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Abstract: In this paper, we present the concept of a soft covering map on a soft topological space.
We also introduce the notion of a soft local homeomorphism and establish the relationship between
soft local homeomorphism and soft open mapping. Additionally, we demonstrate that a soft local
homeomorphism does not necessarily imply a soft covering map. We provide several characterizations
and restriction theorems. Moreover, we deduce the necessary and sufficient conditions for a soft
continuous map to be a soft covering map.
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1. Introduction

The precise and accurate attributes of classical mathematical tools arise from their utilization in
modeling, reasoning, and computation. This accuracy is a result of the application of two-valued
logic in classical mathematics, imbuing a sense of certainty. In contrast, intricate challenges in
fields like economics, physics, engineering, biology, sociology, and medicine entail elements of
uncertainty and incomplete data. In these cases, conventional mathematical methods are insufficient
to resolve such complexities. To address this limitation, there are disciplines like fuzzy set theory [1].
Homomorphism problems in fuzzy information systems, fuzzy covering decision systems, fuzzy-β-
covering-based multi-granulation rough sets, and neutrosophic theory were studied in [2–7]. In this
approach, probability theory and rough set theory are commonly employed, and each of these comes
with its limitations. This led to the inception of a new theory, known as soft set theory [8]. Many
researchers have examined and explored the fundamental concepts underlying soft sets [9–13]. Soft
sets have been applied in diverse fields by researchers [14–17] including but not limited to fields such as
operations research, game theory, function smoothness, measurement theory, and probability. Multiple
researchers have utilized soft set theory to investigate diverse mathematical structures [18]. In [19], the
scholars presents soft topology as an exceptional extension of classical topology. Within the area of
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topology, a multitude of fundamental notions, such as soft separation axioms, soft connected spaces,
and soft locally path-connected spaces, etc. [20–30], have been expanded and enhanced through the
utilization of soft sets. Nevertheless, there is still considerable scope for substantial contributions in this
field. A cornerstone within the field of algebraic topology is the study of covering spaces, an essential
concept that delves into the intricate properties of topological spaces. These properties maintain their
integrity even among continuous transformations like stretching and bending. The significance of
covering spaces becomes particularly pronounced when unraveling the essence of the fundamental
group, homotopy, and other paramount topological invariants that characterize spaces [31–33]. The
primary objective of this paper is to undertake a comprehensive theoretical exploration of the realm of
soft-covering space theory.

2. Preliminaries

To establish the subsequent results, we require a review of fundamental concepts and characteristics
concerning soft sets and soft topological spaces. First, let X denote an inital universe with a cardinality
of at least 2, S represents a set of parameters, and 2X stands for the power set of X. For our
convenience, we will introduce the required concepts for the same set of parameters S while also
providing analogous definitions for other sets of parameters, A and B, both subsets of S .

Definition 2.1. [8] Let us consider G : S −→ 2X as mappping in the universe X. We call the set
(G, S ) = {(s, G(s)) : s ∈ S } to be a soft set. A specific pair (s,G(s)), is known as a soft element of
(G, S ). To keep it brief, we adopt the representation GS rather than (G, S ).

Definition 2.2. [19, 34] Let GS be a soft set GS defined over the set X and x ∈ X. Then, x ∈ GS

whenever x ∈ G(s) for every s ∈ S , and x < GS whenever x < G(s) for at least one s ∈ S . Also, x b GS

whenever x ∈ G(s) or at least one s ∈ S , and x > GS whenever x < G(s) for each s ∈ S . The symbols
∈ and b are referred to as natural belong and partial belong, respectively.

Definition 2.3. [17] A soft set FA is said to be a soft subset of the soft set GB if A ⊆ B and F(a) ⊆
G(a), ∀ a ∈ A. In this situation, we write FA ⊆ GB. Also, FA = GB when FA ⊆ GB and GB ⊆ FA. The
collection of soft sets defined over a parameter set A and with respect to a universe X is represented by
the symbol CS (XA).

Definition 2.4. [9, 16] The intersection of soft sets FS and GS over X is the soft set HS which is
obtained by combining the soft sets FS and GS through the intersection operation, in which H(s) =

F(s) ∩G(s), for all s ∈ S and represented by FS ∩GS . The union of the soft sets FS and GS over X is
the soft set HS obtained by combining the soft sets FS and GS through the union operation, in which
H(s) = F(s) ∪G(s), for all s ∈ S and represented by FS ∪GS .

Definition 2.5. [9] The soft set FS is said to be a null soft set if F(s) = φ for all s ∈ S . The null soft
set will be represented by the symbol ΦS . The soft set FS is said to be an absolute soft set if F(s) = X
for all s ∈ S . The absolute set is represented by XS .

Definition 2.6. [19] A soft topology on a set X is defined as a collection τ of soft sets over X,
determined by the fixed parameters set S and satisfies:

(i) XS and ΦS belongs τ.
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(ii) If FS ,GS ∈ τ, then FS ∩GS ∈ τ.
(iii) If WγS ∈ τ for every γ in some index set Λ, then ∪γ∈ΛWγS ∈ τ.
The triple (X, τ, S ) is referred to as a soft topological space. Each element of τ is referred to as a

soft open set, while its relative complement is termed a soft closed set.

Definition 2.7. [19] Let A be a nonempty soft subset of (X, τ, S ). Then, τA = {A ∩GS : GS ∈ τ}

is said to be a soft relative topology on A. Additionally, we refer to the triple (A, τA, S ) as the soft
subspace of X.

Definition 2.8. [30] Let (X, τ, S ) be a soft topological space. Then,
(i) the soft interior of soft sets US over X, denoted by int(US ), is the union of all soft sets that are
contained in US .
(ii) The soft set US is called a soft (nhood) of x ∈ X, if there is a soft open set VS in which x ∈ VS ⊆ US .
(iii) The soft set FS is called a soft closure of FS , denoted by cl(FS ), is the smallest soft closed set over
X that contains FS .

Definition 2.9. [10] Let Γϕ : CS (XA) −→ CS (YB) be a soft mapping defined as a pair (Γ, ϕ ), where Γ

and ϕ represent mappings Γ : X −→ Y, ϕ : A −→ B. Consider the soft subsets GP and HQ of CS (XA)
and CS (YB), respectively. Then, the image of GP and the pre-image of HQ are given by:
(i) Γϕ (GP) =

(
Γϕ (G)

)
B

can be considered as a soft subset of CS (YB) in which

Γϕ (G) (b) =

 ∪
a∈ϕ−1(b)∩P

Γ(G(a)), ϕ−1 (b) ∩ P , φ,

φ, otherwise.
∀b ∈ B.

(ii) Γ−1
ϕ

(
HQ

)
=

(
Γ−1
ϕ (H)

)
A

can be considered as a soft subset of CS (XA) in which

Γ−1
ϕ (H) (a) =

{
Γ−1(H(ϕ(a))), ϕ(a) ∈ Q,

φ, otherwise.
∀a ∈ A.

Definition 2.10. [35] A soft mapping Γϕ : CS (XA) −→ CS (YB) is characterized as follows:
(i) Γϕ is injective whenever both Γ and ϕ are injective.
(ii) Γϕ is onto whenever both Γ and ϕ are onto.
(iii) Γϕ is bijective whenever both Γ and ϕ are bijective.

Definition 2.11. [35] A soft map Γϕ : (X, τ, A)→ (Y, δ, B) is defined as follows:
(i) It is soft continuous if the pre-image of every soft open subset in (Y, δ, B) is itself a soft open subset
in (X, τ, A).
(ii) It is considered soft open if the image of all soft open subsets in soft open in (X, τ, A) becomes a
soft open subset in (Y, δ, B).
(iii) It qualifies as a soft homeomorphism if it is bijective, soft continuous, and soft open.

Definition 2.12. [36] A collection
{
VγS : γ ∈ Λ

}
of soft open sets is referred to as a soft open cover

of the soft topological space (X, τ, S ) if XS = ∪γ∈ΛVγS .

Definition 2.13. [22] Suppose FA ∈ CS (XA) and GB ∈ CS (YB). The Cartesian product of FA and
GB is a soft set LA×B, where L : A × B −→ P(X × Y) is defined as L(s, t) = F(s) × G(t) = {(x1, x2) :
x1 ∈ F(s), x2 ∈ G(t)}.
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Definition 2.14. [23] A soft topological space (X,T, S ) is regarded as soft locally connected at a soft
element x ∈ X if, for any soft open set FS , x ∈ FS , there exists a soft connected soft open set GS that
contains x and is also a subset of FS .

Definition 2.15. [24] The largest soft connected soft subspace of a soft topological space (X,T, S ) is
called a soft component.

3. Main results

In this section, we provide the concept of a soft covering-map and its corresponding soft-covering
space. We delve into defining these fundamental notions while also delving into the characterization
of their inherent properties.

Definition 3.1. Let (X, τX, A), (Y, τY , B) be two soft topological spaces, and suppose that pϕ :
CS (XA) −→ CS (YB) is soft continuous, onto map. Then, the soft open set UB of CS (YB) is said to
be soft-evenly covered by pϕ if p−1

ϕ (UB) can be represented as the union of disjoint open sets VαA in
CS (XA) for every α ∈ Λ. The restriction pϕ|VαA is a soft homeomorphism of VαA onto UB. The family
{VαA} will be called a soft partition of p−1

ϕ (UB) into soft slices. Furthermore, if each soft point y of
YB has a soft (nhood) UB that is soft-evenly covered by pϕ, then pϕ is called a soft covering-map, and
CS (XA) is said to be a soft-covering space of CS (YB).

From now on, we will consider the parametric map ϕ : A→ B as a parametric onto map.

Example 3.2. Let (X, τX, A) be a soft topological space, and let iϕ : CS (XA) −→ CS (XA) be the
soft identity map. Then, iϕ is a soft covering-map. More generally, consider the space X̂ = X ×
{1, 2, . . . , n} (n-disjoint copies of X ). The soft map pϕ : CS

(
X̂A

)
−→ CS (XA) given by pϕ((x, j), A) =

(x, A) for all j is a soft covering-map. It should be noted that the inverse image of all soft open sets in
CS (XA) has exactly n-disjoint soft pre-images in CS

(
X̂A

)
, corresponding to each soft-evenly covered

open sets in CS (XA).

Theorem 3.3. Let ϕ : A → B be a parametric map, and let us consider the map p : R →
S 1 given by p(s) = e2πis = (cos(2πs), sin(2πs)). Then, the soft map pϕ : CS (RA) −→ CS

(
S 1

B

)
is

a soft covering-map.

Proof. First note that the domain of p has the standard topology, and S 1 is considered as a subspace
of the usual plane. Then, p is onto because p wraps the line around S 1 infinitely many times. Now,
based on the definition (2.10), we can conclude that ϕ is onto and pϕ is a soft onto map. Also, pϕ is
soft continuous, since for any open subset HL of CS

(
S 1

B

)
, (L ⊆ B) and p −1

ϕ (HL) =
(
p−1
ϕ (H)

)
A
, ∀a ∈ A,

ϕ(a) ∈ L =⇒ p−1
ϕ (H)(a) = p−1(H(ϕ(a))) is a soft open set and if ϕ(a) < L =⇒ p−1

ϕ (H)(a) = φS (soft
open). Moreover, for every point b ∈ S 1

B, there is a soft open set VS of b in CS
(
S 1

B

)
that is soft-

evenly covered by pϕ and is an infinite soft-sheeted cover. Hence, pϕ : CS (RA) −→ CS
(
S 1

B

)
is a soft

covering-map. �

Theorem 3.4. Let pϕ : CS (XA) −→ CS (YB) be a soft covering-map. If Y0B is a soft subspace of
YB, and if X0A = p−1

ϕ (Y0B ), then the map p0ϕ : CS (X0A) −→ CS (Y0B) obtained by restricting pϕ is a
covering-map.
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Proof. Given y0 ∈ Y0B, let UB be a soft open set in CS (YB) containing y0 that is soft-evenly covered
by pϕ, and let {VαA} be a soft partition of p−1

ϕ (UB) into soft slices. Then, UB ∩Y0B is a soft (nhood)
of y0 in CS (Y0B) and the soft sets VαA ∩ X0A are disjoint soft open sets in CS (X0A) whose union is
p−1
ϕ (UB ∩ Y0B) and each is mapped soft homeomorphically onto UB ∩Y0B by pϕ. �

Theorem 3.5. If pϕ : CS (XA) −→ CS (YB) and ṕϕ́ : CS (X́Á) −→ CS
(
ÝB́

)
are soft covering-maps,

then pϕ × ṕϕ́ : CS (XA) ×CS (X́Á) −→ CS (YB) ×CS (ÝB́) is a soft covering-map.

Proof. Given y ∈ Y, ý ∈ Ý , and consider UB and ÚB́ are (nbds) of y and ý, respectively, which are
soft-evenly covered by pϕ and ṕϕ́. Let {VαA} and {V́βÁ} be soft partitions of p−1

ϕ (UB) and ṕ−1
ϕ́ (ÚB́),

respectively, into soft slices. Then, the inverse image under pϕ × ṕϕ́ of the soft open set UB × ÚB́ is
the union of all the sets VαA × V́βÁ. These are disjoint soft open sets of CS (XA) ×CS (X́Á), and each is
mapped soft homeomorphically onto UB × ÚB́ by pϕ × ṕϕ́. �

The next example points out that the product of soft covering-maps is regarded as a soft
covering-map.

Example 3.6. If Rn
A = S 1

B×· · ·×S 1
B is the soft n-dimensional torus (product of soft n-circles), then the

soft map pϕ : CS
(
Rn

A

)
−→ CS

(
T n

A

)
, in which p(s1, . . . , sn) = (e2πis1 , . . . , e2πisn ) is a soft covering-map.

Definition 3.7. A soft continuous map Ψϕ : CS (XA) −→ CS (YB) is called a soft local homeomorphism
if, for every soft point x ∈ X that has soft open (nhood) VA, in which Ψϕ (VA) is soft open in CS (XA) with
the restriction mapping Ψϕ|VA is a soft homeomorphism of VA onto Ψϕ(VA).

Theorem 3.8. Every soft local homeomorphism is a soft open mapping.

Proof. Suppose that Ψϕ : CS (XA) −→ CS (YB) is a soft local homeomorphism and VA is a soft open
in CS (XA). If w ∈ Ψϕ(VA ), then there is z ∈ VA such that Ψϕ (z) = w. By assumption, there is
a soft open (nhood) UB of w in CS (YB), and a soft open (nhood) WA of z in CS (XA) in which Ψϕ

maps WA homeomorphically onto UB . Since VA ∩ WA is soft open in WA, and UB is soft open in
CS (YB), Ψϕ(VA ∩ WA ) is soft open in CS (YB). Obviously, w ∈ Ψϕ(VA ∩ WA) ⊂ Ψϕ(VA ). Thus,
Ψϕ(VA ) can be considered as a soft (nhood) of w. Therefore, Ψϕ is soft open mapping. �

The converse of Theorem (3.8) is not true, as can be demonstrated by the following example:

Example 3.9. Let ϕ : A → A be a parametric map, and consider the map f : R2 → R given by
f (x, y) = x. Then, the soft map fϕ : CS

(
R2

A

)
−→ CS (RA) is clearly soft open mappping and not soft

local homeomorphism since no soft (nbd ) of any soft point in CS
(
R2

A

)
is homeomorphic to a soft set

in CS (RA).

However, it is important to note that a soft local homeomorphism does not necessarily imply a soft
covering-map, as seen in the subsequent example.

Example 3.10. Let J represent an open interval (0, m) with the standard topology where m > 1 is
an integer, and suppose that Ψϕ : CS (JA) −→ CS (S 1

B) is a soft map in which Ψ(s) = e2πis. As a soft
local homeomorphism is restricted to a soft open subset, we obtain Ψϕ is a soft local homeomorphism.
Meanwhile, Ψϕ as a result is soft onto it doesn’t qualify as a soft covering-map. The reason behind
this is that the element 1B ∈ CS (S 1

B) doesn’t have a soft (nhood) that can be evenly covered. The space
CS (JA) can be seen as a soft, open, and finite spiral over CS (S 1

B).
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In soft covering theory, the study of soft covering-maps can be simplified by focusing on soft
covering-maps with a base space that is soft (path) connected.

Theorem 3.11. Let (Y, τY , B) be a soft locally path-connected and pϕ : CS (XA) −→ CS (YB) be a
soft covering-map. Then, every soft point in CS (YB) has a soft path-connected open (nhood) UB in
which every soft path-component of p−1

ϕ (VB) is soft mapped homeomorphically onto VB by pϕ.

Proof. Consider a soft point y ∈ Y , and let UB be a soft (nhood) of y in CS (YB). Assume p−1
ϕ (UB) =

∪γGγA, in which every GγA is soft open in CS (XA), pϕ|GγA is a soft homeomorphism between GγA and
UB, and GγA ∩ GδA = φ for γ , δ. It follows from (Y, τY , B) is a soft locally path-connected that
UB contains a soft path-connected (nhood) VB of y. Let WγA = GγA∩ p−1

ϕ (VB), ∀γ. Then every WγA are
soft open in CS (XA) and p−1

ϕ (VB) = ∪γWγA. Also, pϕ|(WγA) is a homeomorphism between WγA and VB.
Because VB is a soft path-connected, the same holds true for WγA. As WγA ∩WδA = φ for γ , δ, every
WγA is soft path-component of p−1

ϕ (VB). �

Theorem 3.12. Let (Y, τY , B) be a soft locally path-connected, then a soft continuous map pϕ :
CS (XA) −→ CS (YB) is a soft covering-map iff, for every soft path-component MB in CS (YB),
pϕ|p−1

ϕ (MB) : p−1
ϕ (MB) −→ MB is a soft covering-map.

Proof. Assume pϕ : CS (XA) −→ CS (YB) is a soft covering-map and y ∈ MB. If UB is a soft open
(nbhd) of y in CS (YB), and VB is a soft path-component of UB containing y, we have VB ⊂ MB, for
MB is a soft path-component in CS (YB). Since (Y, τY , B) is soft locally path-connected, VB is soft
open in CS (YB) and so soft open in MB. Obviously, VB is soft-evenly covered by qϕ = pϕ|p−1

ϕ (MB),
and qϕ is a soft covering-map.

On the other hand, suppose that qϕ : p−1
ϕ (MB) −→ MB, y 7−→ p(y) is a soft covering-map for all

soft path-component MB in CS (YB), y ∈ Y , and let MB be the soft path-component in CS (YB), y ∈ MB.
Using the assumption, there exists a soft open (nhood) UB of y in MB, which is soft-evenly covered
by qϕ. It follows from (Y, τY , B) is soft locally path-connected, that the soft path-component MB is
soft open in CS (YB). This implies that UB is soft open in CS (YB). Moreover, all soft open subsets of
p−1
ϕ (MB) are soft open in CS (XA). It has become evident that UB is soft-evenly covered by pϕ. Hence,

pϕ is a soft covering-map. �

Theorem 3.13. Let pϕ : CS (XA) −→ CS (YB) be a soft covering-map. If (Y, τY , B) is a soft locally
path-connected with a soft path-component MA in CS (XA), then pϕ(MA) is a soft path-component in
CS (YB) and pϕ|MA : CS (MA) −→ CS

(
pϕ(MA

)
) is a soft covering-map.

Proof. Let (Y, τY , B) be a soft locally path-connected, and suppose MA is a soft path-component in
CS (XA). To show that pϕ (MA) is a soft path-component in CS (YB), it is enough to prove that it is a
soft component, due to the indistinguishable nature of the soft components and soft path components
in CS (YB); it becomes clear that pϕ (MA) is soft connected. Now, to show pϕ (MA) is soft closed and
soft open in CS (YB), let y ∈ cl(pϕ (MA)). Since (Y, τY , B) is soft locally path conected, there is a
soft path-connected open (nhood) UB of y. Accordingly, each soft sheet ÛB over UB is soft path-
connected. We have MA ∩ p−1

ϕ (UB) , φ, for UB ∩ pϕ(MA) , φ. So there is a soft sheet ÛB over UB in
which ÛB ∩ MA , φ. It follows from MA is a soft path-component in CS (XA), that ÛB ⊆ MA. So,
UB = pϕ(ÛB) ⊆ pϕ(MA) and y ∈ int(pϕ(MA)). This implies that cl(pϕ(MA)) ⊆ int(pϕ(MA)), and,
therefore, pϕ(MA) is both soft closed and soft open. It follows that pϕ (MA) is a soft path-component
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in CS (YB). Now, we show that qϕ = pϕ|MA : CS (MA) −→ CS
(
pϕ(MA

)
) is a soft covering-map. Let

y ∈ pϕ (MA) and UB be a soft path-connected soft (nbd ) of y in CS (YB). Thus, UB ⊆ pϕ(MA). If ÛB

is a soft sheet over UB and ÛB ∩ MA , φ, then ÛB ⊆ MA. Consequently, we can deduce that q−1
ϕ (UB)

is the disjoint union of those soft sheets ÛB over UB, each of which has an intersection with MA. This
implies that UB is soft-evenly covered by qϕ and qϕ is a soft covering-map. �

4. Conclusions

This paper highlights the importance of soft covering-maps and spaces in soft topology theory.
By introducing the notions of soft covering-maps and spaces, we have unearthed their pivotal
role in connecting traditional topological concepts with the nuanced world of vague and imprecise
information. Additionally, one can view soft covering space as a generalization or extension of
covering space in geometric topology. Through a meticulous exploration of their properties, we have
established a foundation for understanding the intricate interplay between soft covering maps and soft
local homeomorphisms.
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