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1. Introduction

Let Ω be an exterior Lipschitz domain in R2, i.e., the complement of a bounded planar Lipschitz
domain. The aim of this paper is to show the existence of the Helmholtz decomposition of the vector
fields in Lp(Ω;R2) provided that p satisfies∣∣∣∣∣1p − 1

2

∣∣∣∣∣ < 1
4

+ ε (1.1)

with some constant ε = ε(Ω) ∈ (0, 1/4], where it is allowed to take ε = 1/4 if ∂Ω ∈ C1. Let Lp,σ(Ω) be
the subspace of functions f in Lp(Ω;R2) such that

∫
Ω

f · ∇ϕ dx = 0 for every ϕ ∈ Ḣ1
p(Ω). Notice that

Lp,σ(Ω) is the closure of C∞c,σ(Ω) := {φ ∈ C∞c (Ω;R2) : div φ = 0} in Lp(Ω;R2), see [4, Proposition 2.5].
In addition, let Gp(Ω) := Im∇p = ∇pḢ1

p(Ω) denote the space of gradients in Lp(Ω;R2), where
∇p : Ḣ1

p(Ω)→ Lp(Ω;R2) is the linear map. We aim to prove the following theorem.

Theorem 1.1. Let Ω ⊂ R2 be an exterior Lipschitz domain. Then there exists ε = ε(Ω) ∈ (0, 1/4] such
that for every p subject to (1.1) the Helmholtz decomposition

Lp(Ω;R2) = Lp,σ(Ω) ⊕Gp(Ω) (1.2)
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holds, where the direct sum is topological. In particular, if ∂Ω ∈ C1, it is allowed to take ε = 1/4, i.e.,
the Helmholtz decomposition (1.2) is valid for every 1 < p < ∞.

The Helmholtz decomposition (1.2), a useful tool in the study of the incompressible Navier-Stokes
equations, is well-known in the case that the boundary ∂Ω is smooth (see e.g., [9, Theorem 1.6] and [11,
Theorem 1.4]). In the case of exterior domains with lower regularity (locally Lipschitz), it was proved
by Lang and Méndez [7, Theorem 6.1] as well as Tolksdorf and the author [12, Proposition 2.3] that
the Helmholtz decomposition (1.2) holds for all p satisfying |1/p − 1/2| < 1/6 + ε with some constant
ε(Ω) > 0 provided that Ω ⊂ Rd with d ≥ 3. However, to the best of the author’s knowledge, there
seems to be no result on the Helmholtz decomposition (1.2) in the case of exterior planar Lipschitz
domains.

It is well-known (cf. [2, Lemma III.1.2]) that the existence of the Helmholtz decomposition (1.2) is
equivalent to the unique solvability of the following weak Neumann problem: Given f ∈ Lp(Ω;R2),
consider the weak Neumann problem

〈∇u,∇ϕ〉Ω = 〈 f ,∇ϕ〉Ω for every ϕ ∈ Ḣ1
p′(Ω). (1.3)

The present paper aims to prove the following theorem.

Theorem 1.2. Let Ω ⊂ R2 be an exterior Lipschitz domain. Then there exists ε = ε(Ω) ∈ (0, 1/4]
having the following property: If p satisfies (1.1), for every f ∈ Lp(Ω) Problem (1.3) admits a solution
u ∈ Ḣ1

p(Ω) subject to the estimate

‖∇u‖Lp(Ω;R2) ≤ C‖ f ‖Lp(Ω;R2)

with some positive constant C > 0 which depends only on Ω and p. In particular, the solution is unique
in Ḣ1

p(Ω;R2) up to an additive constant. Furthermore, if ∂Ω ∈ C1, then it is allowed to take ε = 1/4.

Remark 1.3. Let us make some comments on Theorem 1.2.

(1) The constant ε appearing in Theorem 1.2 arises from analyses of elliptic systems on bounded
Lipschitz domains (i.e., analyses near the boundary ∂Ω). More precisely, ε is given by ε = εNeu ∈

(0, 1/4], where εNeu is a constant arising in the result of the Neumann-Laplacian, see Lemma 3.3
below. This is due to the fact that we will construct a solution to (1.3) via a cut-off procedure
so that, roughly speaking, a solution to (1.3) may be given as a sum of the solution to the weak
Neumann problem in a bounded Lipschitz domain and the fundamental solution of the Laplace
equation. Namely, the restriction (1.1) on p stems essentially from the roughness of the boundary
∂Ω but the unboundedness of the domain does not restrict the range of p, which is entirely different
from the strategy in [7]. A similar observation for the large-time behavior of the three-dimensional
Navier-Stokes flow in an exterior Lipschitz domain was made by the author [13].

(2) Concerning the higher-dimensional case, say, Ω ⊂ Rd (d ≥ 3), that was discovered by Lang and
Méndez [7, Theorem 6.1] as well as Tolksdorf and the author [12, Proposition 2.3], in their papers,
it was proved that the Helmholtz decomposition (1.2) exists provided that p satisfies |1/p − 1/
2| < 1/6 + ε with some constant ε(Ω) > 0. Although the present paper is restricted to dealing
with the two-dimensional case, it is easy to extend to the higher-dimensional case and obtain the
same result as in [7, 12]. Nevertheless, the present paper provides a simpler proof than that of [7]
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(notice that the proof in [12] relied on the result obtained in [7]). It should be emphasized that
it seems to be difficult to extend the approach of Lang and Méndez [7] to the two-dimensional
case since their approach heavily relied on potential theory, which causes several difficulties in the
two-dimensional case due to a logarithm singularity of the fundamental solution to the Laplace
equation.

This paper is organized as follows: In the next section, we introduce some notation and the function
spaces that will be used throughout this paper. Section 3 is concerned with the solvability result of
some elliptic systems in bounded domains. Then, in the last section, we give the proof of Theorem 1.2
via a cut-off technique introduced by Shibata [10]. It should be noted that some modifications are
required in contrast to Shibata’s argument [10] since we may not expect the H2

p(Ω)-regularity for the
solution to elliptic systems due to the lack of the smoothness of the boundary. Note that, for the same
reason, we may not use the approaches of Miyakawa [9] as well as Simader and Sohr [11] to prove
Theorem 1.2.

2. Notation

As usual, let N and R be the set of all natural and real numbers, respectively. For scalar-valued
functions u and v defined on G ⊂ R2, let 〈u, v〉G =

∫
G

u(x)v(x) dx. For vector-valued functions U =

(U1,U2) and V = (V1,V2) defined on G ⊂ R2, let 〈U,V〉G =
∑

j=1,2

∫
G

U j(x)V j(x) dx. For R > 0, let
BR(0) = {x ∈ R2 | |x| < R}. For Banach spaces X and Y , let L(X,Y) be all bounded linear operators
from X into Y , where we will write L(X) = L(X, X) to simplify the notation. For a Banach space X,
denote by X′ the dual space of X. Throughout this paper, the letter C stands for a generic constant that
does not depend on the quantities whenever there is no confusion.

Let X be a complex Banach space and let R2 be endowed with the Lebesgue measure. Let C∞c (G; X)
be the set of all C∞-functions on R2 whose supports are compact and contained in D ⊂ R2. For 1 ≤ p ≤
∞ and G ⊂ R2, let Lp(G; X) be the Lebesgue space equipped with the norm ‖ · ‖Lp(G;X). For 1 ≤ p < ∞
and s ∈ R, let H s

p(R2; X) be the inhomogeneous Sobolev space endowed with the norm ‖ · ‖Hs
p(R2;X).

The inhomogeneous Sobolev space on G is defined by the collection of all u ∈ D′(G; X) = (C∞c (G; X))′

such that there exists v ∈ H s
p(G; X) with v|G = u. Furthermore, the norm ‖ · ‖Hs

p(G;X) is defined by the
usual quotient norm:

‖u‖Hs
p(G;X) = inf‖v‖Hs

p(R2;X)

where the infimum is taken over all v ∈ H s
p(R2; X) such that its restriction v|G to G coincides inD′(G; X)

with u. In particular, if u ∈ H s
p(G; X) vanishes on the boundary ∂G then the space will be attached with

the subscript 0, i.e., H s
p,0(G; X). For 1 ≤ p < ∞ and s ∈ R, let Ḣ s

p(R2; X) be the homogeneous Sobolev
space equipped with the norm ‖ · ‖Hs

p(R2;X). For 1 ≤ p < ∞ and G ⊂ R2, we also define

Ḣ1
p(G) := {[u] = u + R : u ∈ Lp,loc(G) and ∇u ∈ Lp(G;R2)}

with the norm ‖ · ‖Ḣ1
p(G) = ‖∇ · ‖Lp(G), where u ∈ Lp,loc(G) means u ∈ Lp(G′) for any bounded domain

G′ with G′ ⊂ G. If X = R, we often write Lp(G) = Lp(G;R), H s
p(R2) = H s

p(R2;R), and Ḣ s
p(R2) =

Ḣ−1
p (R2;R) for short. The Hölder conjugate exponent of p is denoted by p′.
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3. Solvability result in bounded domains

In this section, we give the solvability result for elliptic systems in the case of bounded domains.
Consider the following elliptic system: 

−∆u = f in D,
∂u
∂ν

= 0 on Σ,

u = 0 on Γ.

(3.1)

Here, D ⊂ R2 is a bounded Lipschitz domain with ∂Ω = Σ∪Γ with Σ = ∂D \Γ and Σ , ∅. We suppose
that there exist some constants 0 < R1 < R2 such that Σ ( BR1(0) and Γ ⊂ R2 \ BR2(0). Let

Lp,0(D) := { f ∈ Lp(D) : 〈 f , 1〉D = 0}.

Then the result for (3.1) reads as follows.

Theorem 3.1. Let D ⊂ R2 be a bounded Lipschitz domain. Suppose that there exist some constants
0 < R1 < R2 such that Σ ( BR1(0) and Γ ⊂ R2 \BR2(0). Then there exists ε = ε(D) ∈ (0, 1/4] having the
following property: If p satisfies (1.1), for every s ∈ [0, 1/p) and for every f ∈ Lp,0(D) Problem (3.1)
admits a solution u ∈ H1+s

p (D) subject to the estimate

‖u‖H1+s
p (D) ≤ C‖ f ‖Lp(D)

with some positive constant C > 0 which depends only on D, p, and s. Furthermore, if ∂D ∈ C1, then
it is allowed to take ε = 1/4.

To prove this theorem, we define the weak Dirichlet-Laplacian ∆D
p,s,w on Lp(D) as

D(∆D
p,s,w) = {u ∈ H1+s

p,0 (D) : ∆u ∈ Lp(D)},

∆D
p,s,wu = ∆u

(3.2)

with 0 ≤ s < 1/p. Here, ∆u ∈ Lp(D) is understood in the sense of distributions. We also define the
weak Neumann-Laplacian ∆N

p,s,w on Lp(D) as

D(∆N
p,s,w) =

{
u ∈ H1+s

p (D) : ∃v ∈ Lp(D) s.t. ∀ϕ ∈ H1+s
p′,0(D) : 〈∇u,∇ϕ〉D = 〈v, ϕ〉D

}
,

∆N
p,s,wu = v

(3.3)

with 0 ≤ s < 1/p. Notice that the Neumann boundary condition ∂u/∂ν = 0 on ∂D is interpreted in the
sense that

〈∆u, ϕ〉D = −〈∇u,∇ϕ〉D for any ϕ ∈ H1+s
p′ (D).

Mimicking the argument as in Sections 3–5 in [15], we may prove the following results.

Lemma 3.2. Let D ⊂ R2 be a bounded Lipschitz domain. Then there exists εDir = εDir(D) ∈ (0, 1/4]
having the following property: If p satisfies (1.1), for every s ∈ [0, 1/p) the operator ∆D

p,s,w defined
by (3.2) generates a C0-semigroup of contractions on Lp(D). Furthermore, if ∂D ∈ C1, then it is
allowed to take εDir = 1/4.
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Lemma 3.3. Let D ⊂ R2 be a bounded Lipschitz domain. Then there exists εNeu = εNeu(D) ∈ (0, 1/4]
having the following property: If p satisfies (1.1), for every s ∈ [0, 1/p) the operator ∆N

p,s,w defined
by (3.3) generates a C0-semigroup of contractions on Lp(D). Furthermore, if ∂D ∈ C1, then it is
allowed to take εNeu = 1/4.

Remark 3.4. Let us make a few comments on Lemmas 3.2 and 3.3.

(1) If s = 0, Lemma 3.2 was obtained by Wood [15, Proposition 4.1]. However, it is easy to extend its
result to the case of 0 < s < 1/p due to [6, Theorem 1.3].

(2) In the case of D ⊂ Rd with d ≥ 3, Lemma 3.3 with s = 0 was proved by Wood [15, Theorem 5.6].
It is not difficult to extend the result of [15, Theorem 5.6] to the case of D ⊂ R2 if one replaces [15,
Theorem 2.6] by [8, Corollary 4.2].

For every λ > 0, consider the resolvent problem for the Laplacian with Dirichlet boundary conditionλu − ∆u = f in D,

u = 0 on ∂D
(3.4)

as well as the resolvent problem for the Laplacian with Neumann boundary condition
λu − ∆u = f in D,

∂u
∂ν

= 0 on ∂D.
(3.5)

By the Hille-Yosida theorem, we infer from Lemma 3.2 that for every λ > 0, there exists a unique
solution u satisfying

λ‖u‖Lp(D) ≤ ‖ f ‖Lp(D).

Let p and s be the same numbers as in Lemma 3.2. From the invertibility results in [8, Corollary 4.2],
we have

‖u‖H1+s
p (D) ≤ C‖−λu + f ‖H−1+s

p (D)

≤ C‖−λu + f ‖Lp(D)

≤ C
(
λ‖u‖Lp(D) + ‖ f ‖Lp(D)

)
≤ C‖ f ‖Lp(D)

since H−1+s
p (D)←↩ Lp(D) due to −1 + s < 0. Hence, the solution u ∈ H1+s

p,0 (D) to (3.4) verifies

λ‖u‖Lp(D) + ‖u‖H1+s
p (D) ≤ C‖ f ‖Lp(D) for all λ > 0

provided that f ∈ Lp(D). Likewise, we infer from Lemma 3.3 and the invertibility results in [8,
Corollary 4.2] that there exists a unique solution u ∈ H1+s

p (D) satisfying

λ‖u‖Lp(D) + ‖u‖H1+s
p (D) ≤ C‖ f ‖Lp(D) for all λ > 0

provided that f ∈ Lp,0(D), where p and s are the same numbers as in Lemma 3.3. With the
aforementioned preliminaries, we are in a position to prove Theorem 3.1.
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Proof of Theorem 3.1. Let ε ∈ (0, 1/4] be ε = min{εDir, εNeu}, where εDir and εNeu are the same numbers
as in Lemmas 3.2 and 3.3, respectively. In addition, let p and s satisfy (1.1) and 0 ≤ s < 1/p,
respectively. Assume that f ∈ Lp,0(D). Then, for every λ > 0, there exists a unique solution uDir ∈

H1+s
p,0 (D) to λuDir − ∆uDir = f in D,

uDir = 0 on Σ ∪ Γ.

In addition, u satisfies the estimate

λ‖uDir‖Lp(D) + ‖uDir‖H1+s
p (D) ≤ C‖ f ‖Lp(D) for all λ > 0. (3.6)

By complex interpolation, we observe that for every t ∈ (0, s), there holds

‖uDir‖H1+t
p (D) ≤ Cλ

s−t
1+s ‖ f ‖Lp(D) for all λ > 0.

Similarly, for every λ > 0, there exists a unique solution uNeu ∈ H1+s
p (D) to

λuNeu − ∆uNeu = f in D,
∂uNeu

∂ν
= 0 on Σ ∪ Γ.

Moreover, u satisfies the estimate

λ‖uNeu‖Lp(D) + ‖uNeu‖H1+s
p (D) ≤ C‖ f ‖Lp(D) for all λ > 0.

By complex interpolation, we observe that for every t ∈ (0, s), there holds

‖uNeu‖H1+t
p (D) ≤ Cλ

s−t
1+s ‖ f ‖Lp(D) for all λ > 0. (3.7)

Let ζ ∈ C∞c (D; [0, 1]) be a cut-off function such that ζ = 1 if |x| ≤ R1 + ε and ζ = 0 if |x| ≥ R2 − ε,
where ε := (R1 + R2)/3. Set v = ζuDir + (1 − ζ)uNeu. We see that v solves

λv − ∆v = f + R0 f in D,
∂v
∂ν

= 0, on Σ,

v = 0 on Γ,

where we have set

R0 f := ∆ζ(uNeu − uDir) + 2∇ζ · ∇(uNeu − uDir).

From (3.6) and (3.7), there exists λ0 ≥ 1 such that for all λ ≥ λ0, we have

‖R0 f ‖Lp(D) ≤
1
2
‖ f ‖Lp(D),

which together with a Neumann series argument implies that the operator I + R0 : Lp,0(D) → Lp(D) is
invertible. Thus, we see that 

λu − ∆u = f in D,
∂u
∂ν

= 0 on Σ,

u = 0 on Γ,

(3.8)
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is solvable for all λ ≥ λ0. Notice that the uniqueness of the solution follows from the duality argument.
Indeed, suppose that u ∈ H1+s

p (D) solves (3.8) with f vanishing in D. For any λ ≥ λ0 and φ ∈ C∞c (D),
consider 

λu0 − ∆u0 = φ in D,
∂u0

∂ν
= 0 on Σ,

u0 = 0 on Γ.

Then we infer from the divergence theorem that

〈u, φ〉D = 〈u, λu0 − ∆u0〉D = 〈λu − ∆u, u0〉D = 0.

Since φ ∈ C∞c (D) is arbitrary, we deduce that u = 0 in D, which gives the uniqueness assertion. In the
following, letAp,s be the operator defined by

D(Ap,s) =

{
u ∈ H1+s

p (D) :
∂u
∂ν

= 0 on Σ and u = 0 on Γ

}
Ap,su = ∆u

with 0 ≤ s < 1/p. From the aforementioned argument, we see that the resolvent set ρ(Ap,s) of Ap,s

contains [λ0,∞).
We next deal with the case 0 ≤ λ < λ0. Since (3.8) may be written as (λI − Ap,s)u = f , we find

that (3.8) and (
I + (λ − 2λ0)Rp,s(λ0)

)
(2λ0I −Ap,s)u = f , Rp,s(λ0) := (2λ0I −Ap,s)−1

are equivalent. Hence, to prove that [0, λ0) is contained in ρ(Ap,s), it suffices to show the invertibility
of the operator I + (λ − 2λ0)Rp,s(λ0). Since it follows from the Rellich-Kondrachov theorem (cf. [1,
Theorem 6.3]) that Rp,s(λ0) is a compact operator from H1+s

p (D) into Lp(D), we observe that [0, λ0) ⊂
ρ(Ap,s) follows from the Fredholm alternative theorem and the injection of I + (λ − 2λ0)Rp,s(λ0). To
see this, for any λ ∈ [0, λ0), take u1 ∈ Ker (I + (λ − 2λ0)Rp,s(λ0)), i.e.,(

I + (λ − 2λ0)Rp,s(λ0)
)
u1 = 0 for any u1 ∈ Lp,0(D).

From the definition of Rp,s(λ0), we see that u1 ∈ D(Ap,s) and w solves
λu1 − ∆u1 = 0 in D,

∂u1

∂ν
= 0 on Σ,

u1 = 0 on Γ.

(3.9)

We first deal with the case 2 ≤ p < ∞. In this case, we may assume u1 ∈ D(A2,s) due to the
boundedness of D. Using the divergence theorem, we deduce from (3.9) that

0 = λ‖u1‖
2
L2(D) +

1
2
‖D(u1)‖2L2(D),
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where we have set D(u1) := ∇u1 + [∇u1]>. By the Korn inequality (cf. [14, Theorem A.4]), we obtain

λ‖u1‖
2
L2(D) +

1
C
‖∇u1‖

2
L2(D) ≤ 0

with some constant C > 0 depending only on D. Since λ ∈ [0, λ0), we see that u1 = 0 in D due to the
Dirichlet boundary condition u1 = 0 on Γ. This completes the proof of [0, λ0) ⊂ ρ(Ap,s) in the case that
p satisfies 2 ≤ p < ∞. The remaining case 1 < p < 2 follows from the duality [5, Corollary A.4.3]. �

4. Proof of the main results

Without loss of generality, we may assume that the origin of the coordinates is located interior to
the complement of the domain Ω. Then, we may take R0 > 0 so large that there holds R2 \ Ω ⊂ BR(0)
for any R > R0. Set DR := Ω ∩ B8R(0) and AR := {x ∈ R2 | 2R ≤ |x| ≤ 7R}.

Step 1: Construction ofU1

Following the argument of Shibata [10, Section 3], we introduce cut-off functions as follows. Let
ψ0, χ0 ∈ C∞c (R2; [0, 1]) be the cut-off functions satisfying

ψ0(x) =

1 for |x| ≤ 4R,

0 for |x| ≥ 5R,
χ0(x) =

1 for |x| ≤ 6R,

0 for |x| ≥ 7R,

respectively. In addition, let ψ∞, χ∞ ∈ C∞(R2; [0, 1]) be smooth functions defined by

ψ∞ = 1 − ψ0(x), χ∞(x) =

χ0(9R − |x|) for |x| ≤ 9R,

1 for |x| > 9R,

respectively. Clearly, there holds ψ∞(x) = 0 for |x| ≤ 4R and ψ∞(x) = 1 for |x| ≥ 5R, while χ∞(x) = 0
for |x| ≤ 2R and χ∞(x) = 1 for |x| ≥ 3R. Let U0 be the inverse of −Ap,s and U∞ be the solution
operator to

〈∇u,∇ϕ〉R2 = 〈F,∇ϕ〉R2 for every ϕ ∈ Ḣ1
p′(R

2), (4.1)

i.e., the solution u to this equation may be written as u = U∞(F), where F has been assumed to be
F ∈ Lp(R2;R2). Since the solution u to (4.1) is unique up to an additive constant, there is no loss of
generality in assuming 〈U∞(F), 1〉D = 0. Notice that the Fourier multiplier theorem and the Poincaré-
Wirtinger inequality yield

‖∇U∞(F)‖Lp(R2;R2) + ‖U∞(F)‖Lp(G) ≤ C‖F‖Lp(R2;R2)

for every bounded Lipschitz domain G ⊂ R2. Given f ∈ Lp(Ω;R2), define the linear operatorU1 by

U1( f ) = χ0U0(ψ0 f ) + (1 − χ0)U∞(ψ∞ f ).

Here, ψ∞ f may be regarded as a function defined on R2 since ψ∞ f vanishes in BR(0). In the following,
for all smooth functions h defined on R2, the term hU0(ψ0 f ) is regarded as a function that is extended
by zero to all of R2. Then we see thatU1( f ) satisfies

〈∇U1( f ),∇ϕ〉Ω = 〈 f ,∇ϕ〉Ω + 〈R1( f ), ϕ〉Ω for every ϕ ∈ Ḣ1
p′(Ω)
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with
R1( f ) := −2(∇χ0) · ∇(U0(ψ0 f ) −U∞(ψ∞ f )) − (∆χ0)(U0(ψ0 f ) −U∞(ψ∞ f )).

Here, we have used the identity

〈ψ0 f ,∇(χ0ϕ)〉Ω + 〈ψ∞ f ,∇(χ∞ϕ)〉Ω = 〈(ψ0 + ψ∞) f ,∇ϕ〉Ω = 〈 f ,∇ϕ〉Ω,

which follows from ψ0 + ψ∞ = 1 and the fact that χ0 = 1 on supp(ψ0) and χ∞ = 1 on supp(ψ∞). Since
we may write

R1( f ) = −(∇χ0) · ∇(U0(ψ0 f ) −U∞(ψ∞ f )) − div
(
(∇χ0)(U0(ψ0 f ) −U∞(ψ∞ f ))

)
,

we have
〈R1( f ), ϕ〉R2 = 〈R1( f ),∇ϕ〉R2 for every ϕ ∈ Ḣ1

p′(R
2) (4.2)

with

R1( f ) := −ψ0 f + (∇χ0)U0(ψ0 f ) + χ0∇U0(ψ0 f ) − (∇χ0)U∞(ψ∞ f ) − χ0∇U∞(ψ∞ f ). (4.3)

In fact, it follows that

〈R1( f ), ϕ〉R2 = −〈∇(U0(ψ0 f ) −U∞(ψ∞ f )), (∇χ0)ϕ〉R2 + 〈(∇χ0)(U0(ψ0 f ) −U∞(ψ∞ f )),∇ϕ〉DR

= −〈∇U0(ψ0 f ),∇(χ0ϕ)〉DR + 〈∇U∞(ψ∞ f ),∇(χ0ϕ)〉R2

+ 〈χ0∇(U0(ψ0 f ) −U∞(ψ0 f )),∇ϕ〉DR + 〈(∇χ0)(U0(ψ0 f ) −U∞(ψ∞ f )),∇ϕ〉DR

for any ϕ ∈ Ḣ1
p′(R

2). Here, we have used the identity

−
〈

div
(
(∇χ0)(U0(ψ0 f ) −U∞(ψ∞ f ))

)
, ϕ

〉
R2

= 〈(∇χ0)(U0(ψ0 f ) −U∞(ψ∞ f )),∇ϕ〉DR ,

which may be justified since supp(∇χ0) is contained in an annulus (i.e., a bounded domain). Since
χ0 = 1 on supp(ψ0) and χ0 = 0 on supp(ψ∞), we deduce that

〈∇U0(ψ0 f ),∇(χ0ϕ)〉DR = 〈ψ0 f ,∇ϕ〉Ω, 〈∇U∞(ψ∞ f ),∇(χ0ϕ)〉R2 = 0,

which yields the representation (4.3). Clearly, for any f ∈ Lp(Ω;R2), we have

‖R1( f )‖Lp(R2) ≤ C‖ f ‖Lp(Ω;R2), ‖R1( f )‖Lp(R2;R2) ≤ C‖ f ‖Lp(Ω;R2).

We also infer from (4.2) that
‖R1( f )‖Ḣ−1

p (R2) ≤ C‖ f ‖Lp(Ω;R2).

In addition, we infer from 1 ∈ Ḣ1
p(R2) and (4.2) that 〈R1( f ), 1〉R2 = 〈R1( f ), 0〉R2 = 0.

For later, we introduce the function space

Hp(R2) =
{
g ∈ Lp(R2) ∩ Ḣ−1

p (R2) : supp(g) ⊂ AR, 〈g, 1〉R2 = 0
}
.

Clearly, from the aforementioned argument, we see that R1( f ) ∈ Hp(R2) for any f ∈ Lp(Ω;R2).
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Step 2: Construction ofU2

Given g ∈ Hp(R2), we intend to construct the solution operator to

〈∇u2,∇ϕ〉Ω = 〈g, ϕ〉Ω for every ϕ ∈ Ḣ1
p′(Ω) (4.4)

possessing the estimate
‖∇u2‖Lp(Ω;R2) ≤ C‖g‖Lp(R2). (4.5)

Notice that, by using this operatorU2, it follows thatU1( f ) −U2(R1( f )) solves (1.3).
In the following, let g ∈ Hp(R2). LetV∞ be the operator defined by

(V∞ f )(x) = −

∫
R2
E(x − y)g(y) dy,

where E(x − y) stands for the fundamental solution of the Laplace equation:

E(x − y) = (2π)−1 log|x − y|.

By [10, (82)], the formula

〈∇V∞(g),∇ϕ〉R2 = 〈g, ϕ〉R2 for every ϕ ∈ Ḣ1
p′(R

2)

may be justified. Furthermore, for every g ∈ Hp(R2), we have

‖V∞(g)‖Lp(B9R(0)) + sup
|x|≥9R
|x||V∞(g)| ≤ C‖g‖Lp(R2),

‖∇V∞(g)‖Lp(R2;R2) + sup
|x|≥9R
|x|2|V∞(g)| ≤ C‖g‖Lp(R2),

‖∇2V∞(g)‖Lp(R2;R4) ≤ C‖g‖Lp(R2),

(4.6)

see [10, (80)].
We next consider the following elliptic problem:

−∆u3 = g|DR in DR,

∂u3

∂ν
= 0 on ∂Ω,

u3 = 0 on ∂B8R(0).

(4.7)

By Theorem 3.1, we know that (4.7) admits a unique solution u3 ∈ H1+s
p (DR) provided that p

satisfies (1.1) with some ε ∈ (0, 1/4] and s satisfies 0 ≤ s < 1/p. Notice that we may take ε = 1/4 if
∂Ω ∈ C1. Denote by V0 the solution operator to (4.7), i.e., u3 = V0(g). From Theorem 3.1, we see
thatV0(g) solves

〈∇V0(g),∇ϕ〉DR = 〈g, ϕ〉DR for every ϕ ∈ Ḣ1
p′(DR)

possessing the estimate
‖V0(g)‖H1+s

p (DR) ≤ C‖ f ‖Lp(DR). (4.8)
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LetV∞,0 beV∞,0(g) = V∞(g) + cg with a constant cg such that∫
6R≤|x|≤7R

(V∞(g) + cg) dx = 0.

Furthermore,V∞,0(g) verifies

‖V∞,0(g)‖Lp(B9R(0)) ≤ CR‖g‖Lp(R2;R2).

For every g ∈ Hp(R2), letU2( f ) = ψ0V0(g)+ψ∞V∞,0(g). As noted before, for all smooth functions
h defined on R2, the term hV0(g) is regarded as a function that is extended by zero to all of R2. Clearly,
there holds ∫

6R≤|x|≤7R
U2(g) dx = 0 (4.9)

since there holdsU2(g) = V∞,0(g) for 6R ≤ |x| ≤ 7R. Note that it follows from (4.6) and (4.8) that

‖U2(g)‖Lp(DR) + ‖∇U2(g)‖Hs
p(Ω) ≤ C‖g‖Lp(Ω). (4.10)

We also see thatU2(g) satisfies

〈∇U2(g),∇ϕ〉Ω = 〈g + R2(g), ϕ〉Ω for every ϕ ∈ Ḣ1
p′(Ω) (4.11)

with
R2(g) := −2(∇ψ0) · ∇(V0(g) −V∞,0(g)) − (∆ψ0)(V0(g) −V∞,0(g)). (4.12)

Similarly to (4.2), we set
R2(g) := ∇(ψ∞V0(g)) + ∇(ψ0V∞,0(g)), (4.13)

so that there holds

〈R2(g), ϕ〉R2 = 〈g, ϕ〉R2 − 〈R2(g),∇ϕ〉R2 for every ϕ ∈ Ḣ1
p′(R

2). (4.14)

Indeed, by

R2(g) = 2(∇ψ∞) · ∇V0(g) + (∆ψ∞)V0(g) + 2(∇ψ0) · ∇V∞,0(g) + (∆ψ0)V∞,0(g)

= div
(
(∇ψ∞)V0(g) + ψ∞∇V0(g) + (∇ψ0)V∞,0(g) + ψ0∇V∞,0(g)

)
− ψ∞∆V0(g) − ψ0∆V∞,0(g),

we have

〈R2(g), ϕ〉R2 = 〈g, ϕ〉R2 −
〈
(∇ψ∞)V0(g) + ψ∞∇V0(g),∇ϕ

〉
DR

+
〈
(∇ψ0)V∞,0(g) + ψ0∇V∞,0(g),∇ϕ

〉
B8R(0)

,

which yields the representation of R2(g). Since 1 ∈ Ḣ1
p′(R

2) and g ∈ Hp(R2), the relation (4.14) gives
〈R2(g), 1〉R2 = 0. In addition, we also deduce from (4.13) and (4.14) that there holds R2(g) ∈ Hp(R2).
Thus, to construct the solution operator to (4.4), it remains to verify the invertibility of I + R2 on
Hp(R2).

AIMS Mathematics Volume 9, Issue 7, 17886–17900.



17897

Step 3: Invertibility of I + R2

To show the invertibility of I+R2 onHp(R2), we first note that R2 is a compact operator onHp(R2).
In fact, we see that supp(R2(g)) ⊂ AR and

‖R2(g)‖Hs
p(R2) ≤ C‖g‖Lp(R2),

where the Kato-Ponce type inequality has been applied (cf. [3, Theorem 1]). Let (g j) j∈N be a bounded
sequence in Hp(R2). Then we infer from the Rellich-Kondrachov theorem (cf. [1, Theorem 6.3]) that
H s

p(R2) is compactly embedded into Lp(AR), and thus the operator R2 may be regarded as a compact
operator from Hp(R2) into Lp(AR). Namely, there exists a subsequence (R2(g j(k)))k∈N ⊂ (R2(g j)) j∈N

such that
lim
k→∞
‖R2(g j(k)) − Rg‖Lp(AR) = 0 (4.15)

with some Rg ∈ Lp(AR). Let R̃g be the zero extension of Rg to R2. Since supp(R2(g j(k))) ⊂ AR, it follows
from the Poincaré-Wirtinger inequality that

|〈R2(g j(k)) − R̃g, ϕ〉R2 | ≤ ‖R2(g j(k)) − Rg‖Lp(AR)

∥∥∥∥∥∥ϕ − |AR|
−1

∫
AR

ϕ dx

∥∥∥∥∥∥
Lp′ (AR)

≤ ‖R2(g j(k)) − Rg‖Lp(AR) ‖∇ϕ‖Lp′ (R2;R2)

(4.16)

for every ϕ ∈ Ḣ1
p′(R

2). Together with (4.15), we deduce that

lim
k→∞
‖R2(g j(k)) − R̃g‖Lp(R2)∩Ḣ−1

p (R2) = 0.

Notice that, similarly to (4.16), we have R̃g ∈ Ḣ−1
p (R2). In addition, there holds

〈R̃g, 1〉R2 = 〈Rg, 1〉AR = lim
k→∞
〈R2(g j(k)), 1〉AR = 0

due to the construction of R2. Since supp(R̃g) ⊂ AR, we observe R̃g ∈ Hp(R2). Therefore, the operator
R2 is a compact operator fromHp(R2) into itself.

We next verify the following lemma.

Lemma 4.1. Assume that Ω ⊂ R2 is an exterior Lipschitz domain and p satisfies (1.1) with some
0 < ε ≤ 1/4 as well as p ≥ 2. Let Hp(R2), R2, and U2 be as above. If g ∈ Hp(R2) satisfies
(I + R2)g = 0, thenU2(g) = 0 in Ω.

Proof. Let ω ∈ C∞c (R2; [0, 1]) be a function such that ω(x) = 1 for |x| ≤ 1 and ω(x) = 0 for |x| ≥ 2.
Set ωL(x) = ω(x/L). By (4.10), we have U2(g) ∈ H1+s

p,loc(Ω), which implies ωLU2(g) ∈ Ḣ1
p(Ω). Here,

u ∈ H1+s
p,loc(Ω) means u ∈ H1+s

p (Ω′) for any bounded domain Ω′ with Ω′ ⊂ Ω. Hence, the formula (4.11)
together with (I + R2)g = 0 yields

0 = 〈(I + R2)g, ωLU2(g)〉Ω
= 〈∇U2(g),∇(ωLU2(g))〉Ω
= 〈ωL∇U2(g),∇U2(g)〉Ω + 〈(∇ωL) · ∇U2(g),U2(g)〉Ω.

(4.17)
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Let L > 10R. Then there holds supp(∇ψ∞) ∩ supp(∇ωL) = ∅. Recalling the definition ofU2, by (4.6),
we obtain

|〈(∇ωL) · ∇U2(g),U2(g)〉Ω| ≤ |〈(∇ωL) · ∇V∞(g), cg〉R2 | + |〈(∇ωL) · ∇V∞(g),V∞(g)〉R2 |

≤
CR

L
sup
x∈R2
|∇ω(x)|

∫
L≤|x|≤2L

‖g‖Lp(R2)

(
|cg| + ‖g‖Lp(R2)|x|−1

)
|x|−2 dx,

where a constant CR may depend on R but is independent of L. We then observe

lim
L→∞
〈(∇ωL) · ∇U2(g),U2(g)〉Ω = 0.

Thus, letting L → ∞ in (4.17) implies that ‖∇U2(g)‖L2(Ω;R2) = 0. Hence, U2(g) is a constant. In
particular, we infer from (4.9) thatU2(g) = 0. �

By Lemma 4.1 and the Fredholm alternative theorem, we may show the existence of the inverse of
I + R2 on L(Hp(R2)) provided that p satisfies (1.1). Namely, we may show the following lemma.

Lemma 4.2. Assume that Ω ⊂ R2 is an exterior Lipschitz domain and p satisfies (1.1) with some
0 < ε ≤ 1/4. Let R2 be the operator defined by (4.12). Then the inverse of I +R2 on L(Hp(R2)) exists.

Proof. It suffices to show that the kernel of I + R2 is trivial. To this end, let g be an element ofHp(R2)
such that (I + R2)g = 0.

We first deal with the case p ≥ 2. By Lemma 4.1, we have U2(g) = 0. Recalling the definition of
U2, there holds

ψ0V0(g) + (1 − ψ0)V∞,0(g) = 0 in Ω. (4.18)

Notice that it follows from the definition of ψ0 that V∞,0(g) = 0 for |x| ≥ 5R and V0(g) = 0 for
x ∈ Ω ∩ B4R(0). Let

V =

V0(g) for 4R < |x| ≤ 8R,

0 for 0 ≤ |x| ≤ 4R.

SinceV0(g) is a solution to (4.7) and satisfies (4.8), it is clear that V solves−∆V = g|B8R(0) in B8R(0),
V = 0 on ∂B8R(0).

(4.19)

SinceV∞,0(g) = 0 for |x| ≥ 5R, we observeV∞,0(g) ∈ H1+s
p (B8R(0)) as follows from (4.6). In addition,

V∞,0(g) also solves (4.19). Thus, by the uniqueness of the solution to (4.19), we obtain V = V∞,0(g)
in B8R(0), i.e.,V0(g) = V∞,0(g) in Ω ∩ B8R.

By virtue of the relation (4.18), we haveV∞,0(g) = 0, and thus there holds g = ∆V∞,0(g) = 0 in Ω.
Recalling that supp(g) ⊂ AR, it is necessary to have g = 0 in R2.

Concerning the remaining case p < 2, we note that if u2 ∈ Ḣ1
p(Ω) satisfies (4.4) with g = 0, then u2

is a constant. In fact, for any f ∈ Lp′(Ω;R2), let U2 ∈ Ḣ1
p′(Ω) be a solution to

〈∇U2,∇ϕ〉Ω = 〈 f ,∇ϕ〉Ω for every ϕ ∈ Ḣ1
p(Ω).

Then, the aforementioned argument ensures the existence of U2 since the inverse of I + R2 on
L(Hp(R2)) exists. From the assumption, we know that u2 ∈ Ḣ1

p(Ω) fulfills 〈∇u2,∇ϕ〉Ω = 0 for every
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ϕ ∈ Ḣ1
p′(Ω), and hence there holds 0 = 〈∇U2,∇u2〉Ω = 〈 f ,∇u2〉Ω. Then we deduce that u2 is a constant

since f ∈ Lp′(Ω;R2) is arbitrary.
Since (I + R2)g = 0, it follows from (4.11) thatU2(g) ∈ Ḣ1

p(Ω) solves

〈∇U2(g),∇ϕ〉Ω = 0 for every ϕ ∈ Ḣ1
p′(Ω).

As seen before, we deduce that U2(g) is a constant. In particular, U2(g) = 0 as follows from (4.9).
Then, mimicking the argument as in the case 2 ≤ p, we may show the invertibility of I + R2 on
L(Hp(R2)). �

From Lemma 4.2, we may construct the solution operator to (4.4) with the desired estimate (4.5).
Then, as noted before (cf. Step 2 in this section), we see that U1( f ) − U2(R1( f )) satisfies (3.5) with
the desired estimate. Hence, it remains to verify the uniqueness of the solution to (3.5), but this may
be proved along the same line as in the latter part of the proof of Lemma 4.2. Thus, the proof of
Theorem 1.2 is complete. Namely, Theorem 1.1 has been proved.

5. Conclusions

For an exterior Lipschitz domain Ω ⊂ R2, we have proved the Helmholtz decomposition of the
vector fields in Lp(Ω;R2) provided that p satisfies |1/p−1/2| < 1/4 + ε with some constant ε = ε(Ω) ∈
(0, 1/4]. In particular, it is allowed to take ε = 1/4 if ∂Ω ∈ C1. We have presented a new proof of the
Helmholtz decomposition of the vector fields for two-dimensional exterior domains, which is different
from the previous approaches of Miyakawa [9] as well as Simader and Sohr [11].
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