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1. Introduction

Currently, the matrix equation AX + XB = C represents a critically important class of equations
with significant practical applications. This assertion is underscored by a plethora of studies that
highlight its utility in various domains, including but not limited to, the development of matrix black
box algorithms, applications in mechanics and control systems, thermodynamics, and vibration
theory, among others [1–6]. The investigation of iteration methods for solving equations within the
real and complex domains, as well as quaternions, has garnered considerable attention among
scholars, highlighting its status as a significant research area [7–15]. For example, Zhou [16] applies
the conjugate gradient method and linear projection operator to solve two matrix equations
A1XB1 = C1, A2XB2 = C2, Bai [17] introduced the Hermitian and skew-Hermitian splitting (HSS)
iteration method, while Zhou [18] et al. advanced the modified Hermitian and skew-Hermitian
splitting (MHSS) iteration technique tailored for resolving complex linear systems. Furthermore,

https://www.aimspress.com/journal/Math
https://dx.doi.org/ 10.3934/math.2024854


17579

Zhou [19] et al. and Benzi [20] contributed to the field by establishing a generalization of the
Hermitian and skew-Hermitian splitting iteration methods (GHSS) and introducing a generalization of
the positive-definite and skew-Hermitian splitting (GPSS) iteration methods, respectively. Li [21]
discussed the outer and inner iterative schemes to solve the complex symmetric matrix equation.
Zhang [22] et al. established two new non-symmetric positive definite and semi-definite splitting
(NPSS) iterations for solving the sub-positive definite matrix equation AX = B over the quaternion
field. Additionally, Ma [23] proposed an E-extra iteration method for solving the continuous Sylvester
equations, further enriching the repertoire of iterative methods in the field. Nonetheless, there has
been relatively little research on the reduced biquaternion iteration method. To address this gap, and
drawing from reference [23] for inspiration, this paper investigates the use of the E-extra iteration
method for solving the reduced biquaternion matrix equation

AX + XB = C,

where A, B, and C are known reduced biquaternion matrices, and X represents the unknown reduced
biquaternion matrix to be solved. And E-extra iteration method is based on the Euler-extrapolation
technique. It serves as an iterative approach for solving the continuous Sylvester equation AX+XB = F
in the complex domain, where A = W + iT , B = U + iV , and W, T , U, and V are symmetric positive
semidefinite matrices.

Obviously, reduced biquaternions represent a generalization of complex numbers. Let
a = a0 + a1i + a2 j + a3k, where i2 = − j2 = k2 = −1, i j = ji = k, jk = k j = i, ki = ik = − j. Reduced
biquaternions, being a type of exchange algebra, find extensive application in numerous practical
problems, as evidenced by previous studies and so on [24–27].

Throughout this paper, let R be the real number field, C be the complex number field, and QRB

respect the sets of all reduced biquaternions. Cm×n respect the set of all m×n complex matrices, Qm×n
RB

respect the set of all m×n reduced biquaternions matrices. AT , ρ(A), ∥A∥F , Re(A), and Im(A) represent
the transpose, the spectral radius, the matrix Frobenius norm, and the real and imaginary parts of
A, respectively. Let A = [a1, a2, · · ·, an]∈Cm×n, where as∈Cm is the sth column of the matrix A, s =
1, 2, · · ·, n, and the vec operator of A is defined to be vec(A) = [aT

1 , a
T
2 , · · ·, a

T
n ]T∈Cmn×1. For A =

(ast)∈Cm×n, B = (bst)∈Cp×q, and the symbol A⊗B = (astB)∈Cmp×nq stands for the Kronecker product of
A and B. Subsequently, this paper proceeds by presenting the pertinent definitions and lemmas.

Definition 1. [28] For any b∈QRB, b can be uniquely expressed as b = c0 + c1 j, where c0, c1∈C,
c0 = b0 + b1i, c1 = b2 + b3i. Consequently, the Frobenius norm of b can be expressed as ∥b∥F =√

b2
0 + b2

1 + b2
2 + b2

3.

Definition 2. [28] For any A ∈ Qm×n
RB , A can be uniquely expressed as A = A1 + A2 j, where A1, A2 ∈

Cm×n, and the Frobenius norm of A can be expressed as

∥A∥F =

 m∑
s=1

n∑
t=1

∥ast∥
2
F


1
2

=
(
∥Re(A1)∥2F + ∥Im(A1)∥2F + ∥Re(A2)∥2F + ∥Im(A2)∥2F

) 1
2
.

For example, let A =
[

1 i
j k

]
=

[
1 i
0 0

]
+

[
0 0
1 i

]
j, then ∥A∥2F = 1 + 1 + 1 + 1 = 4.
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Lemms 1. [23] Assume that H,G ∈ R2n2×2n2
are symmetric and positive definite matrices, and let

θ ∈ [0, π2 ], then H cos θ +G sin θ is symmetric positive definite.

This paper specifically addresses the following problem.

Problem 1. Let A, B,C ∈ Qn×n
RB , and B is a pure reduced biquaternion matrix. Find out X ∈ Qn×n

RB , such
that AX + XB = C. If the set of solutions is empty, find out the least-norm solution X ∈ Qn×n

RB , such that
min

X∈Qn×n
RB

∥AX + XB −C∥F .

2. The solutions of problem

Let X∈Qn×n
RB , it can be uniquely expressed as

X = X1 + X2 j,

where Xi∈Cn×n(i = 1, 2). Let A, B,C∈Qn×n
RB , these can also be uniquely expressed as

A = A1 + A2 j, B = B1 + B2 j,C = C1 +C2 j,

where Ai, Bi,Ci∈Cn×n(i = 1, 2). So the reduced biquaternion matrix equation

AX + XB = C (2.1)

can be expressed as

(A1 + A2 j)(X1 + X2 j) + (X1 + X2 j)(B1 + B2 j) = C1 +C2 j, (2.2)

according to the definition of reduced biquaternion, for any complex number z∈C, we have z· j = j·z.
So the Eq (2.2) can be expressed as

(A1X1 + A2X2 + X1B1 + X2B2) + (A1X2 + A2X1 + X2B1 + X1B2) j = C1 +C2 j,

and due to the unique complex decomposition of a reduced biquaternion matrix, we have{
A1X1 + A2X2 + X1B1 + X2B2 = C1,

A2X1 + A1X2 + X2B1 + X1B2 = C2.

Assume that B is a pure reduced biquaternion matrix, then B1 = O(zero matrix), and we can also write
it as [

A2 A1

A1 A2

] [
X2

X1

]
+

[
X2

X1

]
B2 =

[
C1

C2

]
. (2.3)

Denote

Ã =
[

A2 A1

A1 A2

]
∈ C2n×2n, X̃ =

[
X2

X1

]
∈ C2n×n, C̃ =

[
C1

C2

]
∈ C2n×n. (2.4)

Assume that
Ã = AR + iAI , B2 = BR + iBI ,
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where AR, AI ∈ R2n×2n are real, symmetric, and positive definite matrices, and BR, BI ∈ Rn×n are real,
symmetric, and positive semidefinite matrices, then the Eq (2.3) can be expressed as

(AR + iAI)X̃ + X̃(BR + iBI) = C̃. (2.5)

Therefore, by introducing the Euler formula: e−iθ = cos θ− i sin θ(θ ∈ [0, π2 ]) and multiplying both sides
of Eq (2.5) by e−iθ, we obtain

(cos θ − i sin θ)(AR + iAI)X̃ + X̃(BR + iBI)(cos θ − i sin θ) = e−iθC̃.

Expanding and rearranging the above equation, we have

(AR cos θ + AI sin θ)X̃ + X̃(BR cos θ + BI sin θ)
= i(AR sin θ − AI cos θ)X̃ + iX̃(BR sin θ − BI cos θ) + e−iθC̃.

In summary, for the problem, we propose the E-extra iteration method to solve the reduced biquaternion
matrix equation AX + XB = C.

Algorithm 1. Reduced biquaternion E-extra iterative method:
Step 1. Given matrices A, B,C ∈ Qn×n

RB , then these matrices can be uniquely expressed as A =
A1 + A2 j, B = B1 + B2 j,C = C1 +C2 j.

Step 2. Write the complex matrix Ã, C̃ according to (2.4), then write the real matrix AR, AI , BR, BI .
Step 3. Given the initial matrix X̃(0) ∈ C2n×n, the allowable error is 0 ≤ ε ≪ 1. Let k := 1.
Step 4. Calculate

(AR cos θ + AI sin θ)X̃(k) + X̃(k)(BR cos θ + BI sin θ)
= i(AR sin θ − AI cos θ)X̃(k−1) + iX̃(k−1)(BR sin θ − BI cos θ) + e−iθC̃.

(2.6)

Step 5. If ∥∥∥C̃ − ÃX̃(k) − X̃(k)B2

∥∥∥
F∥∥∥C̃

∥∥∥
F

≤ ε,

then stop the iteration and output X̃(k) as the approximate solution; otherwise, proceed to Step 6.
Step 6. Let k := k + 1, and proceed to Step 4.

Denote
H = In ⊗ AR + BT

R ⊗ I2n,G = In ⊗ AI + BT
I ⊗ I2n,

where In is an n × n identity matrix, I2n is a 2n × 2n identity matrix, and

x = vec(X̃), c = vec(C̃).

Using the Kronecker product, Eq (2.6) can be expressed as follows:

(H cos θ +G sin θ)x(k) = i(H sin θ −G cos θ)x(k−1) + e−iθc.

It can be verified that matrices H and G are symmetric and positive-definite. As stated in Lemma 1,
it follows that the matrix H cos θ +G sin θ is a symmetric positive definite matrix. We can express the
iterative formula Eq (2.6) of the E-extra iteration method for reduced biquaternion in the following
fixed-point form:

x(k) = A(θ)x(k−1) +C(θ)−1c,

where
A(θ) = i(H cos θ +G sin θ)−1(H sin θ −G cos θ),

C(θ)−1 = (H cos θ +G sin θ)−1e−iθ.
(2.7)
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3. Convergence analysis

Then, we discuss the convergence of the E-extra iteration method and present the following relevant
lemmas:

Lemms 2. [23] Assume that H,G ∈ R2n2×2n2
are symmetric and positive definite matrices, and let

θ ∈ [0, π2 ], then the eigenvalues of the iterative matrix A(θ) is λ = i sin θ−µ cos θ
cos θ+µ sin θ , and the corresponding

eigenvectors are given by

ρ(A(θ)) = max
{∣∣∣∣∣sin θ − µmin cos θ

cos θ + µmin sin θ

∣∣∣∣∣ , ∣∣∣∣∣sin θ − µmax cos θ
cos θ + µmax sin θ

∣∣∣∣∣} ,
where µ is the generalized eigenvalue of the matrix pair (H,G), and µmin and µmax correspond to the
minimum and maximum generalized eigenvalues of the matrix pair (H,G), respectively. If ρ(A(θ)) <
1,∀θ ∈ [0, π2 ], the E-extra iteration method converges.

Lemms 3. [23] Assume that H,G ∈ R2n2×2n2
are symmetric and positive definite matrices. If the

parameters θ satisfying

{
θ ∈

(
0, π2

)
|
1−µmin
1+µmin

< cot θ < µmax+1
µmax−1

}
, µmin ⩽ 1, µmax > 1,{

θ ∈
(
0, π2

]
|
1−µmin
1+µmin

< cot θ < µmax+1
µmax−1

}
, µmin > 1, µmax > 1,{

θ ∈
(
0, π2

)
|
1−µmin
1+µmin

< cot θ
}
, µmax = 1,{

θ ∈
[
0, π2

]
|
1−µmin
1+µmin

< cot θ
}
, µmax < 1,

then the E-extra iteration method converges. Moreover, the optimal iteration parameter θ∗ is

θ∗ =

{
arc tan

(
µminµmax−1+

√
(1+µ2

min)(1+µ2
max)

µmin+µmax

)
∈

[
0, π2

)}
∪

{
arc cot

(
1−µminµmax+

√
(1+µ2

min)(1+µ2
max)

µmin+µmax

)
∈

(
0, π2

]}
,

and the corresponding optimal convergence factor is

ρ (A (θ∗)) =
∣∣∣∣∣sin θ∗ − µmin cos θ∗
cos θ∗ + µmin sin θ∗

∣∣∣∣∣ (= ∣∣∣∣∣µmax cos θ∗ − sin θ∗
cos θ∗ + µmax sin θ∗

∣∣∣∣∣) .
In conclusion, regarding the solution to the problem, we have the following conclusions:

Theorem 1. Given matrices A, B,C ∈ Qn×n
RB , the sufficient condition for the existence of a solution to

the reduced biquaternion matrix equation AX + XB = C is ρ(A(θ)) < 1,∀θ ∈ [0, π2 ]. Consequently,∥∥∥C̃ − ÃX̃(k) − X̃(k)B2

∥∥∥
F∥∥∥C̃

∥∥∥
F

≤ ε.

When the equation has a solution, the solution is given by

X = X1 + X2 j. (3.1)
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In the case of no solution, the least-norm solution of Eq (2.1) remains (3.1). Where

Ã =
[

A2 A1

A1 A2

]
∈ C2n×2n, X̃ =

[
X2

X1

]
∈ C2n×n, C̃ =

[
C1

C2

]
∈ C2n×n,

A(θ) = i(H cos θ +G sin θ)−1(H sin θ −G cos θ),

X1 ∈ Cn×n refers to the lower part of the block matrix X̃(k), X2 ∈ Cn×n refers to the upper part of the
block matrix X̃(k).

Proof. By Eqs (2.1) and (2.3), we have

∥AX + XB −C∥F ⇔

∥∥∥∥∥∥
[
A2 A1

A1 A2

] [
X2

X1

]
+

[
X2

X1

]
B2 −

[
C1

C2

]∥∥∥∥∥∥
F

.

This means that the reduced biquaternion least-norm problem for Eq (2.1) has a solution if and only if
the complex least-norm problem for Eq (2.3) has a solution.

By Lemmas 1–3, when ρ(A(θ)) < 1,∀θ ∈ [0, π2 ], the E-extra iteration method converges, implying

that the system of Eq (2.3) has a solution. Therefore, ∥
C̃−ÃX̃(k)−X̃(k)B2∥F

∥C̃∥F
≤ ε in this case. It follows that

the solution of Eq (2.1) is given by (3.1). □

4. Numerical examples

The following example was executed by writing an M-file and running it on Matlab R2022b. And
all the computations are run on a personal computer with a 64-bit Win10 operating system, a 12th
Gen Intel(R) Core(TM) i3-12100F CPU at 3.30 GHz, and 16.00GB of 3200MHz of RAM memory. In
actual computations, we use the identity matrix as the initial guess and the stopping criterion

res =

∥∥∥C̃ − ÃX̃(k) − X̃(k)B2

∥∥∥
F∥∥∥C̃

∥∥∥
F

< 10−8,

where X̃(k) is the current approximate. If the number of iteration steps exceeds 1000, the iteration is
terminated. The obtained results validate the effectiveness of this algorithm.

Example 1. Let

A =


−2 + i + 6 j + 2k 2 − j 0 0

2 − j −2 + i + 6 j + 2k 2 − j 0
0 2 − j −2 + i + 6 j + 2k 2 − j
0 0 2 − j −2 + i + 6 j + 2k

 ,

B =


k 0 0 0
0 j + k 0 0
0 0 j + k 0
0 0 0 j

 ,C =


1 − j 2 − 2 j 3 − 3 j 4 − 4 j
2 − 2 j 1 − j 4 − 4 j 3 − 3 j
3 − 3 j 4 − 4 j 1 − j 2 − 2 j
4 − 4 j 3 − 3 j 2 − 2 j 1 − j

 ,
consider the reduced biquaternion equation AX + XB = C by the E-extra iteration method, where
X ∈ Q4×4

RB .
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First, these matrices A, B, and C can be uniquely expressed as

A1 =


−2 + i 2 0 0

2 −2 + i 2 0
0 2 −2 + i 2
0 0 2 −2 + i

 , A2 =


6 + 2i −1 0 0
−1 6 + 2i −1 0
0 −1 6 + 2i −1
0 0 −1 6 + 2i

 ,

B = j · B2 = j ·


i 0 0 0
0 1 + i 0 0
0 0 1 + i 0
0 0 0 1

 ,

C1 =


1 2 3 4
2 1 4 3
3 4 1 2
4 3 2 1

 ,C2 = −


1 2 3 4
2 1 4 3
3 4 1 2
4 3 2 1

 .
According to (2.4), we can derive the expressions for matrices Ã and C̃. Moreover, we have

AR =

[
A21 A11

A11 A21

]
, AI =

[
A22 A12

A12 A22

]
,

A11 =


−2 2 0 0
2 −2 2 0
0 2 −2 2
0 0 2 −2

 , A21 =


6 −1 0 0
−1 6 −1 0
0 −1 6 −1
0 0 −1 6

 ,

A12 =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 , A22 =


2 0 0 0
0 2 0 0
0 0 2 0
0 0 0 2

 ,

BR =


0 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 , BI =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 0

 .
It is easy to verify that AR and AI are real symmetric positive definite matrices, BR and BI are real
symmetric positive semidefinite matrices. In this case, the optimal iteration parameter is θ∗ ≈ 0.5529.
The number of iteration steps (denoted by ‘k’), the elapsed CPU times in seconds (denoted by ‘tcpu’),
the iterative residual (denoted by ‘res’). When the iteration residual satisfies res < 10−8, it is considered
the k-th approximate solution to Eq (2.1). The main results are as follows: k = 24, tcpu ≈ 0.0001s,
res ≈ 5.3157e − 08,

X(24)
1 ≈


0.5119 − 0.2142i −0.5119 + 0.2142i 0.6689 − 0.1314i −0.6689 + 0.1314i
0.6784 − 0.3013i −0.6784 + 0.3013i 0.7170 − 0.1713i −0.7170 + 0.1713i
0.3909 − 0.2373i −0.3909 + 0.2373i 0.5393 − 0.1434i −0.5393 + 0.1434i
0.3192 − 0.1500i −0.3192 + 0.1500i 0.2821 − 0.0791i −0.2821 + 0.0791i

 ,
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X(24)
2 ≈


0.2698 − 0.2091i −0.2698 + 0.2091i 0.3192 − 0.1500i −0.3192 + 0.1500i
0.5254 − 0.3777i −0.5254 + 0.3777i 0.3909 − 0.2373i −0.3909 + 0.2373i
0.7166 − 0.4479i −0.7166 + 0.4479i 0.6784 − 0.3013i −0.6784 + 0.3013i
0.6840 − 0.3390i −0.6840 + 0.3390i 0.5119 − 0.2142i −0.5119 + 0.2142i

 .
Therefore, X = X(24)

1 + X(24)
2 j is an approximate solution to Eq (2.1).

Example 2. Given n × n reduced biquaternion matrices

A =


−2 + i + 6 j + 2k 2 − j

2 − j −2 + i + 6 j + 2k . . .
. . .

. . . 2 − j
2 − j −2 + i + 6 j + 2k

 ,

B =



k
j + k

. . .

j + k
j


,

C =


1 − j 2 − 2 j · · · n − n j

2 − 2 j 1 − j · · · n − 1 − (n − 1) j
...

...
. . .

...

n − n j n − 1 − (n − 1) j · · · 1 − j

 ,
consider the reduced biquaternion equation AX + XB = C by the E-extra iteration method, where
X ∈ Qn×n

RB .
First, these matrices A, B, and C can be uniquely expressed as

A1 =


−2 + i 2

2 −2 + i . . .
. . .

. . . 2
2 −2 + i

 , A2 =


6 + 2i −1

−1 6 + 2i . . .
. . .

. . . −1
−1 6 + 2i

 ,

B = j · B2 = j ·



i
1 + i

. . .

1 + i
1


,

C1 =


1 2 · · · n
2 1 · · · n − 1
...

...
. . .

...

n n − 1 · · · 1

 ,C2 = −


1 2 · · · n
2 1 · · · n − 1
...

...
. . .

...

n n − 1 · · · 1

 .
AIMS Mathematics Volume 9, Issue 7, 17578–17589.
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According to (2.4), we can derive the expressions for matrices Ã and C̃. Moreover, we have

AR =

[
A21 A11

A11 A21

]
, AI =

[
A22 A12

A12 A22

]
,

A11 =


−2 2

2 −2 . . .
. . .
. . . 2
2 −2

 , A21 =


6 −1

−1 6 . . .
. . .
. . . −1
−1 6

 ,

A12 =


1

1
. . .

1

 , A22 =


2

2
. . .

2

 ,

BR =


0

1
. . .

1

 , BI =


1
. . .

1
0

 .
It is easy to verify that AR and AI are real symmetric positive definite matrices, BR and BI are real
symmetric positive semidefinite matrices. The number of iteration steps (denoted by ‘cs’), the elapsed
CPU times in seconds (denoted by ‘tcpu’), the iterative residual (denoted by ‘res’). When the iteration
residual satisfies res < 10−8, it is regarded as the approximate solution of Eq (2.1). For matrices of
different orders, the required time is shown in the figure below, and the calculation results are presented
in the following table.

Figure 1. CPU times under different matrix order.

Table 1. θ∗, cs, tcpu and res for Example 2.
n × n θ∗ cs tcpu res

16 × 16 0.5837 23 0.0052s 5.9527e-08
32 × 32 0.5860 22 0.1219s 6.1540e-08
50 × 50 0.5865 21 0.7467s 7.3943e-08
64 × 64 0.5866 21 1.8131s 5.8504e-08
80 × 80 0.5867 20 4.2859s 8.5967e-08
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5. Conclusions

In this work, we utilize the complex decomposition of matrices and the multiplication rules of
reduced biquaternion matrices to transform the reduced biquaternion matrix equation AX + XB = C
into a matrix equation over the complex field. We then explore the solution of such matrix equations
based on the E-extra iterative method, derive the convergence of the E-extra iterative method, and
provide guidelines for choosing the optimal parameters. Finally, we also provide numerical examples,
which illustrate that our algorithms are effective and workable.
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