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Abstract: The fast development of the internet of things has been associated with the complex
worldwide problem of protecting interconnected devices and networks. The protection of cyber
security is becoming increasingly complicated due to the enormous growth in computer connectivity
and the number of new applications related to computers. Consequently, emerging intrusion detection
systems could execute a potential cyber security function to identify attacks and variations in
computer networks. An efficient data-driven intrusion detection system can be generated utilizing
artificial intelligence, especially machine learning methods. Deep learning methods offer advanced
methodologies for identifying abnormalities in network traffic efficiently. Therefore, this article
introduced a weighted salp swarm algorithm with deep learning-powered cyber-threat detection and
classification (WSSADL-CTDC) technique for robust network security, with the aim of detecting the
presence of cyber threats, keeping networks secure using metaheuristics with deep learning models,
and implementing a min-max normalization approach to scale the data into a uniform format to
accomplish this. In addition, the WSSADL-CTDC technique applied the shuffled frog leap algorithm
(SFLA) to elect an optimum subset of features and applied a hybrid convolutional autoencoder (CAE)
model for cyber threat detection and classification. A WSSA-based hyperparameter tuning method
can be employed to enhance the detection performance of the CAE model. The simulation results of
the WSSADL-CTDC system were examined in the benchmark dataset. The extensive analysis of the
accuracy of the results found that the WSSADL-CTDC technique exhibited a better value of 99.13%
than comparable methods on different measures.
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1. Introduction

The continuous development and wide-ranging utilization of the internet benefits several network
users from several points of view [1]. In the meantime, security is highly significant with the
vast exploitation of the network. Network security has undoubtedly been connected with programs,
different information, networks, computers, and more, where the need for defense is to avoid adaptation
and unauthorized access [2]. However, the increasing number of systems connected to the internet
in e-Commerce, military and finance make them targets of network attacks, contributing to a lot
of damage and risks [3]. Providing efficient approaches for identifying and protecting from attacks
and maintaining network security is essential. Additionally, various categories of attacks have been
frequently needed and processed in numerous ways [4]. Recognizing various types of network attack
is the main problem that needs to be solved in network security, particularly those that have not been
noticed. Researchers have recently employed different types of machine learning (ML) techniques for
classifying network attacks without previous knowledge of their comprehensive features [5].

Internet of things (IoT) networks have continuously exposed and modified the topology by
connecting nodes and exiting the network in real time [6]. The lack of centralized network control
tools makes them susceptible to security attacks. IoT devices can have superior features, including
limited data storage, connection bandwidth, smaller memory size, and restricted power supply [7].
These limitations considerably affect the efficiency of security protocols for IoT platforms concerning
development and effectiveness. Consequently, a competent intrusion detection system (IDS) for IoT
networks will probably emerge due to the lack of the computational power needed [8]. Cyberattacks
are highly difficult to recognize, as hackers utilize cutting-edge methods to take sensitive data while
avoiding identification by IDS. The interaction between internetworks has also been subject to cyber-
security vulnerabilities. Consequently, a novel technique can be essential for attack prevention
activities and earlier intrusion detection [9].

Machine learning and deep learning (DL) approaches are currently used for intrusion detection,
network abnormality detection, and avoidance. The DL technique should be utilized to increase
the accuracy and proficiency of IDS in IoT devices [10]. Since hyperparameter tuning of the DL
model remains a challenging process, metaheuristic algorithms can be used, which in turn improves
the overall detection performance. Some of the recently developed metaheuristics are Liver cancer
algorithm (LCA) [11], slime mould algorithm (SMA) [12, 13], moth search algorithm (MSA) [14],
hunger games search (HGS) [15], Runge Kutta method (RUN) [16], colony predation algorithm
(CPA) [17], weighted mean of vectors (INFO) [18], Harris Hawks optimization (HHO) [19], Rime
optimization algorithm (RIME) [20, 21], etc.

This article presents a weighted Salp swarm algorithm with a DL-powered cyber threat detection
and classification (WSSADL-CTDC) technique for robust network security, utilizing a min-max
normalization approach to scale data into even formats. In addition, it applies a shuffled frog leap
algorithm (SFLA) to elect an optimum subset of features. The WSSADL-CTDC technique applies a
hybrid convolutional autoencoder (CAE) model to identify and classify cyber threats. A WSSA-based
hyperparameter tuning process can be employed to enhance the detection performance of the CAE
model. The experimental analysis can be examined on a benchmark dataset.

• Uses SFLA to choose an optimum feature subset from the network security dataset. This process
is crucial to mitigate the input data’s dimensionality, enhance the technique’s effectualness, and
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concentrate on the most appropriate features for recognizing cyber threats.
• Proposes a novel fusion CAE technique to detect and classify cyber threats within network

traffic data. This method incorporates the robustness of convolutional neural networks (CNNs)
and autoencoders (AEs), allowing for productive feature extraction and anomaly recognition in
network data.
• The WSSADL-CTDC model augments the accomplishment of the CAE technique by

implementing a WSSA-based hyperparameter tuning procedure.

The remaining sections of the article are arranged as follows: Section 2 offers the literature review,
and Section 3 represents the proposed method. Then, Section 4 elaborates on the evaluation of the
results, and Section 5 completes the work.

2. Related works

In [22], an ensemble DL algorithm was developed that implements the gains of the long short-
term memory (LSTM) and AE technique. The LSTM was implemented to create an architecture
on a standard time series of data. Khan et al. [23] projected an AE-based identification model
using recurrent and convolutional networks. A two-phase sliding window (SW) was employed.
Malicious activities in the raw time series were converted to fixed-length series using a first-phase
SW. All series were transformed into constant time-dependent sub-series through additional small
SW. In classification, fully connected networks employ the removed temporal-spatial features. Bibi
et al. [24] developed a well-organized, self-learning, autonomous multi-vector attack intelligence and
identification method. An innovative convolutional LSTM2D technique powered by the computational
integrated device model (ConvLSTM2D) is developed. Das et al. [25] introduced a novel transient
search optimization (TSO) method enabled by the optimum stacked sparse AE (OSSAE) method.
This technique followed the TSA-based feature selection method. Furthermore, the Transient search
optimization-optimum stacked sparse AE (TSA-OSSAE) method implements the SSAE method.
Lastly, the hyperparameters of the SSAE technique were selected using a multi-versus optimizer
(MVO) approach.

In [26], the authors presented a graph pattern based on a technique equivalent to a deep hunter graph
neural network (GNN) model. A GNN model was developed mainly with two new networks: feature
embedding networks integrated with the indicators of compromise (IOC) data and graph embedding
networks that took connections among IOCs. Ndife et al. [27] developed a Bayesian neural networks
(BNNs) model called SGtechNet. Spatio-temporal feature engineering and uncertainty evaluation in
Bayesian modeling are exploited. In [28], a two-stage IDS was developed. Initially, an adversarial
training method was introduced employing the generative adversarial networks (GAN) method. In
addition, a DL method was presented for the secondary detector to recognize intrusions. In [29], an
IDS depended on DL, and a DL method for IDS was developed, employing the efficient recurrent
neural networks (ERNN) method. Additionally, the effectiveness of the system in binary and multi-
class classifications, as well as the count of neurons and diverse learning rate, has implications under
the efficiency of the developed method. This technique relates the method to recurrent neural networks
(RNN) and support vector machine (SVM) models.

Zhou et al. [30] proposed a model to build a continuous leakage-resilient identity-based encryption
(IBE) model with tight security. In [31], a bioinspired motion-sensitive technique is presented, which
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comprises spatial and temporal perception of motion cues, employing simple visual signal processing.
Li et al. [32] presented a model employing the multi-scale radial basis function (MRBF) and Fisher
vector (FV) encoding. The high-resolution time-frequency approach gray level co-ocurrence matrix
(GLCM) texture descriptors and FV extraction are also utilized. Chen et al. [33] introduced a Lung-
Dense attention network (LDANet) method. The residual spatial attention (RSA) method is employed
to weigh spatial data, and the weight of every channel is calibrated utilizing the gated channel
attention (GCA) technique. A dual attention guidance module (DAGM) technique is constructed for
maximization. A lightweight dense block (LDB) technique is also utilized. In [34], a deep neural
network (DNN) model is proposed, which excels in a localized and sparse approximation. Savanovi
et al. [35] proposed an optimized ML model employing an altered firefly model. In [36], a novel
feature selection (FS) model is introduced, which improves the gorilla troops optimizer (GTO) by
incorporating the bird swarm modeling (BSA) technique. Jovanovic et al. [37] proposed an improved
firefly model to tune the extreme gradient boosting (XGBoost) technique.

3. Proposed method

His article introduces an innovative method for robust network security WSSADL-CTDC. The
technique aims to detect the presence of cyber threats and accomplish network security using
metaheuristics with DL models. Figure 1 demonstrates the entire procedure of this approach.

Figure 1. Overall process of the WSSADL-CTDC technique.
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3.1. Min-max normalization

Primarily, the technique WSSADL-CTDC employs a min-max normalization approach to normalize
data [38]. In this study, the input data is standardized from the ranges 0 and +1 utilizing the specified
Eq (3.1),

Xn =
Xi − Xmin

Xmax − Xmin
. (3.1)

Here, Xi is the observed input value, Xmin and Xmax refer to the maximum and minimum values of
the descriptive variables, and Xn represents the normalized input values at intervals of [−1,+1].

3.2. Feature selection

At this stage, the WSSADL-CTDC technique applies SFLA to elect an optimum feature subclass.
SFLA has a new population-based metaheuristic approach [39] that Integrates the social behaviors of
the particle swarm optimization (PSO) technique and the benefits of the memetic algorithm [40]. In this
approach, a population can be a group of frogs that find optimum food by employing search strategies
relevant to the PSO technique. The search process is performed by alternating frogs’ intra- and inter-
cluster transmission to find food. Intra-cluster transmission is performed within the memeplex for
local invention, and inter-cluster transmission is performed among the frogs belonging to the dissimilar
memeplexes for global exploration. In classical SFLA, consider that the early population was randomly
generated with a P number of frogs. Evaluate fitness values for every individual frog. Subsequently,
arrange P in descending sequence of the fitness values. The frogs are then distributed into an M
count of memeplexes, and every memeplex has N frogs. Here, the frog distribution can be performed
thus: The initial frog moves to the initial memeplex, the next frog moves to the initial memeplex, frog
M goes to the Mth memeplex and frog M + 1 goes to the initial memeplex, up to the last frog. In
every memeplex, Xb and Xw are the best and worst frogs based on fitness. Xg represents the frog with
global fitness X. The position of the worst frog has been updated according to the random position or
position of the global or local best frog so that the frog can move to the optimum solution. This can be
mathematically modeled as the set of Eqs (3.2) and (3.3).

Xw(new) = Xw + S tp, (3.2)

S tp = rand(X) × (Xb − Xw) − S tpmax ≤ S tp. (3.3)

In Eq (3.3), S tp denotes the size of the leaping step of the frog with [−1, 1]. rand() represents the
random integer. If Xw(new) generates the best solution, it replaces Xw. Otherwise, the computations in
Eqs (3.2) and (3.3) are reiterated by replacing Xb with Xg. The new random solution can be replaced
with Xw if there is no improvement. Thus, each memeplex is shuffled together to exchange data and
generate a new population for the following search ranges.

In this SFLA method, the objectives could be incorporated into a single objective equation, such
as a preset weight that recognizes the significance of all the objectives [41]. In this study, an fitness
function (FF) is implemented to integrate these FS objectives, as represented in Eq (3.4),

Fitness(X) = α · E(X) + β ∗

(
1 −
|R|
|N|

)
. (3.4)
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Here, Fitness(X) denotes the fitness value of X, |R| and |N | which have the number of particular
features α, and β describes the weights of the classification error. E(X) signifies the classification error
rate employing the preferred features in the X subset, as well as the number of new features in the
dataset and the reduction ratio α ∈ [0, 1] and β = (1 − α).

3.3. Classification using CAE model

The WSSADL-CTDC technique applies a hybrid CAE model for the detection and classification
of cyber threats. AE is a self-directed learning procedure that utilizes a neural network (NN) for
representation learning [42]. It has a method for a model to learn how to encrypt input data. AEs
have been used to map input data to low-dimension spaces or representations of reduced areas. To fix
this, a bottleneck is presented that implements a method to learn the condensed area of the input data.
Figure 2 illustrates the CAE infrastructure.

Figure 2. Structure of CAE.

An AE includes four modules: bottleneck layer (BL), encoder network (EN), reconstruction loss
(RL), and decoder network (DN). EN is an NN that encrypts input data in a condensed area. The BL is
the latter layer; the output is called encoded input data. N layers in an EN in which the latter layer (i.e.,
N th layer) is BL. The arithmetical calculation used to signify the functioning of every layer existing in
the EN can be revealed in Eq (3.5),

Xei+1 = fei

(
WVT

ei
Xei + bei

)
, ∀i = 0, 1, 2, . . . ,N, (3.5)

where Xei denotes the input for the EN layer ith, fei denotes the activation function for the layer ith,
bei is the bias for the layer ith, WVei signifies the weight vector for the ith layer, and Xei+1 refers to the
output of the layer ith. DN is also known as an NN that consumes the output of the BL as input and
attempts to renovate the original data. The number of layers in DN is similar to the number in the EN,
in the opposite order. The last layer of the DN offers a loud regeneration of input data. The scientific
expression used to signify the functioning of every layer existing in the DN is presented in Eq (3.6),

Xdi+1 = fdi

(
WT

di
Xdi + bd j

)
, ∀i = 0, 1, 2, . . . ,N, (3.6)

where Xdi denotes the input for the DN layer ith, X refers to the output of the layer ith, fdi refers to the
activation function for the ith layer, bdi represents the bias for the ith layer, and WVdi signifies the weight
vector for the layer ith. The dissimilarity between the original data XO and the renovated data XR is
termed RL. The AE is trained by employing the backpropagation algorithm to reduce the RL.
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Mean squared error (MSE) and binary cross-entropy (BCE) losses are dual, highly employed loss
functions to calculate RL. These dual loss function formulas have been exposed in Eqs (3.7) and (3.8),
while D denotes the number of samples in a dataset used by the AE,

MS E
(
X0, XR

)
=

1
D

D∑
j=1

(
X0

j − XR
j

)2
, (3.7)

BCE
(
X0, XR

)
= −

1
D

D∑
j=1

X0
j · log X0

j +
(
1 − X0

j

)
· log

(
1 − XR

j

)
. (3.8)

3.4. WSSA-based hyperparameter tuning

Eventually, the WSSA-based hyperparameter tuning process can be employed. SSA is a recent
metaheuristic optimization technique introduced by Mirjalili et al. [43]. SSA must be stimulated by
the navigation and swarming behaviors of salps in the oceans for food. The individual salp belongs
to the Salpidae family and has a bottle-shaped body. Salps form chains, similar to flocks or swarms,
in the deep ocean for foraging and navigation. The leader and followers are two levels of the salp
chain. During navigation, the leaders are guided by the swarm (followers) in a multidimensional
search range, resulting in the optimum solution (food source) for the optimizer problems. SSA begins
with a random solution and later reinvents the search for optimum fitness of salps by exploiting and
exploring the search range. The salp moves in the N-dimension search range and updates the leader
location according to the distance between a food source and the salp as Eq (3.9),

x1
i =

Fi + r1

(
(ubi − lbi) ∗ r2 + lbi

)
, r3 ≥ 0,

Fi + r1

(
(ubi − lbi) ∗ r2 + lbi

)
, r3 < 0.

(3.9)

• X1
i - denotes the leader’s location in the ith location.

• ubi, lbi - shows the upper and lower bounds of ith location.
• Fi - represents the food source location in ith location.
• r1 parameter - balances the exploration and exploitation in searching space.
• r1, r2, r3 - refer to random numbers (see Eq (3.10)), where L refers to the maximal iteration count,

and l denotes the existing iteration,

r1 = 2e
(

4l
L

)2

. (3.10)

Newton’s law of motion updates the follower’s location in Eq (3.11),

x j
i =

1
2

at2 + V0t, (3.11)

• v0 represents the initial speed;
• x j

i denotes the location of the jth follower at the ith dimension;
• t is the iteration;

x j
i =

1
2

(
x j

i + x j−1
i

)
. (3.12)
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In SSA, salp forms chains for the foraging process. Salp navigates through the jet propulsion
process. Based on the available information from the neighborhood, the leader updates the location
with food sources. In a typical SSA approach, the follower salp updates the area according to Newton’s
law of motion. The model’s ability to find solutions for the global search process is compromised due
to its lost inertia parameter. Inertia controls the speed and direction of the object. However, such
an approach only works well for multimodal and unimodal issues of smaller dimensions. However,
this provides poor outcomes for high-dimension difficulties, representing poor convergence. Thus, the
location update formula should be modified in all iterations to achieve the optimum solution.

Here, a WSSA has been introduced according to weighted distance location updating to enhance
the efficiency of traditional SSA. This model boosts the variety of the original SSA. The weighted
location updating parameter was developed based on the findings of Shi and Eberhart (1998). The
author initially established the idea of inertia weight and stated that it provides the best control through
exploitation and exploration processes. The position updating approach can be adapted as a weighted
sum of optimum positions rather than implementing averages to improve the search capability of a
typical SSA. This approach can be obtained by evaluating the weight according to the coefficient
vectors C1,C2, and C3. Location updating is modeled as the set of Eqs (3.13) to (3.16),

w1 =
−→
C1 ∗

−→
C2, (3.13)

r2 =
−→
C1 ∗

−→
C3, (3.14)

x1
i =

w1 ∗ Fi + r1

(
(ubi − lbi) ∗ r2 + lbi

)
, r3 ≥ 0,

w2 ∗ Fi + r1

(
(ubi − lbi) ∗ r2 + lbi

)
, r3 < 0,

(3.15)

x j
i =

1
2(w1 + w2)

(
w2 ∗ x j

i + w1 ∗ x j−1
i

)
. (3.16)

This weighted location-update approach balances searching agents’ exploitation and exploration
capabilities. Furthermore, it improves the convergence rate and leads to better SSA performance.

The WSSA algorithm has obtained an FF to achieve increased classification effectiveness. It
evaluates a positive integer to denote the higher efficiency of the candidate solutions. The decrease
in the classifier error rate can be measured as FF, as shown in Eq (3.17),

f itness(xi) = Classifier Error Rate = 100 ∗
Number of Misclassified Instances

Total Number of Instances
. (3.17)

4. Performance validation

The performance analysis of the WSSADL-CTDC system can be examined using the network-
based detection of IoT botnet attacks (N-BaIoT) dataset [44]. It includes 11 classes with 1000 samples
for each class, as defined in Table 1. The suggested technique is simulated using the Python 3.6.5
tool on PC i5-8600k, 250GB SSD, GeForce 1050Ti 4GB, 16GB RAM, and 1TB HDD. The parameter
settings are provided: learning rate: 0.01, activation: ReLU, epoch count: 50, dropout: 0.5, and batch
size: 5.

Figure 3 shows the confusion matrices acquired by the WSSADL-CTDC system with 80:20
and 70:30 of true positive rate per hour / true negative rate per hour (TRPH/TSPH) under the N-BaIoT
dataset. The completed findings show effective recognition with 11 classes.
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Table 1. N-BaIoT dataset.

Class No. of Instances
Mirai udppalain 1000
Mirai udppalain 1000
Mirai syn 1000
Mirai scan 1000
Mirai ack 1000
Gafgyt udp 1000
Gafgyt tcp 1000
Gafgyt scan 1000
Gafgyt junk 1000
Gafgyt combo 1000
Benign 1000
Total instances 11000

(a) (b)

(c) (d)

Figure 3. N-BaIoT dataset (a):(b) 80:20 TRPH/TSPH, and (c):(d) 70:30 TRPH/TSPH.
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The results of cyber threat detection of the WSSADL-CTDC technique in the N-BaIoT dataset
are shown in Table 2 and Figure 4. The results obtained show that the WSSADL-CTDC system
achieves effective findings in each class. According to 80% of TRPH, the WSSADL-CTDC method
obtains an average Acc of 98.86%, Prec of 93.76%, Recall of 93.73%, F − S core of 93.74%, and
Matthews correlation coefficient (MCC) of 93.12%. In addition, on 20% of TSPH, the WSSADL-
CTDC algorithm gains an average Acc of 99.13%, Prec of 95.23%, Recall of 95.25%, F − S core
of 95.23%, and MCC of 94.76%, respectively.

The cyber threat detection analysis of the WSSADL-CTDC technique in the N-BaIoT dataset can
be seen in Table 3 and Figure 5. The results obtained show that the WSSADL-CTDC system obtains
adequate results in all classes. According to 70% of TRPH, the WSSADL-CTDC algorithm receives
an average Acc of 98. 22%, Prec of 90. 22%, Recall of 90. 21%, F − S core of 90. 20%, and MCC
of 89.23%. Furthermore, based on 30% of TSPH, the WSSADL-CTDC method acquires an average
Acc of 98. 07%, Prec of 89. 39%, Recall of 89. 44%, F − S core of 89. 39%, and MCC of 88. 34%,
respectively.

Table 2. Cyber threat detection outcomes of the WSSADL-CTDC model under the N-BaIoT.

Classes Acc Prec Recall F-Score MCC
TRPH (80%)

Mirai udppalain 98.86 94.78 92.66 93.71 93.09
Mirai udp 98.85 93.00 94.51 93.75 93.12
Mirai syn 98.61 92.30 92.53 92.41 91.65
Mirai scan 98.77 93.04 93.27 93.16 92.48
Mirai ack 98.86 93.43 94.13 93.78 93.16
Gafgyt udp 98.85 93.27 94.09 93.68 93.05
Gafgyt tcp 98.88 93.70 94.05 93.88 93.26
Gafgyt scan 98.92 94.23 94.12 94.18 93.58
Gafgyt junk 98.93 92.70 95.92 94.28 93.71
Gafgyt combo 99.00 95.01 93.81 94.41 93.86
Benign 98.93 95.88 91.97 93.89 93.33
Average 98.86 93.76 93.73 93.74 93.12

TSPH (20%)
Mirai udppalain 99.23 96.86 94.39 95.61 95.19
Mirai udp 98.82 92.61 94.47 93.53 92.89
Mirai syn 99.14 95.88 94.42 95.14 94.67
Mirai scan 99.41 98.07 95.75 96.90 96.58
Mirai ack 99.09 94.53 95.48 95.00 94.50
Gafgyt udp 99.05 94.23 95.61 94.92 94.39
Gafgyt tcp 99.00 93.85 94.82 94.33 93.78
Gafgyt scan 99.18 94.62 95.65 95.14 94.69
Gafgyt junk 99.50 95.94 98.44 97.17 96.91
Gafgyt combo 98.91 93.40 95.19 94.29 93.69
Benign 99.14 97.57 93.49 95.49 95.04
Average 99.13 95.23 95.25 95.23 94.76
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Table 3. Cyber threat detection analysis of WSSADL-CTDC algorithm with N-BaIoT
dataset.

Classes Acc Prec Recall F-Score MCC
TRPH (70%)

Mirai udppalain 98.32 88.59 92.91 90.70 89.81
Mirai udp 97.77 88.27 87.27 87.77 86.54
Mirai syn 98.48 92.79 90.27 91.52 90.69
Mirai scan 98.36 91.94 89.53 90.72 89.83
Mirai ack 98.22 91.01 89.61 90.30 89.33
Gafgyt udp 98.49 92.10 91.58 91.84 91.01
Gafgyt tcp 98.48 91.60 92.23 91.91 91.08
Gafgyt scan 97.68 88.77 85.37 87.04 85.78
Gafgyt junk 98.14 89.34 89.74 89.54 88.52
Gafgyt combo 98.38 89.99 92.66 91.30 90.42
Benign 98.09 87.96 91.15 89.52 88.49
Average 98.22 90.22 90.21 90.20 89.23

TSPH (30%)
Mirai udppalain 98.12 91.43 89.16 90.28 89.25
Mirai udp 98.21 88.49 91.81 90.12 89.15
Mirai syn 98.61 92.08 92.69 92.38 91.62
Mirai scan 98.12 91.12 88.78 89.94 88.91
Mirai ack 98.18 90.43 88.54 89.47 88.48
Gafgyt udp 97.94 87.89 88.50 88.19 87.07
Gafgyt tcp 98.39 87.67 94.27 90.85 90.04
Gafgyt scan 97.67 89.25 84.12 86.61 85.38
Gafgyt junk 97.55 88.10 86.16 87.12 85.77
Gafgyt combo 97.97 86.64 91.10 88.81 87.73
Benign 98.03 90.20 88.75 89.47 88.38
Average 98.07 89.39 89.44 89.39 88.34

Figure 4. Average outcome of the WSSADL-CTDC system under N-BaIoT dataset.
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Figure 5. Average outcome of WSSADL-CTDC algorithm with N-BaIoT dataset.

The Acc curves for training (TR) and validation (VL) are illustrated in Figure 6 for the WSSADL-
CTDC methodology with the N-BaIoT dataset providing valuable insight into its performance on
various epochs. Specifically, it shows constant improvement at both TR and testing (TS) Acc with
improving epochs, demonstrating the model’s proficiency in learning and recognizing patterns in both
TR and TS data. The upward trend in TS Acc emphasizes the model adaptability to the TR dataset
and its ability to generate correct predictions on unnoticed data, underscoring the robust generalization
capabilities.

Figure 6. Acc curve of WSSADL-CTDC system under N-BaIoT dataset.

Figure 7 displays a wide-ranging overview of the TR and TS loss values for the WSSADL-CTDC
algorithm with the N-BaIoT dataset at different epochs. The TR loss is reliably minimized as the model
refines its weights to decrease classification errors in both datasets. The loss curves exemplify the
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alignment of the model with TR data, highlighting its ability to capture patterns efficiently. Consider
the continuous improvement of parameters in the WSSADL-CTDC technique, which aims to diminish
the discrepancies between predictions and actual TR labels.

Figure 7. Loss curve of WSSADL-CTDC model with N-BaIoT database.

Regarding the precision-recall (PR) curve in Figure 8, the findings confirm that the WSSADL-
CTDC system in the N-BaIoT dataset consistently achieves increased PR values in every class. These
findings emphasize the model’s better capacity to discriminate among diverse classes, underscoring its
efficiency in accurately recognizing class labels.

Figure 8. PR curve of WSSADL-CTDC model at N-BaIoT dataset.

Furthermore, in Figure 9, receiver operating characteristic (ROC) curves produced by the
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WSSADL-CTDC technique are denoted under the N-BaIoT dataset, representing its proficiency in
differentiating between classes. These curves offer valuable insights into how the trade-off between
false positive rate (FPR) and true positive rate (TPR) differs through diverse classification epochs and
thresholds. The results underscore the accuracy of the model’s classification on numerous class labels,
emphasizing its efficacy in covering diverse classification challenges.

Figure 9. ROC curve of WSSADL-CTDC model with N-BaIoT dataset.

The detailed comparative statement of the WSSADL-CTDC technique with existing ones under the
N-BaIoT dataset is given in Table 4 and Figure 10 [42]. These outcomes infer that the WSSADL-CTDC
system performs better than other systems. It is noted that the deep belief network (DBN), LSTM,
bat algorithm (BA)-NN, and PSO-NN models perform poorly, whereas the lightweight gradient-
based algorithm (LGBA)-NN and multi-factor optimization random error linear model (MFO-RELM)
models achieve reasonable results. However, the WSSADL-CTDC technique performs better with a
maximum Acc of 99.13%, Prec of 95.23%, Recall of 95.25%, and F − S core of 95.23%.

Table 4. Comparison analysis of the WSSADL-CTDC model with other algorithms under
N-BaIoT dataset.

Methods Acc Prec Recall F-Score
DBN Algorithm 89.47 89.48 90.03 89.40
LSTM Model 89.88 89.63 89.92 89.61
BA-NN Model 91.20 84.53 88.02 84.68
PSO-NN Model 90.30 83.94 88.81 84.31
LGBA-NN Model 96.35 87.34 92.42 89.18
MFO-RELM 98.91 94.93 93.95 93.94
WSSADL-CTDC 99.13 95.23 95.25 95.23
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Figure 10. Comparison analysis of the WSSADL-CTDC model under the N-BaIoT dataset.

The computation time (CT) analysis of the WSSADL-CTDC methodology can be compared with
other systems, as described in Table 5 and Figure 11. The findings show that the WSSADL-CTDC
technique obtains a CT decrease of 0.46 s. Alternatively, the DBN, LSTM, BA-NN, PSO-NN, LGBA-
NN, and MFO-RELM algorithms gain improved CT expressed in seconds units 4.67, 3.65, 2.64,
2.89, 2.71, and 1.94, respectively. Consequently, the WSSADL-CTDC method has been employed
for superior performance over other compared algorithms.

Figure 11. Computation time of the WSSADL-CTDC model with other systems.
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Table 5. Computation time analysis of the WSSADL-CTDC model with other systems.

Methods Computational Time (sec)
DBN Algorithm 4.67
LSTM Model 3.65
BA-NN Model 2.64
PSO-NN Model 2.89
LGBA-NN Model 2.71
MFO-RELM 1.94
WSSADL-CTDC 0.46

These results state that the WSSADL-CTDC technique improves the network security performance.

5. Conclusions

This article introduces an innovative WSSADL-CTDC method for robust network security. The
WSSADL-CTDC technique aims to detect the presence of cyber threats and accomplish network
security using metaheuristics with DL models. To achieve this, the WSSADL-CTDC technique
implements a min-max normalization approach to scale the data into a uniform format. In addition,
the WSSADL-CTDC technique applies SFLA to elect an optimal subset of features. The WSSADL-
CTDC technique applies a hybrid CAE model for cyber threat detection and classification. A WSSA-
based hyperparameter tuning method can be employed to enhance the detection performance of the
CAE model. The simulation result of the WSSADL-CTDC technique can be evaluated under the
benchmark dataset. The extensive analysis of the results found that the WSSADL-CTDC technique
performed better than comparable methods on different measures. The WSSADL-CTDC technique
may encounter scalability threats with more extensive datasets and benefit from real-time utilization
optimizations in dynamic network environments. Future studies may focus on improving scalability
and enabling real-time deployment.
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validation, formal analysis, investigation, visualization, writing–original draft, writing–review &
editing. All authors have read and approved the final version of the manuscript for publication.

Use of AI tools declaration

During the revision of this work, the authors used the writefull language check embedded in
Overleaf to improve English grammar, proofread and rephrase certain sentences in order to minimize
the iThenticate similarity index. Following the use of these tools and services, the authors reviewed
and edited the content as necessary, assuming full responsibility for the content of the publication.

AIMS Mathematics Volume 9, Issue 7, 17676–17695.



17692

Acknowledgments

The authors would like to acknowledge the Deanship of Graduate Studies and Scientific Research,
Taif University for funding this work.

Conflict of interest

The authors declare that they have no conflict of interest. The manuscript was written with the
contributions of all authors. All authors have approved the final version of the manuscript.

References

1. M. A. Ferrag, O. Friha, L. Maglaras, H. Janicke, L. Shu, Federated deep learning for cyber security
in the internet of things: Concepts, applications, and experimental analysis, IEEE Access, 9 (2021),
138509–138542. https://doi.org/10.1109/ACCESS.2021.3118642

2. Y. Li, Y. Zuo, H. Song, Z. Lv, Deep learning in security of internet of things, IEEE Internet Things
J., 9 (2022), 22133–22146. https://doi.org/10.1109/JIOT.2021.3106898

3. A. Salih, S. T. Zeebaree, S. Ameen, A. Alkhyyat, H. M. Shukur, A survey on the role of artificial
intelligence, machine learning and deep learning for cybersecurity attack detection, In: 2021
7th International engineering conference“Research & innovation amid global pandemic” (IEC),
IEEE, 2021, 61–66. https://doi.org/10.1109/IEC52205.2021.9476132

4. Z. Z. Xian, F. Zhang, Image real-time detection using LSE-Yolo neural network in artificial
intelligence-based internet of things for smart cities and smart homes, Wirel. Commun. Mob. Com.,
2022 (2022), 2608798. https://doi.org/10.1155/2022/2608798

5. A. D. Raju, I. Y. Abualhaol, R. S. Giagone, Y. Zhou, S. Huang, A survey on
cross-architectural IoT malware threat hunting, IEEE Access, 9 (2021), 91686–91709.
https://doi.org/10.1109/ACCESS.2021.3091427

6. B. Jothi, M. Pushpalatha, Wils-trs—A novel optimized deep learning based intrusion
detection framework for IoT networks, Pers. Ubiquit. Comput., 27 (2023), 1285–1301.
https://doi.org/10.1007/s00779-021-01578-5

7. P. Dixit, S. Silakari, Deep learning algorithms for cybersecurity applications: A technological and
status review, Comput. Sci. Rev., 39 (2021), 100317. https://doi.org/10.1016/j.cosrev.2020.100317

8. D. Chen, P. Wawrzynski, Z. Lv, Cyber security in smart cities: A review of deep
learning-based applications and case studies, Sustain. Cities Soc., 66 (2021), 102655.
https://doi.org/10.1016/j.scs.2020.102655

9. R. Ahmad, I. Alsmadi, Machine learning approaches to iot security: A systematic literature review,
Internet Things, 14 (2021), 100365. https://doi.org/10.1016/j.iot.2021.100365

10. E. Bout, V. Loscri, A. Gallais, How machine learning changes the nature of cyberattacks
on iot networks: A survey, IEEE Commun. Surv. Tutor., 24 (2022), 248–279.
https://doi.org/10.1109/COMST.2021.3127267

AIMS Mathematics Volume 9, Issue 7, 17676–17695.

https://dx.doi.org/https://doi.org/10.1109/ACCESS.2021.3118642
https://dx.doi.org/https://doi.org/10.1109/JIOT.2021.3106898
https://dx.doi.org/https://doi.org/10.1109/IEC52205.2021.9476132
https://dx.doi.org/https://doi.org/10.1155/2022/2608798
https://dx.doi.org/https://doi.org/10.1109/ACCESS.2021.3091427
https://dx.doi.org/https://doi.org/10.1007/s00779-021-01578-5
https://dx.doi.org/https://doi.org/10.1016/j.cosrev.2020.100317
https://dx.doi.org/https://doi.org/10.1016/j.scs.2020.102655
https://dx.doi.org/https://doi.org/10.1016/j.iot.2021.100365
https://dx.doi.org/https://doi.org/10.1109/COMST.2021.3127267


17693

11. E. H. Houssein, D. Oliva, N. A. Samee, N. F. Mahmoud, M. M. Emam, Liver cancer
algorithm: A novel bio-inspired optimizer, Comput. Biol. Med., 165 (2023), 107389.
https://doi.org/10.1016/j.compbiomed.2023.107389

12. S. Li, H. Chen, M. Wang, A. A. Heidari, S. Mirjalili, Slime mould algorithm: A
new method for stochastic optimization, Future Gener. Comp. Syst., 111 (2020), 300–323.
https://doi.org/10.1016/j.future.2020.03.055

13. X. Zhou, Y. Chen, Z. Wu, A. A. Heidari, H. Chen, E. Alabdulkreem, et al., Boosted local
dimensional mutation and all-dimensional neighborhood slime mould algorithm for feature
selection, Neurocomputing, 551 (2023), 126467. https://doi.org/10.1016/j.neucom.2023.126467

14. G. Wang, Moth search algorithm: A bio-inspired metaheuristic algorithm for global optimization
problems, Memetic. Comp., 10 (2018), 151–164. https://doi.org/10.1007/s12293-016-0212-3

15. Y. Yang, H. Chen, A. A. Heidari, A. H. Gandomi, Hunger games search: Visions, conception,
implementation, deep analysis, perspectives, and towards performance shifts, Expert Syst. Appl.,
177 (2021), 114864. https://doi.org/10.1016/j.eswa.2021.114864

16. J. C. Butcher, G. Wanner, Runge-kutta methods: Some historical notes, Appl. Numer. Math., 22
(1996), 113–151. https://doi.org/10.1016/S0168-9274(96)00048-7

17. J. Tu, H. Chen, M. Wang, A. H. Gandomi, The colony predation algorithm, J. Bionic Eng., 18
(2021), 674–710.

18. I. Ahmadianfar, A. A. Heidari, S. Noshadian, H. Chen, A. H. Gandomi, INFO: An efficient
optimization algorithm based on weighted mean of vectors, Expert Syst. Appl., 195 (2022), 116516.
https://doi.org/10.1016/j.eswa.2022.116516

19. A. A. Heidari, S. Mirjalili, H. Faris, I. Aljarah, M. Mafarja, H. Chen, Harris hawks
optimization: Algorithm and applications, Future Gener. Comp. Syst., 97 (2019), 849–872.
https://doi.org/10.1016/j.future.2019.02.028

20. H. Su, D. Zhao, A. A. Heidari, L. Liu, X. Zhang, M. Mafarja, et al.,
RIME: A physics-based optimization, Neurocomputing, 532 (2023), 183–214.
https://doi.org/10.1016/j.neucom.2023.02.010

21. Y. Li, D. Zhao, C. Ma, J. Escorcia-Gutierrez, N. O. Aljehane, X. Ye, CDRIME-MTIS: An enhanced
rime optimization-driven multi-threshold segmentation for covid-19 X-ray images, Comput. Biol.
Med., 169 (2024), 107838. https://doi.org/10.1016/j.compbiomed.2023.107838

22. A. Yazdinejad, M. Kazemi, R. M. Parizi, A. Dehghantanha, H. Karimipour, An ensemble deep
learning model for cyber threat hunting in industrial internet of things, Digit. Commun. Netw., 9
(2023), 101–110. https://doi.org/10.1016/j.dcan.2022.09.008

23. I. A. Khan, N. Moustafa, D. Pi, K. M. Sallam, A. Y. Zomaya, B. Li, A new explainable deep
learning framework for cyber threat discovery in industrial iot networks, IEEE Internet Things J.,
9 (2022), 11604–11613. https://doi.org/10.1109/JIOT.2021.3130156

24. I. Bibi, A. Akhunzada, N. Kumar, Deep AI-powered cyber threat analysis in IIOT, IEEE Internet
Things J., 10 (2023), 7749–7760. https://doi.org/10.1109/JIOT.2022.3229722

AIMS Mathematics Volume 9, Issue 7, 17676–17695.

https://dx.doi.org/https://doi.org/10.1016/j.compbiomed.2023.107389
https://dx.doi.org/https://doi.org/10.1016/j.future.2020.03.055
https://dx.doi.org/https://doi.org/10.1016/j.neucom.2023.126467
https://dx.doi.org/https://doi.org/10.1007/s12293-016-0212-3
https://dx.doi.org/https://doi.org/10.1016/j.eswa.2021.114864
https://dx.doi.org/https://doi.org/10.1016/S0168-9274(96)00048-7
https://dx.doi.org/https://doi.org/10.1016/j.eswa.2022.116516
https://dx.doi.org/https://doi.org/10.1016/j.future.2019.02.028
https://dx.doi.org/https://doi.org/10.1016/j.neucom.2023.02.010
https://dx.doi.org/https://doi.org/10.1016/j.compbiomed.2023.107838
https://dx.doi.org/https://doi.org/10.1016/j.dcan.2022.09.008
https://dx.doi.org/https://doi.org/10.1109/JIOT.2021.3130156
https://dx.doi.org/https://doi.org/10.1109/JIOT.2022.3229722


17694

25. S. Das, Y. Manchala, S. K. Rout, S. K. Panda, Deep learning and metaheuristics
based cyber threat detection in internet of things enabled smart city environment, 2023.
http://dx.doi.org/10.21203/rs.3.rs-3141258/v1

26. R. Wei, L. Cai, L. Zhao, A. Yu, D. Meng, DeepHunter: A graph neural network based approach
for robust cyber threat hunting, In: Security and privacy in communication networks, Springer, 398
(2021), 3–24. https://doi.org/10.1007/978-3-030-90019-9 1

27. A. N. Ndife, Y. Mensin, W. Rakwichian, P. Muneesawang, Cyber-security audit for smart grid
networks: An optimized detection technique based on bayesian deep learning, J. Internet Serv. Inf.
Secur., 12 (2022), 95–114. https://dx.doi.org/10.22667/JISIS.2022.05.31.095

28. M. A. Ferrag, D. Hamouda, M. Debbah, L. Maglaras, A. Lakas, Generative adversarial networks-
driven cyber threat intelligence detection framework for securing internet of things, In: 2023 19th
International conference on distributed computing in smart systems and the internet of things
(DCOSS-IoT), IEEE, 2023, 196–200. https://doi.org/10.1109/DCOSS-IoT58021.2023.00042

29. T. Elangovan, S. Sukumaran, S. Muthumarilakshmi, An efficient recurrent neural network based
classification method for cyber threat detection analysis, J. Alebr. Stat., 13 (2022), 5514–5520.

30. Y. Zhou, B. Yang, H. Hou, L. Zhang, T. Wang, M. Hu, Continuous leakage-
resilient identity-based encryption with tight security, Comput. J., 62 (2019), 1092–1105.
https://doi.org/10.1093/comjnl/bxy144

31. J. Xu, S. H. Park, X. Zhang, A bio-inspired motion sensitive model and its application to estimating
human gaze positions under classified driving conditions, Neurocomputing, 345 (2019), 23–35.
https://doi.org/10.1016/j.neucom.2018.09.093

32. Y. Li, W. G. Cui, H. Huang, Y. Z. Guo, K. Li, T. Tan, Epileptic seizure detection in EEG signals
using sparse multiscale radial basis function networks and the fisher vector approach, Knowledge
Based Syst., 164 (2019), 96–106. https://doi.org/10.1016/j.knosys.2018.10.029

33. Y. Chen, L. Feng, C. Zheng, T. Zhou, L. Liu, P. Liu, et al., LDANet: Automatic
lung parenchyma segmentation from CT images, Comput. Biol. Med., 155 (2023), 106659.
https://doi.org/10.1016/j.compbiomed.2023.106659

34. S. B. Lin, Generalization and expressivity for deep nets, IEEE Trans. Neural Netw. Learn. Syst., 30
(2019), 1392–1406. https://doi.org/10.1109/TNNLS.2018.2868980

35. Q. Pham, B. Mohammadi, R. Moazenzadeh, S. Heddam, R. P. Zolá, A. Sankaran, et al.,
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