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1. Introduction

It is well known that the semilinear evolution equations have a considerable practical background
in physics, biology, engineering, and other fields (see [1, 2] and the reference therein). For fractional
evolution equations, the existence as well as the controllability have become a hot topic in recent
years (see, for example, [3–6]). In [3], Li et al. considered the existence and uniqueness of weak
solutions and strong solutions of an inhomogeneous Cauchy problem of Riemann-Liouville fractional
evolution equations of order α ∈ (1, 2) using an α-order fractional resolvent. In [4], by introducing
an operator S α in term of the generalized Mittag-Leffler function and the curve integral, Li et al.
investigated the existence and uniqueness of (mild) solutions for a class of Caputo fractional Cauchy
problem by means of the Banach fixed point theorem and the Schauder fixed point theorem. In [5],
by using the Krasnoselskii fixed point theorem and the solution operator method, the existence of mild
solutions to a class of fractional semilinear integro-differential equations of order 1 < α < 2 was
demonstrated. In [6], Yang proved the existence and approximate controllability of the Sobolev-type
fractional evolution equations of order α ∈ (1, 2) using the Sadovskii fixed point theorem and the
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resolvent operator theory.
In this article, we demonstrate the exact controllability of the delayed fractional control system in

the Banach space E
C∂αt y(t) = Ay(t) + f (t, yt) + Bv(t), t ∈ U := [0, c], α ∈ (1, 2),

y(t) = ϕ(t), ∀t ∈ [−r, 0],

y′(0) = y1,

(1.1)

where C∂αt represents the fractional partial derivative operator on t of order α in the Caputo sense,
A : D(A) ⊆ E → E is a densely-defined and closed linear operator in E, D(A) is the domain of A
equipped with the norm ∥x∥D(A) = ∥x∥ + ∥Ax∥ for x ∈ D(A), f is a given function which represents the
nonlinear term, v ∈ L2(U,H), H is another Banach space, y1 ∈ E and ϕ : [−r, 0] → E is continuous,
B : H → E is a linear operator. For any t ∈ U, yt(θ) = y(t + θ) for any θ ∈ [−r, 0]. r and c are given
positive constants.

The observation of the electromagnetic, acoustic, and mechanical influence shows that there exist
some transfer processes in a medium, which are not described by a usual diffusion equation. Fractional
Cauchy problems are useful in physics to model such anomalous diffusion, see [3] and the references
therein. Hence, it is significant to study the control system (1.1).

In 2021, the Laplace transform method and the cosine family theory were applied by Zhou et al.
in [7] to present the suitable definition of mild solutions of the linear inhomogeneous Cauchy problem

C∂αt y(t) = Ay(t) + h(t), t ∈ [0, c], α ∈ (1, 2),

y(0) = y0, y′(0) = y1,

where y0 ∈ E and h is a given linear function. Then the controllability was considered for the
corresponding semilinear fractional evolution system

C∂αt y(t) = Ay(t) + f (t, y(t)) + Bv(t), t ∈ (0, c], α ∈ (1, 2),

y(0) = y0, y′(0) = y1,

where f (t, y) is global Lipschitz continuous or satisfies a certain compactness condition. Obviously, the
global Lipschitz continuity contains local Lipschitz continuity and first-order linear growth condition.
The reverse is not true.

In 2023, Yang in [8] demonstrated the approximate controllability of the fractional control system
L∂αt y(t) = Ay(t) + F(t, ỹt) + Bv(t), t ∈ (0, c], α ∈ (1, 2),

ỹ(0) = ϕ(t), t ∈ [−r, 0],

(H2−α ∗ y)′(0) = y1,

where L∂αt is the fractional derivative operator on t of order α in the Riemann-Liouville sense, ỹ(t) =
t2−αy(t) for t ∈ U with ỹ(0) = lim

t→0+
ỹ(t) and ỹt(θ) = ỹ(t + θ) for t ∈ U and θ ∈ [−r, 0], Hς(t) = tς−1

Γ(ς) for
t, ς > 0, Γ(·) is the standard Gamma function. The symbol ∗ represents the convolution. When the sine
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family T (t), corresponding to the cosine family {G(t) : t ≥ 0} generated by A, is a compact operator for
t > 0, the approximate controllability results were obtained.

The main features of this paper are summarized below:
(1) The exact controllability of the control system (1.1) is demonstrated in Theorem 3.1 when f

is local Lipschitz continuous. Compactness conditions of the nonlinear term f or the cosine family
{G(t) : t ≥ 0} or the sine family {T (t) : t ≥ 0} are essential assumptions in existing articles, but we
removed it in Theorem 3.1.

(2) When f satisfies the certain compactness conditions or the measure of noncompactness
conditions, the exact controllability of (1.1) is also obtained (see Theorems 3.2–3.4). These results
are nature extensions of [7, 8].

2. Preliminaries

Let C([−r, c], E) be the Banach space of E-valued continuous functions on [−r, c] with the norm
∥y∥C([−r,c],E) = sup

t∈[−r,c]
∥y(t)∥. B(H, E) represents the Banach space of linear bounded operators from H to

E with the norm ∥ · ∥B. B(E) := B(E, E). We always suppose that B ∈ B(H, E), that is, ∃M1 > 0 such
that ∥B∥B ≤ M1.

Definition 2.1. [9] A family {G(t) : t ∈ R} ⊂ B(E) is called the strongly continuous cosine family if it
satisfies

(i) G(0) = I;
(ii) for any t, s ∈ R, G(t + s) +G(t − s) = 2G(t)G(s);
(iii) for each x ∈ E, t 7→ G(t)x is continuous on R.

Set

T (t)y :=
∫ t

0
G(θ)ydθ, ∀t ∈ R, y ∈ E.

Then {T (t) : t ∈ R} is called the sine family corresponding to {G(t) : t ∈ R}. Let

D(A) = {y ∈ E : G(t)y ∈ C2(R, E)},

Ay =
d2

dt2 G(t)y|t=0, ∀y ∈ D(A).

Then A generates a cosine family {G(t) : t ∈ R}. Therefore, we make the following assumption on A.
(P1) A : D(A) ⊆ E → E generates a strongly continuous cosine family {G(t) : t ≥ 0} and

∥G(t)∥B ≤ M, ∀t ≥ 0,

whereM ≥ 1 is a constant.
Let β = α

2 . Then β ∈ ( 1
2 , 1). We recall the function

Mϱ(θ) =
∞∑

m=0

(−θ)m

m!Γ(1 − ϱ(m + 1))
, θ ∈ C, ϱ ∈ (0, 1),

where C is the imaginary line.
By [7], the following definition and lemmas are achieved.
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Definition 2.2. [7] For each v ∈ L2(U,H), y ∈ C([−r, c], E) is called the mild solution of (1.1) if
y(t) = ϕ(t) for t ∈ [−r, 0], y′(0) = y1 and

y(t) = Ψβ(t) +
∫ t

0
Pβ(t − s)[ f (s, ys) + Bv(s)]ds, t ∈ U,

where
Ψβ(t) =Cβ(t)ϕ(0) +Kβ(t)y1,

Cβ(t) =
∫ ∞

0
Mβ(θ)G(tβθ)dθ,

Kβ(t) =
∫ t

0
Cβ(θ)dθ,

Pβ(t) =
∫ ∞

0
βθtβ−1Mβ(θ)T (tβθ)dθ.

Lemma 2.1. [7] Let (P1) hold. Then for any t ≥ 0 and y ∈ E, we have

∥Cβ(t)y∥ ≤ M∥y∥,

∥Kβ(t)y∥ ≤ M∥y∥t,

∥Pβ(t)y∥ ≤
M∥y∥
Γ(2β)

t2β−1.

Lemma 2.2. [7] If (P1) is fulfilled, then
(i) {Cβ(t) : t ≥ 0} is strongly continuous;
(ii) {Kβ(t) : t ≥ 0} and {Pβ(t) : t ≥ 0} are uniformly continuous;
(iii) Pβ(t) is a compact operator for t > 0 if T (t), t > 0, is compact.

By Lemma 2.9 of [8], we can achieve the following lemma.

Lemma 2.3. [8] If (P1) holds and T (t) is compact for t > 0, the operator Φ : L2(U, E) → C(U, E),
defined by

(Φϖ)(t) =
∫ t

0
Pβ(t − s)ϖ(s)ds, ∀ϖ ∈ L2(U, E),

is compact.

For the nonlinear term f , we make the assumptions below.
(P2) f : U ×C([−r, 0], E)→ E is continuous and for each R > 0, there is K(R) > 0 satisfying

∥ f (t, ψ1) − f (t, ψ2)∥ ≤ K(R)∥ψ1 − ψ2∥C([−r,0],E)

for any t ∈ U and ψ j ∈ C([−r, 0], E) with ∥ψ j∥C([−r,0],E) ≤ R, j = 1, 2.
(P3) There is φ ∈ L2(U,R+) satisfying

∥ f (t, ψ)∥ ≤ φ(t), ∀t ∈ U, ψ ∈ C([−r, 0], E).
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Lemma 2.4. Let assumptions (P1) and (P3) hold. For each v ∈ L2(U,H), if y ∈ C([−r, c], E) is the
mild solution of (1.1) associated with v, there is R > 0 satisfying

∥y∥C([−r,c],E) ≤ R.

Proof. By Definition 2.2, we have y(t) = ϕ(t) for t ∈ [−r, 0]. Then ∥y∥C([−r,0],E) ≤ ∥ϕ∥C([−r,0],E).
If t ∈ [0, c], by (P1) and (P3), we have

∥y(t)∥ ≤M∥ϕ(0)∥ +Mc∥y1∥ +
M

Γ(2β)

∫ t

0
(t − θ)2β−1∥ f (θ, yθ)∥dθ +

M

Γ(2β)

∫ t

0
(t − θ)2β−1∥Bv(θ)∥dθ

≤M∥ϕ(0)∥ +Mc∥y1∥ +
M

Γ(2β)

∫ t

0
(t − θ)2β−1φ(θ)dθ +

MM1

Γ(2β)

∫ t

0
(t − θ)2β−1∥v(θ)∥dθ

≤M∥ϕ(0)∥ +Mc∥y1∥ +
Mσ

Γ(2β)
∥φ∥L2 +

MM1σ

Γ(2β)
∥v∥L2

:= R∗,

where σ = c2β− 1
2√

4β−1
. Choosing R := R∗ + ∥ϕ∥C([−r,0],E), we get

∥y∥C([−r,c],E) ≤ R.

This completes the proof. □

Definition 2.3. For each ȳ ∈ E, if there is v ∈ L2(U,H) such that the control system (1.1) has a mild
solution y ∈ C([−r, c], E) corresponding to v satisfying y(c) = ȳ, then the control system (1.1) is called
exactly controllable on [−r, c].

Define an operatorW by

Wv =
∫ b

0
Pβ(b − s)Bv(s)ds.

Obviously,W : L2(U,H)→ E is a linear operator.
(P4) (i)W−1 exists and takes values in L2(U,H) \ KerW.
(ii) There isM2 > 0 such that

∥W−1∥ ≤ M2.

According to (P4) and the definition ofW, we choose a control vy ∈ L2(U,H) by

vy(t) =W−1[ȳ − Φβ(c) −
∫ c

0
Pβ(c − θ) f (θ, yθ)dθ](t), t ∈ U. (2.1)

If y ∈ C([−r, c], E) is a mild solution of (1.1) associated with vy, by (2.1) and Definition 2.2, we
have

y(c) =Ψβ(c) +
∫ c

0
Pβ(c − θ)[ f (θ, yθ) + Bv(θ)]dθ

=Ψβ(c) +
∫ c

0
Pβ(c − θ) f (θ, yθ)dθ

+

∫ c

0
Pβ(c − θ)BW−1[ȳ − Φβ(c) −

∫ c

0
Pβ(c − s) f (s, ys)ds](θ)dθ

=ȳ.
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This fact implies that (1.1) is exactly controllable according to Definition 2.3.

Lemma 2.5. Let (P1), (P3) and (P4) hold. For any y ∈ C([−r, c], E), there is K1 > 0 satisfying

∥vy∥L2 ≤ K1.

Proof. For any y ∈ C([−r, c], E), by (P1), (P3) and (P4), we have

∥vy∥L2 =(
∫ b

0
∥vy(t)∥2dt)

1
2

≤M2c
1
2
[
∥ȳ∥ +M∥ϕ(0)∥ +Mc∥y1∥ +

M

Γ(2β)

∫ c

0
(c − θ)2β−1∥ f (θ, yθ)∥dθ

]
≤M2c

1
2
[
∥ȳ∥ +M∥ϕ(0)∥ +Mc∥y1∥ +

M

Γ(2β)

∫ c

0
(c − θ)2β−1φ(θ)dθ

]
≤M2c

1
2
[
∥ȳ∥ +M∥ϕ(0)∥ +Mc∥y1∥ +

Mσ

Γ(2β)
∥φ∥L2

]
:= K1.

This completes the proof. □

For any R > 0, put BC(R) := {y ∈ C([−r, c], E) : ∥y∥C([−r,c],E) ≤ R}.

Lemma 2.6. Let (P1), (P2) and (P4) hold. For any y1, y2 ∈ BC(R), there is K2 > 0 satisfying

∥vy1(t) − vy2(t)∥ ≤ K2∥y1 − y2∥C([−r,c],E), ∀t ∈ U.

Proof. For any y1, y2 ∈ BC(R), by (P1), (P2) and (P4), we have

∥vy1(t) − vy2(t)∥

≤
MM2

Γ(2β)

∫ c

0
(c − θ)2β−1∥ f (θ, y1θ) − f (θ, y2θ)∥dθ

≤
MM2K(R)
Γ(2β)

∫ c

0
(c − θ)2β−1∥y1θ − y2θ∥dθ

≤
MM2K(R)c2β

Γ(2β + 1)
∥y1 − y2∥C([−r,c],E).

By choosing K2 =
MM2K(R)c2β

Γ(2β+1) , we obtain the desired conclusion. □

3. Controllability results

Theorem 3.1. Let (P1) − (P4) be fulfilled. Then the control system (1.1) is exactly controllable on
[−r, c] provided that

MK(R)c2β

Γ(2β + 1)
(
1 +
MM1M2c2β

Γ(2β + 1)
)
< 1. (3.1)
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Proof. Defined Q : C([−r, c], E)→ C([−r, c], E) by

(Qy)(t) =

Ψβ(t) +
∫ t

0
Pβ(t − s)[ f (s, ys) + Bvy(s)]ds, t ∈ U,

ϕ(t), t ∈ [−r, 0].
(3.2)

By Definition 2.2 we know that the mild solution of (1.1) is equivalent to the fixed point of Q.
Let R ≥ M∥ϕ(0)∥ +Mc∥y1∥ +

Mσ
Γ(2β)∥φ∥L2 + MM1σ

Γ(2β) K1 + ∥ϕ∥C([−r,0],E). We first prove that Q(BC(R)) ⊆
BC(R). For any y ∈ BC(R), it is easy to see

∥Qy∥C([−r,0],E) ≤ ∥ϕ∥C([−r,0],E). (3.3)

For t ∈ [0, c], by (P1), (P3) and Lemma 2.5, we have

∥(Qy)(t)∥ ≤∥Ψβ(t)∥ +
M

Γ(2β)

∫ t

0
(t − θ)2β−1∥ f (θ, yθ)∥dθ +

M

Γ(2β)

∫ t

0
(t − θ)2β−1∥Bvy(θ)∥dθ

≤M∥ϕ(0)∥ +Mc∥y1∥ +
M

Γ(2β)

∫ t

0
(t − θ)2β−1φ(θ)dθ +

MM1

Γ(2β)

∫ t

0
(t − θ)2β−1∥vy(θ)∥dθ

≤M∥ϕ(0)∥ +Mc∥y1∥ +
Mσ

Γ(2β)
∥φ∥L2 +

MM1σ

Γ(2β)
K1.

This fact, together with (3.3), yields that

∥Qy∥C([−r,c],E) ≤ R.

Thus, Q maps BC(R)) into itself.
Then, we claim that Q : BC(R)) → BC(R)) is a contraction mapping. For any y1, y2 ∈ BC(R)), if

t ∈ [−r, 0], (Qy1)(t) = (Qy2)(t) = ϕ(t). If t ∈ [0, c], by (P1), (P2) and Lemma 2.6, we achieve that

∥(Qy1)(t) − (Qy2)(t)∥

≤
M

Γ(2β)

∫ t

0
(t − θ)2β−1∥ f (θ, y1θ) − f (θ, y2θ)∥dθ +

MM1

Γ(2β)

∫ t

0
(t − θ)2β−1∥vy1(θ) − vy2(θ)∥dθ

≤
MK(R)
Γ(2β)

∫ t

0
(t − θ)2β−1∥y1θ − y2θ∥C([−r,0],E)dθ +

MM1

Γ(2β)

∫ t

0
(t − θ)2β−1∥vy1(θ) − vy2(θ)∥dθ

≤
Mc2β

Γ(2β + 1)
(
K(R) +M1K2

)
∥y1 − y2∥C([−r,c],E).

According to (3.1) we deduce that Q : BC(R))→ BC(R)) is a contraction mapping.
As such, Q has a unique fixed point y ∈ BC(R)) ⊂ C([−r, c], E), which is the mild solution of (1.1).

□

Remark 3.1. Since the global Lipschitz continuity contains local Lipschitz continuity (but the reverse
is not true), Theorem 3.1 is an improvement of Theorem 4.1 of [7].
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Theorem 3.2. Let (P1), (P3) and (P4) hold. If f : U × C([−r, 0], E) → E is continuous, and the
condition (P5) is satisfied, where

(P5) For any t ∈ U and R > 0, the set

{Pβ(t − s) f (s, x) : s ∈ [0, t], ∥x∥C([−r,0],E) ≤ R}

is relatively compact in E, then the system (1.1) is exactly controllable on [−r, c].

Proof. Put the operator Q : C([−r, c], E) → C([−r, c], E) as in (3.2). It follows from the proof of
Theorem 3.1 that Q(BC(R)) ⊆ BC(R) for some R > 0 and Q : BC(R)→ BC(R) is continuous.

Next, we will show that Q is a compact operator, that is, Q(BC(R)) is relatively compact. By the
Ascoli-Arzela theorem, it suffices to prove that Q(BC(R)) is equicontinuous and {(Qy)(t) : y ∈ BC(R)}
is relatively compact for t ∈ [−r, c]. By employing Lemma 2.2(i)(ii), the equicontinuity of Q(BC(R))
can be verified using the proof of Theorem 4.2 of [7]. Since (Qy)(t) ≡ ϕ(t) for t ∈ [−r, 0], it remains to
prove that {(Qy)(t) : y ∈ BC(R)} is relatively compact for t ∈ U. By Lemma 2.5 and (P5), we obtain
that

Ξ(t) := {Pβ(t − s)[ f (s, ys) + Bvy(s)] : s ∈ [0, t], y ∈ BC(R)} (3.4)

is relatively compact in E for t ∈ U. Hence, we can infer from (3.4) that∫ t

0
Pβ(t − s)[ f (s, ys) + Bvy(s)ds ∈ t convΞ(t), ∀t ∈ U,

where convΞ(t) represents the convex closure of Ξ(t). Therefore, Q(BC(R)) is relatively compact and
Q : BC(R)→ BC(R) is completely continuous. According to Schauder’s fixed point theorem, there is a
function y ∈ Q(BC(R)) satisfying y = Qy and y(c) = ȳ. Thus the system (1.1) is exactly controllable on
[−r, c]. □

Obviously, if f is uniformly bounded, the assumption (P3) holds automatically. In this case, if we
suppose that T (t) is compact for t > 0, then the assumption (P5) is fulfilled. Hence, according to
Theorem 3.2, the corollary is acquired below.

Corollary 3.1. Let (P1) and (P4) hold. In addition, f : U × C([−r, 0], E) → E is continuous and
uniformly bounded, T (t) is compact for t > 0. Then the system (1.1) is exactly controllable on [−r, c].

Remark 3.2. Obviously, if f is completely continuous, the assumption (P5) hold automatically.

Furthermore, if we achieve the compactness of T (t) for t > 0, by Lemma 2.2(iii) and Lemma 2.3,
the assumption (P3) yields that

{

∫ t

0
Pβ(t − s)[ f (s, ys) + Bvy(s)ds : s ∈ [0, t], y ∈ BC(R)}

is relatively compact for t ∈ U. By the proof of Theorem 3.2, we can acquire the relative compactness
of {(Qy)(t) : y ∈ BC(R)} for t ∈ [−r, c]. Hence, the uniform boundedness of f in Corollary 3.1 can be
removed.

Theorem 3.3. Let (P1), (P3) and (P4) hold. In addition, f : U ×C([−r, 0], E)→ E is continuous and
T (t) is compact for t > 0. Then the system (1.1) is exactly controllable on [−r, c].
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From Corollary 3.1 and Theorem 3.3, we can see that the assumption (P5) and the compactness of
T (t) for t > 0 are too strong. It is of interesting to weaken or remove such assumptions. Next, we will
apply the measure of noncompactness method to discuss the exact controllability of (1.1).

Let E be a Banach space and D ⊂ E a bounded subset of E. We define

χ(D) := inf{ϵ > 0 : D has finite ϵ-net in E}

the Hausdorff measure of noncompactness in E. If D ⊂ C(U, E) is bounded, D(t) := {y(t) : y ∈ D} ⊂ E
is bounded for each t ∈ U and χ(D(t)) ≤ χ(D).

Lemma 3.1. [10] If D ⊂ E is bounded, then there exists a countable subset D0 ⊂ D such that

χ(D) ≤ 2χ(D0).

Lemma 3.2. [11] If D ⊂ C(U, E) is bounded and equicontinuous, then χ(D(t)) is continuous for t ∈ U
and

χ(D) = sup
t∈U
∥χ(D(t))∥.

Lemma 3.3. [12] Let D := {yn} ⊂ C(U, E) be countable. If there is ω ∈ L1(U) such that, for each
n ≥ 1, yn(t) ≤ ω(t) a.e., then χ(D(t)) is Lebesgue integrable on U and

χ({
∫

U
yn(t)dt}) ≤ 2

∫
U
χ(D(t))dt.

Furthermore, we make the assumptions below.
(P6) f : U × C([−r, 0], E) → E is continuous and there is a function η ∈ L2(U,R+) such that for

each bounded subset D1 ⊂ C([−r, 0], E), we have

χ( f (t,D1)) ≤ η(t) sup
−r≤s≤0

χ(D1(s)), ∀t ∈ U.

(P7) There is a constant L > 0 such that

χ(W−1(D2)(t)) ≤ Lχ(D2), ∀t ∈ U

for each bounded subset D2 ⊂ E.

Theorem 3.4. Let (P1), (P3), (P4), (P6) and (P7) be fulfilled and

Mσ

Γ(2β)

(
1 +

2MLM1c2β

Γ(2β + 1)

)
∥η∥Ł2 <

1
4
. (3.5)

Then, the system (1.1) is exactly controllable on [−r, c].

Proof. From the Theorem 3.2 and its proof, we obtain that Q : BC(R) → BC(R), defined as in (3.2), is
continuous and equicontinuous. Next, we will verify that Q : BC(R)→ BC(R) is a condensing mapping
using (P6) and (P7).
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Since for any θ ∈ U, we have

sup
−r≤τ≤0

χ({yθ(τ) : y ∈ BC(R)})

≤ sup
0≤τ≤0

χ({y(τ) : y ∈ BC(R)})

≤χ(BC(R)),

(3.6)

according to (P6), (P7), (3.6) and (2.1), we can deduce that

χ({Bvy(s) : y ∈ BC(R)}) ≤
2MM1Lσ
Γ(2β)

∥η∥L2χ({BC(R)}). (3.7)

Since Q(BC(R)) is bounded and equicontinuous, according to Lemma 3.1 and Lemma 3.2, there is a
countable subset {yn : n ≥ 1} ⊂ BC(R) such that

χ(Q(BC(R))) ≤ 2χ({(Qyn) : n ≥ 1})

= 2 sup
t∈[−r,c]

χ({(Qyn)(t) : n ≥ 1}). (3.8)

Obviously, for t ∈ [−r, 0], (Qyn)(t) ≡ ϕ(t) for n ≥ 1, so

χ({(Qyn)(t) : n ≥ 1}) = 0.

For t ∈ U, by (3.6), (3.7) and Lemma 3.3, we can infer that

χ({(Qyn)(t) : n ≥ 1}) ≤
2M
Γ(2β)

∫ t

0
(t − s)2β−1χ({ f (s, yns) + Bvyn(s) : n ≥ 1})ds

≤
2M
Γ(2β)

∫ t

0
(t − s)2β−1η(s) sup

−r≤θ≤0
χ({yns(θ) : n ≥ 1})ds

+
2M
Γ(2β)

∫ t

0
(t − s)2β−1χ({Bvyn(s) : n ≥ 1})ds

≤
2Mσ

Γ(2β)

(
1 +

2MM1Lc2β

Γ(2β + 1)

)
∥η∥Ł2χ(BC(R)).

The above facts together with (3.8) yield that

χ(Q(BC(R))) ≤ 2 sup
t∈[−r,0]

χ({(Qyn)(t) : n ≥ 1}) + 2 sup
t∈U

χ({(Qyn)(t) : n ≥ 1})

≤
4Mσ

Γ(2β)

(
1 +

2MM1Lc2β

Γ(2β + 1)

)
∥η∥Ł2χ(BC(R)).

According to (3.5), we acquire that Q : BC(R)→ BC(R) is a condensing mapping. By Sadovskii’s fixed
point theorem, there exists y ∈ BC(R) satisfying y = Qy and y(c) = ȳ. Therefore, the system (1.1) is
exactly controllable on [−r, c]. □

Remark 3.3. In Theorem 3.4, we remove the assumption (P5) and the compactness of the sine family
{T (t) : t ≥ 0}, which are essential assumptions in [7, 8]. Hence, our results extend many existing
research works.
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Remark 3.4. In [7], under the global Lipschitz condition or certain compactness conditions on
nonlinear term f , the exact controllability of the Caputo fractional evolution equations without delay
was investigated. Compared with the main results of [7], we consider the delayed control system (1.1).
Theorem 3.1 is obtained when the nonlinear term f is locally Lipschitz continuous. Theorem 3.2 and
Theorem 3.3 are achieved under certain compactness conditions. The measure of noncompactness
conditions are applied in Theorem 3.4. Therefore, our conclusions improve the major results of [7].

4. Applications

Let Ω ⊂ RN be an open subset with Dirichlet boundary conditions. We focus on the fractional
delayed evolution system

C∂
3
2
t y(t, z) = ∆y(t, z) + f (t, z, yt) + Bv(t, z), t ∈ (0, 1], z ∈ Ω, α ∈ (1, 2),

y(t, z) = ϕ(t, z), ∀t ∈ [−r, 0],

y′(0, z) = y1(z),

(4.1)

where C∂
3
2
t represents the fractional partial derivative operator on t of order 3

2 in the Caputo sense, ∆
represents the Laplace operator, v ∈ L2([0, 1] × Ω, L2(Ω)) stands for the control function. f is the
nonlinear function satisfying the following conditions.

(A1) f : [0, 1] × Ω × C([−r, 0], L2(Ω)) → L2(Ω) is continuous and for each R > 0, there exists a
constant K(R) > 0 such that

∥ f (t, z, ϕ1) − f (t, z, ϕ2)∥L2(Ω) ≤ K(R)∥ϕ1 − ϕ2∥C([−r,0],L2(Ω))

for any t ∈ [0, 1] and ϕ j ∈ C([−r, 0], L2(Ω)) with ∥ϕ j∥C([−r,0],L2(Ω)) ≤ R, j = 1, 2.
(A2) There is φ ∈ L2([0, 1],R+) such that

∥ f (t, z, ϕ)∥L2(Ω) ≤ φ(t)

for any t ∈ [0, 1], z ∈ Ω and ϕ ∈ C([−r, 0], L2(Ω)).
Let E = H = L2(Ω). We define

D(A) = W2,2(Ω) ∩W1,2
0 (Ω),

Ay = ∆y.

Then, by [7, 13], A : D(A) ⊆ E → E generates a strongly continuous cosine family {G(t) : t ≥ 0} in E
satisfying ∥G(t)∥B ≤ 1 for every t ≥ 0.

Define B : H → E by

Bv =
∞∑

n=1

µn⟨v̂, ϖn⟩ϖn,

where

v̂ =

⟨v, ϖn⟩, n = 1, 2, · · · , ℓ,

0, n = ℓ + 1, ℓ + 2, · · ·

AIMS Mathematics Volume 9, Issue 7, 17971–17983.
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for ℓ ∈ N. µn = n2π2 is eigenvalues of A with the corresponding eigenvectors ϖn(z) =
√

2
π

sin(nπz) for
n ∈ N. From [7], there is a positive constantM1 satisfying ∥B∥B ≤ M1.

Define the operator W : L2([0, 1], L2(Ω))→ L2(Ω) by

Wv =
∫ 1

0
P 3

4
(1 − s)Bv(s)ds,

where

P 3
4
(t) = t−

1
4

∫ ∞

0

3
4
θM 3

4
(θ)T (t

3
4 θ)dθ, t ∈ [0, 1]

and {T (t) : t ≥ 0} is the sine family corresponding to {G(t) : t ≥ 0} generated by A.
(A3) W−1 exists and takes values in L2([0, 1], L2(Ω)) \ KerW and there isM2 > 0 such that

∥W−1∥ ≤ M2.

Thus, we can rewrite the fractional delayed evolution system (4.1) into the abstract fractional control
system (1.1). By Theorem 3.1, we can achieve the cxact controllability result.

Theorem 4.1. Assume that conditions (A1) − (A3) hold. Then the fractional delayed evolution
system (4.1) is exactly controllable provided that

K(R)
Γ( 5

2 )
(
1 +
M1M2

Γ(5
2 )
)
< 1.

5. Conclusions

This paper deal with the exact controllability of the control system govern by evolution equations
involving Caputo fractional derivatives of order α ∈ (1, 2) in abstract spaces. At first, the exact
controllability of the delayed system (1.1) is studied when f is local Lipschitz continuous. Then,
the certain compactness conditions and the measure of noncompactness conditions are employed to
demonstrate the exact controllability of (1.1) in this article. The results improve and generalize the
conclusions of many researchers. In the future, the method can be applied to study the controllability of
the Sobolev-type fractional evolution equations. By utilizing the compactness of the Sobolev operator,
we can delete compactness conditions on the nonlinear term f and the sine family {T (t) : t ≥ 0}.
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