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Abstract: In the process of grey prediction modeling, the accumulation of original non-negative
sequences can enhance the inherent regularity of data and the smoothness of sequences. The
estimated method of background values and derivative values greatly affects the prediction accuracy
and adaptability of the model. On the basis of the traditional GM(2,1) model, the GM(2,1) model
with the fractional order accumulation is obtained by introducing a fractional order operator, which
can be written as GMr(2,1) with r-AGO. In this work, we estimated the background values and
derivative values based on a C1 convexity-preserving rational quadratic interpolation spline, and
thereby established a new GM2(2,1) model. Numerical examples showed that the new GM2(2,1) model
had better prediction quality of data than the classical GM(2,1) and GM2(2,1) model and improved the
precision of prediction in practice.
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1. Introduction

Grey system theory is a method for forecasting and analyzing small sample sequences. It was first
put forward by Deng [1, 2] and has been widely used in various fields. In order to enhance the
adaptability of the prediction model, Deng proposed a single-variable grey prediction model GM(2,1),
which stands for one variable and second-order differential equation. However, due to defects in the
structure, the prediction effect is not ideal in some cases [21]. In order to improve the prediction
accuracy of the model, scholars put forward some improved models based on the classical GM(2,1)
model. Shen et al. [3] proposed a method to determine the system parameters using the least square
method to reduce error. Zeng et al. [4] proposed a new parameter estimation to GM(2,1) model based
on accumulating method which reduces the matrix calculation quantity. A new healthier model was
obtained and the serious morbidity problem with a multiple transformation on the initial data was
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resolved. In [5], two improved models are proposed based on modeling and predicting on non-linear
rolling motion by GM(2,1), which are grey cycle extension and grey neural network respectively
based on error compensation. Li et al. [6] introduced the GM(2,1) model and its improved algorithm
and prediction steps by Matlab. By analyzing the shortcomings of GM(2,1) model, an optimized
SOGM(2,1) model was constructed in [7] and applied to the prediction of high-speed roadbed
settlement with higher prediction accuracy. In [8], Zhou et al. focused on the two shortcomings of
GM(2,1) model and proposed appropriate measures for improvement. Moreover Zhou improved the
method, which was used in solving albino equations of the classical GM(2,1) model, to solve the
same equations by Laplace transform and improve the prediction accuracy. In [9], based on the
GM(2.1) model, the boundary conditions were improved, and the effectiveness of the improved
method was verified with grey data.

In [10], Wu et al. first discussed using perturbation theory and the least square method to address
a violation of the new information priority principle in grey system theory. Ihis introduced a new grey
system model with fractional order accumulation that reflects new information priority better with
smaller accumulation orders. In recent years, various grey prediction models based on fractional order
accumulation have been proposed in [11–15]. In [12], Wu improved the GM(2,1) using fractional
order AGO to achieve an accurate prediction. Based on the GM(2,1) model with fractional order
accumulation, Zeng [15] gave two different ways to determine the time response parameters of the
fractional order GM(2,1) model, which can be flexibly selected according to the specific results in
practical application.

The B-spline method has been widely applied to derive numerical solutions of partial differential
equations. In [16], a cubic monotonicity-preserving interpolation spline was proposed to reconstruct
the background value. In [17], Chen and Zhu developed a new GM(1,1) model based on C1

monotonicity-preserving rational linear interpolation spline to provide a more reasonable method to
calculate the background value. In [18], in order to improve the GM (1,1) model, a formula based on
a C1 monotonicitypreserving piecewise rational quadratic interpolation spline for calculating
background value was proposed.

In the classical GM2(2, 1) model, the corresponding estimated function x(2)(t) has the property of
convexity and C∞ continuity. The classical GM2(2,1) model use the piecewise linear polynomial
interpolation Lk(t) = (k + 1 − t) x(2)(k) + (t − k) x(2)(k + 1), k = 1, 2, . . . , n − 1 as an approximate
solution of x(2)(t) so as to estimate background values z(2)(k + 1) and the derivative values dx(2)(t)

dt |t=k+1

and dx(2)(t)
dt |t=k. It is well known that the piecewise linear polynomial interpolation has

convexity-preserving property, but it just has C0 continuity and only has O(h2) order of convergence.
In estimating dx(2)(t)

dt |t=1, the classical GM2(2,1) model simply sets x(2)(0) = 0, whereas this will cause
error in estimating dx(2)(t)

dt |t=1.

The main contribution of this work is to use a C1 convexity-preserving rational quadratic
interpolation spline given in [19] as approximate solution of x(2)(t) so as to estimate background
values z(2)(k + 1) and the derivative values dx(2)(t)

dt |t=k+1 and dx(2)(t)
dt |t=k, k = 1, 2, . . . , n − 1 and thereby a

new GM2(2,1) model is established. The rest of this paper is structured as follows. Section 2 recall the
construction of the C1 convexity-preserving interpolation spline given in [19]. In section 3, on the
basis of C1 convexity-preserving rational quadratic interpolation spline, a new GM2(2,1) model is
constructed in detail. Several numerical examples are given in section 4. The conclusion is given in
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section 5.

2. Classical GM2(2, 1) model

In this subsection, we recall the classical GM2(2, 1) model. Let an original non-negative and
uniformly-spaced sequence be

X(0) =
{
x(0)(1), x(0)(2), · · · , x(0)(n)

}
.

The r-AGO sequence X(r) is given as follows

X(r) =
{
x(r)(1), x(r)(2), . . . , x(r)(n)

}
,

where

x(r)(k) =
k∑

i=0

x(r−1)(i) = x(r)(k − 1) + x(r−1)(k), k = 1, 2, . . . , n. (2.1)

From [10], by using the fractional order accumulation operator, we can also rewrite x(r)(k) as x(r)(k) =
k∑

i=1

(
k − i + r − 1

k − i

)
x(0)(i), k = 1, 2, . . . , n. Here,

(
m
n

)
:= m!(m−n)!

n! and
(

0
n

)
:= 1,

(
n + 1

n

)
:= 0. In the

following discussion, we mainly focus on r = 2.
From Eq (2.1), we can obtain 1-AGO sequence X(1) and 2-AGO sequence X(2) as follows

X(1) =
{
x(1)(1), x(1)(2), . . . , x(1)(n)

}
,

X(2) =
{
x(2)(1), x(2)(2), . . . , x(2)(n)

}
,

where

x(1)(k) =
k∑

i=0

x(0)(k) = x(1)(k − 1) + x(0)(k), k = 1, 2, . . . , n,

x(2)(k) =
k∑

i=0

x(1)(k) = x(2)(k − 1) + x(1)(k), k = 1, 2, . . . , n. (2.2)

From Eq (2.2), we can see that the 2-AGO sequence X(2) has convexity property, that is x(1)(k + 2) =
x(2)(k + 2) − x(2)(k + 1) ≥ x(2)(k + 1) − x(2)(k) = x(1)(k + 1). Suppose that x(2)(t) meets the following
second order grey forecasting differential equation

d2x(2)(t)
dt2 + a1

dx(2)(t)
dt

+ a2x(2)(t) = b, (2.3)

where α = (a1, a2, b)T is the parameter in the model to be estimated.
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The corresponding characteristic function of Eq (2.3) is r2 + a1r + a2 = 0. Consider the case that
∆ = a2

1 − 4a2 > 0, then the roots of the characteristic function are r1,2 =
−a1±

√
∆

2 .
Thus, the solution of Eq (2.3) with the initial condition x̃(2)(1) = x(2)(1), x̃(2)(n) = x(2)(n) is as follows

x(2)(k) = C1er1k +C2er2k +
b
a2
, k = 1, 2, . . . , n,

where

C1 =

(
x(2)(1) − b

a2

)
enr2 −

(
x(2)(n) − b

a2

)
er2

er1+nr2 − enr1+r2
,C2 =

(
x(2)(n) − b

a2

)
er1 −

(
x(2)(1) − b

a2

)
enr1

er1+nr2 − enr1+r2
.

Therefore, to obtain the prediction model of the original data sequence, we need to identify the effect
of α. For this purpose, we do the integral accumulation on both sides of Eq (2.3) in each
interval [k, k + 1] , k = 1, 2, . . . , n − 1, then we can get∫ k+1

k

d2x(2)(t)
dt2 dt + a1

∫ k+1

k

dx(2)(t)
dt

dt + a2

∫ k+1

k
x(2)(t)dt = b,

that is

dx(2)(t)
dt

∣∣∣∣∣∣
t=k+1

−
dx(2)(t)

dt

∣∣∣∣∣∣
t=k

+ a1

[
x(2)(k + 1) − x(2)(k)

]
+ a2

∫ k+1

k
x(2)(t)dt = b. (2.4)

Let background value be z(2)(k+ 1) :=
∫ k+1

k
x(2)(t)dt. In order to calculate the background value z(2)(k+

1), we need to integrate x(2)(t), which requires the value of α to be given in advance. However, the
value of α needs to be determined from the Eq (2.4). Consequently, to estimate the value of α, we
must use some methods to estimate the background values z(2)(k + 1), k = 1, 2, · · · , n − 1. In the
classical GM2(2,1) model, for t ∈ [k, k + 1], k = 1, 2, . . . , n− 1, we use the piecewise linear polynomial
interpolation Lk(t) := (k + 1 − t) x(2)(k) + (t − k) x(2)(k + 1) as an approximate solution of x(2)(t), that
is x(2)(t) ≈ Lk(t) for t ∈ [k, k + 1], k = 1, 2, . . . , n − 1. Then we get the estimated background values
z(2)(k + 1), k = 1, 2, . . . , n − 1 as follows

z(2)(k + 1) =
∫ k+1

k
x(2)(t)dt

≈

∫ k+1

k
Lk(t)dt

=
1
2

[
x(2)(k) + x(2)(k + 1)

]
. (2.5)

And for the derivative values, we approximately have

dx(2)(t)
dt
|t=k+1 ≈

dLk(t)
dt
|t=k+1 = x(2)(k + 1) − x(2)(k), k = 1, 2, . . . , n − 1.

For dx(2)(t)
dt |t=1, by setting x(2)(0) = 0, then we get dx(2)(t)

dt |t=1 ≈ x(2)(1) − x(2)(0) = x(2)(1).
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For each interval [k, k + 1], k = 1, 2, . . . , n − 1, by substituting the estimated background values
z(2)(k+1) given in Eq (2.5) and the approximate derivative values dx(2)(t)

dt |t=k+1 and dx(2)(t)
dt |t=k into Eq (2.4),

we have

x(2)(k + 1) − 2x(2)(k) + x(2)(k − 1) + a1

[
x(2)(k + 1) − x(2)(k)

]
+ a2

∫ k+1

k
x(2)(t)dt = b.

Further applying the least square method, we get the estimated value of α by the formula as follows

α =


a1

a2

b

 = (
GTG

)−1
GT Y,

where

Y =


x(2)(2) − 2x(2)(1)

x(2)(3) − 2x(2)(2) + x(2)(1)
...

x(2)(n) − 2x(2)(n − 1) + x(2)(n − 2)

 ,G =


x(2)(1) − x(2)(2) −z(2)(2) 1
x(2)(2) − x(2)(3) −z(2)(3) 1

...
...

...

x(2)(n − 1) − x(2)(n) −z(2)(n) 1

 .
With the estimated parameter α = (a1, a2, b)T, we further get the solution x̃(2)(t) of the second order
grad forecasting differential equation given in (2.3) with the initial condition x̃(2)(1) = x(2)(1), x̃(2)(n) =
x(2)(n). Finally, we get the following classical GM2(2, 1) prediction formula

x̃(0)(k) =


x̃(2)(1), k = 1,

k∑
i=1

(
k − i

k − i − 2

)
x(2)(i) −

k∑
i=1

(
k − i − 1
k − i − 3

)
x(2)(i), k = 2, 3, . . . .

3. C1 convexity-preserving interpolation spline

Given convexity data set {(xk, yk) ∈ R2}nk=1 with ∆1 < ∆2 < . . . < ∆n−1, where x1 < x2 < . . . < xn

and ∆k = [yk+1 − yk]/[xk+1 − xk], k = 1, 2, . . . , n − 1. For x ∈ [xk, xk+1], k = 1, 2, . . . , n − 1, Let
hk = xk+1 − xk, t = (x − xk)/hk, Ak = ∆k − dk, Bk = dk+1 − ∆k, then the C1 convexity-preserving rational
quadratic interpolation spline S (x) developed in [19] is as follows

S (x) = (1 − t)yk + tyk+1 −
hk(1 − t)tAkBk

(1 − t)Bk + tAk
, (3.1)

where 
d1 = ∆1 −

h1
h1+h2

(∆2 − ∆1) ,
dk =

hk
hk−1+hk

∆k−1 +
hk−1

hk−1+hk
∆k, k = 2, 3, . . . , n − 1,

dn = ∆n−1 +
hn−1

hn−2+hn−1
(∆n−1 − ∆n−2) .

(3.2)

From Eq (3.1), it is easy to check that S (x+k ) = yk, S (x−k+1) = yk+1, S ′(x+k ) = dk, S ′(x−k+1) = dk+1,
k = 1, 2, . . . , n − 1 which implies that S (x) ∈ C1[x1, xn]. For ∆1 < ∆2 < . . . < ∆n−1, from [19] ,
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we see that S ′′(x) > 0, which means that S (x) has convexity-preserving properties. Furthermore, let
f (x) ∈ C3[x1, xn] be a given convex function with which S (x) is compared and yi = f (xi), i = 1, 2, . . . , n,
from [19], we have f (x)−S (x) = O(h3), which indicates that interpolant has O(h3) convergence. Since
the C1 convexity-preserving rational quadratic interpolation spline S (x) developed in [19] has many
merits, in the following we shall use it as approximate solution of x(2)(t) so as to estimate background
values z(2)(k+1) and the derivative values dx(2)(t)

dt |t=k+1 and dx(2)(t)
dt |t=k and a method for estimating dx(2)(t)

dt |t=1

will be given.

4. Establish new GM2(2,1) model

For the original non-negative sequence X(0) =
{
x(0)(1), x(0)(2), . . . , x(0)(n)

}
, we first calculate its 1-

AGO sequence X(1) =
{
x(1)(1), x(1)(2), . . . , x(1)(n)

}
, 2-AGO sequence X(2) =

{
x(2)(1), x(2)(2), . . . , x(2)(n)

}
.

From the above discussion, the 2-AGO sequence X(2) is a convex data set. The corresponding estimated
function x(2)(t) has the property of convexity and C∞ continuity. Thus, we consider to reconstruct
x(2)(t) with the C1 convexity-preserving rational quadratic interpolation spline developed in [19]. For
the convex 2-AGO sequence data set

{
(xk, x(2)(k)) ∈ R2

}n

k=1
with xk = k, for each of the subintervals

[k, k + 1], by using the C1 convexity-preserving rational quadratic interpolation spline given in (3.1) as
approximate solution of x(2)(t), t ∈ [k, k + 1], k = 1, 2, . . . , n − 1, we have

x(2)(t) ≈ S (t) = (1 − s)x(2)(k) + sx(2)(k + 1) −
(1 − s)sAkBk

Aks + Bk(1 − s)
, (4.1)

where s = k + 1 − t ∈ [0, 1]. From (3.2), we have
d1 =

[
x2(2) − x2(1)

]
− 1

2

[
x2(3) − 2x2(2) − x2(1)

]
,

dk =
1
2

[
x2(k) − x2(k − 1)

]
+ 1

2

[
x2(k + 1) − x2(k)

]
, k = 2, 3, . . . , n − 1,

dn =
[
x2(n) − x2(n − 1)

]
+ 1

2

[
x2(n) − 2x2(n − 1) + x2(n − 2)

]
,

(4.2)

and 
A1 =

1
2

[
x(2)(3) − 2x(2)(2) + x(2)(1)

]
,

Ak =
1
2

[
x(2)(k + 1) − 2x(2)(k) + x(2)(k − 1)

]
,

Bk−1 =
1
2

[
x(2)(k + 1) − 2x(2)(k) + x(2)(k − 1)

]
,

Bn−1 =
1
2

[
x(2)(n) − 2x(2)(n − 1) + x(2)(n − 2)

]
.

where k = 2, 3, . . . , n − 1.
Then we estimate the background values z(2) (k + 1) =

∫ k+1

k
x(2) (t)dt, k = 1, 2, . . . , n − 1, by the

following method

z(2) (k + 1) =
∫ k+1

k
x(2) (t)dt

≈

∫ k+1

k
S (t)dt
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=

∫ 1

0

[
(1 − s)x(2)(k) + sx(2)(k + 1) −

(1 − s)sAkBk

Aks + Bk(1 − s)

]
ds

=

 1
2 x(2)(k) + 1

2 x(2)(k + 1) − 1
6 Ak, when Ak = Bk,

1
2 x(2)(k) + 1

2 x(2)(k + 1) − Ak Bk
Ak−Bk

[
1
2 +

Bk
Ak−Bk

−
Ak Bk

(Ak−BK )2 ln Ak
Bk

]
, when Ak , Bk.

(4.3)

Moreover, we further estimate the derivative values dx(2)(t)
dt |t=k+1 and dx(2)(t)

dt |t=k, k = 1, 2, . . . , n − 1 by the
following method  dx(2)(t)

dt |t=k+1 ≈
dS (t)

dt |t=k+1 = dk+1,
dx(2)(t)

dt |t=k ≈
dS (t)

dt |t=k = dk,
(4.4)

where the derivative values dk, k = 1, 2, . . . , n are given by Eq (4.2).
Then, by substituting the estimated background values z(2) (k + 1) =

∫ k+1

k
x(2) (t)dt and the estimated

the derivative values dx(2)(t)
dt |t=k+1 and dx(2)(t)

dt |t=k, k = 1, 2, . . . , n − 1 into the grey differential Eq (2.4) and
applying the following least square method to solve Eq (2.4), we get

α =


a1

a2

b

 = (
GTG

)−1
GT Y, (4.5)

where

Y =


d2 − d1

d3 − d2
...

dn − dn−1

 ,G =


x(2)(1) − x(2)(2) −z(2)(2) 1
x(2)(2) − x(2)(3) −z(2)(3) 1

...
...

...

x(2)(n − 1) − x(2)(n) −z(2)(n) 1

 .
with dk, k = 1, 2, . . . , n are given by Eq (4.2) and z(2) (k + 1) =

∫ k+1

k
x(2) (t)dt k = 1, 2, . . . , n − 1 are

given by Eq (4.3).
With the estimated parameter α = (a1, a2, b)T given by (4.5), we further solve the second order

grad forecasting differential equation given in (2.3) with the initial condition x̃(2)(1) = x(2)(1), x̃(2)(n) =
x(2)(n), whose solution is denoted as x̃(2)(t). Finally, we get the following new GM2(2, 1) grey prediction
formula

x̃(0)(k) =


x̃(2)(1), k = 1,

k∑
i=1

(
k − i

k − i − 2

)
x(2)(i) −

k∑
i=1

(
k − i − 1
k − i − 3

)
x(2)(i), k = 2, 3, . . . .

(4.6)

Summarize the above discussion, we give the following algorithm for establish our new grey prediction
equation.
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Algorithm 1 New grey prediction model based on a C1 convexity-preserving rational quadratic
interpolation spline

Input: original non-negative and uniformly-spaced sequence X(0) =
{
x(0)(1), x(0)(2), . . . , x(0)(n)

}
.

Output:grey prediction formula x̃(0)(k), k = 1, 2, . . ..
1: Compute the 2-AGO sequence X(2) =

{
x(2)(1), x(2)(2), . . . , x(2)(n)

}
by Eq (2.2);

2: Compute the estimated derivative values dk, k = 1, 2, . . . , n by Eq (4.2);
3: Compute the estimated background values z(2) (k + 1), k = 1, 2, . . . , n − 1 by Eq (4.3);
4: Compute the estimated model parameter α by Eq (4.5);
5: With the estimated parameter α = (a1, a2, b)T, solve the second order grad forecasting differential

equation given in (2.3) with the initial condition x̃(2)(1) = x(2)(1), x̃(2)(n) = x(2)(n) so as to get
x̃(2)(t).

6: Get the grey prediction formula x̃(0)(k), k = 1, 2, . . . by Eq (4.6).

5. Numerical examples

We shall give several examples to show that the new GM2(2,1) model based on C1 convexity-
preserving rational quadratic interpolation spline has better predict accuracy than the classical GM(2,1)
model and GM2(2,1) model, Zeng’s GM2(2,1) model given in [15] and Xu and Dang’s GM(2,1) model
given in [7]. In the following examples, the relative error is computed by

ε =

∣∣∣x̃(0)(k) − x(0)(k)
∣∣∣

x(0)(k)
× 100%, k = 1, 2, . . . .

Example 1. We take the total water consumption of Beijing from 2003 to 2019 in [20] as an example.
We compare our new GM2(2,1) model with the classical GM(2,1) model, the classical GM2(2,1) model
and Zeng’s GM2(2,1) model given in [15]. We use the data from 2003 to 2015 as the training data and
the data from 2016 to 2019 as the testing data. Table 1 gives the numerical results. The results show
that the new GM2(2,1) has improved prediction accuracy compared to the classical GM(2,1) model,
the classical GM2(2,1) model and Zeng’s GM2(2,1) model.
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Table 1. Numerical results for example 1.

x(0) Classical GM(2,1) Classical GM2(2,1) Zeng’s GM2(2,1) New GM2(2,1)
Simulation value ε(%) Simulation value ε(%) Simulation value ε(%) Simulation value ε(%)

35.8 35.8000 0.00 35.8000 0.00 35.8000 0.00 35.8000 0.00
34.6 35.5873 2.85 35.1701 1.65 67.7374 95.77 34.5448 0.16
34.5 35.3004 2.32 34.5436 0.13 22.4655 34.88 34.5073 0.02
34.3 35.0887 2.29 34.5536 0.74 25.4200 25.89 34.5828 0.82
34.8 34.9576 0.45 34.6309 0.49 28.3315 18.59 34.7161 0.24
35.1 34.9134 0.53 34.7754 0.92 31.0404 11.57 34.9074 0.55
35.5 34.9631 1.51 34.9869 1.45 33.3327 6.11 35.1567 0.97
35.2 35.1145 0.24 35.2655 0.19 34.9278 0.77 35.4643 0.75
36.0 35.3763 1.73 35.6113 1.08 35.4653 1.49 35.8306 0.47
35.9 35.7583 0.39 36.0247 0.35 34.4906 3.93 36.2560 0.99
36.4 36.2715 0.35 36.5061 0.29 31.4388 13.63 36.7411 0.94
37.5 36.9279 1.53 37.0559 1.18 25.6173 31.69 37.2864 0.57
38.2 37.7411 1.20 37.6750 1.37 16.1881 57.62 37.8928 0.80

ε (%) 1.19 0.76 23.23 0.56

x(0) Prediction value ε(%) Prediction value ε(%) Prediction value ε(%) Prediction value ε(%)

38.8 38.7262 0.19 38.3641 1.12 2.1497 94.46 38.5610 0.62
39.5 39.9001 1.01 39.1241 0.95 -17.6805 144.76 39.2920 0.53
39.3 41.2814 5.04 39.9562 1.67 -44.6811 213.69 40.0869 2.00
41.7 42.8910 2.86 40.8615 2.01 -80.4400 175.39 292.90 1.81

ε (%) 2.28 1.50 186.45 1.24

Example 2. We take the precipitation data of Xichang City from 1986 to 1990 in [20] as the second
example. We use the data from 1986 to 1989 as the training data and the data in 1990 as the testing
data. From the numerical results presented in Table 2, it can be seen that compared with the classical
GM(2,1) model, the classical GM2 (2,1) model and Zeng’s GM2 (2,1) model given in [15], our new
GM2 (2.1) has the best performance.

Table 2. Numerical results for example 2.

x(0) Classical GM(2,1) Classical GM2(2,1) Zeng’s Method New GM2(2,1)
Simulation value ε(%) Simulation value ε(%) Simulation value ε(%) Simulation value ε(%)

16.9 16.9000 0.00 16.9000 0.00 16.9000 0.00 16.9000 0.00
17.4 17.1429 1.48 17.1623 1.37 25.0911 44.20 17.4653 0.38
17.5 17.3504 0.85 17.5720 0.41 6.3627 63.64 17.3014 1.13
16.7 17.1067 2.44 17.2691 3.41 15.9013 4.78 16.9013 1.21

ε (%) 1.19 1.3 28.16 0.68

x(0) Prediction value ε(%) Prediction value ε(%) Prediction value ε(%) Prediction value ε(%)

16.6 16.0771 3.15 16.0684 3.20 21.8441 31.59 16.4934 0.64

ε (%) 3.15 3.2 31.59 0.64
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Example 3. In this example, we consider the historical syphilis incidence data of China from 2000
to 2008 given in [22].We use the data from 2000 to 2005 as the training data and the data from 2006
to 2008 as the testing data. We compare our new GM2(2,1) model with the classical GM(2,1) model,
the classical GM2(2,1) model and Zeng’s GM2(2,1) model given in [15]. Table 3 gives the numerical
results. From the results, compared with the classical GM(2,1) model, the classical GM2(2,1) model
and Zeng’s GM2(2,1) model, the new GM2(2,1) has better performance.

Table 3. Numerical results for example 3.

x(0) Classical GM(2,1) Classical GM2(2,1) Zeng’s Method New GM2(2,1)
Simulation value ε(%) Simulation value ε(%) Simulation value ε(%) Simulation value ε(%)

5.08 5.0800 0.00 5.0800 0.00 5.0800 0.00 5.0800 0.00
4.8 5.0701 5.63 5.3421 11.29 6.6090 37.69 4.7359 1.34
4.67 5.1282 9.81 4.1964 10.14 2.4857 46.77 4.5351 2.89
4.5 5.5456 23.23 5.1146 13.66 4.9196 9.33 5.2534 16.74
7.12 6.5391 8.16 6.4643 9.21 6.6706 6.31 6.7678 4.95
9.67 8.4770 12.34 8.3216 13.94 9.0019 6.91 8.9744 7.19

ε (%) 9.86 9.71 17.83 5.52

x(0) Prediction value ε(%) Prediction value ε(%) Prediction value ε(%) Prediction value ε(%)

12.8 11.9829 6.38 10.8081 15.56 12.1471 5.10 11.9864 6.36
15.88 18.1105 14.05 14.0970 11.23 16.3911 3.22 16.0376 0.99
19.49 28.6388 46.94 18.4234 5.47 22.1179 13.48 21.4672 10.14

ε (%) 22.46 10.75 7.27 5.83

Example 4. We take the data of inbound tourists (in 10,000 people) in Beijing from 2012 to 2019
as an example. The data comes from the Beijing Statistical Yearbook in Beijing Municipal Bureau
of Statistics and Survey Office of the National Bureau of Statistics in Beijing. The unit is 10,000
people. We use the data from 2012 to 2015 as the training data and the data from 2016 to 2019 as
the testing data. We compare our new GM2(2,1) model with the classical GM(2,1) model, the classical
GM2(2,1) model and Zeng’s GM2(2,1) model given in [15]. Table 4 gives the numerical results. From
the results, compared with the classical GM(2,1) model, the classical GM2(2,1) model and Zeng’s
GM2(2,1) model, the new GM2(2,1) has the best prediction accuracy.
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Table 4. Numerical results for example 4.

x(0) Classical GM(2,1) Classical GM2(2,1) Zeng’s Method New GM2(2,1)
Simulation value ε(%) Simulation value ε(%) Simulation value ε(%) Simulation value ε(%)

38430.18 38430.1800 0.00 38430.1800 0.00 38430.1800 0.00 38430.1800 0.00
33303.62 34368.4080 3.19 33473.5490 0.51 43824.9398 31.59 33193.1348 0.33
30105.17 30843.0920 2.45 30493.5021 1.28 14420.2404 52.10 30431.3429 1.08
31399.49 29596.7799 5.74 30113.0387 4.09 31205.3896 0.62 31078.5999 1.02

ε (%) 2.85 1.47 21.08 0.61

x(0) Prediction value ε(%) Prediction value ε(%) Prediction value ε(%) Prediction value ε(%)

30727.12 32280.2047 5.05 33839.5762 10.13 41536.2602 35.18 31709.4931 3.19
31079.24 42547.3899 36.89 40306.5666 29.69 55031.5856 77.07 32322.9600 4.00
32165.22 68300.4498 112.34 49122.3373 52.72 72907.5163 126.67 32917.9295 2.34
32501.66 126475.475 289.14 60378.9312 85.77 96590.0266 197.18 33493.3233 3.05

ε (%) 110.85 44.57 109.02 3.15

Example 5. In this example, we consider the data of tourists staying overnight in Guangzhou (in
10,000 people) from 2010 to 2019, which is from the Guangzhou Statistical Yearbook of Guangzhou
Municipal Bureau of Statistics.The data from 2010 to 2015 are taken as the training data and the data
from 2016 to 2019 are used as the testing data. Best prediction accuracy using our new GM2(2,1)
model can be founded from the numerical results presented in Table 5, compared with the classical
GM(2,1) model, the classical GM2 (2,1) model and Xu and Dang’s GM(2,1) model given in [7].

Table 5. Numerical results for example 5.

x(0) Classical GM(2,1) Classical GM2(2,1) Xu and Dang’s GM(2,1) model New GM2(2,1)
Simulation value ε(%) Simulation value ε(%) Simulation value ε(%) Simulation value ε(%)

814.80 814.80 0.00 814.80 0.00 784.8341 3.67 814.80 0.00
778.69 794.0997 1.97 787.1700 1.09 783.8130 0.65 779.4429 0.10
792.21 788.1357 0.51 779.4564 1.61 782.8166 1.18 785.1519 0.89
768.20 782.8196 1.90 776.5131 1.08 782.0395 1.80 779.1184 1.42
783.30 779.3774 0.50 780.8260 0.31 783.3000 0.00 782.8979 0.05
803.58 781.5477 2.74 792.2030 1.41 803.5800 0.00 796.0970 0.93

ε (%) 1.27 0.92 1.22 0.57

x(0) Prediction value ε(%) Prediction value ε(%) Prediction value ε(%) Prediction value ε(%)

862.54 800.7280 7.17 810.5233 6.03 1001.4943 16.10 818.4554 5.11
897.13 871.6671 2.84 835.7340 6.84 2858.5280 218.63 849.8363 5.27
900.63 1100.3003 22.18 867.8474 3.64 20211.9653 2144.20 890.2201 1.16
899.43 1809.5859 101.2 906.9392 0.83 182304.0447 20168.84 939.6980 4.48

ε (%) 33.34 4.34 5636.94 4.00
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Example 6. We take the data on China’s foreign exchange reserves (in trillion dollars) from 2010 to
2021. The data is from the China Statistical Yearbook of National Bureau of Statistics of China. We
use the data from 2010 to 2018 as the training data and the data from 2019 to 2021 as the testing
data. We compare our new GM2(2,1) model with the classical GM(2,1) model, the classical GM2(2,1)
model and Xu and Dang’s GM(2,1) model given in [7]. Table 6 gives the numerical results. From the
results, compared with the classical GM(2,1) model, the classical GM2(2,1) model and Xu and Dang’s
GM(2,1) model, the new GM2(2,1) has the best prediction accuracy.

Table 6. Numerical results for example 6.

x(0) Classical GM(2,1) Classical GM2(2,1) Xu and Dang’s Method New GM2(2,1)
Simulation value ε(%) Simulation value ε(%) Simulation value ε(%) Simulation value ε(%)

435.5 435.5000 0.00 435.5000 0.00 406.79 6.5912 435.5000 0.00
379.0 432.2107 14.04 413.1597 9.01 408.7974 7.86 388.2734 2.45
412.5 437.3610 6.03 414.2725 0.43 410.8098 0.41 444.5537 7.77
490.1 442.0366 9.81 442.9204 9.63 412.8316 15.77 457.9273 6.56
520.4 445.8021 14.33 463.0187 11.03 414.8607 20.28 464.6195 10.72
450.1 447.8780 0.49 472.6093 5.00 416.8823 7.38 463.9944 3.09
427.5 446.8699 4.53 469.7327 9.88 418.8009 2.03 455.4904 6.54
420.0 440.2835 4.83 452.4865 7.73 420.0000 0.00 438.6345 4.44
416.5 423.6581 1.72 419.0905 0.62 416.5000 0.00 413.0577 0.82

ε (%) 6.20 5.93 6.70 4.71

x(0) Prediction value ε(%) Prediction value ε(%) Prediction value ε(%) Prediction value ε(%)

392.6 389.0166 0.91 367.9588 6.28 382.6165 2.54 378.5096 3.59
400.4 322.0940 19.56 297.7779 25.63 152.5796 61.89 334.8712 16.37
376.9 197.3831 47.63 207.5892 44.92 -1343.5074 456.46 282.1679 25.13

ε (%) 22.70 25.61 173.63 15.03

Example 7. We take the data of inbound tourists (in 10,000 people) in Zaozhuang from 2005 to 2019
as an example. The data comes from the Ministry of Culture And Tourism of the People’s Republic of
China. The unit is 10,000 people. We use the data from 2005 to 2017 as the training data and the
data from 2018 to 2019 as the testing data. We compare the new GM2(2,1) model with the classical
GM(2,1) model, the classical GM2(2,1) model and the OFOPGM model given in [23]. Table 7 gives
the numerical results. From the results, the new GM2(2,1) model has better prediction accuracy.
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Table 7. Numerical results for example 7.

x(0) Classical GM2(2,1) Classical GM(2,1) OFOPGM New GM2(2,1)
Simulation value ε(%) Simulation value ε(%) Simulation value ε(%) Simulation value ε(%)

0.37 0.37 0.00 0.37 0.00 0.37 0.00 0.37 0.00
0.58 1.49 157.41 0.85 46.31 1.33 129.15 0.26 55.77
0.83 1.25 50.30 1.07 28.82 1.62 94.73 1.81 118.16
1.02 1.58 54.41 1.33 30.54 1.94 90.30 1.97 92.76
1.30 1.93 48.40 1.64 26.04 2.30 76.92 2.13 64.23
2.60 2.29 11.75 1.99 23.43 2.69 3.40 2.32 10.84
3.20 2.65 17.26 2.39 25.44 3.10 3.09 2.52 21.34
4.10 2.95 27.93 2.82 31.34 3.53 13.87 2.73 33.34
5.50 3.17 42.34 3.26 40.67 3.97 27.81 2.97 46.04
2.90 3.24 11.68 3.70 27.68 4.41 52.01 3.22 11.12
3.10 3.08 0.54 4.09 31.98 4.83 55.87 3.50 12.88
3.40 2.62 23.07 4.36 28.36 5.23 53.69 3.80 11.75
3.40 1.73 49.16 4.43 30.26 5.57 63.81 4.13 21.34

ε (%) 38.02 28.53 51.13 38.43

x(0) Prediction value ε(%) Prediction value ε(%) Prediction value ε(%) Prediction value ε(%)

3.6 0.30 91.65 4.153 15.36 5.84 62.22 4.48 24.44
4.4 -1.80 141.02 3.3553 23.74 6.01 36.52 4.86 10.55

ε (%) 116.34 19.55 49.37 17.5

According to the results of the above numerical examples1–6, the prediction accuracy of our new
GM2(2,1) model is improved for all the numerical examples compared to the classical GM(2,1) model,
the classical GM2(2,1) model, Zeng’s GM2(2,1) model given in [15], Xu and Dang’s GM(2,1) model
given in [7] and the OFOPGM model given in [23]. There are different degrees of improvement for
different data features. Based on the above data characteristics, we make the conclusion that the more
convexity the original datas presents the higher the prediction accuracy of the new GM2(2,1) model,
the better the actual prediction effect.

6. Conclusions

Using the C1 convexity-preserving rational quadratic interpolation spline developed in [19] to
estimate the background values and derivative values, we established a new GM2(2,1) model.
Numerical examples show that the new GM2(2,1) model can improve the forecasting quality,
especially in prediction reliability and this model performs better when the original data are presented
with convexity in time series. There is a limitation in the new method: The computations concerning
the background values and derivative values take more time than the methods included in classical
GM2(2,1) model. Future work will concentrate on applying C1 convexity-preserving rational
quadratic interpolation spline to establish a new GMr(2,1) model with fractional r.
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