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Abstract: Education is essential and increasingly crucial for the development of almost all countries
worldwide. As educational data has become increasingly available, scholars have shown a growing
interest in exploring the correlation between students’ academic achievements and other factors that
may impact their performance using machine learning algorithms. This research paper introduces
a novel hybrid classifier that aims to predict the academic performance of students by using a
combination of different single algorithms. The proposed hybrid classifier (PHC) is compared to
six available classification algorithms (random forest (RF), C4.5, classification and regression trees
(CART), support vector machines (SVM), naive Bayes (NB) and K-nearest neighbors (KNN)) using
recall, precision, F1-score, and accuracy evaluation measures. Our experimental results reveal
that the PHC classifier consistently outperforms the individual classifiers across multiple evaluation
metrics. Specifically, the PHC classifier achieved an accuracy rate of 92.40%, surpassing the
RF, C4.5, and CART classifiers, which were the next best performers. In terms of precision and
F1 score, the PHC also demonstrated superior performance, indicating its robustness in correctly
identifying positive instances and providing balanced accuracy. While the C4.5 classifier performed
comparably to the PHC classifier concerning the recall metric, the hybrid model’s overall performance
highlights its effectiveness in leveraging the complementary strengths of the included classifiers. The
suggested hybrid model has the potential to enhance students’ academic performance and success more
effectively and efficiently. It could benefit students, educators, and academic institutions. Additionally,
it provides practical insights for educators and institutions striving to improve student achievement
using predictive analysis.
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1. Introduction

Educational institutions globally are constantly innovating to uncover strategies that not only foresee
but also boost student achievements, laying the groundwork for a future where academic success is
within reach for every learner. The integration of machine learning algorithms into educational research
has emerged as a transformative approach, offering insights that assist in optimizing learning outcomes,
decision-making processes, and resource allocation. This paper introduces a new hybrid classification
algorithm to predict student performance more accurately than existing methodologies.

Recent studies have demonstrated the efficacy of various machine-learning techniques in
educational settings. From deep artificial neural networks identifying at-risk students to process
mining enhancing MOOCs experiences, the landscape of educational data mining is rich and varied.
However, each of these methods, while impactful in their own right, presents limitations when applied
in isolation.

To enhance accuracy and introduce a unique approach compared to existing work, we have
implemented a PHC that uses the optimal combination of RF, C4.5, and CART classifiers. This novel
hybrid algorithm aims to combine the strengths of these individual classifiers to achieve superior
predictive performance. Our motivation stems from the belief that a collective approach can address
the shortcomings of singular algorithms, thereby providing a more holistic and accurate tool for
educational practitioners. Hybrid classification models can be applied to many applications in other
fields such as in education [1], agriculture [2], environment [3], materials [4], and optics [5].

The PHC has the potential to generate more accurate predictions and classifications related to
students’ performance, benefiting educational professionals, researchers, and policymakers in the
education field. By leveraging the combined capabilities of RF, C4.5, and CART, the PHC is poised to
offer significant advancements in predicting student outcomes. This paper details our hybrid
classification algorithm’s development, evaluation, and application, demonstrating its effectiveness
through a dataset obtained from the UCI machine learning repository.

Our contribution to educational data mining with the PHC underscores the importance of innovative,
data-driven approaches to understanding and enhancing student performance. As we navigate the
complexities of educational needs and the vast potential of machine learning, the PHC represents a
step forward in our collective effort to foster academic success and resilience among students globally.

The rest of this paper is structured as follows: Section 2 provides a literature review regarding
the use of classification algorithms in education. Section 3 introduces the classification algorithms
employed in this research, describes the data set used, presents an exploratory data analysis, details the
experimental setup, evaluation measures utilized, and, finally, discusses the performance results of all
algorithms. Section 4 concludes the key results and suggests possible future research directions.

2. Related work

Institutions of higher learning worldwide are deeply invested in ensuring that their students
achieve academic excellence. Pursuing academic achievement is a top priority for these institutions as
it is a vital component in the development of well-rounded individuals who are prepared to make
meaningful contributions to society. Machine learning algorithms can help institutions improve
student learning outcomes, make better decisions, predict future trends and behavior, and optimize
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resource allocation. Therefore, we investigated the application of various machine-learning
techniques in the field of education.

In recent years, the integration of machine learning algorithms in educational research has gained
substantial attention, particularly in predicting student performance. Waheed et al. [6] used a deep
artificial neural network to predict at-risk students based on unique handcrafted features extracted
from click-stream data in virtual learning environments, providing early intervention measures. Their
findings showed that the presented model outperforms other models, such as logistic regression and
support vector machine algorithms. The study also found that students interested in reviewing past
lectures’ content performed better academically.

Umer et al. [7] developed a process mining technique to enable early predictions for enhancing
students’ learning experience in MOOCs. The study evaluates the effectiveness of various machine
learning methods combined with process mining features. The research evaluates four machine
learning classification techniques commonly used in the literature to predict overall performance
outcome and observe weekly progression. The techniques include logistic regression, Naive Bayes,
random forest, and K-nearest neighbors. Their results showed that the Naive Bayes method
outperformed all other methods with an 89% accuracy rate. Another study was conducted to predict
student performance by analyzing student-related data [8]. The data includes the scores of various
assessments such as class tests, attendance, assignments, and midterms. The Levenberg Marquardt
(MLA) deep learning and deep neural network algorithm were used in this study. The performance of
the algorithms was assessed using different metrics such as recall, precision, accuracy, and F1 score.
According to the findings, the MLA algorithm outperformed the other algorithms with an accuracy
rate of 88.6% [8].

Morilla et al. [9] conducted a study aimed at predicting students’ mathematics performance
through the application of various machine learning algorithms, namely Naive Bayes, multiple linear
regression, and decisions trees. Their analysis leveraged a dataset encompassing 144 students,
capturing a range of academic metrics including attendance ratings, recitation scores, quiz results,
midterm and final exam grades, alongside overall final grades. It was determined that the midterm
exam rating stood out as the most significant predictor of students’ overall performance. To assess the
efficacy of their proposed classification algorithms, a 10-fold cross-validation method was utilized.
The findings revealed that the Naive Bayes algorithm outperformed the others, achieving an accuracy
rate of 73.61%, closely followed by the decision tree algorithm at 72.22%. On the other hand, the
multiple linear regression algorithm lagged behind with an accuracy rate of 70.2%.

Mueen et al. [10] utilized three classification algorithms to predict and analyze the academic
performance of students based on their academic records as well as their participation in forums.
They used neural networks, decision trees, and the Naive Bayes algorithms based on the data
collected from two undergraduate courses. Their findings indicated that the Naive Bayes algorithm
achieved the highest prediction accuracy of 86% compared to the other two algorithms. Shahiri et
al. [11] conducted a systematic literature review on predicting student performance. Their research
paper aimed to provide an overview of data mining methods for predicting student performance. The
paper delved further into the application of a prediction algorithm to identify the most important
attributes in a student’s data, enabling educators to tailor their teaching methods accordingly.

Previous studies indicate that we can use various classification algorithms to predict students’
academic performance and address related educational issues. In this research paper, we propose a
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new hybrid classification algorithm that performs better than individual algorithms. It combines the
strengths of various algorithms to provide superior accuracy and efficiency. This algorithm has been
found to perform better than many other algorithms currently available in the literature when
predicting student performance. We evaluated the performance of all algorithms in this paper using a
combination of recall, precision, F1-score, and accuracy metrics.

3. Materials and methods

3.1. Classification algorithms

We have employed a diverse range of classification techniques to make more precise predictions
about student achievement. These methods have enabled us to identify and analyze various factors
that affect academic performance and ultimately generate more accurate predictions. These techniques
encompass RF, C4.5, CART, SVM, NB, KNN, and our PHC.

3.1.1. Random forest (RF)

Random forest is an ensemble learning method that operates by constructing many decision trees
during training and outputting the mode of the classes (classification) or the individual trees’ mean
prediction (regression). Each tree is constructed using a random subset of the training data and a
random subset of features, thereby reducing overfitting and improving robustness. Random forest has
gained popularity due to its ability to effectively handle high-dimensional data and nonlinear
relationships. For more details and information see [12].

3.1.2. C4.5

C4.5 is a decision tree algorithm used for classification tasks. It builds decision trees based on
the information gain criterion, which measures the effectiveness of splitting data at each node. C4.5
recursively splits the data into subsets based on the attribute that maximizes information gain until a
stopping criterion is met, such as reaching a maximum tree depth or when all instances belong to the
same class. C4.5 is known for its simplicity and interpretability. C4.5 employs a top-down, greedy
approach to recursively split the data set based on the most informative attribute at each node. It
handles both discrete and continuous attributes and can handle missing attribute values by estimating
them based on available data. For further details and insights, refer to [13].

3.1.3. Classification and regression trees (CART)

CART is another decision tree algorithm used for both classification and regression tasks. Like
C4.5, CART builds binary trees by recursively partitioning the input space into regions that minimize
impurity (for classification) or variance (for regression). CART differs from C4.5 in its splitting
criterion and handling of categorical variables. CART is widely used due to its versatility and ability
to handle various types of data. CART constructs binary trees by selecting the best split at each node
to maximize purity (for classification) or minimize variance (for regression). It handles both
categorical and continuous variables and can handle missing data. CART can be easily interpreted
and visualized, making it useful for decision-making tasks. For additional information and
clarification, see [14].
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3.1.4. Support vector machines (SVM)

SVM is a supervised learning algorithm used for classification and regression tasks. It operates by
finding the optimal hyperplane that separates instances of different classes in the feature space while
maximizing the margin, i.e., the distance between the hyperplane and the nearest data points (support
vectors). SVM can handle linear and nonlinear relationships using kernel functions such as linear,
polynomial, and radial basis function (RBF) kernels. SVM is effective in high-dimensional spaces and
can separate classes in nonlinear feature spaces using kernel functions. SVM also has a regularizing
parameter that helps control overfitting. For further insights and elaboration, refer to [15].

3.1.5. Naive Bayes (NB)

Naive Bayes is a probabilistic classification algorithm based on Bayes’ theorem with the assumption
of independence between features. Despite its simplistic assumption, Naive Bayes often performs well
in practice, especially for text classification tasks. It calculates the probability of each class given the
input features and selects the class with the highest probability as the predicted class. Naive Bayes
assumes that features are conditionally independent given the class, which simplifies the calculation of
the posterior probability. It is computationally efficient and requires a small amount of training data.
For further reading, refer to [16].

3.1.6. K-nearest neighbors (KNN)

KNN is a non-parametric, instance-based learning algorithm used for classification and regression
tasks. It operates by assigning a new data point to the majority class (for classification) or averaging
the values of its nearest neighbors (for regression) in the feature space. KNN’s simplicity and intuitive
approach make it popular for various types of data and applications. KNN is a non-parametric
algorithm that stores all available cases and classifies new cases based on a similarity measure (e.g.,
distance functions). It is simple and easy to implement, but it can be computationally expensive for
large datasets since it requires calculating distances between all pairs of data points. For additional
insights, see [17].

3.1.7. Proposed hybrid classifier (PHC)

This research paper introduces a novel hybrid classification algorithm that combines multiple
classification algorithms. Our proposed algorithm is based on an ensemble of the random forest, C4.5,
and CART algorithms, designed to predict students’ performance. The hybrid classifier first trains
each algorithm with the given training set. Once the training process is complete, the hybrid classifier
then proceeds to provide the testing set to each of the algorithms. Each algorithm predicts a class
label for each instance in the testing set. In the final prediction stage, the hybrid classifier selects the
majority voting class label. Integrating multiple classification algorithms aims to produce superior
results compared to a single algorithm. Hybrid classifiers that use voting-based aggregation can
improve the overall performance of the hybrid classifier by reducing individual classifier biases and
errors. When individual algorithms are proficient in different aspects or capture different patterns in
the data set, they become particularly useful. Figure 1 illustrates the concept of our proposed hybrid
classifier.
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Figure 1. Proposed hybrid classifier PHC.

3.2. Data source

The data set used in this paper is obtained from the UCI repository of machine learning data sets
[18]. It was collected from two Portuguese high schools through school reports and questionnaires.
The data set concerns students’ performance in mathematics. It consists of 395 students with diverse
attributes such as grades, demographics, social factors, and school-related features. Cortez and Silva
[19] illustrate the detailed description of this data set. According to them, the data set can be modeled
under binary or multi-classification tasks. In this paper, we consider a binary classification task. The
target variable, which originally had numerical values, was converted to a binary variable. According
to [19], students pass if their final grade is equal to or greater than 10; otherwise, they fail. This data
set does not contain missing values. Table 1 summarizes the characteristics of each attribute variable
in the data set.

3.3. Exploratory data analysis

In this section, we delve into the student performance dataset from the UCI machine learning
repository and perform exploratory data analysis (EDA). This process will enable us to explore the
dataset’s various features, identify patterns, and gain insights into the data distribution, shape, and
relationships between different variables. The EDA helps us to uncover valuable insights into attribute
variables’ prevalence and relationships. By the end of this analysis, we will have a more
comprehensive understanding of the student performance data set and be better equipped to draw
meaningful conclusions from it. The detailed presentation of the results of the EDA analyses can be
found in this section. The experiments were conducted using the R statistical software.

Box plots in Figure 2 provide a quick visualization of the distribution of numerical attribute
variables, revealing several key trends in student performance data:
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• Most students are clustered around the median age, with some notable exceptions.
• The mother’s education level is slightly skewed towards higher education.
• Commute and study times are consistent, with a few outliers suggesting longer travel times.
• Most students have not failed any classes, though a minority have failed once or three times,

suggesting a need for targeted support.
• Family relations and social activities appear positively skewed, indicating good social support

overall.
• Health issues and absences show greater variability, indicating a link to academic challenges.
• First and second period grades are symmetrically distributed, with a few students showing

exceptional high or low performance.
• Outliers clearly affect the absence attribute variable. Hence, we use the Winsorization

method [20], which replaces outliers with the observations closest to them. This is done to limit
the effect of outliers on the performance of classifiers. For example, the identified outliers in the
(absences) attribute variable have negatively affected the overall performance prediction of
classification algorithms. However, using the Winsorization approach avoids this problem and
enhances the overall accuracy.

Table 1. Data set description.
Attribute Description Attribute type Attribute range
School Student’s school Categorical 2
Sex Student’s sex Categorical 2
Age Student’s age Numerical 15-22
Address Student’s home address type Categorical 2
Famsize Family size Categorical 2
Pstatus Parent’s cohabitation status Categorical 2
Medu Mother’s education Numerical 0-4
Fedu Father’s education Numerical 0-4
Mjob Mother’s job Categorical 5
Fjob Father’s job Categorical 5
Reason Reason to choose this school Categorical 4
Guardian Student’s guardian Categorical 3
Traveltime Home to school travel time Numerical 1-4
Studytime Weekly study time Numerical 1-4
Failures Number of past class failures Numerical 0-3
Schoolsup Extra educational support Categorical 2
Famsup Family educational support Categorical 2
Paid Extra paid classes within the course subject Categorical 2
Activities Extra-curricular activities Categorical 2
Nursery Attended nursery school Categorical 2
Higher Wants to take higher education Categorical 2
Internet Internet access at home Categorical 2
Romantic With a romantic relationship Categorical 2
Famrel Quality of family relationships Numerical 1-5
Freetime Free time after school Numerical 1-5
Goout Going out with friends Numerical 1-5
Dalc Workday alcohol consumption Numerical 1-5
Walc Weekend alcohol consumption Numerical 1-5
Health Current health status Numerical 1-5
Absences Number of school absences Numerical 0-75
G1 First period grade Numerical 3-19
G2 Second period grade Numerical 0-19

AIMS Mathematics Volume 9, Issue 7, 18308–18323.



18315

0

20

40

60

ag
e

Med
u

Fed
u

tra
ve

ltim
e

stu
dy

tim
e

fai
lur

es

fam
re

l

fre
eti

me
go

ou
t

Dalc
W

alc

he
alt

h

ab
se

nc
es G1 G2

Figure 2. Box plots for continuous attribute variables.

Bar plots in Figure 3 provides a visual representation of the categorical attribute variables, where
the horizontal coordinates represent the levels of each attribute variable and the vertical coordinates
represent their frequencies. This visual representation assists us in identifying any imbalances or biases
that may exist within the data set. For instance, we can see that the ‘higher’ attribute variable is
imbalanced, where most instances concentrate on the ‘Yes’ option. It can also be seen that the father’s
job (Fjob) attribute variable has five levels, but most of the instances concentrate on the ‘other’
level. This information is crucial for understanding how attribute variables can affect predicting and
classifying student performance.

Figure 4 illustrates a heatmap that visualises the correlation between variables, highlighting the
eight attributes most strongly correlated with the class variable. Each heatmap cell quantifies the
correlation between two attributes, where a value below zero indicates a negative correlation, above
zero denotes a positive correlation, and exactly zero signifies no correlation. The standardized
measure’s correlation coefficient ranges from -1 (indicating a perfect negative correlation) to +1
(indicating a perfect positive correlation). Notably, the strongest correlation observed is between the
grades from the first and second-periods, with a correlation coefficient of 0.85. Significant
correlations are also observed between the first and second-period exam grades and the class variable.
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Such correlations are anticipated, given that student grades often interrelate. Morilla et al. corroborate
this finding, noting the significant impact of midterm grades on overall student classification [9].
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Figure 3. Bar plots for categorical attribute variables.

AIMS Mathematics Volume 9, Issue 7, 18308–18323.



18317

1.00 −0.01

1.00

0.38 −0.031.00 −0.16−0.16 −0.06 −0.14−0.18

−0.28 −0.03−0.151.00 0.140.07 0.07 0.130.05

−0.13 0.081.00

−0.08 0.030.621.00 0.19 0.16

−0.03 0.090.211.00 0.85

−0.05 0.090.221.00

−0.03 0.070.120.11 0.66 0.731.00

address

age

class

Fedu

G1

G2

Medu

school

sex

ad
dr

es
s

ag
e

cla
ss

Fe
du G1 G2

M
ed

u

sc
ho

ol se
x

Figure 4. Heatmap of correlation among attribute variables.

3.4. Evaluation measures

In this paper, a 10-fold cross-validation scheme has been applied to evaluate the performance of
all classifiers. The 10-fold cross-validation method divides the data set into ten equal parts. Then, the
model is trained on nine of these parts and tested on the remaining part. This process is repeated ten
times, so each part is utilized for testing once. The model’s performance is estimated by averaging
the results of 10 experiments, providing a more accurate outcome than a single experiment. In order
to assess and compare the performance of all classifiers, four performance evaluation measures are
used, which are recall, precision, F1-score, and accuracy. Before we introduce evaluation measures,
we clarify some concepts using a sample confusion matrix, as shown in Table 2. Note that TN, TP,
FN, and FP are abbreviations for true negatives, true positives, false negatives, and false positives,
respectively. The description of evaluation measures is as follows.

Table 2. A sample confusion matrix.

Class 1 (Predicted) Class 2 (Predicted)
Class 1 (Actual) TN FP
Class 2 (Actual) FN TP

The most commonly used measure to evaluate the effectiveness of classification algorithms is
accuracy. Accuracy refers to the ratio of correctly classified samples to the total number of samples,
and is given by
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Accuracy = TP + TN
TN + TP + FN + FP.

F-score is defined as the harmonic mean between precision and recall, and is given by

F1-score = 2TP
2TP + FN + FP.

Recall is defined as the ratio of the total number of positive predicted instances to the total number
of positive instances, and is given by

Sensitivity = TP
TP + FN.

Precision is defined as the ratio of true positive predicted instances to the total number of positive
instances, and is given by

Precision = TP
TP + FP.

These measures collectively provide a comprehensive evaluation of a classification model’s
performance and guide the necessary adjustments to optimize its effectiveness. All the evaluation
measures have been computed for all classifiers using a 10-fold cross-validation scheme, where the
average results have been reported.

3.5. Results and discussion

This paper presents a Proposed Hybrid Classifier (PHC) that comprises three classification
algorithms, random forest (RF), C4.5, and CART, to predict student performance. The study
compares the performance of our hybrid classifier with six commonly used algorithms, including RF,
C4.5, CART, SVM, NB, and KNN. Each classifier is evaluated using various metrics such as recall,
precision, F1 score, and accuracy. This analysis aims to assess existing algorithms and position our
PHC in relation to them. By evaluating each algorithm’s performance measures, we can better
understand the improvements and limitations concerning student performance prediction using
classification algorithms. Furthermore, the PHC can be effectively utilized for various deep learning
and machine learning applications besides education. Hybrid models have been shown to improve
accuracy by 30% compared to any single model [21].

The results for all classifiers are presented in Table 3. The results demonstrate a notable superiority
in the performance of the PHC algorithm over other classification algorithms in terms of precision,
F1 score, and accuracy measures. However, the PHC and C4.5 algorithms perform similarly with
respect to recall metric and outperforms all other algorithms with slightly better performance by the
C4.5 algorithm. Recall, also known as sensitivity, assesses the model’s ability to identify all positive
instances correctly. Across all algorithms, the C4.5 and PHC algorithms are the optimal options with
this measure.

Table 3. Performance measures for all classifiers.

Measure RF C4.5 CART SVM NB KNN PHC
Recall 85.89 88.32 86.67 84.95 79.72 84.05 87.95
Precision 88.46 81.54 86.15 71.54 80.00 76.92 90.00
F1-score 86.90 84.31 85.55 77.18 79.47 79.81 88.60
Accuracy 91.13 90.13 90.62 86.33 86.33 87.35 92.40
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For the accuracy measure, our PHC outperforms all other classifiers with an accuracy rate of
92.40%. The RF, C4.5, and CART classifiers perform better than other classifiers, whereas the SVM
and NB have the worst performance with this measure. Again, for precision and F1 score measures,
the PHC performs better than all algorithms, while the RF, C4.5, and CART algorithms outperform
the SVM, NB, and KNN algorithms. Among single classifiers, the NB classifier was found to have
the lowest recall metric, with scores of 79.72%. The SVM classifier was found to have lower
precision and F1-score than all other classifiers. Specifically, the precision was 71.57% and the
F1-score was 77.18%. These performance metrics indicate that the SVM classifier may not be the
optimal choice for a given task based on these metrics. This might be due to the nature of the SVM
algorithm, which may not effectively handle the specific complexities and characteristics of the
educational data set used in this paper.

Table 4 shows time complexities for all classifiers. The KNN classifier achieves the shortest
execution time with nearly the same time as the NB classifier. The C4.5, CART, and SVM classifiers
came after that with similar execution times. Finally, the RF and PHC classifiers took the longest
execution time compared to other classifiers. This is because they utilize ensemble methods to
calculate the accuracy and, hence, more time to achieve better results than other single classifiers.

Table 4. Execution time (seconds) for all classifiers

Algorithm RF C4.5 CART SVM NB KNN PHC
Time (seconds) 2.5271 1.2352 1.3405 1.4561 0.4596 0.4000 3.3283

The findings of this research have significant implications for the education industry. Classification
algorithms like PHC can help predict student performance and implement support strategies. This
classifier’s predictive ability can help identify students at risk of underperformance. Then, educators
can efficiently allocate resources where students are most needed. Incorporating this paper’s findings
into educational management systems can enable real-time monitoring of student progress.
Educational institutions could use PHC to identify potential declines in student performance before
they lead to failure. This would allow for timely support to help students overcome academic
challenges.

According to the experimental results, the PHC, which is based on various classifiers, is a highly
effective tool for predicting students’ academic performance. The results of our research indicate that
the PHC can provide reliable and accurate predictions in a range of educational settings. We therefore
recommend its use as a valuable resource for educators and administrators seeking to maximize student
success. The PHC combines the strengths of individual classification algorithms to deliver a final
prediction that benefits from their collective knowledge. The PHC is particularly effective when no
classification algorithm can provide a sufficiently accurate prediction. This approach has been shown
to improve the accuracy of classification tasks in education. In summary, it has been proven that the
PHC performs competitively compared to six individual algorithms. Thus, it is suggested that the PHC
be effectively utilized to evaluate students’ academic performance.

Figure 5 illustrates the significance of various features in predicting student performance using a
permutation-based importance measure derived from a random forest model. This technique assesses
the impact of each feature by evaluating the deterioration in the model’s accuracy when the values of
that feature are randomly shuffled. Consistent with expectations, previous grades G2 and G1 emerge as
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the top influencers, strongly affecting the model’s predictions. Notably, the number of times students go
out with friends (goout) and their age (age) also appear to be influential, suggesting that social habits
and maturity may have roles in academic performance. The reasons for choosing a school (reason),
job of the father (Fjob), and family size (famsize) complete the list of top features, indicating that both
school-related choices and family background factors contribute to the variability in student grades.
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Top Seven Feature Importance

Figure 5. Important features using the RF classifier.

The combination of decision trees (C4.5 and CART) in the PHC classifier leverages the strengths of
each algorithm to capture diverse data patterns more effectively. The superior performance of the PHC
classifier can be attributed to its ensemble approach, which balances bias and variance, reducing the risk
of overfitting seen in individual classifiers like SVM and NB. The interpretability of decision tree-based
methods (RF, C4.5, CART) aids in understanding feature importance, which aligns with the observed
performance trends. As shown in Figure 5, the features ‘G2’ and ‘G1’ grades are the most critical
predictors of student performance, followed by factors such as‘goout’, ‘age’, ‘reason’, ‘Fjob’, and
‘famsize’. These features significantly impact predictions and are well-handled by these algorithms,
demonstrating their capability to effectively capture and utilize the most relevant data attributes.

One limitation of this study is the reliance on data from the UCI machine learning repository,
which may not fully represent the diverse educational environments worldwide. Additionally, the
model complexity introduced by combining multiple algorithms could pose challenges in terms of
computational resources and implementation scalability. Future research could explore the
application of the PHC classifier to larger, more diverse datasets to enhance its generalizability.
Investigating the integration of other machine learning techniques, such as deep learning models, into
the hybrid approach may also offer further improvements in predictive performance.
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4. Concluding remarks

Predicting student performance can help educators and learners improve their teaching and learning
processes. This study describes a unique hybrid classification technique that combines the strengths of
random forest (RF), C4.5, and CART classifiers. This proposed hybrid classifier (PHC) was thoroughly
tested against six traditional classification algorithms using recall, precision, F1-score, and accuracy
metrics. Our findings show that the PHC algorithm outperforms single classification algorithms in
terms of prediction performance. This improvement demonstrates effectiveness of combining multiple
algorithms to address the diverse nature of educational data.

The practical applications of the PHC classifier in educational contexts represent a potential area
for future study and development. The PHC’s capacity to reliably predict student performance can
help educational institutions identify individuals who may need further support, allowing for targeted
interventions that are more likely to enhance student results. It also opens the door to personalized
learning experiences in which educational content and teaching approaches may be tailored to each
student’s specific requirements based on predicted insights.

Based on the study findings, it is recommended that educators and policymakers consider adopting
hybrid classification models like the PHC classifier to enhance predictive analytics in education. Such
models can help identify students at risk of underperformance early, enabling timely and targeted
interventions. Policymakers should also invest in the necessary infrastructure and training for
educators to effectively implement and utilize these advanced analytical tools. By integrating
data-driven insights into educational strategies, institutions can better support student success and
optimize resource allocation.

Author contributions

Abdulmajeed Atiah Alharbi and Jeza Allohibi: Conceptualization, Formal Analysis, Methodology,
Software, Validation, Visualization, Writing – original draft, Writing – review & editing. All authors
have read and agreed to the published version of the manuscript.

Use of AI tools declaration

The authors declare that they have not used Artificial Intelligence tools in the creation of this article.

Conflict of interest

The authors declare that they have no conflicts of interest.

References

1. Y. Hong, X. Rong, W. Liu, Construction of influencing factor segmentation and intelligent
prediction model of college students’ cell phone addiction model based on machine learning
algorithm, Heliyon, 10 (2024), e29245. https://doi.org/10.1016/j.heliyon.2024.e29245

AIMS Mathematics Volume 9, Issue 7, 18308–18323.

http://dx.doi.org/https://doi.org/10.1016/j.heliyon.2024.e29245


18322

2. B. Chen, B. Shi, J. Gong, G. Shi, H. Jin, T. Qin, et al., Quality detection and variety classification
of pecan seeds using hyperspectral imaging technology combined with machine learning, J. Food
Compos. Anal., 131 (2024), 106248. https://doi.org/10.1016/j.jfca.2024.106248

3. Q. Ma, Z. Liu, T. Zhang, S. Zhao, X. Gao, T. Sun, et al., Multielement simultaneous
quantitative analysis of trace elements in stainless steel via full spectrum laser-induced breakdown
spectroscopy, Talanta, 10 (2024), 125745. https://doi.org/10.1016/j.talanta.2024.125745

4. W. Liu, Y. Fang, H. Qiu, C. Bi, X. Huang, S. Lin, et al., Determinants and performance prediction
on photocatalytic properties of hydroxyapatite by machine learning, Opt. Mater., 146 (2023),
114510. https://doi.org/10.1016/j.optmat.2023.114510

5. S. Y. Xu, Q. Zhou, W. Liu, Prediction of soliton evolution and equation parameters for NLS–
MB equation based on the phPINN algorithm, Nonlinear Dyn., 111 (2023), 18401–18417.
https://doi.org/10.1007/s11071-023-08824-w

6. H. Waheed, S. Hassan, N. R. Aljohani, J. Hardman, S. Alelyani, R. Nawaz, Predicting academic
performance of students from VLE big data using deep learning models, Comput. Human Behav.,
104 (2020), 106189. https://doi.org/10.1016/j.chb.2019.106189

7. R. Umer, T. Susnjak, A. Mathrani, S. Suriadi, On predicting academic performance with process
mining in learning analytics, JRIT&L, 10 (2017), 160–176.

8. M. M. Hussain, S. Akbar, S. A. Hassan, M. W. Aziz, F. Urooj, Prediction of Student’s
Academic Performance through Data Mining Approach, J. Inform. Web Eng., 3 (2024), 241–251.
10.33093/jiwe.2024.3.1.16

9. R. C. Morilla, R. D. Omabe, C. J. S. Tolibas, E. E. C. Cornillez Jr, J. K. D. Treceñe, Application
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