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Abstract: The filled function method is a deterministic algorithm for finding a global minimizer of
global optimization problems, and its effectiveness is closely related to the form of the constructed
filled function. Currently, the filled functions mainly have three drawbacks in form, namely, parameter
adjustment and control (if any), inclusion of exponential or logarithmic functions, and properties
that are discontinuous and non-differentiable. In order to overcome these limitations, this paper
proposed a parameter-free filled function that does not include exponential or logarithmic functions
and is continuous and differentiable. Based on the new filled function, a filled function method for
solving unconstrained global optimization problems was designed. The algorithm selected points in
the feasible domain that were far from the global minimum point as initial points, and improved the
setting of the step size in the stage of minimizing the filled function to enhance the algorithm’s global
optimization capability. In addition, tests were conducted on 14 benchmark functions and compared
with existing filled function algorithms. The numerical experimental results showed that the new
algorithm proposed in this paper was feasible and effective.
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1. Introduction

Global optimization methods have been widely used in many fields, such as economics, computer
applications, artificial intelligence, bioengineering, etc., and have developed into an important research
area. However, due to the existence of exponentially many local minima in global optimization
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problems, the functions of these multi-minima points pose the following difficulties in finding the
global optimal solution: How to search for a better local minimum point from the domain where
the current local minimum point is located, and how to determine whether the current minimum
point is the global minimum point. With the wide application of global optimization problems,
both the theory and algorithms of global optimization have been developed accordingly. Many
methods have been proposed for solving global optimization problems, which can be broadly classified
into two categories, i.e., deterministic algorithms and stochastic algorithms. Stochastic algorithms
mainly include: cuckoo search algorithm [1], grey wolf optimization algorithm [2], pigeon-inspired
optimization algorithm [3, 4], Harris hawks optimization algorithm [5], snow geese algorithm [6],
and other bionic algorithms. This type of method utilizes probabilistic mechanisms to search for
satisfactory solutions within the feasible domain of an optimization problem. However, due to a lack of
theoretical guarantees, these methods often get stuck in local minima and exhibit slower convergence
rates. In contrast, deterministic algorithms can leverage the mathematical properties of the problem to
ensure convergence to the global minimum within a specified error tolerance after a finite number of
iterations. Deterministic algorithms mainly include: the filled function method [7, 8], the branch and
bound method [9], the tunneling method [10], and other algorithms; Among them, the filled function
method is a type of deterministic algorithm capable of globally optimizing optimization problems,
which has a strong ability to jump out of the current non-global minima, and it is one of the better
ways to study and solve the first difficult problem, and it has a very high efficiency and practicability
in practical applications. The method was originally proposed by Ge in [7], and its core idea is to
construct an auxiliary function called the filled function at the current local minimum point of the
objective function, and use it as a bridge to jump out of the current non-global minima, so that the
objective function can keep searching for better local minima to avoid falling into the local optimum.

In general, the filled function method is an optimization algorithm that involves a two-stage
alternating loop. The first stage is the minimization phase, which starts from a given initial point and
uses a local search algorithm to obtain a local minima x∗1 of the objective problem. Then, transitioning
to the second stage, i.e., the filling stage, where a filled function is constructed at x∗1, and the filled
function is minimized by using the points near the current minima as the initial points. If the minima x∗1
of the objective problem obtained in the minimization stage is a non-global minima, then the minima x

′

of the filled function must be in a basin which is lower than B∗1, and x
′

serves as a better feasible point for
the objective problem. Subsequently, the objective problem is resolved with x

′

as the new initial point,
thus jumping out of the current local minima and finding another better point. The above two phases
alternate until no better minima x

′

can be found in the filling phase, then the current local minima of
the objective problem is considered to be the globally optimal solution. The original definition of the
filled function was proposed by Ge in [7], and it is defined as follows:

Definition 1. A function P(x) is called the filled function of f (x) at the local minimum point x∗1 if P(x)
has the following properties:

(i) x∗1 is a maximizer of P(x) and the whole basin B∗1 of f (x) at x∗1 becomes a part of a hill of P(x);

(ii) P(x) has no minimizers or saddle points in any higher basin of f (x) than B∗1 ;

(iii) If f (x) has a lower basin than B∗1, then there is a point x
′

in such a basin that minimizes P(x) on
the line through x

′

and x∗1.
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In reference [7], the specific form of the first-generation filled function is also provided:

P(x, x∗1, γ, ρ) =
1

γ + f (x)
exp(−

∥x − x∗1∥
2

ρ2 ), (1.1)

where γ and ρ are two parameters that need to be scientifically adjusted to ensure that the filled
function method can be executed and that global minima can be obtained. Tuning these parameters
poses a significant challenge, stemming from the unpredictable nature of their ideal values. Only via
numerous trials can we home in on the right settings, a process that inevitably adds to the algorithm’s
computational intricacy. Additionally, the filled function contains an exponential term exp(− ∥x−x∗1∥

2

ρ2 ).
When the parameter ρ is too small or the value of

∥∥∥x − x∗1
∥∥∥ is too large, the graph of the filled function

tends to be flat. This makes it difficult for the algorithm to discern changes in the filled function
values, thereby causing the objective function to fall into local optima. Since there is still room for
improvement in the form of the first-generation filled function, scholars have successively proposed
some bi-parameter filled functions [11–16]. However, this type of filled function still faces issues such
as strong dependence on parameters or exponential terms. In order to reduce the number of parameters,
scholars also proposed some single-parameter filled functions. For example, the Q-function introduced
by Ge and Qin [8] has the following form:

Q(x, x∗1, γ) = −[ f (x) − f (x∗1)]exp(γ
∥∥∥x − x∗1

∥∥∥). (1.2)

However, the filled function still contains exponential terms. In order to overcome the drawbacks
caused by exponential terms, Liu proposed a new class of filled functions [17, 18]:

H(x, x∗1, µ) =
1

ln(1 + f (x) − f (x∗1))
− µ∥x − x∗1∥

2, (1.3)

H
(
x, x∗k, µ

)
=

1
arctan( f (x) − f (x∗k))

− µ
∥∥∥x − x∗k

∥∥∥p
. (1.4)

The introduction of H(x, µ) reduces the number of parameters of the filled function from two to one
and eliminates exponential terms. However, it is discontinuous at points x ∈ S =

{
x | f (x) = f (x∗1)

}
,

where gradient information is not available. This limitation restricts the choice of local minimization
methods during the minimization phase.

In response to the drawbacks of the Q-function, Lin proposed a one-parameter filled function
in 2014 that does not contain exponential terms and is continuously differentiable, but still suffers
from the disadvantage of needing to adjust the parameters, which is of the following form [19]:

FF(x, x∗1, p) =
p

1 +
∥∥∥x − x∗1

∥∥∥h 1
p
( f (x) − f (x∗1)), (1.5)

where p is a parameter, and

hc(t) =
{

c t ⩾ 0
t3 + c t < 0

.

In further research on filled functions, we have discovered that regardless of the number of
parameters incorporated, they inevitably exert a negative impact on the algorithm’s performance.
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Consequently, several scholars have proposed various types of parameter-free filled functions [20–24].
However, their numerical experimental performance is often less than ideal. For instance, while
the filled function in [22] is devoid of parameters and exponential terms, it incorporates a sign
function within its formulation. Unfortunately, this sign function is characterized by its discontinuity
and non-differentiability, rendering gradient-based local minimization methods ineffective during the
minimization phase. The filled function presented in [23] successfully circumvents this significant
limitation, yet it incorporates exponential terms that, as we have previously discussed, have the
potential to hinder the effectiveness of the filled function algorithm. This integration of exponential
terms, while possibly beneficial in certain contexts, may adversely affect the algorithm’s performance
in terms of stability, computational efficiency, and its ability to accurately converge to a global
optimum. In [24], a novel continuous and differentiable filled function is introduced, distinguished
by its exclusion of both parametric and exponential terms. Moreover, an algorithm is presented that is
based on this filled function and incorporates coordinate directions during the minimization process.
During the minimization process of the filled function in this algorithm, coordinate directions are
utilized, but the determination of the perturbation step size α0 is not thoroughly deliberated. Notably,
selecting an unsuitable initial point could gravely impact the efficacy of the filled function, potentially
impeding its ability to guide the objective function toward a superior local minimum. Therefore, an
inappropriate choice of the initial point may deteriorate the overall performance of the algorithm.
To address the aforementioned issue, this paper introduces a significant refinement to the filled
function originally presented in reference [22]. Specifically, we substitute the sign function within
the filled function with a continuously differentiable univariate function. As a result, we propose a
novel continuously differentiable filled function that is devoid of parameters, exponential terms, and
logarithmic terms. This refined function is designed to effectively tackle the unconstrained global
optimization problem. Based on the proposed filled function, we have devised a groundbreaking filled
function method (hereinafter referred to as NFFM). During the minimization phase of this NFFM,
we deliberately choose coordinate directions as our primary search directions. When perturbing the
current local minimum point, we implement an incremental sequence for adjusting the perturbation
step size. Precisely, if the local minimum discovered along a specific coordinate direction under the
initial perturbation step size fails to yield an improved local minimum for the objective function, we
enlarge the perturbation step size and persist in our search for a superior local minimum along that
same coordinate direction. This iterative process continues until we reach the boundary of the objective
function’s feasible region, thus guaranteeing that our algorithm conducts an exhaustive global search
without overlooking any potentially advantageous local minima of the objective function.

The organization of the subsequent sections in this paper is outlined as follows: In Section 2, we
commence with the introduction of pivotal prerequisite knowledge, establishing a robust theoretical
framework for subsequent deliberations. Proceeding from this, we shall construct an unprecedented
parameter-free filled function and conduct in-depth research and analysis of its theoretical properties.
Moving on to Section 3, we will design an innovative NFFM based on the aforementioned parameter-
free filled function. In Section 4, we undertake a meticulous series of numerical experiments. Through
a selection of 14 emblematic multimodal test functions, we comprehensively validate the viability and
efficacy of the proposed NFFM. These outcomes not only underscore the superiority of NFFM but
also furnish pivotal reinforcement for subsequent practical implementations. Finally, in the concluding
section of this paper, we will provide a comprehensive summary of the research content and explicitly
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highlight the achievements and major contributions of this study.

2. A new filled function for unconstrained global optimization problems

2.1. Preliminaries

This paper considers the following unconstrained global optimization problem:

min f (x) (P)

s.t. x ∈ Rn,

where f (x) : Rn → R is the objective function.
To ensure the existence of the global optimal solution for problem (P) and the feasibility of the

proposed filled function method, the objective function should satisfy the following basic assumptions.
Moreover, a related definitions are presented in this section.

Assumption 1. The objective function in problem (P) is continuously differentiable.

Assumption 2. ξ is a set of all local minimizers of problem (P), and L∗ = { f (x) | x ∈ ξ} is finite.

Assumption 3. f (x) is a coercive function, i.e., ∥x∥ → ∞, f (x)→ ∞.

Assumption 3 indicates that there exists a compact set Ω ⊂ Rn, which contains all the local minima
of f (x) in its interior, and the function values of f (x) at the boundary of Ω are greater than the
function values at any point inside Ω. When the global optimization problem (P) satisfies the above
assumptions, all the global minima of problem (P) will be contained within a bounded closed interval
Ω. Therefore, the problem (P) considered in this paper can be converted into:

min f (x) (P∗)

s.t. x ∈ Ω,

where Ω = {xi ∈ R | li ≤ xi ≤ ui, i = 1, 2, · · · n} is referred to as the box constraint of problem P∗.

Lemma 1. If x∗k is a local minimum point of f (x), then:

Ω1 = {x ∈ Ω | f (x) ≥ f (x∗k), x , x∗k},

Ω2 = {x ∈ Ω | f (x) < f (x∗k)}.

The original definition of the filled function was proposed by Ge in [7], which provides a reference
criterion for researchers to construct filled functions that can escape from local non-global minima.
However, the concepts of basins and peaks involved in the definition are more difficult to understand,
and the third condition in the definition is not conducive to constructing and minimizing the filled
function. In order to address these limitations, researchers have continuously improved the original
definition of the filled function [11,12,25], among which the widely used definition [12] is as follows:

Definition 2. A function P(x) is called the filled function of f (x) at the local minimum point x∗1 if P(x)
has the following properties:
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(i) x∗k is a strictly local maximum of P(x, x∗k);

(ii) For P(x, x∗k), none of the points in Ω1 is a stationary point;

(iii) If x∗k is not a global minimum of f (x), then P(x, x∗k) in Ω2 has a local minimum.

The improved properties of the filled function ensure that when the local search method is used
to minimize the constructed filled function, the sequence of iteration points does not terminate at any
point where the objective function value is greater than f (x∗k). If x∗k is not a global minima, then there
must exist a local minimum x

′

of the filled function such that the function value at that point is less
than the current local minimum value f (x∗k) of the objective function. That is, any local minimum
point of P(x, x∗k) belongs to the set Ω2, enabling the objective function f (x) to escape from the current
local minimum point and find a better minimum point by a local search algorithm starting from the
minimum point of the filled function.

2.2. A new filled function and its properties

We assume that x∗k represents the current local minimum point of f (x). Based on Definition 2, we
propose a novel continuous, differentiable, and parameter-free filled function:

Ψ(x, x∗k) = −arctan(
∥∥∥x − x∗k

∥∥∥) · (1 + φ( f (x) − f (x∗k))), (2.1)

φ(t) =
{

0 t ⩾ 0
−t2 t < 0.

First of all, we establish through the subsequent lemma and theorem that x∗k is a strictly local
maximum for the function Ψ(x, x∗k).

Lemma 2. If x∗k ∈ ξ and x ∈ Ω1,then Ψ(x, x∗k) < 0 = Ψ(x∗k, x
∗
k).

Proof. Since for x ∈ Ω1, we have f (x) ≥ f (x∗k), thenΨ(x, x∗k) = − arctan(∥x − x∗k∥
2).

From the properties of function h(ω) = − arctan(ω), we know that: (1) h(ω) > 0, if ω < 0, (2)
h(ω) = 0, if ω = 0, (3) h(ω) < 0, if ω > 0. Because ∥x − x∗k∥

2 > 0, and ∥x∗k − x∗k∥
2 = 0, then

Ψ(x, x∗k) = − arctan(∥x − x∗k∥
2) < 0 = − arctan(∥x∗k − x∗k∥

2) = Ψ(x∗k, x
∗
k). □

Theorem 1. If x∗k ∈ ξ, then x∗k is a strictly local maximum of Ψ(x, x∗k) .

Proof. Since x∗k is a local minimum point of f (x), then there is a very small positive number δ > 0, for
any ∀x ∈ B(x∗k, δ) ∩ Ω1, f (x) ≥ f (x∗k). From Lemma 2, We know Ψ(x, x∗k) = −arctan(

∥∥∥x − x∗k
∥∥∥2

) < 0 =
Ψ(x∗k, x

∗
k). Thus, x∗k is a strictly local maximum of Ψ(x, x∗k) . □

The above Lemma 2 and Theorem 1 indicate that the function Ψ(x, x∗k) satisfies the first condition
of Definition 2. Next, we prove that the function Ψ(x, x∗k) also satisfies the second and third conditions
of Definition 2. First, we define d∗ = x − x∗k as a feasible direction of f (x).

Theorem 2. For ∀x ∈ Ω1, ∇TΨ(x, x∗k)d∗ < 0.

Proof. Since x∗k is a local minimum point of f (x), then for ∀x ∈ Ω1, we have f (x) ≥ f (x∗k), and
Ψ(x, x∗k) = −arctan(

∥∥∥x − x∗k
∥∥∥2

); thus,
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∇Ψ(x, x∗k) =
−2(x − x∗k)

1 + ∥x − x∗k∥
4 ,

∇TΨ(x, x∗k)d∗ =
−2∥x − x∗k∥

2

1 + ∥x − x∗k∥
4 < 0.

□

Remark 1. By Theorem 2, the following can be concluded:

(1) For each x ∈ Ω1, the previously defined feasible direction d∗ is a descent direction for the function
Ψ(x, x∗k).

(2) For each x ∈ Ω1, ∇Ψ(x, x∗k) , 0, thus none of the points in Ω1 are stationary points or saddle
points. This conclusion ensures that the numerical experimentation process will disregard regions
where the objective function value exceeds the current local minimum value.

(3) The minimization process of Ψ(x, x∗k) will not stop within Ω1.
(4) Theorem 2 proves that the function Ψ(x, x∗k) satisfies the second condition in Definition 2.

Theorem 3. Assume that x∗k is a local minimum point of f (x). If it is not a global minimum point, then
Ψ(x, x∗k) has a local minimum point in Ω2. Furthermore, let d∗ = xq − x∗k, if there exists xq ∈ Ω2 such
that ∇T f (xq)d∗ > η > 0, then ∇TΨ(xq, x∗k)d∗ > 0, where

η =

∥∥∥xq − x∗k
∥∥∥2
· (1 − ( f (xq) − f (x∗k))2)

(1 +
∥∥∥xq − x∗k

∥∥∥4
) · arctan(

∥∥∥xq − x∗k
∥∥∥2

) · ( f (xq) − f (x∗k))
. (2.2)

Proof. Assume x∗j < Ω2 and is a local minimum of Ψ(x, x∗k), then x∗j ∈ Ω1, and ∇Ψ(x∗j, x
∗
k) =

−2∥x∗j−x∗k∥
2

1+∥x∗j−x∗k∥
4 =

0, so x∗j = x∗k. From Theorem 1, we know x∗k is a strictly local maximum of Ψ(x, x∗k), so x∗j , x∗k, it
contradicts Theorem 1. If x∗j is a saddle point, and it contradicts Theorem 2. Thus, x∗j must be in Ω2.

Next, we will demonstrate that the feasible direction d∗ is an ascent direction for some xq ∈ Ω2. If
there exists xq ∈ Ω2 such that ∇T f (xq)d∗ > η > 0, then, according to Eq (2.2), we know that∥∥∥xq − x∗k

∥∥∥2
· (1 − ( f (xq) − f (x∗k))2)

1 +
∥∥∥xq − x∗k

∥∥∥4 = arctan(
∥∥∥xq − x∗k

∥∥∥2
) · ( f (xq) − f (x∗k)) · η.

Equation (2.1) implies:

Ψ(xq, x∗k) = − arctan(∥xq − x∗k∥
2) · (1 − ( f (xq) − f (x∗k))2).

At this point, the gradient of Ψ(xq, x∗k) at xq is:

∇Ψ(xq, x∗k) =
−2(xq − x∗k)

1 + ∥xq − x∗k∥
4 · (1 − ( f (xq) − f (x∗k))2) + [−arctan(

∥∥∥xq − x∗k
∥∥∥2

) · 2( f (xq) − f (x∗k)) · ∇ f (xq)].
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Hence,

∇TΨ(xq, x∗k)d∗ =
−2∥xq − x∗k∥

2

1 + ∥xq − x∗k∥
4 · (1 − ( f (x∗k) − f (xq))2)

+ 2arctan(
∥∥∥xq − x∗k

∥∥∥2
) · ( f (x∗k) − f (xq)) · ∇T f (xq) · (xq − x∗k)

>
−2∥xq − x∗k∥

2

1 + ∥xq − x∗k∥
4 · (1 − ( f (x∗k) − f (xq))2) + 2arctan(

∥∥∥xq − x∗k
∥∥∥2

) · ( f (x∗k) − f (xq)) · η

= 0.

That is,
∇TΨ(xq, x∗k)d∗ > 0.

□

Theorem 3 demonstrates that within the interval Ω2, the direction d∗ = xq − x∗k is an ascent direction
for Ψ(x, x∗k). By Assumption 1, f (x) is continuously differentiable, thus there exists a stationary point
along the direction d∗ for Ψ(xq, x∗k) within Ω2. Furthermore, Theorem 3 also confirms that Eq (2.1)
satisfies the third condition of Definition 2.

Theorem 4. If x∗k ∈ ξ, and xa, xb ∈ Ω1 such that ∥xa − x∗k∥ < ∥xb − x∗k∥, then Ψ(xb, x∗k) < Ψ(xa, x∗k).

Proof. Since x∗kis a local minimum of f (x), and xa, xb ∈ Ω1, according to the filled function Eq (2.1),
we have

Ψ(xa, x∗k) = − arctan(∥xa − x∗k∥
2),Ψ(xb, x∗k) = − arctan(∥xb − x∗k∥

2),

because

Ψ(xb, x∗k) − Ψ(xa, x∗k) = − arctan(∥xb − x∗k∥
2 − (− arctan(∥xa − x∗k∥

2))

and ∥xa − x∗k∥ < ∥xb − x∗k∥, then ∥xa − x∗k∥
2 < ∥xb − x∗k∥

2. From the properties of the arctan function
h(ω) = − arctan(ω), it can be inferred that Ψ(xb, x∗k) − Ψ(xa, x∗k) < 0. That is Ψ(xb, x∗k) < Ψ(xa, x∗k). □

Remark 2. Theorem 4 proves that for any two points in Ω1, the further away from x∗k, the smaller
the value of the filled function, which shows that in the interval Ω1, Ψ(x, x∗k) will always be a peak,
implying that the minimization process of Ψ(x, x∗k) will always be realized.

Theorem 5. If x∗k is the global optimal solution of f (x), then the filled function Ψ(xq, x∗k) is
monotonically decreasing for all x ∈ Ω.

Proof. Because x∗k is the global optimal solution of φ(x), for ∀x ∈ Ω, we have φ(x) > φ(x∗k). Thus,
from Eq (2.1), we obtain Ψ(x, x∗k) = − arctan(∥x − x∗k∥

2). According to the property of the function
h(ω) = − arctan(ω), we can conclude that Ψ(x, x∗k) is monotonically decreasing for ∀x ∈ Ω. □

Theorem 5 is an additional property of the filled function Ψ(xq, x∗k), which shows that if x∗k is a
global optimal solution of f (x), then Ψ(x, x∗k) has no stationary points in the global search domain, and
for any feasible direction d∗ = x − x∗k, there will be ∇TΨ(x, x∗k)d∗ < 0.
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3. A new filled function algorithm

3.1. A new filled function algorithm without parameter

The previous section has rigorously demonstrated through in-depth theoretical analysis that the
constructed filled function Ψ(x, x∗k) in this paper fully satisfies the properties of a filling function
outlined in Definition 2. Based on this foundation, the current section will further elaborate on
the development of a novel parameter-free filled function algorithm—the NFFM, derived from the
formulated filled function as indicated in Eq (2.1). Subsequently, we shall present the pseudocode
of the innovative filled function algorithm introduced in this study and provide a thorough textual
elaboration of its entire operational procedure. Furthermore, we will offer precise explanations for
each individual step.

Step 0: Choose an initial point x0 ∈ Ω; ei, i = 1, 2, ..., 2n, where ei is a unit coordinate vector; n is
the number of variables of the objective function f (x); ε > 0(letε = 10−6); set k = 1, i = 1, a0 = 0,
where k represents the number of iterations; let δ = δ0 + a0 ·H, where δ > 0 is the step length, δ0 is the
given initial step length, H = D/G is the unit segment step length, D = l1−u1

2 , and G is the maximum
number of segments, then go to Step 1.

Step 1: Take x0 as the initial point and use the local search method to minimize the objective
function f (x) to obtain its local minima x∗k, then go to Step 2;

Step 2: Construct the non-parameter filled function at x∗k
Ψ(x, x∗k) = −arctan(

∥∥∥x − x∗k
∥∥∥) · (1 + φ( f (x) − f (x∗k)))

where,

φ(t) =
{

0 t ⩾ 0
−t2 t < 0

and go to Step 3.
Step 3: If a0 ≤ G, go to Step 4; otherwise, x∗k serves as a global optimum solution for the objective

function f (x), and the algorithm terminates.
Step 4: If i ≤ 2n, then let xi = x∗k + δei and go to Step 5; otherwise, let a0 = a0 + 1, δ = δ0 + a0 · H,

i = 1, and go to Step 3.
Step 5: If xi ∈ Ω, minimize Ψ(x, x∗k) starting from xi to obtain a local minimum point x

′

k, then go to
Step 6; otherwise, let i = i + 1 and go to Step 4.

Step 6: Using x
′

k as the initial point, minimize the objective function f (x) using a local minimization
method to obtain a local minimum point x f

k . If f (x f
k ) − f (x∗k) < −ε, then set x∗k = x f

k , k = k + 1, i = 1,
a0 = 1, δ = δ0 + a0 · H, and go to Step 2; otherwise, let i = i + 1, then go to Step 4.

Next, some detailed explanations are provided regarding the specific steps of NFFM:
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(1) In the iteration process of NFFM, we commence by minimizing the objective function f(x) from
a predefined initial point x0 within the feasible domain Ω of the specified test function. To validate the
escape capabilities of our proposed filled function algorithm, during experimentation, we select initial
points that are situated relatively distant from the global minimum of the objective function, yet still
within the feasible domain of the test function. Following this, we deploy local optimization algorithms
to minimize the objective function, ultimately yielding a local minimum point denoted as x∗k.

(2) Construct a filled function Ψ(x, x∗k) at the local minimizer x∗k of the objective function. Since
x∗k is a strict local maximizer of the filled function, it cannot be directly used as the initial point for
minimizing the filled function. Therefore, it is necessary to perturb this point. In existing filled function
algorithms, the initial point for minimizing the filled function is usually generated as xi = x∗k + δei, but
the value of the perturbation step size δ is rarely discussed. The choice of δ is generally related to the
number of local minimizers of the objective function or the size of the feasible domain. Therefore,
in the proposed NFFM, during the stage of minimizing the filled function, an increasing arithmetic
sequence with H as the common difference is constructed, and δ = δ0 + a0 ·H is set as the perturbation
step size to generate the initial point for minimizing the filled function.

(3) The next step is to minimize Ψ(x, x∗k) with the initial point xi = x∗k + δei. Since i ≤ 2n, this
process will be executed. If a local minimizer x

′

k of Ψ(x, x∗k) is found, then x
′

k will be used as the initial
point to minimize the objective function f (x) in order to obtain a local minimizer x f

k . If the function
value of f (x) at x f

k is smaller than the function value at x∗k, then x∗k is replaced by x f
k and the process is

repeated. If not, then i = i+1, change the search direction, and continue minimizing the filled function.
If after iterating until i > 2n, a better local minimum of the objective function is still not obtained, then
a0 is incremented by one, increasing the perturbation step size. With the updated perturbation step size,
a new initial point is generated for minimizing the filled function Ψ(x, x∗k) iteratively. This process of
minimizing the filled function is repeated. If this iteration continues until reaching the threshold G of
a0, and a superior local minimum of the objective function f (x) is still not achieved, then x∗k is regarded
as the global minimum point and the algorithm terminates.

(4) Since both the objective function and the filled function are continuously differentiable, gradient-
based local optimization algorithms can be utilized for the minimization process. In this paper, we
employ the quasi-Newton method (short for BFGS ) as the local optimization method to minimize the
objective function and the filled function.
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Algorithm 1 A new filled function algorithm (NFFM).
1: Initialization:
2: Set parameters a0,D,G,ε,etc
3: x← x0; k ← 1 ;i← 1
4: Main step:
5: x∗k ← Optimization f (x) f rom x ▷ x as the initial point minimizes the objective function
6: while a0 ≤ G do
7: if i ≤ 2 ∗ n then
8: xi = x∗k + δei

9: else
10: a0 ← a0 + 1
11: end if
12: xk ← Optimization Ψ(x, x∗k) f rom xi ▷ xi as the initial point minimizes the filled function
13: xk f ← Optimization f (x) f rom xk ▷ xk as the initial point minimizes the objective function
14: if f (xk f ) − f (x∗k) < −ε then ▷ Update local optima
15: x← xk f
16: f best ← f (xk f )
17: iter ← iter + 1 ; i← 1
18: else
19: i← i + 1
20: end if
21: end while
22: return x, f best,iter

3.2. The time complexity analysis of NFFM

In this section, we will analyze the time complexity of NFFM jumping out one local minimum.
NFFM is compatible with various local search algorithms, and during the experimental process, both
NFFM and the other comparative algorithms adopt the same local search method. We assume that
the time complexity of the local search algorithm for finding local solutions from an initial point is
T (local), a supposition that applies universally to all filled function methods. Subsequently, we utilize
T (local) to optimize the objective function from the initial point x0, aiming to obtain the local minimum
x∗k. Since x∗k is a local maximum point of the filled functionΨ(x, x∗k), it is necessary to perturb x∗k in order
to minimize Ψ(x, x∗k). In step four of the NFFM algorithm process, the worst-case scenario is that each
of the generated initial points begins to perform a local search on the filled function. The maximum
number of the generated initial points for the filled function is (G + 1) ∗ 2n, where n represents the
dimension of the optimization problem and G is the maximum threshold value of a0. Then, it will take
(G+1)∗2n∗T (local) = O(n∗T (local)) for NFFM to optimize the filled function from all the generated
initial points. Therefore, the time complexity of NFFM is T (local) + O(n ∗ T (local) + T (local) =
O(n ∗ T (local)).
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4. Numerical experiment

To thoroughly validate the feasibility and effectiveness of NFFM, this section applies the algorithm
to 14 classic test functions, which originate from a selection of global optimization problems listed
in [26]. The results are then compared with four filled function algorithms that have emerged in the
past four years. All numerical experiments were conducted using the Matlab(R2023a) software on a
desktop computer equipped with a 64-bit Windows 10 operating system, an Intel(R) Core(TM) i5-8500
CPU @ 3.00 GHz processor, and 8.00 GB of RAM.

4.1. Test functions

Problem 1. Treccani function.

min f (x) = x4
1 + 4x3

1 + 4x2
1 + x2

2,

s.t. − 3 ≤ xi ≤ 3, i = 1, 2.

The function is multimodal, with two global minima at x∗ = (0, 0) or (−2, 0), and the global
optimum value is f (x∗) = 0. The NFFM successfully found the global minima and optimal values
using initial points of (−1,−2) and (−3, 3).

Problem 2. Six-hump back camel function.

min f (x) = 4x2
1 − 2.1x4

1 +
1
3

x6
1 − x1x2 − 4x2

2 + 4x4
2,

s.t. − 3 ≤ xi ≤ 3, i = 1, 2.

The function is a commonly used multimodal, non-convex function, featuring six local minima and
two global minima at either x∗ = (−0.0898,−0.7127) or (0.0898, 0.7127), with a global optimum value
of f (x∗) = −1.0316. The NFFM successfully located the global minimum points and global optimal
values using (2,−1) and (−3, 3) as initial points.

Problem 3. Rastrigin function.

min f (x) = x2
1 + x2

2 − cos(18x1) − cos(18x2),
s.t. − 3 ≤ xi ≤ 3, i = 1, 2.

The function is a commonly used multimodal, non-convex function often employed as a test
problem for assessing the performance of optimization algorithms. It features multiple local minima,
presenting a challenging problem for optimization algorithms. It has a single global minimum at
x∗ = (0, 0), with a global optimum value of f (x∗) = −2. The NFFM successfully found the global
minima and optimal values using initial points of (1, 1) and (−2,−2).

Problem 4. Three-hump back camel function.

min f (x) = 2x2
1 − 1.05x4

1 +
1
6

x6
1 − x1x2 + x2

2,

s.t. − 3 ≤ xi ≤ 3, i = 1, 2.

The function is a commonly used multimodal function with three local minima within the search
domain and one global minimum. The global minimum is located at x∗ = (0, 0), with a global optimal
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value of f (x∗) = 0. The NFFM successfully found the global minimum and its optimal value using
initial points of (−2, 2) and (−3, 3).

Problem 5. Two-dimensional function.

min f (x) = [1 − 2x2 + csin(4πx2) − x1]2 + [x2 − 0.5sin(2πx1)]2,

s.t. 0 ≤ x1 ≤ 10,−10 ≤ x2 ≤ 0,

where c = 0.5, 0.2, 0.05.
The function is a multimodal, non-convex function with multiple local minima, but it has only one

global optimum f (x∗) = 0 across different coefficients c. When c = 0.5, the NFFM successfully found
the global optimum using initial points (0, 0) and (5,−5). Similarly, for c = 0.2, it utilized initial points
(6,−2) and (0,−10), and for c = 0.05, it employed initial points (10,−10) and (5,−5) to achieve the
global optimum.

Problem 6. Goldstein and Price function.

min f (x) = g(x)h(x),
s.t. − 3 ≤ xi ≤ 3, i = 1, 2,

where,

g(x) = 1 + (x1 + x2 + 1)2(19 − 14x1 + 3x2
1 − 14x2 + 6x1x2 + 3x2

2),
h(x) = 30 + (2x1 − 3x2)2(18 − 32x1 + 12x2

1 + 48x2 − 36x1x2 + 27x2
2).

The function is a classic optimization test function commonly employed for evaluating the
performance of optimization algorithms. It features multiple local minima and a complex curve shape,
exhibiting non-convexity and nonlinearity in the two-dimensional space. Thus, it serves as a robustness
and global search capability test for algorithms. Within the search domain, the function has only one
global minimum at x∗ = (0,−1), with a global optimal value of f (x∗) = 3. The NFFM successfully
found the global minimum and its optimal value using an initial point of (−3,−3).

Problem 7. Two-dimensional Shubert function.

min f (x) =

 5∑
i=1

icos[(i + 1)x1 + i]


 5∑

i=1

icos[(i + 1)x2 + i

 ,
s.t. − 10 ≤ xi ≤ 10, i = 1, 2.

The function is a complex multimodal, non-convex function, containing approximately 760 local
minima within the search domain. These local minima are distributed around multiple peaks of
the function, posing a greater challenge for algorithms to locate the global minimum. The intricate
structure and numerous local minima of this function make it more difficult to assess the robustness
and global search capabilities of algorithms, hence it is utilized to evaluate the performance of the
algorithm proposed in this paper. Using (5, 5) as the initial starting point, NFFM successfully found
the global optimal value of the problem, which is f (x∗) = −186.7309.

Problem 8. Generalized penalized function.

min f (x) =

 1
500
+

25∑
j=1

1

j +
∑2

i=1

(
xi − ai j

)6


−1

,

s.t. − 65.536 ≤ xi ≤ 65.536, i = 1, 2,
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where, (ai j) =
(
−32 −16 0 16 32 −32 · · · 0 16 32
−32 −32 −32 −32 −32 −16 · · · 32 32 32

)
.

The function is one of the classic functions used to test the performance of optimization algorithms.
It contains multiple local minima within its search domain, along with numerous steep valleys and
peaks, presenting a challenge for optimization algorithms to find the global minimum. Therefore,
testing the algorithm proposed in this paper on this function provides an effective evaluation of
the algorithm’s robustness and global search capabilities. The NFFM successfully found the
global minimum point at the point x∗ = (−32,−32) and the global optimal value of f (x∗) =
0.99800383779445 starting from the initial points (−40, 20) and (50, 50).

Problem 9. Shekel’s function

min f (x) = −
m∑

i=1

[
4∑

j=1

(x j − ai, j)2 + ci]−1,

s.t. 0 ≤ x j ≤ 10, j = 1, 2, 3, 4,

where m = 5, 7, 10, ai, j and ci with i = 1, 2, 3, 4, 5, j = 1, 2, 3, 4 are provided in Table 1.
This function is one of the classic multimodal optimization test functions, featuring multiple local

minima, which poses a certain challenge for optimization algorithms to search for the global minimum.
It can be used to evaluate the global search ability and convergence speed of the algorithm. The global
minima of this function is x∗ = (4, 4, 4, 4), and the global optimum is f (x∗) = −10.1532 when m = 5,
f (x∗) = −10.4029 when m = 7, and f (x∗) = −10.5364 when m = 10. The NFFM proposed in
this paper, with (0, 0, 0, 0) as the initial point, both successfully found its global minima and global
optimum.

Table 1. The coefficients for Problem 9.
i ai,1 ai,2 ai,3 ai,4 ci

1 4.0 4.0 4.0 4.0 0.1
2 1.0 1.0 1.0 1.0 0.2
3 8.0 8.0 8.0 8.0 0.3
4 6.0 6.0 6.0 6.0 0.4
5 3.0 7.0 3.0 7.0 0.5
6 2.0 9.0 2.0 9.0 0.6
7 5.0 5.0 3.0 3.0 0.3
8 8.0 1.0 8.0 1.0 0.7
9 6.0 2.0 6.0 2.0 0.5

10 7.0 3.6 7.0 3.6 0.5

Problem 10. n-Dimensional Sine-square function.

min f (x) =
π

n

10sin2(πx1) +
n−1∑
i=1

[
(xi − 1)2(1 + 10sin2(πxi+1))

]
+ (xn − 1)2

 ,
s.t. − 10 ≤ xi ≤ 10, i = 1, 2, · · · , n.

The function is characterized by its periodicity, nonlinearity, multimodality, and non-convexity, with
multiple local minima. The number of local minima within the feasible domain is approximately 10n.
This problem is a high-dimensional optimization problem, and NFFM focuses on solving problems
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ranging from 2 to 200 dimensions. Starting from the initial point of (−7.5,−7.5 · · · ,−7.5), the
algorithm successfully finds the global minimum x∗ = (1, 1, · · · , 1), and its global optimum f (x∗) = 0.

Problem 11. n-Dimensional Rastrigin function.

min f (x) = 10n +
n∑

i=1

(
x2

i − 10cos(2πxi)
)
,

s.t. − 5.12 ≤ xi ≤ 5.12, i = 1, 2, · · · , n.

The function exhibits multimodal and non-convex characteristics, encompassing multiple local
minima within the feasible region, as well as a global minimum located at the origin of the parameter
space, with a global minimum value of 0. This function is commonly used to evaluate the performance
of optimization algorithms when dealing with challenging functions. To address this high-dimensional
optimization problem, the NFFM specifically targets optimization tasks ranging from 2 to 200
dimensions. Starting from the initial point (−2.56,−2.56...,−2.56), the algorithm successfully locates
the global minimum point x∗ = (0, 0, ..., 0) and achieves the global optimal value of f (x∗) = 0.

Problem 12. Griewank function.

min f (x) =
n∑

i=1

x2
i

4000
−

n∑
i=1

log
[
2 + cos

xi
√

i

]
+ nlog3,

s.t. − 200 ≤ xi ≤ 400, i = 1, 2, · · · , n.

The Griewank function is renowned for its high degree of nonlinearity and complex behavior
in high-dimensional spaces, featuring multiple local minima and a single global minimum. This
characteristic poses a significant challenge for many optimization algorithms in finding the global
optimal solution. Therefore, it is commonly used as a benchmark test function to evaluate the
performance of optimization algorithms. The NFFM proposed in this paper, focusing on the
optimization search for 2–200 dimensional problems, takes (300, 300, · · · , 300) as the initial point
and successfully finds its global minima x∗ = (0, 0, · · · , 0) and the global optimum value of f (x∗) = 0.

Problem 13. Schewefel function.

min f (x) = 418.9829n −
n∑

i=1

xi sin
(√

xi

)
,

s.t. − 500 ≤ xi ≤ 500, i = 1, 2, · · · , n.

The function represents a multidimensional nonlinear optimization problem. It has a wide range of
values, typically spanning from [−500, 500]. The function exhibits multiple local optima, among which
there is only one global optimum, occurring at xi = 420.9687, with a global minimum value of f (x∗) =
0. Additionally, this function is a typical deceptive problem, as the global minimum is located far from
another local optimum, and the function exhibits steep curves near the optimal solution, making it
prone to falling into local optima. Escaping from a local optimum is challenging, posing high demands
on the algorithm. Simple algorithms are unlikely to find the optimal solution, thus making it a suitable
benchmark for verifying the global search capability and ability to escape local optima of the proposed
algorithm in this paper. The NFFM algorithm introduced in this paper focuses on optimizing problems
spanning 2 to 200 dimensions. Starting from the initial point (0, 0, · · · , 0), it successfully finds the
global minimum and the corresponding global optimal value.
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Problem 14. Rosenbrock function.

min f (x) =
n−1∑
i=1

[
100

(
xi+1 − x2

i

)2
+ (xi − 1)2

]
,

s.t. − 30 ≤ xi ≤ 30, i = 1, 2, · · · , n.

The function serves as a classic non-convex optimization problem for testing optimization
algorithms. It possesses a global minimum point x∗ = (1, 1, . . . , 1), yet around this global minimum,
there exists a long and tortuous valley. The valley is narrow, requiring optimization algorithms to
overcome the function’s tortuosity and avoid getting trapped in local optima in order to effectively find
the global optimum. Therefore, it is used to evaluate the effectiveness and robustness of optimization
algorithms in handling complex, multimodal, and long-valley optimization problems. The NFFM
proposed in this paper, focusing on the optimization search for 2–200 dimensional problems, takes
(−15,−15, · · · ,−15) as the initial point and successfully finds its global minima x∗ = (1, 1, . . . , 1) and
the global optimum value of f (x∗) = 0.

4.2. Numerical results

This section compares the NFFM with five other filled function algorithm on 14 multimodal test
functions, including high-dimensional complex unconstrained optimization problems (Problems 10–
14). In Table 2, we offer comprehensive clarifications and explanations for the symbols utilized in
Tables 3–8.

Table 2. Interpretation of relevant symbols.

symbol Explanation

No. The number of the problem
n Dimension of the objective function
x0 The initial point of the objective function
x∗ The global minimum of the objective function

f (x∗) The global optimum value of the objective function
Iter The iteration number
T (s) The total running time required until the algorithm stops (measured in seconds)
NF f The total number of function evaluations of the objective and filled functions

PFF1 Two-parameter filled function algorithm in [16]
PFF2 Single-parameter filled function algorithm in [15]
PFF3 The parameter-free filled function algorithm in [21]
PFF4 The parameter-free filled function algorithm in [24]
PFF5 The parameter-free filled function algorithm in [22]

Table 3 details the specific numerical experimental results of NFFM on the 14 test functions. To
verify the feasibility of NFFM, we employed the following evaluation metrics: the number of iterations
(Iter), the global optimum of the objective problem ( f (x∗)), the total number of function evaluations
(NF f ), and the total running time (T(s)). As shown in Table 3, NFFM successfully finds the global
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optimal values for all the test problems, using points that are relatively far from the global minimum
in the feasible region as the initial points. This demonstrates the effectiveness of the proposed non-
parametric filled function algorithm in global optimization.

To comprehensively evaluate the performance of NFFM, we conducted a comparison with five
other filled function algorithms (PFFF1–PFFF5) on 14 multimodal test functions. Tables 4 to 8 present
detailed numerical results of these algorithms on the test functions, where “-” indicates a failure to
locate the global optimum. These results were obtained by faithfully reproducing the procedures
of the algorithms as described in the original literature. In our experiments, all algorithms used the
same initial points and a local search method (Newton’s method), while the parameter settings for the
comparison algorithms adhered to the values provided in the original literature. One of the algorithms,
PFFF1, designed based on a two-parameter filled function, has been proven to outperform the filled
function algorithms in [7, 13] as stated in [16]. PFFF2, while also based on a two-parameter filling
function, was treated as a single-parameter algorithm in the experiments conducted in [15], where the
parameter ϵ was fixed at 10−5. When compared with algorithms in [7, 27], PFFF2 exhibited superior
performance. Both PFFF3 and PFFF4 have shown better performance when compared to algorithms
in [13, 22, 23], respectively. Additionally, the filled function proposed in this paper is an improvement
of the one introduced in [13], and PFFF5 is a filled function algorithm designed based on the filled
function from reference [13]. Comparing NFFM with these five algorithms provides strong evidence
that the proposed NFFM algorithm possesses significant competitiveness.

Table 3. Numerical Experimental Results of NFFM for Problems 1–14.

NO. n x0 f (x∗) Iter NF f T (s) D/G

1
2 (-1,2) 2.3314e-16 2 11466 0.3768 3/10
2 (3,3) 1.6583e-13 1 2208 0.0689 3/10

2
2 (2,-1) -1.0316 1 5403 0.1521 3/10
2 (-3,3) -1.0316 2 5250 0.1177 3/10

3
2 (1,1) -2.0000 3 11187 0.3188 3/20
2 (-2,-2) -2.0000 3 11028 0.3202 3/20

4
2 (-2,2) 1.2063e-11 1 5361 0.2048 3/10
2 (-3,3) 6.0581e-10 1 5370 0.1505 3/10

5

(c = 0.5)
2 (0,0) 1.0071e-11 2 5850 0.2304 10/20
2 (5,-5) 1.3798e-10 4 6396 0.3038 10/20

(c = 0.2)
2 (6,-2) 2.5576e-10 2 5871 0.1729 10/20
2 (0,-10) 8.3350e-11 2 11130 0.3122 10/20

(c = 0.05)
2 (10,-10) 5.7877e-11 3 13356 0.3738 10/50
2 (5,-5) 4.3862e-8 2 5478 0.1576 10/20

6 2 (-3,-3) 3.0000 1 5496 0.1463 3/10
7 2 (5,5) -186.7309 3 5286 0.1182 20/30

8
2 (-40,20) 0.998003938 3 12075 0.6224 65.536/65
2 (50,50) 0.998003940 3 12147 0.6320 65.536/65

9 (m = 5) 4 (0,0,0,0) -10.1532 2 45265 0.9075 10/20
Continued on next page
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NO. n x0 f (x∗) Iter NF f T (s) D/G

9
(m = 7) 4 (0,0,0,0) -10.4029 2 51205 1.1519 10/20

(m = 10) 4 (0,0,0,0) -10.5364 2 47080 1.1174 10/20

10

2 (-7.5,-7.5) 4.4998e-14 3 31164 0.6559 10/20
5 (−7.5, · · · ,−7.5) 3.6297e-15 9 91410 0.9884 10/20

10 (−7.5, · · · ,−7.5) 5.0081e-09 7 399927 1.8787 10/20
30 (−7.5, · · · ,−7.5) 1.2918e-11 12 5502810 15.6206 10/20
50 (−7.5, · · · ,−7.5) 2.4807e-11 16 11562873 33.9494 10/20
100 (−7.5, · · · ,−7.5) 1.4958e-8 51 183671429 721.4294 10/20
200 (−7.5, · · · ,−7.5) 1.0357e-9 4 205588629 847.5251 10/20

11

2 (-2.56,-2.56) 3.4824e-11 5 34005 0.8710 5.12/50
5 (−2.56, · · · ,−2.56) 4.3485e-12 11 214302 2.2427 5.12/50

10 (−2.56, · · · ,−2.56) 1.2790e-13 14 767118 5.3170 5.12/50
30 (−2.56, · · · ,−2.56) 1.6768e-9 23 8639917 35.6461 5.12/50
50 (−2.56, · · · ,−2.56) 3.5811e-12 5 17655639 75.4816 5.12/50

100(−2.56, · · · ,−2.56) 4.5475e-13 75 87546396 450.2820 5.12/50
200(−2.56, · · · ,−2.56) 2.0600e-10 63 352329282 2655.6060 5.12/50

12

2 (300,300) 0 79 151752 4.9212 300/600
5 (300, · · · , 300) 0 148 1192452 14.8535 300/600

10 (300, · · · , 300) 3.0873e-12 102 5495303 30.7575 300/600
30 (300, · · · , 300) 5.0235e-12 132 107425695 176.2816 300/600
50 (300, · · · , 300) 2.0286e-11 117 348382122 520.6993 300/600
100 (300, · · · , 300) 9.7856e-11 130 607111303 1558.6716 300/600
200 (300, · · · , 300) 1.4511e-9 203201981824710605.0670 300/600

13

2 (0,0) 2.5455e-5 7 10482 0.5411 500/100
5 (0, · · · , 0) 6.3638e-5 16 51006 1.4617 500/100

10 (0, · · · , 0) 1.2728e-4 31 219516 3.3319 500/100
30 (0, · · · , 0) 3.8183e-4 91 2481116 21.3445 500/100
50 (0, · · · , 0) 6.3638e-4 152 8590134 77.8044 500/100
100 (0, · · · , 0) 1.2728e-3 301 55840981 709.5823 500/200
200 (0, · · · , 0) 2.5130e-3 601 357280113 7149.2103 500/200

14

2 (-15,-15) 0.0566 1 7743 0.7729 30/10
5 (−15, · · · ,−15) 1.4644e-8 3 44862 0.6354 30/10

10 (−15, · · · ,−15) 2.5650e-4 2 133001 0.9756 30/10
30 (−15, · · · ,−15) 2.0058e-7 2 1074181 4.5460 30/10
50 (−15, · · · ,−15) 2.8443e-7 2 2922300 11.1526 30/10
100 (−15, · · · ,−15) 4.3167e-7 2 11470065 39.3521 30/10
200 (−15, · · · ,−15) 2.5979e-6 2 45435648 166.6213 30/10
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Table 4. Comparison of numerical experiment results.

NO. n
NFFM PFFF1

Iter f (x∗) NF f T (s) Iter f (x∗) NF f T (s)

1
2 2 2.3314e-16 11466 0.3768 - - - -
2 1 1.0583e-13 2208 0.0689 1 1.0583e-13 3200 0.2108

2
2 1 -1.0316 5403 0.1521 1 -1.0316 3203 0.1430
2 2 -1.0316 5250 0.1177 3 -1.0316 4446 0.2326

3
2 3 -2.0000 11187 0.3188 3 -2.0000 4304 0.2365
2 3 -2.0000 11028 0.3203 5 -1.7578 3722 0.1320

4
2 1 1.2063e-11 5361 0.2048 1 1.2063e-11 3221 0.1647
2 1 6.0581e-10 5370 0.1505 1 6.0581e-10 3230 0.1433

5

c=0.5
2 2 1.0071e-11 5850 0.2304 2 1.6582e-14 3511 0.1602
2 4 1.3798e-10 6396 0.3038 - - - -

c=0.2
2 2 2.5576e-10 5871 0.1729 1 0.6165 3257 0.1858
2 2 8.3350e-11 11130 0.3122 2 1.6212 3273 0.1320

c=0.05 2 3 5.7877e-11 13356 0.3738 5 0.6184 4647 0.2486
c=0.05 2 2 4.3862e-8 5478 0.1576 1 0.6184 3227 0.1473

6 2 1 3.0000 5496 0.1463 1 3.0000 3287 0.1228
7 2 3 -186.7309 5286 0.1182 2 -123.5768 3678 0.2178

8
2 3 0.9980 12075 0.6224 3 0.9980 3442 0.2802
2 3 0.9980 12147 0.6320 649 0.9980 6414 0.6793

9
m=5 4 2 -10.1532 45265 0.9075 1 -5.0552 10648 0.2654
m=7 4 2 -10.4029 51205 1.1519 1 -5.0877 10663 0.5475

m=10 4 2 -10.5364 47080 1.1174 1 -5.1285 10663 0.5501

10

2 3 4.4998e-14 31164 0.6559 5 3.7060e-14 4100 0.2099
5 9 3.6297e-15 91410 0.9884 5 6.9600e-4 17574 0.4629

10 7 5.0081e-9 399927 1.8787 5 3.5669e-12 75565 1.2692
30 12 1.2918e-11 5502810 15.6206 6 1.6043e-13 647069 8.3721
50 16 2.4807e-11 11562873 33.9494 29 1.4360e-15 3194755 45.2871

100 51 1.4958e-8 183671429 721.4294 1122.3393e-12 18688418 346.6963
200 4 1.0357e-9 205588629 847.5251 21 7.7970e-12 28113660 742.8123

11

2 5 3.4824e-11 34005 0.8710 5 0 3767 0.2041
5 11 4.3485e-12 214302 2.2427 11 0 20876 0.5491

10 14 1.2790e-13 767118 5.3170 21 0 89474 1.4570
30 23 1.6768e-9 8639917 35.6461 61 0 1202189 15.7959
50 5 3.5811e-12 17655639 75.4816 101 0 4527401 66.7309

100 75 4.5475e-13 87546396 450.2820 2011.1369e-13 30059598 602.1092
200 63 2.0600e-10 352329282 2655.6060 4015.9117e-122160890486859.0027

12
2 79 0 151752 4.9212 10 1.3323e-14 7003 0.3397
5 148 0 1192452 14.8535 84 2.1156e-12 120565 2.7870

Continued on next page
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NO. n
NFFM PFFF1

Iter f (x∗) NF f T (s) Iter f (x∗) NF f T (s)

12

10 1023.0873e-12 5495303 30.7575 - - - -
30 1325.0235e-12 107425695 176.2816 - - - -
50 1172.0286e-11 348382122 520.6993 - - - -

1001309.7856e-11 607111303 1558.6716 - - - -
200203 1.4511e-9 201981824710605.0670 - - - -

13

2 7 2.5455e-5 10482 0.5411 - - - -
5 16 6.3638e-5 51006 1.4617 - - - -

10 31 1.2728e-4 219516 3.3319 - - - -
30 91 3.8183e-4 2481116 21.3445 - - - -
50 152 6.3638e-4 8590134 77.8044 - - - -

100301 1.2728e-3 55840981 709.5823 - - - -
200601 2.5130e-3 357280113 7149.2103 - - - -

14

2 1 0.0566 7743 0.7729 1 0.0566 3332 0.1317
5 3 1.4644e-8 44862 0.6354 1 0.0173 16376 0.4277

10 2 2.5650e-4 133001 0.9756 - - - -
30 2 2.0058e-7 1074181 4.5460 - - - -
50 2 2.8443e-7 2922300 11.1526 - - - -

100 2 4.3167e-7 11470065 39.3521 - - - -
200 2 2.5979e-6 45435648 166.6213 - - - -

Table 5. Comparison of numerical experimental results.

NO. n
NFFM PFFF2

Iter f (x∗) NF f T (s) Iter f (x∗) NF f T (s)

1
2 2 2.3314e-16 11466 0.3768 2 1.0118e-17 429 0.0439
2 1 1.0583e-13 2208 0.0689 1 1.0583e-13 330 0.1212

2
2 1 -1.0316 5403 0.1521 1 -1.0316 267 0.0261
2 2 -1.0316 5250 0.1177 2 -1.0316 444 0.0500

3
2 3 -2.0000 11187 0.3188 3 -2.0000 876 0.0518
2 3 -2.0000 11028 0.3202 5 -1.5156 1047 0.0672

4
2 1 1.2063e-11 5361 0.2048 1 1.2063e-11 405 0.0591
2 1 6.0581e-10 5370 0.1505 1 6.0581e-10 294 0.1092

5
c=0.5

2 2 1.0071e-11 5850 0.2304 2 2.4581e-15 1080 0.1082
2 4 1.3798e-10 6396 0.3038 3 1.0276 1311 0.0696

c=0.2
2 2 2.5576e-10 5871 0.1729 1 0.6165 750 0.0432
2 2 8.3350e-11 11130 0.3122 10 8.8414 2814 0.1848

Continued on next page
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NO. n
NFFM PFFF2

Iter f (x∗) NF f T (s) Iter f (x∗) NF f T (s)

5 c=0.05
2 3 5.7877e-11 13356 0.3738 9 0.6184 1581 0.0908
2 2 4.3862e-8 5478 0.1576 1 0.6184 468 0.0732

6 2 1 3.0000 5496 0.1463 1 3.0000 525 0.0749
7 2 3 -186.7309 5286 0.1182 6 -185.9494 1953 0.1603

8
2 3 0.9980 12075 0.6224 3 0.9980 1287 0.1539
2 3 0.9980 12147 0.6320 - - - -

9
m=5 4 2 -10.1532 45265 0.9075 3 -5.0552 3190 0.1984
m=7 4 2 -10.4029 51205 1.1519 2 -5.0877 2020 0.2010

m=10 4 2 -10.5364 47080 1.1174 2 -5.1285 2034 0.1529

10

2 3 4.4998e-14 31164 0.6559 5 6.4387e-13 1419 0.1248
5 9 3.6297e-15 91410 0.9884 23 1.0258e-7 40356 1.0217

10 7 5.0081e-9 399927 1.8787 9 1.3036e-5 70884 1.2359
30 12 1.2918e-11 5502810 15.6206 24 1.7083e-15 997735 13.4804
50 16 2.4807e-11 11562873 33.9494 2041.3464e-15 20862621 298.6366

100 51 1.4958e-8 183671429 721.4294 - - - -
200 4 1.0357e-9 205588629 847.5251 - - - -

11

2 5 3.4824e-11 34005 0.8710 7 0 1446 0.1291
5 11 4.3485e-12 214302 2.2427 16 0 15366 0.4982

10 14 1.2790e-13 767118 5.3170 31 0 105963 1.9649
30 23 1.6768e-9 8639917 35.6461 81 5.6843e-14 2404639 38.0193
50 5 3.5811e-12 17655639 75.4816 151 0 12165642 226.8942

100 75 4.5475e-13 87546396 450.2820 3012.2737e-131016373102677.3067
200 63 2.0600e-10 352329282 2655.6060 - - - -

12

2 79 0 151752 4.9212 79 0 151752 4.9212
5 148 0 1192452 14.8535 148 0 1192452 14.8535

10 1023.0873e-12 5495303 30.7575 1246.2421e-12 422004 4.9854
30 1325.0235e-12 107425695 176.2816 - - - -
50 1172.0286e-11 348382122 520.6993 - - - -

1001309.7856e-11 607111303 1558.6716 - - - -
200203 1.4511e-9 201981824710605.0670 - - - -

13

2 7 2.5455e-5 10482 0.5411 - - - -
5 16 6.3638e-5 51006 1.4617 - - - -

10 31 1.2728e-4 219516 3.3319 - - - -
30 91 3.8183e-4 2481116 21.3445 - - - -
50 152 6.3638e-4 8590134 77.8044 - - - -

100301 1.2728e-3 55840981 709.5823 - - - -
200601 2.5130e-3 357280113 7149.2103 - - - -

14 2 1 0.0566 7743 0.7729 1 0.0566 576 0.1136
Continued on next page
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NO. n
NFFM PFFF2

Iter f (x∗) NF f T (s) Iter f (x∗) NF f T (s)

14

5 3 1.4644e-8 44862 0.6354 1 0.0173 1740 0.1217
10 2 2.5650e-4 133001 0.9756 - - - -
30 2 2.0058e-7 1074181 4.5460 - - - -
50 2 2.8443e-7 2922300 11.1526 - - - -

100 2 4.3167e-7 11470065 39.3521 - - - -
200 2 2.5979e-6 45435648 166.6213 - - - -

Table 6. Comparison of numerical experimental results.

NO. n
NFFM PFFF3

Iter f (x∗) NF f T (s) Iter f (x∗) NF f T (s)

1
2 2 2.3314e-16 11466 0.3768 3 0 612 0.1133
2 1 1.0583e-13 2208 0.0689 1 1.0583e-13 333 0.0245

2
2 1 -1.0316 5403 0.1521 1 -1.0316 399 0.0531
2 2 -1.0316 5250 0.1177 2 -1.0316 486 0.0411

3
2 3 -2.0000 11187 0.3188 - - - -
2 3 -2.0000 11028 0.3202 - - - -

4
2 1 1.2063e-11 5361 0.2048 1 1.2063e-11 363 0.0496
2 1 6.0581e-10 5370 0.1505 1 6.0581e-10 366 0.0265

5

c=0.5
2 2 1.0071e-11 5850 0.2304 1 0.5175 279 0.0156
2 4 1.3798e-10 6396 0.3038 9 0.5996 1710 0.0809

c=0.2
2 2 2.5576e-10 5871 0.1729 1 0.6165 444 0.0656
2 2 8.3350e-11 11130 0.3122 2 0.3558 711 0.0304

c=0.05
2 3 5.7877e-11 13356 0.3738 3 0.6184 1035 0.0856
2 2 4.3862e-8 5478 0.1576 1 0.6184 411 0.0319

6 2 1 3.0000 5496 0.1463 1 3.0000 456 0.0292
7 2 3 -186.7309 5286 0.1182 4 -186.7309 996 0.0396

8
2 3 0.9980 12075 0.6224 2 0.9980 702 0.0389
2 3 0.9980 12147 0.6320 2 0.9980 819 0.0582

9
m=5 4 2 -10.1532 45265 0.9075 2 -10.1529 2070 0.1036
m=7 4 2 -10.4029 51205 1.1519 2 -10.4027 2095 0.0948

m=10 4 2 -10.5364 47080 1.1174 2 -10.5364 2095 0.1276

10

2 3 4.4998e-14 31164 0.6559 - - - -
5 9 3.6297e-15 91410 0.9884 - - - -

10 7 5.0081e-9 399927 1.8787 - - - -
30 12 1.2918e-11 5502810 15.6206 - - - -
50 16 2.4807e-11 11562873 33.9494 4 5.8993e-13 442425 3.4794

Continued on next page
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NO. n
NFFM PFFF3

Iter f (x∗) NF f T (s) Iter f (x∗) NF f T (s)

10
100 51 1.4958e-8 183671429 721.4294 7 1.1811e-11 2602871 27.8996
200 4 1.0357e-9 205588629 847.5251 2 2.1345e-11 3424839 44.0043

11

2 5 3.4824e-11 34005 0.8710 4 0 849 0.0924
5 11 4.3485e-12 214302 2.2427 - - - -

10 14 1.2790e-13 767118 5.3170 - - - -
30 23 1.6768e-9 8639917 35.6461 34 5.6843e-14 501456 4.1769
50 5 3.5811e-12 17655639 75.4816 53 0 1876902 17.3860

100 75 4.5475e-13 87546396 450.2820 1034.5475e-13 13499054 168.2512
200 63 2.0600e-10 352329282 2655.6060 2052.2737e-131053965612099.2134

12

2 79 0 151752 4.9212 33 0.3247 7281 0.3332
5 148 0 1192452 14.8535 83 0.7564 83454 1.6411

10 1023.0873e-12 5495303 30.7575 1246.2421e-12 422004 4.9854
30 1325.0235e-12 107425695 176.2816 - - - -
50 1172.0286e-11 348382122 520.6993 - - - -

1001309.7856e-11 607111303 1558.6716 - - - -
200203 1.4511e-9 201981824710605.0670 - - - -

13

2 7 2.5455e-5 10482 0.5411 - - - -
5 16 6.3638e-5 51006 1.4617 - - - -

10 31 1.2728e-4 219516 3.3319 - - - -
30 91 3.8183e-4 2481116 21.3445 - - - -
50 152 6.3638e-4 8590134 77.8044 - - - -

100301 1.2728e-3 55840981 709.5823 - - - -
200601 2.5130e-3 357280113 7149.2103 - - - -

14

2 1 0.0566 7743 0.7729 1 0.0566 528 0.0614
5 3 1.4644e-8 44862 0.6354 1 0.0173 1944 0.0755

10 2 2.5650e-4 133001 0.9756 - - - -
30 2 2.0058e-7 1074181 4.5460 - - - -
50 2 2.8443e-7 2922300 11.1526 - - - -

100 2 4.3167e-7 11470065 39.3521 - - - -
200 2 2.5979e-6 45435648 166.6213 - - - -

Table 7. Comparison of numerical experiment results.

NO. n
NFFM PFFF4

Iter f (x∗) NF f T (s) Iter f (x∗) NF f T (s)

1
2 2 2.3314e-16 11466 0.3768 2 4.3211e-14 1038 0.9396
2 1 1.0583e-13 2208 0.0689 1 1.0583e-13 1092 0.0492

Continued on next page
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NO. n
NFFM PFFF4

Iter f (x∗) NF f T (s) Iter f (x∗) NF f T (s)

2
2 1 -1.0316 5403 0.1521 1 -1.0316 531 0.0401
2 2 -1.0316 5250 0.1177 2 -1.0316 618 0.0796

3
2 3 -2.0000 11187 0.3188 3 -2.0000 1929 0.1434
2 3 -2.0000 11028 0.3202 3 -1.7578 1674 0.0673

4
2 1 1.2063e-11 5361 0.2048 1 1.2063e-11 2661 0.0587
2 1 6.0581e-10 5370 0.1505 1 6.0581e-10 2670 0.1149

5

c=0.5
2 2 1.0071e-11 5850 0.2304 3 1.1035e-7 49275 1.6369
2 4 1.3798e-10 6396 0.3038 7 1.1204e-9 50250 1.4413

c=0.2
2 2 2.5576e-10 5871 0.1729 3 8.7391e-10 51357 1.5487
2 2 8.3350e-11 11130 0.3122 9 6.1308e-7 52491 1.4257

c=0.05
2 3 5.7877e-11 13356 0.3738 5 0.1022 49710 1.5305
2 2 4.3862e-8 5478 0.1576 3 5.6362e-11 43698 1.1451

6 2 1 3.0000 5496 0.1463 1 3.0000 2454 0.1439
7 2 3 -186.7309 5286 0.1182 4 -186.7309 3411 0.1825

8
2 3 0.9980 12075 0.6224 3 0.9980 3024 0.1564
2 3 0.9980 12147 0.6320 7 0.9980 3903 0.1949

9
m=5 4 2 -10.1532 45265 0.9075 2 -10.1532 17835 0.8182
m=7 4 2 -10.4029 51205 1.1519 2 -10.4029 20520 0.7257

m=10 4 2 -10.5364 47080 1.1174 2 -10.5364 19065 0.8135

10

2 3 4.4998e-14 31164 0.6559 5 1.8586e-12 4929 0.1414
5 9 3.6297e-15 91410 0.9884 7 4.7871e-14 29904 0.5543

10 7 5.0081e-9 399927 1.8787 6 2.2716e-8 145090 1.1568
30 12 1.2918e-11 5502810 15.6206 11 1.4568e-9 1301504 6.3026
50 16 2.4807e-11 11562873 33.9494 20 5.3092e-12 5046909 23.6914

100 51 1.4958e-8 183671429 721.4294 47 3.7590e-8 22979621 138.2573
200 4 1.0357e-9 205588629 847.5251 12 2.1157e-9 48143520 451.1563

11

2 5 3.4824e-11 34005 0.8710 3 2.6645e-12 12903 0.4066
5 11 4.3485e-12 214302 2.2427 6 7.1054e-12 65448 1.1110

10 14 1.2790e-13 767118 5.3170 - - - -
30 23 1.6768e-9 8639917 35.6461 31 7.7853e-10 1104840 8.6058
50 5 3.5811e-12 17655639 75.4816 - - - -

100 75 4.5475e-13 87546396 450.2820 2017.5033e-12 26778837 273.1368
200 63 2.0600e-10 352329282 2655.6060 4018.4128e-121950427623062.2324

12

2 79 0 151752 4.9212 15 0.0295 6678 0.2673
5 148 0 1192452 14.8535 28 0.0295 50982 1.1381

10 1023.0873e-12 5495303 30.7575 33 0.0295 167277 2.0386
30 1325.0235e-12 107425695 176.2816 53 1.0672e-10 2829680 20.6502
50 1172.0286e-11 348382122 520.6993 80 2.2460e-10 9895530 75.8761

Continued on next page
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NO. n
NFFM PFFF4

Iter f (x∗) NF f T (s) Iter f (x∗) NF f T (s)

12
1001309.7856e-11 607111303 1558.6716 1202.3546e-10 49981870 477.1591
200203 1.4511e-9 201981824710605.06701697.3183e-102619655113468.8519

13

2 7 2.5455e-5 10482 0.5411 - - - -
5 16 6.3638e-5 51006 1.4617 - - - -

10 31 1.2728e-4 219516 3.3319 - - - -
30 91 3.8183e-4 2481116 21.3445 - - - -
50 152 6.3638e-4 8590134 77.8044 - - - -

100301 1.2728e-3 55840981 709.5823 - - - -
200601 2.5130e-3 357280113 7149.2103 - - - -

14

2 1 0.0566 7743 0.7729 1 0.0566 19362 0.5234
5 3 1.4644e-8 44832 0.6354 3 1.4644e-8 100416 1.3234

10 2 2.5650e-4 133001 0.9756 2 2.5650e-04 331254 2.5687
30 2 2.0058e-7 1074181 4.5460 2 0.0495 2670247 11.1110
50 2 2.8443e-7 2922300 11.1526 2 0.0896 7241490 27.4103

100 2 4.3167e-7 11470065 39.3521 2 0.7187 28412815 99.1462
200 2 2.5979e-6 45435648 166.6213 2 0.0157 112403421 428.3822

Table 8. Comparison of numerical experiment results.

NO. n
NFFM PFFF5

Iter f (x∗) NF f T (s) Iter f (x∗) NF f T (s)

1
2 2 2.3314e-16 11466 0.3768 2 5.6913e-14 530 0.0156
2 1 1.0583e-13 2208 0.0689 1 1.0583e-13 433 0.0192

2
2 1 -1.0316 5403 0.1521 1 -1.0316 427 0.0355
2 2 -1.0316 5250 0.1177 2 - - -

3
2 3 -2.0000 11187 0.3188 3 - - -
2 3 -2.0000 11028 0.3202 3 -2.0000 811 0.0121

4
2 1 1.2063e-11 5361 0.2048 1 1.2063e-11 463 0.0293
2 1 6.0581e-10 5370 0.1505 1 6.0581e-10 442 0.0175

5

c=0.5
2 2 1.0071e-11 5850 0.2304 2 1.2736e-14 563 0.0216
2 4 1.3798e-10 6396 0.3038 4 3.9226e-3 1138 0.0173

c=0.2
2 2 2.5576e-10 5871 0.1729 3 - - -
2 2 8.3350e-11 11130 0.3122 5 - - -

c=0.05
2 3 5.7877e-11 13356 0.3738 5 - - -
2 2 4.3862e-8 5478 0.1576 3 - - -

6 2 1 3.0000 5496 0.1463 1 3.0000 478 0.0204
Continued on next page
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NO. n
NFFM PFFF5

Iter f (x∗) NF f T (s) Iter f (x∗) NF f T (s)
7 2 3 -186.7309 5286 0.1182 4 -186.7309 1193 0.1175

8
2 3 0.9980 12075 0.6224 2 0.9980 898 0.1181
2 3 0.9980 12147 0.6320 62 - - -

9
m=5 4 2 -10.1532 45265 0.9075 1 -5.0552 1880 0.1560
m=7 4 2 -10.4029 51205 1.1519 1 -5.0877 1895 0.1181
m=10 4 2 -10.5364 47080 1.1174 1 -5.1285 1895 0.1058

Tables 4–8 show the numerical computation results of the NFFM compared with the other five
filled function algorithms, respectively. The comparison of numerical results in Table 4 shows that the
NFFM’s accuracy of the global optimum is better than that of PFFF1 in 13 out of the 14 algorithms
tested, and the number of iterations in 12 of these examples is also better or not worse than that of
PFFF1. In this paper, the NFFM’s performance advantage is more obvious in terms of the performance
of the algorithms for solving the high-dimensional test problems. The NFFM successfully optimizes
them all, and the accuracy and number of iterations of the obtained global optimums are better than
PFFF1. However, for the successfully solved examples, the NFFM outperforms PFFF1 only for a
few of the successfully solved cases, in terms of the total amount of function computation and time
consumed for the objective function and the filled function.

Comparison of the numerical experimental results in Table 5 shows that the accuracy of the global
optimum of PFFF2 is better than that of the NFFM only in solving the 30-dimensional and 50-
dimensional problems of Problem 10 and the 2–200-dimensional problems of Problem 11, but the
number of iterations used is higher than that of the NFFM. PFFF1 fails to find an optimal solution for
the 200-dimensional problem of Problem 11. In addition, for Problem 13 and Problem 14, the NFFM
in this paper is able to successfully find their global optimal solutions, while PFFF2 fails to find an
optimal solution for them. Therefore, in summary, the NFFM performs better than PFFF2.

In order to prove the effectiveness of the algorithm more strongly, the NFFM was experimentally
compared with the parameter-free filled function algorithms PFFF3 and PFFF4, which have been
proposed in the last three years. The comparison of the specific experimental computational results
is shown in Tables 6 and 7. It can be seen from Table 6 that PFFF3 fails in finding the optimum for
some examples. Neglecting the problems with the same number of iterations and global optimum and
the problems where PFFF3 fails to find the optimal value, and comparing the number of iterations
and global optimum of the NFFM with those of PFFF3, the NFFM in this paper has a slightly
higher number of iterations than that of PFFF3 only in the solving of Problem 8, and the NFFM’s
accuracy of the number of iterations and global optimum is superior to that of PFFF3 for the rest of
the problems. Similarly, ignoring the problem with the same number of iterations and global optimum
and the problem where PFFF4 fails to find the optimum, the NFFM outperforms PFFF4 in terms of the
accuracy of the global optimum on the solution of the rest of the problems, and the number of iterations
at the termination of the algorithm is slightly higher than that of PFFF4 in only one of the algorithms.
In addition, for Problem 13, which is a typical spoofing problem, it is very easy to make the algorithm
fall into a local optimal solution. In this paper, the NFFM can successfully find the global optimal
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solution of this problem, but the algorithms PFFF3 and PFFF4 cannot achieve it. Therefore, evaluated
from the two perspectives of iteration number and global optimum, the NFFM is efficient and feasible
in solving the above 14 unconstrained optimization problems. Furthermore, to highlight the superior
performance of the improved filled function in this paper, we have conducted a comparative analysis
of the numerical results of NFFM and algorithm PFFF5 on Problems 1 to 9. These problems utilize
the same test functions as those used to validate PFFF5 in reference [22]. The detailed comparison
results are presented in Table 8, showing that NFFM successfully finds the global optimal solutions for
all nine problems with higher accuracy.

Tables 4–8 present the numerical results of the filled function algorithm in solving 14 test functions
from a given initial point. To validate the independence of our proposed algorithm from the choice of
the initial point, we have conducted additional experiments on Problems 11 and 12. Specifically, we
randomly generated 10 points within the feasible region of the target problems and independently
applied these points to these two problems. We employed three distinct metrics to compare the
capabilities of the NFFM against other filled function algorithms. These metrics are: the average
number of iterations(It); the average value of the global optimum achieved by the algorithm( fm); and
the success rate in successfully finding the global optimum over 10 independent runs of the algorithm
are denoted as S R. The specific numerical experimental results are presented in Tables 9 and 10.
In a comprehensive comparison, NFFM has exhibited comprehensive advantages in the numerical
computation phase, with all its indicators surpassing those of the other four comparative algorithms.
It is worth noting that the average global optimal value achieved by the NFFM possesses remarkably
high precision, and its success rate nearly reaches 100%, thus proving the superior performance and
reliability of NFFM in addressing related problems.

However, considering the total running time and the total number of function evaluations, the
numerical results in Tables 4 to 7 indicate that, as the dimension of the test functions increases
during the optimization of problems 10 to 14, the total running time and the total number of function
evaluations also increase accordingly. This is primarily due to the fact that traditional filled function
algorithms often employ a fixed or limited number of perturbation step sizes when generating initial
points for minimizing filled functions. This approach can lead to the algorithms getting stuck in
local minima and failing to find the global optimal solution when dealing with high-dimensional
and complex unconstrained optimization problems. To address this issue, the proposed algorithm
NFFM in this paper perturbs the current local minimum and uses it as an initial point during the
minimization of the filled function. It continuously searches for a better local minimum. If a better
solution is not found, the algorithm increases the perturbation of the current local minimum of the
objective function until it reaches the boundary of the feasible region, at which point the algorithm
terminates. This approach may require more time and computational resources when dealing with some
high-dimensional problems. However, this design ensures a more comprehensive exploration of the
solution space, increasing the likelihood of finding the global optimal solution. Although the proposed
NFFM in this paper may require more time when sloving high-dimensional unconstrained optimization
problems, the time complexity analysis reveals that the time complexity for other algorithms to escape
a local minimum is O(n∗T (local)). Similarly, the time complexity of NFFM to escape a local minimum
is also O(n ∗ T (local)). Therefore, in terms of time complexity, the proposed algorithm is comparable
to other contrasting algorithms.

In summary, the proposed NFFM in this paper significantly reduces the number of iterations,
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improves the accuracy of the global optimal solution, and effectively tackles high-dimensional
multimodal unconstrained optimization problems, exhibiting strong ability to escape from local
minima. Through extensive numerical comparative experiments and validation on high-dimensional
problems, the NFFM has been proven feasible and efficient, outperforming algorithms PFFF1–PFFF5
in terms of computational capability.

Table 9. Comparison of numerical experimental results at random initial points.

NO. n
NFFM PFFF1 PFFF2

It fm S R It fm S R It fm S R

11

2 3.3 1.4214e-12 10/10 3.3 9.8055e-14 10/10 2.8 5.0775e-1 4/10
5 8.4 4.8127e-11 10/10 7.7 8.1784e-13 10/10 - - 0/10

10 11 3.2427e-10 10/10 11.8 8.3063e-12 10/10 - - 0/10
30 21.3 5.8421e-10 9/10 38 4.8772e-12 10/10 - - 0/10
50 30.8 1.1750e-9 10/10 60.1 3.8301e-11 10/10 - - 0/10
100 41.6 2.6335e-9 10/10 117.7 4.0907e-10 10/10 - - 0/10

12

2 47.9 1.4622e-13 9/10 20.4 4.1687e-13 9/10 - - 0/10
5 72.1 2.0000e-12 10/10 45.6 1.7502e-12 10/10 - - 0/10

10 70.8 2.5637e-12 9/10 - - 0/10 - - 0/10
30 119.3 2.2261e-11 10/10 - - 0/10 - - 0/10
50 131.3 5.5394e-11 10/10 - - 0/10 - - 0/10

100 121.3 6.7660e-11 10/10 - - 0/10 - - 0/10

Table 10. Comparison of numerical experimental results at random initial points.

NO. n
NFFM PFFF3 PFFF4

It fm S R It fm S R It fm S R

11

2 3.3 1.4214e-12 10/10 3.5 1.1842e-15 6/10 3.5 2.7807e-12 10/10
5 8.4 4.8127e-11 10/10 7.2 8.5266e-15 5/10 7.9 5.9607e-11 10/10
10 11 3.2427e-10 10/10 9.2 9.4740e-15 6/10 13.6 4.9224e-11 10/10
30 21.3 5.8421e-10 9/10 35 1.1369e-13 3/10 26.8 1.2427e-10 10/10
50 30.8 1.1750e-9 10/10 47.5 2.8422e-14 2/10 34 3.9248e-9 10/10

100 41.6 2.6335e-9 10/10 91.3 1.2790e-13 7/10 33.7 1.9168e-10 10/10

12

2 47.9 1.4622e-13 9/10 15.2 2.1978e-1 9/10 15.8 2.1651e-2 10/10
5 72.1 2.0000e-12 10/10 33.8 6.0327e-1 10/10 27.1 2.3622e-2 10/10
10 70.8 2.5637e-12 9/10 44.3 3.2493e-2 9/10 35.1 2.0699e-2 10/10
30 119.3 2.2261e-11 10/10 - - 0/10 62.1 2.0699e-2 10/10
50 131.3 5.5394e-11 10/10 - - 0/10 91.5 3.5085e-10 10/10

100 121.3 6.7660e-11 10/10 - - 0/10 88.7 6.8476e-10 10/10

AIMS Mathematics Volume 9, Issue 7, 18475–18505.



18503

5. Conclusions

This paper introduces a novel, parameter-free, and continuously differentiable filled function that
eliminates the traditional exponential and logarithmic terms, while rigorously proving its filling
property. By leveraging this innovative function, we have developed a new filled function algorithm
that significantly enhances its performance in addressing multimodal global optimization problems
by optimizing the perturbation step size. Through extensive testing and comparative analysis on 14
benchmark functions, we have convincingly demonstrated the efficacy and precision of our algorithm
in addressing high-dimensional multimodal global optimization problems. Our proposed algorithm
surpasses existing methods, exhibiting superior solution accuracy, stability, and reliability. This
accomplishment introduces a robust new instrument for tackling global optimization challenges,
thereby emphasizing the significant potential and widespread applicability of the filled function
approach in contemporary optimization research.
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