. The second principal outcome is encapsulated in the
following theorem

Theorem 4. Assuming that
(
Xt, t ∈ Z

)
is formed by the model referenced in (2.1), under the conditions

specified in A0–A6 we obtain

(Ns)
1
2
(̂
θNs − θ0

)
{ N

(
O,K−1UK−1

)
as N → ∞,

where the matrix K =
∑s

v=1 Eθ0

{
∇2
θlst+v

(
θ0

)}
is positive-definite and the matrix

U =
∑s

v=1
Eθ0

{
∇θlst+v

(
θ0

)
∇′θlst+v

(
θ0

)}
.

The demonstration of Theorem 4 relies on the classical technique of a Taylor series expansion of
∇θLNs

(
θ
)

around θ0, and this expansion is expressed as

0 = (Ns)−
1
2

Ns∑
t=1

∇θ̃lt

(̂
θNs

)
= (Ns)−

1
2

Ns∑
t=1

∇θ̃lt

(
θ0

)
+

(Ns)−1
Ns∑
t=1

∇2
θ l̃t

(̃
θ
) (Ns)

1
2
(̂
θNs − θ0

)
.

Here, the coordinates of θ̃ lie between θ̂Ns and θ0. The theorem will consequently follow
straightforwardly. To achieve this, we will establish the subsequent intermediate outcomes,
consolidated in the following lemma

Lemma 2. Assuming A0–A6, we obtain

a.
∑s

v=1 Eθ0

sup
θ∈×

∥∥∥∥∇θlst+v

(
θ0

)
∇′θlst+v

(
θ0

)∥∥∥∥ < ∞ and
s∑

v=1
E

sup
θ∈×

∥∥∥∥∇2
θlst+v

(
θ0

)∥∥∥∥ < ∞.

b. K is invertible and the existence of the matrix U.

c. ∃V
(
θ0

)
of θ0 such that

∑s
v=1 Eθ0

 sup
θ∈V(θ0)

∣∣∣∣∣∣∣∣
∂3lst+v

(
θ
)

∂θi (v) ∂θ j (v) ∂θk (v)

∣∣∣∣∣∣∣∣
 < ∞ for all 1 ≤ i, j, k ≤ l.
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d. (Ns)−
1
2

Ns∑
t=1
∇θlt

(
θ0

)
{ N

(
O,U

)
as N → ∞.

Remark 4.1. The extension of the existing models to accommodate asymmetries, as highlighted in
the symmetric CCC-PGARCH paper by Bibi [5], addresses a crucial aspect of volatility modeling in
financial time series data. Asymmetries arise when positive and negative past values of the process
have different impacts on the current volatility, thereby affecting the current volatility differently. This
phenomenon introduces complexities in characterizing the usual leverage effect, particularly when
considering the possibility of positive or negative volatility values. To address these asymmetries,
researchers have proposed extensions to existing models, such as asymmetric specifications of GARCH
models, and incorporating correlations between volatility process noise and observation series noise
in the stochastic volatility framework. The aim of these efforts is to enhance the models’ ability to
capture the nuanced dynamics of financial markets, including asymmetric responses to market shocks.
Therefore, the proposed extension to the class of CCC-PGARCH models fills an important gap in
the literature and contributes to advancing our understanding of volatility dynamics in financial time
series data.

Remark 4.2. In our study, we introduce the concept of an expanded model derived from our primary
model, presenting an open problem that invites scientific inquiry and exploration. This extended model,
termed the double-switching CCC-(A) GARCH model, combines the principles of a CCC-(A) GARCH
model with Markov switching and a periodic sequence (see., Zerari et al. [30] for further ideas). The
aim of integrating these elements is to establish a robust analytical framework to comprehend volatility
within financial markets. By enhancing the predictive capabilities of volatility models and refining risk
management strategies, this approach not only contributes to more effective financial analysis but also
lays the groundwork for future research endeavors in the field of financial data analysis.

Remark 4.3. The extension of Bibi’s theories in our paper offers substantial value-added contributions
to this field. While Bibi’s work primarily focused on extending symmetric multivariate GARCH models
to include periodic features and investigate the asymptotic properties of QML estimation, our paper
goes further by incorporating the effects of asymmetry. This extension is crucial as it allows for a more
comprehensive understanding of the dynamics of financial time series data, particularly in capturing
cross-leverage effects and asymmetric behavior. Additionally, our paper provides asymptotic results for
a class of generally nonstationary multivariate GARCH models, a topic that has not been extensively
explored in the existing literature. By doing so without imposing moment assumptions on the observed
process, we contribute to a deeper understanding of the underlying processes governing financial time
series data, thereby enhancing the applicability and robustness of multivariate GARCH models in
real-world scenarios.

5. Simulation results

Herein, we present a simulation study to assess the effectiveness of the QMLE, where we
simulated 500 independent trajectories, each with lengths of n = 1000 and n = 3000, from a bivariate
periodic stationary CCC-AGARCH (1, 1) model, with N(O(2), I(2)) and t15 as innovations distributions
with a O(2)mean and a I(2)covariance matrix. The parameter θ0 is selected to meet the S PS condition
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γΩ < 0. The Root Mean Square Errors (RMSE) of θ̂(v), where v = 1, . . . , s, are computed to assess the
performance of the estimators.

5.1. Bivariate standard CCC-AGARCH (1, 1) model

Our initial Monte Carlo study involves the estimation of a bivariate standard
CCC − AGARCH (1, 1) model, with the parameters associated with this model gathered in vector
θ =

(
a′0,Vec′ (A1) ,Vec′ (B1) ,Vec′ (C1) ,m21

)′
, where C1 is a diagonal matrix, implying that the

volatility of each component is associated with its own lagged value, as well as the lagged values of
the squared observations of both components. The results of the simulation, reported in Table 1, are in
accordance with the consistency.

Table 1. Results of a simulation study for a bivariate standard CCC-AGARCH with a variety
of sample sizes n and a number of replications equal to 500.

N(O(2), I(2)) t15

n 1000 3000 1000 3000
True value Mean RMSE Mean RMSE Mean RMSE Mean RMSE

a0 1.50 1.4998 0.0002 1.4999 0.0001 1.4997 0.0003 1.4999 0.0001
1.00 0.9910 0.0090 0.9924 0.0076 0.9901 0.0099 0.9918 0.0082

Vec (A1) 0.15 0.1445 0.0055 0.1449 0.0051 0.1443 0.0057 0.1446 0.0054
0.10 0.1014 0.0014 0.1010 0.0010 0.1020 0.0020 0.1012 0.0012
0.05 0.0533 0.0033 0.0524 0.0024 0.0538 0.0038 0.0531 0.0031
0.24 0.2434 0.0066 0.2432 0.0032 0.2437 0.0037 0.2433 0.0033

Vec (B1) 0.50 0.4978 0.0022 0.4983 0.0017 0.4976 0.0024 0.4979 0.0021
0.07 0.0710 0.0010 0.0707 0.0007 0.0721 0.0021 0.0709 0.0009
0.06 0.0618 0.0018 0.0610 0.0010 0.0671 0.0071 0.0625 0.0025
0.20 0.2031 0.0031 0.2019 0.0019 0.2034 0.0034 0.2028 0.0028

Vec (C1) 0.10 0.0982 0.0018 0.0984 0.0016 0.0981 0.0019 0.0983 0.0017
0.76 0.7663 0.0063 0.7616 0.0016 0.7686 0.0086 0.7648 0.0048

m21 0.80 0.8057 0.0057 0.8052 0.0052 0.8061 0.0061 0.8059 0.0059

5.2. Bivariate periodic CCC-AGARCH (1, 1) model

Our second Monte Carlo study involved the estimation of a bivariate periodic CCC−AGARCH (1, 1)
model, with the parameters associated with this model gathered in vector θ =

(
θ′ (1) , θ′ (2) ,m21

)′
with θ (v) =

(
a′0 (v) ,Vec′ (A1 (v)) ,Vec′ (B1 (v)) ,Vec′ (C1 (v))

)′
, is chosen to ensure the S PS condition,

where the matrix C1 (1) (resp. C1 (2)) is diagonal, implying that the volatility of each component is
associated with its own lagged value, as well as the lagged values of the squared observations of both
components. The first results of the simulation presented in Table 2 align with the consistency.

From Tables 1 and 2, and as expected, the QMLE estimates for the coefficients of the periodic
CCC − AGARCH (1, 1) model exhibit a decrease in RMS E as the sample size increases. Additionally,
it is observed that the estimates based on the normal distributionN (0, 1) generally demonstrate greater
efficiency compared to those corresponding to the t−distribution with 15 degrees of freedom t15.
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Table 2. Results of a simulation study for a bivariate periodic CCC-AGARCH (1, 1) model,
with a variety of sample sizes n and a number of replications equal to 500.

N(O(2), I(2)) t15

n 1000 3000 1000 3000
θ True value Mean RMSE Mean RMSE Mean RMSE Mean RMSE

a0 (1) 1.50 1.4958 0.0042 1.4966 0.0034 1.4950 0.0050 1.4961 0.0039
1.50 1.5016 0.0016 1.5012 0.0012 1.5018 0.0018 1.5014 0.0014

Vec (A1 (1)) 0.50 0.4930 0.0070 0.4939 0.0061 0.4926 0.0074 0.4938 0.0062
0.15 0.1407 0.0093 0.1415 0.0085 0.1402 0.0098 0.1414 0.0086
0.15 0.1523 0.0023 0.1518 0.0018 0.1524 0.0024 0.1517 0.0017

θ (1) 0.25 0.2535 0.0035 0.2528 0.0028 0.2537 0.0037 0.2528 0.0028
Vec (B1 (1)) 0.20 0.1916 0.0084 0.1976 0.0024 0.1919 0.0081 0.1949 0.0051

0.05 0.0030 0.0030 0.0013 0.0013 0.0063 0.0063 0.0018 0.0018
0.05 0.0573 0.0073 0.0545 0.0045 0.0579 0.0079 0.0549 0.0049
0.35 0.3557 0.0057 0.3523 0.0023 0.3563 0.0063 0.3528 0.0028

Vec (C1 (1)) 0.10 0.1019 0.0019 0.1010 0.0010 0.1034 0.0034 0.1017 0.0017
0.60 0.6440 0.0440 0.6378 0.0378 0.6485 0.0485 0.6391 0.0391

a0 (2) 1.50 1.4980 0.0020 1.4985 0.0015 1.4978 0.0022 1.4983 0.0017
1.50 1.5013 0.0013 1.5011 0.0011 1.5016 0.0016 1.5013 0.0013

Vec (A1 (2)) 0.45 0.4393 0.0107 0.4408 0.0092 0.4390 0.0110 0.4407 0.0093
0.19 0.1833 0.0067 0.1848 0.0052 0.1820 0.0080 0.1847 0.0053
0.20 0.2085 0.0085 0.2075 0.0075 0.2096 0.0096 0.2078 0.0078

θ (2) 0.45 0.4534 0.0034 0.4517 0.0017 0.4548 0.0048 0.4521 0.0021
Vec (B1 (2)) 0.25 0.2397 0.0103 0.2416 0.0016 0.2384 0.0116 0.2414 0.0014

0.10 0.0968 0.0032 0.0996 0.0004 0.0951 0.0049 0.0996 0.0004
0.10 0.1141 0.0141 0.1126 0.0126 0.1158 0.0158 0.1127 0.0127
0.35 0.3564 0.0064 0.3542 0.0042 0.3588 0.0088 0.3545 0.0045

Vec (C1 (2)) 0.40 0.4062 0.0062 0.4009 0.0009 0.4068 0.0068 0.4015 0.0015
0.34 0.3478 0.0078 0.3460 0.0060 0.3483 0.0083 0.3473 0.0073

m21 0.80 0.8168 0.0168 0.8106 0.0106 0.8259 0.0259 0.8154 0.0154

6. Empirical application

This section is devoted to modeling, with periodic CCC-AGARCH(1, 1) model, two datasets,
namely the daily time series (X1t)t≥1 for the exchange rate Euro/Algerian dinar (EUR/DZD), and the
daily time series (X2t)t≥1 for the exchange rate U.S. dollar/ Algerian dinar (US D/DZD).

We first removed all the days when the market was closed, including holidays and weekends. The
observations extended over the period from 2000 − 01 − 03 to 2011 − 09 − 29. In order to do so, we
collected the two exchange rates at time t in the vector X′t = (X1t, X2t) = (EUR/DZDt,US D/DZDt) ,
and their corresponding log−return series in the vector r′t = (r1t, r2t) , where rkt = log (Xkt/Xkt−1) , for
k = 1, 2. The plots of prices (X1t, X2t) and the daily returns series of prices (r1t, r2t) , squad and absolute
returns are plotted in Figures 1 and 2.

The findings indicate that for the EUR/DZD (resp. US D/DZD), the lowest returns (−0.0233)
(resp. −0.0191) and the highest returns (0.0497) (resp. 0.0335). The skewness for two log−return
series is positive. Moreover, one of the features which prominently stands out from Tables 3 and 4
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is that the kurtosis for two log−returns is much larger than 3, suggesting that models dependent on
the Gaussian assumption may not adequately describe the data. Now, we suggest the 5-periodic CCC-
AGARCH (1, 1) model that permits for the description of the intraweek effect in the daily exchange
rate, where the parameters are allowed to vary with the day of the week, v = 1 corresponds to Monday,
v = 2 to Tuesday, and so forth. The estimated parameters of the 5-periodic CCC-(A)GARCH (1, 1)
model and their RMS E are reported in Tables 5 and 6.
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Figure 1. The plots of the price series (X1t) , (r1t) ,
(
r2

1t

)
and (|r1t|).
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Figure 2. The plots of the price series (X2t) , (r2t) ,
(
r2

2t

)
and (|r2t|).

Several rudimentary descriptive statistics are provided for the two log-return series in Tables 3 and 4.

Table 3. Summary statistics for daily exchange rate series (X1t)t≥1, their returns,
(r1t)t≥1 , (|r1t|)t≥1 and

(
r2

1t

)
t≥1
.

Series mean Std. Dev Median Skewness Kurtosis Min Max Arch(300) J. Bera LBtest

(X1t) 88.612 11.575 91.099 −0.5181 2.1329 67.204 109.07 100% 2.324 × 102 100%
(r1t) 11.816 × 10−5 50.427 × 10−4 12.346 × 10−5 0.3536 8.9678 −0.0233 0.0497 100% 4.597 × 103 24.20%
(|r1t |) 35.753 × 10−4 35.575 × 10−4 0.2554 × 10−2 2.6956 18.431 0.0000 0.0497 100% 3.401 × 104 100%(

r2
1t

)
2.5434 × 10−5 7.1925 × 10−5 6.523 × 10−6 16.103 464.37 0.0000 0.0025 30, 67% 2.723 × 107 100%
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Table 4. Summary statistics for daily exchange rate series (X2t)t≥1, their returns,
(r2t)t≥1 , (|r2t|)t≥1 and

(
r2

2t

)
t≥1
.

Series mean Std. Dev Median Skewness Kurtosis Min Max Arch(300) J. Bera LBtest

(X2t) 73.451 4.2424 73.126 −0.6005 3.7642 60.345 81.282 100% 2.580 × 102 100%
(r2t) 2.199 × 10−5 30.251 × 10−4 −6.431 × 10−6 0.7162 13.007 −0.0191 0.0335 100% 1.301 × 104 43.29%
(|r2t |) 18.78 × 10−4 23.713 × 10−4 10.606 × 10−4 3.0114 20.804 0.0000 0.0335 100% 4.497 × 104 100%(

r2
2t

)
9.149 × 10−6 3.173 × 10−5 1.1249 × 10−6 17.678 531.45 0.0000 0.0011 00% 3.571 × 107 100%

In Tables 5 and 6, we unveil the outcomes from the QML parameter estimation conducted for the
periodic CCC-AGARCH(1, 1) vis-à-vis periodic CCC-GARCH(1, 1) models. The results distinctly
showcase that the periodically estimated models exhibit periodic stationarity. Notably, the
measurement invariance estimates of the periodic CCC-AGARCH(1, 1) model are significantly
smaller than those obtained from the periodic CCC-GARCH(1, 1) model fitted by Bibi (2018, [5]).
Furthermore, the empirical coverages of the prediction intervals based on the periodic
CCC-AGARCH(1, 1) model tend to closely align with the nominal coverages, unlike those derived
from the periodic CCC-GARCH(1, 1) model. These observations suggest that the periodic
CCC-AGARCH(1, 1) model, fitted to daily (EUR/DZD,US D/DZD) log returns time series, evinces
enhanced precision and superior forecasting efficacy relative to its CCC-GARCH(1, 1) counterpart.
This comparative analysis underscores the significant contribution of Patton (2011, [29]) to
developing volatility forecasting models, offering improved efficiency and accuracy.

Table 5. QMLE estimate and their RMSE for 5-periodic CCC-AGARCH (1, 1) model.
Days â0 Â1 B̂1 Ĉ1 m̂21

Monday


0.6021

(0.0001)
1.0649

(0.0012)




0.0532 0.0071
(0.0156) (0.0092)
0.0081 0.5563
(0.0752) (0.0154)




0.0838 0.0001
(0.0157) (0.0000)
0.5436 1.0154
(0.0047) (0.0026)

 diag




0.8036
(0.0000)
0.0879

(0.0583)


′ 

0.6438
(0.0325)

Tuesday


2.8023

(0.1725)
0.5018

(0.0034)




0.0878 0.5136
(0.0135) (0.0468)
0.0632 0.5051
(0.0076) (0.0085)




0.1266 0.2072
(0.0149) (0.0185)
0.7687 0.0327
(0.0624) (0.0619)

 diag




0.4485
(0.0285)
0.1596

(0.0094)


′

Wednesday


1.5257

(0.2452)
0.3766

(0.0651)




0.0713 0.0711
(0.0138) (0.0652)
0.1133 0.5386
(0.0215) (0.1123)




0.1264 0.1864
(0.0096) (0.0207)
0.3381 0.6061
(0.0234) (0.0175)

 diag




0.6931
(0.0355)
0.2743

(0.0739)


′ 

Thursday


1.3665

(0.5006)
0.0000

(0.0014)




0.0506 0.2765
(0.0153) (0.0319)
0.0597 0.4648
(0.0079) (0.1140)




0.0672 0.1151
(0.0114) (0.0145)
0.3216 0.9808
(0.0233) (0.0526)

 diag




0.7134
(0.0814)
0.0391

(0.0899)


′ 

Friday


0.4513

(0.0000)
0.2405

(0.0084)




0.0549 0.0611
(0.0169) (0.0528)
0.0739 0.2680
(0.0055) (0.0438)




0.1169 0.4327
(0.0143) (0.0352)
0.5524 0.4693
(0.0647) (0.0462)

 diag




0.9261
(0.0000)
0.2717

(0.0452)


′ 
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Table 6. QMLE estimate and their RMSE for 5- periodic CCC-GARCH (1, 1) model.
Days â0 Â1 B̂1 Ĉ1 m̂21

Monday


0.8139

(0.0065)
1.0927

(0.0096)




0.0758 0.0360
(0.0173) (0.0128)
0.0213 0.5801
(0.0778) (0.0179)

 − diag




0.8158
(0.0070)
0.1005

(0.0637)


′ 

0.8162
(0.0578)

Tuesday


3.1603

(0.2136)
0.5601

(0.0111)




0.0905 0.5419
(0.0153) (0.0497)
0.0684 0.5148
(0.0148) (0.0099)

 − diag




0.4042
(0.0323)
0.1388

(0.0139)


′

Wednesday


1.7182

(0.2907)
0.4154

(0.0749)




0.0720 0.0843
(0.0142) (0.0810)
0.1352 0.5395
(0.0283) (0.1204)

 − diag




0.6475
(0.0383)
0.2658

(0.0721)


′ 

Thursday


1.4214

(0.5815)
0.0053

(0.0081)




0.0674 0.3020
(0.0298) (0.0526)
0.0708 0.4969
(0.0156) (0.1282)

 − diag




0.6959
(0.0802)
0.0407

(0.0926)


′ 

Friday


0.5244

(0.0099)
0.2792

(0.0135)




0.0576 0.0664
(0.0185) (0.0551)
0.0763 0.2715
(0.0074) (0.0460)

 − diag




0.9726
(0.0033)
0.2879

(0.0496)


′ 

7. Conclusions

This research marks a significant advancement in asymmetric multivariate stochastic difference
volatility modeling. Through meticulous analysis, we have successfully extended and enhanced
various probabilistic and statistical properties that have been a focal point in the prior literature. A key
achievement of this study is the establishment of periodic stationarity and periodic ergodicity within
the model, underscoring its dynamic and adaptable nature. Furthermore, our in-depth exploration of
the Quasi-Maximum Likelihood Estimator (QMLE) reveals its robust consistency and asymptotic
normality. This rigorous examination not only fortifies the theoretical foundation of QMLE but also
underscores its reliability and efficiency in practical scenarios. The analytical insights gained here
significantly bolster the estimator’s credibility in complex stochastic modeling contexts.

The practical implications of our findings are illustrated through a series of applications,
demonstrating the model’s versatility and relevance in real-world situations. These applications
validate our theoretical results and showcase the model’s potential in addressing a range of
challenging problems in stochastic volatility modeling.

In summary, this study not only enriches the theoretical framework of stochastic volatility modeling,
but also paves the way for future investigations. By pushing the boundaries of current understanding
and application, it opens new avenues for research and development in this ever-evolving domain. The
implications of this work extend beyond the immediate scope of this study, offering valuable insights
and tools for both researchers and practitioners in the field of financial econometrics and beyond.
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Appendix

Proof of Theorem 1. The proof of the sufficient condition is analogous to that provided by Bougerol
and Picard [10, 11], since E

{̃
e⊗2

t

}
< ∞, where

ẽt := (
(̃
η+2

st

)′
, . . . ,

(̃
η+2

st+s−1

)′
,
(̃
η−2

st

)′
, . . . ,

(̃
η−2

st+s−1

)′
)′,

hence E
{
log+ ∥Ωt∥

}
< ∞. By employing Cauchy’s root test when γΩ < 0, it follows that the series Γt (2)

converges almost surely for all t. Consequently, an S PS solution to the model (2.1) is attained, denoted
as Xt =

{
diag

(
Λ2q+1,t

)}1/2
M1/2η

t
, where Λ2q+1,t is the subvector of Λt corresponding to the (2q + 1)th

element. This solution is thus nonanticipative and PE. To prove the uniqueness, let (̃Γt) be another

non-negative and S S solution of (2.4). For all positive integers n ≥ 0, Γt =

{
n∏

j=0
Ωt− j

}
Γt−n−1 + Γ̃t (n),

where Γ̃t (n) := Ξt+
n∑

i=0

{
i∏

j=0
Ωt− j

}
Ξt−i−1. Then

∥∥∥Γt − Γ̃t

∥∥∥ ≤ ∥∥∥∥∥∥ n∏
j=0
Ωt− j

∥∥∥∥∥∥ ∥∥∥Γt−n−1

∥∥∥+∥∥∥Γ̃t (n) − Γ̃t

∥∥∥ . The second

term on the right-hand side converges to 0 almost surely as n approaches infinity. Moreover, we have∥∥∥∥∥∥ n∏
j=0
Ωt− j

∥∥∥∥∥∥ −→ 0 with a probability of 1 when n −→ ∞ and

∥∥∥∥∥∥ n∏
j=0
Ωt− j

∥∥∥∥∥∥ ∥∥∥Γt−n−1

∥∥∥ −→ 0 in probability as

n −→ ∞. We have shown that Γt = Γ̃t for any t, a.s. Now, we give a simple direct proof. Since the

necessary part is easy, see Bougerol and Picard [10], we prove only

∥∥∥∥∥∥ n∏
j=0
∆t− j

∥∥∥∥∥∥ −→ 0 as n −→ ∞. For

this, it will suffice to show that n∏
j=0

∆t− j

φk −→ O a.s. when n −→ ∞, (A.1)

for all k = 1, . . . , 2q + p, where φk = ψ
k
⊗ I(r) and ψ

k
represents the kth element of the canonical

basis of R2q+p. Indeed, assume that model (2.3) admits a causal, S PS solution
(
Λt

)
. We exploit the
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non-negativity of the coefficients of ∆t and Λt, from which it follows that for all n ≥ 2, Λt ≥ Πt +
n∑

k=0

{
k∏

j=0
∆t− j

}
Πt−k−1 ∀n implies that

{
n∏

j=0
∆t− j

}
Πt−n−1 −→ O a.s. as n −→ ∞. Using the relationship

Πt−n−1 = φ1G+t−n−1a0 (t − n − 1) + φq+1G−t−n−1a0 (t − n − 1) + φ2q+1a0 (t − n − 1) ,

we have  n∏
j=0

∆t− j

φ1G+t−n−1a0 (t − n − 1) −→ O,

 n∏
j=0

∆t− j

φq+1G−t−n−1a0 (t − n − 1) −→ O

and  n∏
j=0

∆t− j

φ2q+1a0 (t − n − 1) −→ O a.s. as n −→ ∞.

Since the components of a0 (t − n − 1) are strictly positive, (A.1) thus holds for n = 2q + 1. Using

∆t−nφ2q+k = G+t−nCk (t − n)φ1 +G−t−nCk (t − n)φq+1 +Ck (t − n)φ2q+1 + φ2q+k+1, k = 1, ..., p

with the convention that

φ2q+p+1 = O, f ork = 1weobtainO = lim
n−→∞

 n∏
j=0

∆t− j

φ2q+1 ≥ lim
n−→∞

 n−1∏
j=0

∆t− j

φ2q+2 ≥ O.

In this context, the inequalities are considered componentwise. Moreover, (A.1) is valid for k = q + 2,
and, by induction, for k = 2q + l, l = 1, . . . , p. Moreover, since

∆t−nφ2q = G+t−nBq (t − n)φ1 +G−t−nBq (t − n)φq+1 + Bq (t − n)φ2q+1(resp.∆t−nφq

= G+t−nAq (t − n)φ1 +G−t−nAq (t − n)φq+1 + Aq (t − n)φ2q+1),

(A.1) holds for k = 2q (resp. k = q), we reach a similar finding for the remaining values of k through
an upward recursion. □

Proof of Corollary 1. Since ∆t is non-negative, given that all its elements are non-negative, it is evident
that γΩ corresponding to the nonrandom sequence of matrices

(
Ω0

t

)
attained through substitution of the

matrices A j (t) and B j (t) with a null matrix in ∆t. In a different sense, it implies log ρ
(

s−1∏
v=0

Cs−v

)
≤ γΩ <

0. Consequently, the conclusion stated in the corollary is affirmed. □

Proof of Proposition 1. To prove (a). By Kingman’s subadditive ergodic theorem, we get

lim
t−→∞

1
t

log

∥∥∥∥∥∥∥
t−1∏
k=0

Ωt−k

∥∥∥∥∥∥∥ ≤ log (ρ (E {Ω1})) ,

which completes the proof of (a). We now prove (b). By Jensen’s inequality, we get

γΩ := inf
t≥1

E

log

∥∥∥∥∥∥∥
t−1∏
i=0

Ωt−i

∥∥∥∥∥∥∥
1/t

 ≤ E

log

∥∥∥∥∥∥∥
t−1∏
i=0

Ωt−i

∥∥∥∥∥∥∥
 ≤ log E


∥∥∥∥∥∥∥

t−1∏
i=0

Ωt−i

∥∥∥∥∥∥∥
 a.s.
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Furthermore, the rest is analogous to that of Lemma 2.3 of Berkes et al. [4] in the univariate case,
and [5] in the multivariate case that the S PS solution conforms to E

{∥∥∥Λt

∥∥∥ς} < ∞ for some ς > 0. The
result is a natural consequence of

∥∥∥Xt

∥∥∥ ≤ ∥∥∥Λt

∥∥∥ and
∥∥∥σt

∥∥∥ ≤ ∥∥∥Λt

∥∥∥. □

Proof of Theorem 2. The arguments in the proof closely resemble those found in [5]. □

Proof of Lemma 1. Rewrite (2.2) in a vector form as

Σt

(
θ
)
= CtΣt−1

(
θ
)
+ πt, (A.2)

where
Σ′t

(
θ
)
=

(
σ′t

(
θ
)
, ..., σ′t−p+1

(
θ
))

and

π′t =

a0 (t) +
q∑

i=1

(
Ai (t) X+t−i + Bi (t) X−t−i

)′ ,O′(r), ...,O
′

(r)

 .
Proof of (I): Initial values are asymptotically irrelevant. In view of the last part imposed in assumption
A2 and Corollary 1, we have

sup
θ∈Θ

ρ

 s−1∏
v=0

Cs−v

 < 1. (A.3)

Iteratively using (A.2), as in the univariate case, we have

Σt

(
θ
)
=

 t∏
j=0

Ct− j

Σ0

(
θ
)
+

t−1∑
i=0

 i−1∏
j=0

Ct− j

 πt−i, t ∈ Z.

If we represent the vectors attained from certain initial values as Σ̃t

(
θ
)

and π̃t, then we obtain

Σ̃t

(
θ
)
=

 t∏
j=0

Ct− j

 Σ̃0

(
θ
)
+

t−q−1∑
i=0

 i−1∏
j=0

Ct− j

 πt−i +

t−1∑
i=t−q

 i−1∏
j=0

Ct− j

 π̃t−i, t ∈ Z.

Hence, we deduce that a.s.
sup
θ∈Θ

∥∥∥∥Σ̃t

(
θ
)
− Σt

(
θ
)∥∥∥∥ ≤ λωt,∀t,

where λ > 0 and ω ∈ (0, 1), which implies that supθ∈Θ
∥∥∥∥Ṽt

(
θ
)
− V

(
θ
)∥∥∥∥ ≤ λωt ∀t. Since H−1

t

(
θ
)
≤{

min j σ
2
t, j

}−1
, we have

sup
θ∈Θ

∥∥∥∥Ṽ−1
t

(
θ
)∥∥∥∥ ≤ sup

θ∈Θ

∥∥∥∥H̃−1
t

(
θ
)∥∥∥∥2 ∥∥∥M−1

∥∥∥ ≤ sup
θ∈Θ

{
min

j
a0, j (t)

}−2 ∥∥∥M−1
∥∥∥ ≤ λ,

Similarly, we obtain supθ∈Θ
∥∥∥∥V−1

t

(
θ
)∥∥∥∥ ≤ λ.

Now,

sup
θ∈Θ

∣∣∣∣(L̃Ns − LNs

) (
θ
)∣∣∣∣ ≤ 1

N

Ns∑
t=1

sup
θ∈Θ

∣∣∣∣X′t (Ṽ−1
t − V−1

t

) (
θ
)

Xt

∣∣∣∣ + 1
N

Ns∑
t=1

sup
θ∈Θ

∣∣∣∣∣log
( ∣∣∣∣Ṽt

(
θ
)∣∣∣∣/ ∣∣∣∣Vt

(
θ
)∣∣∣∣)∣∣∣∣∣ .
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The first sum can be written as

1
N

Ns∑
t=1

sup
θ∈Θ

∣∣∣∣X′t (Ṽ−1
t

(
Ṽt − Vt

)
V−1

t

) (
θ
)

Xt

∣∣∣∣ = 1
N

Ns∑
t=1

sup
θ∈Θ

∣∣∣∣Tr
((

Ṽ−1
t

(
Ṽt − Vt

)
V−1

t

) (
θ
)

XtX
′

t

)∣∣∣∣
≤
λ

N

Ns∑
t=1

sup
θ∈Θ

∥∥∥∥Ṽ−1
t

(
θ
)∥∥∥∥ ∥∥∥∥(Ṽt − Vt

) (
θ
)∥∥∥∥ ∥∥∥∥V−1

t

(
θ
)∥∥∥∥ ∥∥∥XtX

′

t

∥∥∥
≤
λ

N

Ns∑
t=1

ωt
∥∥∥XtX

′

t

∥∥∥ −→ 0 as N −→ ∞,

Using the Cesaro lemma, the Borel–Cantelli lemma, the Markov inequality, and by applying
Proposition 1, we have ∑

t≥1

P
(
ωtXtX

′

t > ε
)
≤

∑
t≥1

ωtτE
{∥∥∥Xt

∥∥∥τ}
ετ

< ∞,

which implies ωtX′t Xt
a.s.
−→ 0. Now, using the inequality for y + 1 ≥ 0, y ≥ log (1 + y), we have

log
( ∣∣∣∣Vt

(
θ
)∣∣∣∣/ ∣∣∣∣Ṽt

(
θ
)∣∣∣∣) = log

∣∣∣∣I(r) +
((

Vt − Ṽt

)
Ṽ−1

t

) (
θ
)∣∣∣∣ ≤ r

∥∥∥∥(Vt − Ṽt

) (
θ
)∥∥∥∥ ∥∥∥∥Ṽ−1

t

(
θ
)∥∥∥∥ ,

and, by symmetry,
log

∣∣∣∣Ṽt

(
θ
)∣∣∣∣ − log

∣∣∣∣Vt

(
θ
)∣∣∣∣ ≤ r

∥∥∥∥Vt

(
θ
)
− Ṽt

(
θ
)∥∥∥∥ ∥∥∥∥V−1

t

(
θ
)∥∥∥∥ ,

so we deduce that the second sum tends to 0. Therefore, we have demonstrated that

sup
θ∈Θ

∣∣∣∣(L̃Ns − LNs

) (
θ
)∣∣∣∣ a.s.
−→

N−→∞
0.

□

Proof of (II): Parameter identifiability. Suppose that, for some θ , θ0, σt

(
θ
)
= σt

(
θ0

)
a.s. and M =

M0.

Consequently, it immediately follows that m = m0, and by leveraging the invertibility of the
polynomial

(
C0,v (z)

)
1≤v≤s under the assumption A2, then we have a.s. ∀v = 1, ..., s,

C−1
0,v (L) a0,0 (v) − C−1

v (L) a0 (v) =
(
C−1

v (L)Av (L) − C−1
0,v (L)A0,v (L)

)
X+ns+v

+
(
C−1

v (L)Bv (L) − C−1
0,v (L)B0,v (L)

)
X−ns+v

:= Pv (L) X+ns+v + Qv (L) X−ns+v,

where L denotes the lag operator,

Pv (L) =
∑

k≥1
Pk (v) Lk,Qv (L) =

∑
k≥1

Qk (v) Lk

with
Pv (0) = P0 (v) = Qv (0) = Q0 (v) = O(r),
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and isolating the terms that are functions of η
t−1

,

P1 (t) G+t−1σt−1 + Q1 (t) G−t−1σt−1 ∈ σ
(
η

t−2
, η

t−3
, ...

)
.

Since P1 (t) G+t−1 + Q1 (t) G−t−1 is independent of this σ−field and σt−1 and σt−1 > 0, we have

P1 (t) G+t−1 + Q1 (t) G−t−1 = T

for some constant matrix T , the matrix equality for the element (k, l) writes (P1 (t)) (k, l) η̃+2
t−1

(l) +

(Q1 (t)) (k, l) η̃−2
t−1

(l) = T (k, l) . If (P1 (t)) (k, l) (Q1 (t)) (k, l) , 0. The contradiction with Assumption A3
arises from the fact that η̃

t−1
(l) takes at most two distinct values.

If (P1 (t)) (k, l) , 0 and (Q1 (t)) (k, l) = 0, thus (P1 (t)) (k, l) η̃+2
t−1

(l) = T (k, l) , which entails T (k, l) =

0, because P
(̃
η−

t−1
(l) > 0

)
, 0, and thus η̃−

t−1
(l) a.s.
= 0, which contradicts A3. Therefore, we have

P1 (t) = Q1 (t) = 0. Similarly in this way, we show that Pv (L) = Qv (L) = 0 for all v = 1, . . . , s.
Therefore, in view of A4, we have a0 (v) = a0,0 (v) , α (v) = α0 (v) , β (v) = β

0
(v) and γ (v) = γ

0
(v) for

all v = 1, ..., s. Hence θ = θ0. Thus, we have successfully established (II). □

Proof of (III): The limit criterion attains its minimum at θ0. At θ0, Jensen’s inequality and
Proposition 1 entail that

∑s

v=1
Eθ0

{
log

∣∣∣∣Vst+v

(
θ0

)∣∣∣∣} = r
τ

∑s

v=1
Eθ0

{
log

∣∣∣∣Vst+v

(
θ0

)∣∣∣∣ τr }
≤

r
τ

∑s

v=1
log Eθ0

{∥∥∥∥Vst+v

(
θ0

)∥∥∥∥τ}
≤

r
τ

∑s

v=1
log Eθ0

{
∥M∥τ

∥∥∥∥Hst+v

(
θ0

)∥∥∥∥2τ}
≤ λ +

r
τ

∑s

v=1
log Eθ0

{∥∥∥∥Hst+v

(
θ0

)∥∥∥∥2τ}
≤ λ +

r
τ

∑s

v=1
log Eθ0

{
max

i

{
σi st+v

(
θ0

)}τ}
≤ λ +

r
τ

∑s

v=1
log Eθ0

{∥∥∥∥σst+v

(
θ0

)∥∥∥∥τ}
< ∞.

As a result,

∑s

v=1
Eθ0

{
lst+v

(
θ0

)}
=

∑s

v=1
Eθ0

{
η′

st+v
V1/2′

st+v

(
θ0

)
V−1

st+v

(
θ0

)
V1/2

st+v

(
θ0

)
η

st+v
+ log

∣∣∣∣Vst+v

(
θ0

)∣∣∣∣}
= r +

∑s

v=1
Eθ0

{
log

∣∣∣∣Vst+v

(
θ0

)∣∣∣∣} < ∞.
We now have

∑s

v=1
Eθ0

{
lst+v

(
θ
)
− lst+v

(
θ0

)}
=

∑s

v=1
Eθ0

log

∣∣∣∣Vst+v

(
θ
)∣∣∣∣∣∣∣∣Vst+v

(
θ0

)∣∣∣∣

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+
∑s

v=1
Eθ0

{
η′

st+v

(
V1/2

st+v

(
θ0

)
V−1

st+v

(
θ
)

V1/2
st+v

(
θ0

)
− I(r)

)
η

st+v

}
=

∑s

v=1
Eθ0

{
log

∣∣∣∣Vst+v

(
θ
)∣∣∣∣ ∣∣∣∣V−1

st+v

(
θ0

)∣∣∣∣}
+

∑s

v=1
Tr

(
Eθ0

{(
V1/2

st+v

(
θ0

)
V−1

st+v

(
θ
)

V1/2
st+v

(
θ0

)
− I(r)

)
E

{
η

st+v
η′

st+v

}})
=

∑s

v=1

(
Eθ0

{
log

∣∣∣∣Vst+v

(
θ
)∣∣∣∣ ∣∣∣∣V−1

st+v

(
θ0

)∣∣∣∣} + Eθ0

{
Tr

(
Vst+v

(
θ0

)
V−1

st+v

(
θ
)
− I(r)

)})
=

∑s

v=1
Eθ0

{∑r

j=1

(
δ j (v) − 1 − log δ j (v)

)}
,

where δ j (v) is the positive eigenvalues of Vst+v

(
θ
)

V−1
st+v

(
θ0

)
, because y − 1 ≥ log y, ∀y > 0, where

equality holds iff y = 1, thus we obtain
∑s

v=1 Eθ0

{
lst+v

(
θ
)}
−

∑s
v=1 Eθ0

{
lst+v

(
θ0

)}
≥ 0, and hence the

inequality is strict unless if, for all j and v, δ j (v) a.s.
= 1, meaning that Vst+v

(
θ
) a.s.
= Vst+v

(
θ0

)
. Therefore,

we have σst+v

(
θ
) a.s.
= σst+v

(
θ0

)
, v = 1, ..., s and M = M0 and thus θ = θ0. □

Proof. To demonstrate (IV), ∀θ ∈ Θ and every integer k, let Vk

(
θ
)

be an open sphere of centre θ and

radius
1
k

. Utilizing (I) , we obtain

lim
N→∞

inf
θ∗∈Θ∩Vk(θ)

(
L̃Ns

(
θ∗

))
≥ lim

N→∞
inf

θ∗∈Θ∩Vk(θ)

(
LNs

(
θ∗

))
− lim

N→∞
sup
θ∈Θ

∣∣∣∣(LNs − L̃Ns

) (
θ
)∣∣∣∣

≥ lim
N→∞

1
N

N−1∑
t=0

s∑
v=1

inf
θ∗∈Θ∩Vk(θ)

lst+v

(
θ∗

)
.

By applying the ergodic theorem to the i.i.d. sequence
(

s∑
v=1

lst+v

(
θ∗

))
t
, where E

{
s∑

v=1
lst+v

(
θ∗

)}
∈

R ∪ {∞} (see., [8]), we have

lim inf
N→∞

1
N

N−1∑
t=0

s∑
v=1

inf
θ∗∈Θ∩Vk(θ)

lst+v

(
θ∗

)
=

s∑
v=1

Eθ0

 inf
θ∗∈Θ∩Vk(θ)

lst+v

(
θ∗

)
and according to the Beppo-Levi theorem (see., [8]), we get

s∑
v=1

Eθ0

 inf
θ∗∈Θ∩Vk(θ)

lst+v

(
θ∗

) −→ s∑
v=1

Eθ0

{
lst+v

(
θ
)}

as k → ∞. This concludes the proof of the lemma. □

Proof of Theorem 3. The proof is now complete by an argument of compactness of Θ and Lemma 1.
Now, for all neighborhoodV

(
θ0

)
, we obtain

lim
N→∞

inf
θ∗∈V(θ0)

(
L̃Ns

(
θ∗

))
≤ lim

N→∞
L̃Ns

(
θ0

)
= lim

N→∞
LNs

(
θ0

)
=

s∑
v=1

Eθ0

{
lst+v

(
θ0

)}
.
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The compact set Θ is reconstructed as the union of a neighborhood V
(
θ0

)
and a set of

neighborhoods V
(
θ
)
, where θ ∈ Θ⧹V

(
θ0

)
. Consequently, there exists a finite sub-covering of Θ by

V
(
θ0

)
,V

(
θ1

)
, ...,V

(
θk

)
such that

inf
θ∗∈V(θ0)

(
L̃Ns

(
θ∗

))
= min

j∈{1,...,k}
inf

θ∗∈Θ∩V
(
θ j

) (L̃Ns

(
θ∗

))
.

The latter relation indicates that θ̂Ns ∈ V
(
θ0

)
for N is sufficiently large, thereby completing the

proof of Theorem 3. □

Proof of Lemma 2. The demonstration closely follows that of [15] for the standard case, employing the
S PS and PE arguments in place of the stationarity and ergodicity considerations, respectively. First
and foremost, we can write the first-and second-order derivatives of lt

(
θ
)

as follows:

∂lst+v

(
θ0

)
∂θi (v)

= Tr
(
XvX′v

∂H−1
v M−1H−1

v

∂θi (v)

)
+ 2

∂ log |det Hv|

∂θi (v)

= Tr
((

I(r) − M−1H−1
v XvX′vH−1

v

) ∂Hv

∂θi (v)
H−1

v +
(
I(r) − H−1

v XvX′vH−1
v M−1

)
H−1

v
∂Hv

∂θi (v)

)
,

1 ≤ i ≤ r̃,

∂lst+v

(
θ0

)
∂θi

= Tr
((

I(r) − M−1H−1
v XvX′vH−1

v

)
M−1∂M

∂θi

)
, r̃ + 1 ≤ i ≤ l,

∂2lst+v

(
θ0

)
∂θi (v) ∂θ j (v)

=

3∑
k=1

Tr (Lk (v)) , 1 ≤ i, j ≤ r̃,
∂2lst+v

(
θ0

)
∂θi (v) ∂θ j (v)

=

2∑
k=1

Tr (Lk+3 (v)) , 1 ≤ i ≤ r̃, r̃ + 1 ≤ j ≤ l,

∂2lst+v

(
θ0

)
∂θi (v) ∂θ j (v)

= Tr (L6 (v)) , r̃ + 1 ≤ i, j ≤ l,

for all 1 ≤ v ≤ s, where

2−1L1 (v) = H−1
v

(
∂2Hv

∂θi (v) ∂θ j (v)
−

∂Hv

∂θi (v)
H−1

v
∂Hv

∂θ j (v)

)
,

L2 (v) = H−1
v

(
∂Hv

∂θi (v)
H−1

v XvX′vH−1
v M−1 + M−1H−1

v
∂Hv

∂θi (v)
H−1

v XvX′v

)
H−1

v
∂Hv

∂θ j (v)

− 2−1H−1
v XvX′vH−1

v M−1L1 (v) ,

L4 (v) = M−1H−1
v

∂Hv

∂θi (v)
H−1

v XvX′vH−1
v M−1∂M

∂θ j
,

L6 (v) = M−1∂M
∂θi

M−1H−1
v XvX′vH−1

v M−1∂M
∂θ j
+ M−1H−1

v XvX′vH−1
v M−1

(
∂M
∂θi

M−1∂M
∂θ j
−
∂2M
∂θi∂θ j

)
− M−1 ∂

2M
∂θi∂θ j

− M−1∂M
∂θi

M−1∂M
∂θ j

,
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where L3 (v) (resp. L5 (v)) is obtained by permuting XvX′v and M−1 (resp.
∂Hv

∂θi (v)
) in L4 (v). To prove (a)

it would be appropriate to use the Cauchy–Schwarz inequality, from which we obtain

Eθ0


∥∥∥∥∥∥∥∥
∂lst+v

(
θ0

)
∂θi (v)

∂lst+v

(
θ0

)
∂θ j (v)

∥∥∥∥∥∥∥∥
 ≤ ω

Eθ0


∥∥∥∥∥∥∥∥H−1

v

(
θ0

) ∂Hv

(
θ0

)
∂θi (v)

∥∥∥∥∥∥∥∥
2 Eθ0


∥∥∥∥∥∥∥∥H−1

v

(
θ0

) ∂Hv

(
θ0

)
∂θ j (v)

∥∥∥∥∥∥∥∥
2


1/2

, 1 ≤ i, j ≤ r̃,

Eθ0


∥∥∥∥∥∥∥∥
∂lst+v

(
θ0

)
∂θi (v)

∂lst+v

(
θ0

)
∂θ j (v)

∥∥∥∥∥∥∥∥
 ≤ ωEθ0


∥∥∥∥∥∥∥∥H−1

v

(
θ0

) ∂Hv

(
θ0

)
∂θi (v)

∥∥∥∥∥∥∥∥
 , 1 ≤ i ≤ r̃, r̃ + 1 ≤ j ≤ l,

Eθ0


∥∥∥∥∥∥∥∥
∂lst+v

(
θ0

)
∂θi (v)

∂lst+v

(
θ0

)
∂θ j (v)

∥∥∥∥∥∥∥∥
 ≤ ω, r̃ + 1 ≤ i, j ≤ l.

Now, letting σi,t (resp. Σi,st+v) denote the ith component of σt (resp. Σst+v), it is thus sufficient to
prove that

Eθ0


∣∣∣∣∣∣∣∣ 1
σ j,st+v

∂σ j,st+v

(
θ0

)
∂θi (v)

∣∣∣∣∣∣∣∣
2 < ω, 1 ≤ i ≤ r̃, , 1 ≤ j ≤ r.

Then, we have a.s.

sup
θ∈Θ

∥∥∥∥∥∥∥∥
∂Σst+v

(
θ0

)
∂θi (v)

∥∥∥∥∥∥∥∥ < ∞, 1 ≤ i ≤ r, sup
θ∈Θ

∥∥∥∥∥∥∥∥
∂Σst+v

(
θ0

)
∂θi (v)

∥∥∥∥∥∥∥∥ < ω
∥∥∥Xst+v

∥∥∥2
, r + 1 ≤ i ≤ r̃ − p.

Furthermore, we have

Σst+v =

∞∑
j=1

 j−1∏
k=0

Cst+v−k

 πst+v− j + πst+v

=

∞∑
j=0

 j∏
k=0

Cs(t−k)+vC (k)

 πs(t− j)+v−m + πst+v, 0 ≤ m ≤ s − 1,

where

C (m) =
s(m+1)−1∏
k=sm+1

Cst+v−k, 0 ≤ m ≤ j − 1andC ( j) =
s j+m−1∏
k=s j+1

Cst+v−k, 0 ≤ m ≤ s − 1.

So, we get a.s.

∂Σst+v

(
θ0

)
∂θi (v)

=

∞∑
j=1

j∑
m=0

m−1∏
k=0

Cs(t−k)+vC (k)

C(i)C (m)

 j∏
k=m+1

Cs(t−k)+vC (k)

 πs(t− j)+v−n,

where 0 ≤ n ≤ s − 1 and C(i) is a matrix whose entries are all zero except for a 1 situated in the same
location as θi (v) in Cst+v. Applying the inequality yτ ≥ y

1+y for y > 0 and any τ ∈ [0; 1] and the fact

that, almost surely log

∥∥∥∥∥∥ j−1∏
k=0

Cst+v−k

∥∥∥∥∥∥ ≤ ω + jγ(s) (C), we can obtain the inequalities
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θi (v)
∂Σst+v

(
θ0

)
∂θi (v)

≤

∞∑
j=1

j

 j−1∏
k=0

Cst+v−k

 πst+v− j,

θi (v)
∂Σn,st+v

∂θi (v)
≤

∞∑
j=1

j
r∑

m=1

 j−1∏
k=0

Cst+v−k

 (n,m) πst+v− j (m) ,

and, setting

a0 (v) = inf
{
ai,0 (v) , 1 ≤ i ≤ r

}
,Σi,st+v ≥ a0 (v) +

r∑
m=1

 j−1∏
k=0

Cst+v−k

 (i,m) πst+v− j (m)∀ j,

we obtain ∣∣∣∣∣∣ θi (v)
Σn,st+v

∂Σn,st+v

∂θi (v)

∣∣∣∣∣∣ < ω.
Using the same technique as Francq and Zakoı̈an [15], we can demonstrate a result that is even more
robust than the one initially stated: ∀1 ≤ i, j, k ≤ r̃, all 1 ≤ n ≤ r and all m ≥ 0, ∃ϑ

(
θ0

)
of θ0, such that

E

 sup
θ∈ϑ(θ0)

∣∣∣∣∣∣∣∣ 1
σn,st+v

∂σn,st+v

(
θ
)

∂θi (v)

∣∣∣∣∣∣∣∣
m < ∞,

E

 sup
θ∈ϑ(θ0)

∣∣∣∣∣∣∣∣ 1
σn,st+v

∂2σn,st+v

(
θ
)

∂θi (v) ∂θ j (v)

∣∣∣∣∣∣∣∣
m < ∞

and

E

 sup
θ∈ϑ(θ0)

∣∣∣∣∣∣∣∣ 1
σn,st+v

∂3σn,st+v

(
θ
)

∂θi (v) ∂θ j (v) ∂θk (v)

∣∣∣∣∣∣∣∣
m < ∞.

We now prove (b), clearly, ∇θlt

(
θ0

)
is S PS and measurable with respect to Ft = σ

(
η

n
, n ≤ t

)
. The

property stated in proof (a) ensures the existence of matrices U and K in Theorem 4. Moreover, it can
be seen that ∀λ ∈ Rl, the sequence

(
λ′∇θlt

(
θ0

)
,Ft

)
is an S PS , PE, and square-integrable martingale

difference. The C.L.T of Bllingsley implies

(Ns)−
1
2

N∑
t=1

∑s

v=1
∇θlst+v

(
θ0

)
{ N

(
O,U

)
as N → ∞.

□
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