AIMS Mathematics, 9(7): 17555-17577.

AIMS Mathematics DOI: 10.3934/math.2024853

Received: 23 March 2024
Revised: 25 April 2024
Accepted: 29 April 2024
Published: 21 May 2024

https://www.aimspress.com/journal/Math

Research article

Modeling of extended osprey optimization algorithm with Bayesian

neural network: An application on Fintech to predict financial crisis

Ilyos Abdullayev!, Elvir Akhmetshin??3, Irina Kosorukova*®, Elena Klochko®, Woong Cho”>*
and Gyanendra Prasad Joshi®*

1

Department of Management and Marketing, Urgench State University, Urgench, Uzbekistan.
Email: abdullayev.i.s@mail.ru

Department of Economics and Management, Kazan Federal University, Elabuga Institute of KFU,
Elabuga, Russia

Moscow Aviation Institute (National Research University), Moscow, Russia. Email: elvir@mail.ru
Department of Corporate Finance and Corporate Governance, Financial University under the
Government of the Russian Federation, Moscow, Russia

Department of Valuation and Corporate Finance, Moscow University for Industry and Finance
“Synergy”’, Moscow, Russia. Email: 1.v.kosorukova@yandex.ru

Department of Management, Kuban State Agrarian University named after . T. Trubilin, Krasnodar,
Russia. Email: klochko.e.n@yandex.ru

Department of Electronics, Information and Communication Engineering, Kangwon National
University, Samcheok 25913, Gangwon State, Republic of Korea. Email: wcho@kangwon.ac.kr
Department of Computer Science and Engineering, Sejong University, Seoul 05006, Republic of
Korea. Email: joshi@sejong.ac.kr

Correspondence: Email: wcho@kangwon.ac.kr, joshi@sejong.ac.kr; Tel: +820269352481.

Abstract: Accurately predicting and anticipating financial crises becomes of paramount importance
in the rapidly evolving landscape of financial technology (Fintech). There is an increasing reliance on
predictive modeling and advanced analytics techniques to predict possible crises and alleviate the
effects of Fintech innovations reshaping traditional financial paradigms. Financial experts and
academics are focusing more on financial risk prevention and control tools based on state-of-the-art
technology such as machine learning (ML), big data, and neural networks (NN). Researchers aim to
prioritize and identify the most informative variables for accurate prediction models by leveraging the
abilities of deep learning and feature selection (FS) techniques. This combination of techniques allows
the extraction of relationships and nuanced patterns from complex financial datasets, empowering
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predictive models to discern subtle signals indicative of potential crises. This study developed an
extended osprey optimization algorithm with a Bayesian NN to predict financial crisis (EOOABNN-
PFC) technique. The EOOABNN-PFC technique uses metaheuristics and the Bayesian model to
predict the presence of a financial crisis. In preprocessing, the EOOABNN-PFC technique uses a min-
max scalar to scale the input data into a valid format. Besides, the EOOABNN-PFC technique applies
the EOOA-based feature subset selection approach to elect the optimal feature subset, and the
prediction of the financial crisis is performed using the BNN classifier. Lastly, the optimal parameter
selection of the BNN model is carried out using a multi-verse optimizer (MVO). The simulation
process identified that the EOOABNN-PFC technique reaches superior accuracy outcomes of 95.00% and
95.87% compared with other existing approaches under the German Credit and Australian Credit datasets.

Keywords: financial crisis prediction; financial technology; multi-verse optimizer; Bayesian neural
network; metaheuristics
Mathematics Subject Classification: 68T07

1. Introduction

Recently, avoiding and managing financial risks has become increasingly essential because of
increased macroeconomic pressure, improved regulatory necessities, intensified business
competitiveness, and enhanced criminal activities, among others [1]. Retail banks serve as both risk
managers and participants in their activity as financial mediators. The business landscape for
commercial banks has become increasingly challenging and risky as the financial system becomes
more complex and global financial incorporation develops rapidly [2]. The capability of commercial
banks to get comparative benefits in this new landscape relies on their proficiency to avoid and control
risk [3]. Wide-ranging risk control and preventive actions, dependent upon big data, biometrics, and
artificial intelligence (AI), have become essential tools for financial researchers and professionals.
Internet of things (IoT) experts support banks and other financial organizations by getting real-time
data based on individual and user resources, enhancing the financial risk assessment efficiency [4].
Currently, with the undergoing financial crisis worldwide, businesses have focused on financial crisis
prediction (FCP). Businesses or financial organizations require dependable predictive models for
predicting the possible risks of financial failure [5]. FCP typically produces a dual classification
method; the outcomes are considered as enterprises’ non-failure or failure grades. Numerous
classification techniques have been presented for FCP. Generally, the developed predictive techniques
are divided into statistical or Al methods [6].

Regarding the concept of unpredictability in the e-commerce industry, constructing a FCP system
to systematically analyze and predict a particular financial indicator from extensive corporate data
becomes a requirement to maintain the presence and development of the enterprises [7]. Nevertheless,
the vast and heterogeneous quantity of corporate financial data and its continuous modifications make
it challenging to analyze. Currently, with the expansion of big data and machine learning (ML),
artificial neural networks (ANN) have been extensively implemented due to their higher capability to
resolve nonlinear mapping issues [8]. In the ANN model, a financial risk system dependent upon ML
will be achieved through the training and testing of higher-dimensional economic data to gain more
efficient analysis outcomes [9]. Remarkably, ML techniques can not only resolve the timeliness
prediction problem but retain the inherent correlation among previous time series (financial data) and
existing financial indicators, attaining more precise FCP outcomes. Several researchers have
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performed advanced studies on financial risk, employing ML to get more relevant FCP systems.
However, a generalizable model that efficiently predicts financial crises of enterprises still needs to be
developed [10]. This section accentuates the growing significance of averting and administering
economic risks in the context of enhanced macroeconomic pressure and convolutional economic
systems. It also highlights the dependencies on big data, biometrics, and Al, specifically in the FCP
context. ML exhibits promise for FCP but lacks a universally applicable model, which requires further
study for robust and generalizable predictive models.

This study develops an extended osprey optimization algorithm with a Bayesian neural network (NN)
to predict financial crisis (EOOABNN-PFC) technique. The EOOABNN-PFC method uses
metaheuristics and the Bayesian model to predict a financial crisis. In preprocessing, the EOOABNN-
PFC technique uses a min-max scalar to scale the input data into a valid format and applies the EOOA-
based feature subset selection approach to elect optimal feature subsets. Moreover, the prediction of a
financial crisis is performed using the BNN classifier. Lastly, the optimal parameter selection of the
BNN model is carried out using a multi-verse optimizer (MVO). The performance validation of the
EOOABNN-PFC approach is tested under a benchmark financial dataset.

The remaining sections of the article are arranged as follows: Section 2 offers the literature review,
and Section 3 represents the proposed method. Then, Section 4 elaborates on results evaluation, and
Section 5 completes the work.

2. Literature review

Muthukumaran and Hariharanath [11] considered the development of an optimal deep
learning (DL)-based FCP (ODL-FCP) technique for small and medium-sized enterprises (SMEs) that
integrated two stages: Archimedes optimization algorithm-based feature selection (FS) (AOA-FS)
technique and deep-CNN (DCNN) with long short-term memory (LSTM)-based data classification.
Muthukumaran et al. [12] introduced an innovative multi-verse optimization (MVO)-based FS with
optimum variational autoencoder (OVAE) technique for the FCP. The developed technique mainly
targeted FCP, developing a subsets FS process employing the MVOFS method. Then, the VAE method
was implemented to classify financial data, and the differential evolution (DE) technique was used to tune
the VAE method. Kalaivani and Saravanan [13] enhanced FCP by employing a chimp optimization
algorithm with machine learning (ML) (EFCP-COAML) technique. The primary target was to forecast
an automatic and precise FCP using a kernel extreme learning machine (KELM)-based prediction
process. In [14], the authors designed a unique DL-based method, introducing an innovative credit
decision support system with CNN and gated recurrent unit (GRU) that employed extensive series of
financial data requiring some resources. Metawa and Elhoseny [15] proposed a new harmony search
algorithm with the optimum LSTM (HSA-OLSTM) method in FCP for better predicting enterprises’
financial conditions. Vaiyapuri et al. [16] presented an intelligent FS with a DL-based financial risk
assessment (IFSDL-FRA) method. The method included the development of a new water strider optimizer
technique-based FS (WSOA-FS) technique for optimal FS subsets. Likewise, the deep random vector
functional link network (DRVFLN) classification algorithm was implemented. Additionally, an improved
fruit fly optimization algorithm (IFFOA) model was used for the hyperparameter tuning process.

Park and Chai [17] developed a technique for the application of ML methods for forecasting
information asymmetry. The authors also overcame the requirement of modifying XGBoost to predict
data asymmetry by obtaining the significant aspects impacting it. That study also scientifically evaluated
earlier researchers under data asymmetry in the financial market. Katib et al. [18] presented a hybrid
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hunter-prey optimization with DL-based FCP (HHPODL-FCP) method that used the HHPO method
for the FS method. Furthermore, the algorithm utilized the gated attention recurrent network (GARN)
system for detection and classification. The model used a sparrow search algorithm (SSA)-based
hyperparameter tuning method to increase system effectiveness. Liu et al. [19] presented a model
utilizing multi-objectivization, particularly reformulating the issue of crafting autoencoders (AEs) as
a multi-objective optimizing issue. An evolutionary model called HydraText has also been efficiently
employed. In [20], an effectual local search (LS) technique was proposed. The study established the
initial provable approximation for resolving the general cases issue. Huang et al. [21] proposed a
survey of automated hyperparameter tuning models for metaheuristics, giving a new classification
depending on their structure into three categories: simple generate-evaluate, iterative generate-evaluate,
and high-level generate-evaluate methods. The authors in [22] portrayed the universal best
accomplishment estimator in a theoretical context and subsequently set theoretical borders on the
analysis errors, considering both finite and infinite configuration spaces for parameter settings. Liu et
al. [23] introduced a technique incorporating instance generation and portfolio construction in an
adversarial procedure.

3. The proposed method

This study develops an EOOABNN-PFC technique, which uses metaheuristics and a Bayesian
model to predict a financial crisis. To accomplish that, it contains the following major preprocessing
processes: EOOA-based feature subset selection, BNN-based classifier, and MVO-based
hyperparameter tuning. Figure 1 represents the working procedure of the EOOABNN-PFC technique.

3.1. Preprocessing

Initially, the EOOABNN-PFC technique uses a min-max scalar to scale the input data into a
valid format. To remove the magnitude effect of the distinct dimensional datasets on the predictive
method [24], the study implements min-max deviation normalization that linearly changes new data
toward the solution that can be mapped among [0.0,1.0] to enhance the convergence rate and predictive
outcomes, as expressed in Eq (1).
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Figure 1. Overall flow of the EOOABNN-PFC technique.

Xi=Xmin

X = —20 1
norm Xmax —Xmin ( )

In Eq (1), Xi signifies the ith measurement, xmax represents the maximal measurement values,
and Xnorm denotes the normalized measurement.

3.2. EOOA-based feature subset selection

The EOOABNN-PFC technique applies the EOOA-based feature subset selection approach to
elect optimal feature subsets. This study intends to use an osprey optimization algorithm (OOA), a
meta-heuristic approach [25], to execute the searching method in both local and global problem-
resolving spaces to give a pleasing solution. Generally, there are dual phases, such as exploitation and
exploration. The ability of the method to find the main appropriate area and evade local goals is
amended by uniting the global searching stage and incorporating the notion of exploration. The
technique can attain more possible choices in promising areas and upsurges as an outcome of the search
procedure utilizing the prospect of exploitation. The OOA defines the optimum way, which is dependent
upon parameters.

Cij = AlLQl] + /12Xij + A3SU (2)

Whereas Cij signifies link stability from i and j, X;j specifies safety degree, 41, A2, and A3 denote
weighting vector, LQij embodies link quality, and Sij means factor for forecasting mobility

0= (55 - (2.2’ g

Here, (Y) signifies the variance, Y denotes the level of message attained from each adjacent node,
and h represents the entire number of nodes. The value of fitness is attained by utilizing Eq (4),
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fitness value = max(Node stability degree + Link stability degree). (4)
3.2.1. Initialization

The OOA defines a population-based tactic that uses the advantage of the searching capability in
the region of problem-resolving to classify a potential solution through the replication-based model.
Each searching agent defines the range of variables connected to the exact position within the
exploration area. Thus, each searching agent is probably responsible for the issue by the vector. Every
searching agent includes an OOA population assumed in Eq (5). Equation (6) is employed to set
searching agents’ positions in the search area randomly.

P1 [P P P
p:[pj = Plz,1 P%,j Pi;m , )
lanNXM lpz;,l Pzzv; PN:,MJNXM
pij = lbj + 1. (ub; — 1bj),i = 1,2,..,N.j = 1,2,...,m. (6)

Here, p designates the locations of searching agents; pi embodies the ith searching agents, pi; directs
the jth dimension, M represents the variable of the problem, [bj denotes the lower bound, N signifies
the number of searching agents, ub; specifies the upper bound, and rij refers to a randomly produced
variable in the interval among [0 and 1]. Equation (7) signifies the function as a set of vectors.

Gy G(P)
G=LJ =|[G(:Pl-)l . %

: o
vl leew]

NXM

Here, Gi signifies the objective function of ith searching agent, and G indicates the array.
3.2.2.  Exploration phase

This initial state of the OOA population-upgrading method has been created by pretending to
search agents’ performance. The OOA discovers the ability to permit the classification of the perfect
location while evading the local optimal. The locations of dissimilar searching agents delivering an
advanced objective function score were less dignified. Equation (8) is employed to recognize every
search agent’s range of features exclusively.

GL; = {Phlh € {1,2, ...,N} AGp < Gi} U {Pbesi}' (8)

GLj signifies the feature positions of the ith searching agent, and Presi specifies the finest search
agents’ locations. The related search agent’s novel location is originated by a replication that includes
the search agent’s future features. The function’s value is delivered in Eq (9), amplified by the
searching agent’s novel position.

P =i+ 7). (SGij — Rijopig)- )
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Ly
ij < ubj,

L
pll:]l = lb]"pi,]l' < ‘LLbj, (10)
uby, plel > ub;.

L
pi by < p

Ly ~Ly R
P, = {Pl., G < Gy; (11)

P;, else,

where pf! specifies the novel position of the ith search agents in the early phase, p};

denotes the
jth vector, G} indicates the rate of objective function, SG; specifies an optimum feature of the ith
searching agent, SGi,j denotes the jth vector, and R;i; is the randomly generated variable interval

of [0 and 1].
3.2.3. Exploitation phase

The second phase in the OOA depends upon an arithmetical replication of the usual actions of
searching agents. Then, the model affects the feature to the precise place and changes the location of
the searching agent. The search region improves the OOA exploitation latent to better potentials that
beat the known methods through integration. As per the OOA model, a correct position for recognizing
features is randomly nominated for all individuals utilizing Eq (12).

Py =py +m,i =12,..,m k=12,.,K, (12)

(pi3,1b < p;2 < ubj,

P = {ibj'PiLf < by, (13)
kub-,pfj < ub;.

This is employed to upsurge the score of objective functions in the existing location, which alters
the correlated places of the searching agents, allowing Eq (14),

Ly ~Ly
P ={Pi G <Gy (14)

i
P;, else.

Whereas pi? signifies the position of the ith searching agents, and pf* embodies the jth vector,

GF? shows the value of the objective function, K represents the iteration count, ri,j denotes a
randomly produced variable in the interval [0 and 1], and k means iteration area. The projected method
regularly yields training faults. This is because the hyperparameters were very complex to acquire.
Therefore, to solve the above problem, the opposition-based learning (OBL) model employs the
extended OOA (Ex-OOA) technique to improve the hyperparameter of the planned technique. The
OBL approach employs the fitness function (FF) f value to define whether the existing selection is
superior. For the true value p € [v 1] a dissimilar value p has been accepted in the vital description of
OBL. The value can originate utilizing the below-mentioned formulation:

p=v+l-p. (15)
The explanation is protracted to n sizes utilizing the below-given formulation:
5i=Vi+li_Pi'i=1'2'---'N- (16)

Here, p € Rn signifies the opposite vector, p € Rn represents the vector of real. The binary
responses p and-p are also contrasted during the optimizer stage. The enhanced dual selections are
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kept, and the other is removed from the assessment of fitness function.

The FF considers the classifier outcome and the amount of attributes chosen. It increases the
classifier outcomes and reduces the set size of the attributes selected. As a result, the following FF is
used for assessing the individual solution, as follows:

. H#SF
Fitness = a * ErrorRate + (1 — a) * TALF (17)

In Eq (17), ErrorRate implies the classifier error rate and is evaluated as the number of incorrect
classifieds to the number of classifiers made within [0,1]. ErrorRate refers to the complement of the
classifier accuracy, indicating the number of selected features and the total number of attributes in the
original data are #SF and #All F. a controls the importance of classifier quality and subset length and
is fixed to 0.9.

3.3. FCP using the BNN model

The financial crisis prediction is performed using a BNN classifier at this stage. Bayes theorem
is a vital concept in statistics, depending on the fact that data were employed to evaluate the probability
of occurrence outcomes [26]. Integrating the Bayesian model and ML implies that uncertainty can be
restricted in typical ML approaches. Kendall and Gal separated uncertainty into epistemic and aleatoric.
The former mentions that the uncertainty classified in the database can come from several logical
explanations. However, epistemic uncertainty, also called classic uncertainty, can be reduced with the
development of input data in the method. Once this method removes data from any database, it will create
undependable decisions depending on the databases trained earlier. Then, epistemic uncertainty directly
represents the consistency of the forecast and is employed to observe the method’s strength to boost.

By changing the biased and weighted parameters of typical NNs as ANNs, BNNs measure
epistemic uncertainty. The subsequent derivations express a probabilistic method, and this model,
variational inference, is employed to execute a practical and effective BNN. Figure 2 exhibits the
architecture of the BNN model.

Output Layer

NI

Input Layer *
/N Weights with Distribution

Hidden Layers

Figure 2. Framework of BNN.
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3.3.1. Probabilistic model

An NN is assumed as a probabilistic model P(y|x,z) whereas x signifies the input data and z
refers to the parameters within the network. To classifier tasks, y implies a group of class labels, and,
correspondingly, P(y|x,and z) supports a categorical distribution. To provide a database with n
trained points as D = {x;,y;}: Whereas |D| = n, they simply make the probability function:

P(D|z) = [T, P (yi|x; 2). (18)

The maximum likelihood estimate of parameter w 1is attained and, generally, the negative log
probability can be elected to improve purposes that suggest the cross entropy of softmax loss to
probability distribution is expressed as:

ZMLE = argmzax Xilog P(yilx;, 2). (19)

However, the MLE can be utilized in CNN and can be inclined to over-fitting under the training.
To resolve the over-optimization, regularization is established by multiplying the probability with the
previous distribution P(z):

P(z|D) < P(D|z)P(z). (20)

Maximized P(D|z)P(z) offers the maximum a posteriori (MAP) evaluation of z. The learning
process for probability distribution encompasses the softmax loss along with a regularized term
derived from the logarithm of the prior:

Zyap = argmax ), log P(y;|x;, z) + logP(2). (21)
z
Either MLE or MAP offer point evaluations of w that could not be continuously depended on.

Bayesian inference aims to estimate the posterior distribution of the weighted parameter dependent on
trained data P(z|D), for the uncertainty parameters measured.

3.3.2. Variational inference

It can be difficult to acquire analytical performances to P(z|D). Thus, an estimate method can
be assumed. A variational distribution can be determined as ¢q(z|@) to estimate the posterior
distribution. The similarity among q(z|6) and P(zD) is evaluated by the Kullback-Leibler (KL)
divergence, expressed as:

KL[q(z|0)P(z|D)] = Eq(zle)log%. (22)

Next, executing the Bayes hypothesis to the posterior distribution P(zD) and creating any
operations, the cost function is provided as follows:

KL[q(z|0)P(z|D)] = KL[q(z|0)P(z)] — Eq(Z|9)logP(D|z) + logP (D). (23)

To reduce the KL divergence among q(z|6) and P(z|D), the divergence-free energy needs to
be diminished:

F(D,0) = KL[q(z|6)P(2)] — Eq(z16) log P(D|z). (24)
By reordering the KL term, the overhead formula is demonstrated as:
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F(D,0) = Eq(zlg)logq(zlﬁ) - Eq(zlg)logP(Z) - Eq(zle)logP(Dlz). (25)

Note that all three terms in Eq (25) comprise the probability of q(z|8). Then, by sampling z®
from variational distribution q(z|0), this appearance is estimated, and the last cost function is
provided as:

F(D,6) ~ %Zﬁl[logq(z(”w) —logP(z®) —logP(D|zY)], (26)

whereas M denotes the size of batches. Usually, not all data is inputted into the network in the training
model (epoch) because of inadequacy. As an alternative, the entire database can be separated into
smaller batches, which are then fed into the network; this allows the processing of huge-scale data.

3.4. Hyperparameter tuning process

Finally, the optimal parameter selection for the BNN is carried out using MVO. The new metaheuristic
MVO algorithm is based on the cosmological concepts of black holes, white holes, and wormholes [27].
Exploration, exploitation, and local search are performed using an analytic model based on these
concepts. The objects of the universe serve as solution variables for the problem, as the algorithm and
the universe are parallel. A roulette wheel mechanism is used to exchange objects between universes
and determine the optimal result for the analytical models of black and white holes. A randomized
representation of the universe found in the solution space is as follows:

U= |x} x% .. x} |_ 27)
lx}l x2 .. xI

In Eq (27), n indicates the frequency of the search component, U represents the world, X l]
denotes the j* variable of i*"world, and d shows the measurement of control parameters.

{xl r, < NI(U)),
x! > NIU).

l

x! = (28)

In Eq (28), X ,i refers to the j'™ variables of k'™ worlds, selected by applying the roulette
wheeling mechanism. U; indicates the i®" world, NI indicates the normalized inflation rate, and 7,
shows the random integer within [0,1],

xj —TDR - [(ub; —lb;) -7, +1b]  715>05 1, <WEP, (29)
x! r, > WEP.,

i’

J—
xl‘_

In Eq (29), X; indicates the j th variable of the optimum world, TDR (traveling distance rate)

and WEP (wormhole existence probability) are coefficients, the upper and lower limitations of j*
variables are ub; and [b;, xi] shows the j®* parameter of the i*" world, and 7,75, and r, are

random integers within [0,1].

WEP = min + t x ( (30)

max—min)

max

In Eq (30), the maximal and minimal numbers of controlled variables are indicated by max and
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min, and t and T,,,x are the existing and maximum iteration counters.

)
TDR =1-——. 31
2
In Eq (31), p denotes the exploitation accuracy through the iteration; as p improves, quicker
local search and more precise exploitation take place. The MVO algorithm derives an FF to achieve
better classifier results. It determines a positive integer to embody the superior performance of the

solution candidate. Now, the reduction of the classifier error is defined as the FF.

fitness(x;) = ClassifierErrorRate(x;)

— No.of misclassified samples + 100. (32)

Total No.of samples

4. Result analysis and discussion
This section inspects the performance of the EOOABNN-PFC technique on two datasets: The
German Credit [28] and the Australian Credit [29] database, containing 1000 and 690 samples,

respectively, as described in Table 1.

Table 1. Details on German Credit and Australian Credit databases.

Dataset # of # of # of Financial crisis/ non-
atase instances attributes class financial crisis

German 1000 24 2 300/700

Credit

Australian o) 14 2 383/307

Credit

Table 2 and Figure 3 show the average best cost (ABC) results of the EOOABNN-PFC method
for the two datasets. These experimental outcome values highlight that the GWO-FS, QABO-FS, and
ACO-FS models have poorer performance with increased ABC values. Meanwhile, the HHPODL-FCP
model has slightly improved results with moderate ABC values. However, the EOOABNN-PFC
technique demonstrates superior performance with the least ABC of 0.099 and 0.042 in the German
and Australian Credit databases, respectively.

Table 2. Average best cost (ABC) outcome of EOOABNN-PFC model for the two datasets.

Average best cost

Method German Credit database Australian Credit database
EOOABNN-PFC 0.099 0.042
HHPODL-FCP 0.139 0.071
QABO-FS 0.160 0.093
ACO-FS 0.185 0.097
GWO-FS 0.200 0.108
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Figure 3. Average best cost (ABC) outcome of EOOABNN-PFC method for the two datasets.

Figure 4 examines the classifier outcomes of the EOOABNN-PFC method in German Credit data.
Figure 4(a),(b) showcases the confusion matrices acquired by the EOOABNN-PFC method with 70%
TRAS and 30% TESS. This figure shows that the EOOABNN-PFC technique can correctly identify
and classify the financial crisis and non-financial crisis class labels. Meanwhile, Figure 4(c) illustrates
the PR effectiveness of the EOOABNN-PFC method, showing that the EOOABNN-PFC algorithm
offers maximal PR results with each class. In conclusion, Figure 4(d) showcases the ROC result of the
EOOABNN-PFC technique, showing that the EOOABNN-PFC system gives effective outcomes with
improved ROC values with two classes.

Training Phase (70%) - German Credit Dataset Testing Phase (30%) - German Credit Dataset
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Figure 4. (a) German Credit database, (b) confusion matrices, (c) PR curve, and (d) ROC curve.
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In Table 3 and Figure 5, the FCP results of the EOOABNN-PFC model are provided for the
German Credit database. These outcome results emphasize that the EOOABNN-PFC technique was
able to predict financial and non-financial crisis. Based on 70% TRAS, the EOOABNN-PFC technique
gained an average accu, of 92.83%, prec, of93.95%, sens, of 92.83%, spec, of 92.83%, and
Ficore 0193.22%. Also, based on 30% TESS, the EOOABNN-PFC method acquired average accu,,
of 95%, prec, of 95.21%, sens, of 95%, spec, of 95%, and Fcpre 0f95.10%

Table 3. FCP outcomes of the EOOABNN-PFC method for the German Credit database.

Class Accu, Prec, Sens, Spec, F._..
TRAS (70%)
Financial crisis 97.76 90.97 97.76 87.91 94 .24
Non-financial 8791 9692 8791 9776  92.20
Cr1S1S
Average 92.83 93.95 92.83 92.83 93.22
TESS (30%)
Financial crisis 96.52 94.87 96.52 93.48 95.69
Non-financial 93.48 9556 9348 9652 9451
Cr1S1S
Average 95.00 95.21 95.00 95.00 95.10
German Credit Dataset
96.0 1 O R S ; ; .
1 [— 'l Training Phase (70%) |
95.51- ~~-— - mE Testing Phase (30%)
95.01
9 94.5]
b 94.0 ]
=2
So3s5] B
o
29307 NN EE W
02,51 [ BB R
92.07 -
91.51

Accuracy Precision Sensitivity Specificity

Figure 5. Average of the EOOABNN-PFC system on the German Credit database.

The effectiveness of the EOOABNN-PFC system for the German Credit database is demonstrated
in Figure 6 in the form of training accuracy (TRAA) and validation accuracy (VALA) curves. The
figure displays the useful analysis of the behavior of the EOOABNN-PFC method over varying epoch
counts, representing its generalization and learning development proficiencies. Mostly, the figure
denotes a constant development in the TRAA and VALA with an improvement in epochs. It ensures
the adaptive aspect of the EOOABNN-PFC system in the pattern recognition process under TRA and
TES data. The increased trends in VALA outline the ability of the EOOABNN-PFC technique to adjust
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to the TRA data and also to provide correct classification on undetected data, showing capabilities for
robust generalization.

Training and Validation Accuracy - German Credit Dataset

Training —/_/_\/
—— Validation
8.94 i /_/_
0.92 //

0.96 T

Accuracy

Epochs
Figure 6. Accu, curve of the EOOABNN-PFC method for the German Credit database.

Figure 7 illustrates a wide-ranging representation of the training loss (TRLA) and validation
loss (VALL) outcomes of the EOOABNN-PFC method for the German Credit database at distinct
epochs. The progressive minimization in TRLA points out that the EOOABNN-PFC method improved
the weights and diminished the classification error at TRA and TES data. The figure specifies a better
understanding of the EOOABNN-PFC techniques related to the TRA data, underlining its capability
to capture patterns. Mainly, the EOOABNN-PFC algorithm incessantly boosts its parameters in
decreasing the variances between the prediction and real TRA class labels.

Training and Validation Loss - German Credit Dataset

\ —— Training
0.50 —— Validation -

Loss
(=)
w
(o)

0.20 o

\\
\ —_\
0.15
0 5 10 15 20 25
Epochs

Figure 7. Loss curve of the EOOABNN-PFC technique for the German Credit database.
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In Table 4 and Figure 8, the comparison analysis of the EOOABNN-PFC technique is given for
the German Credit database [18]. The results highlight that the LSTM-RNN, MLP, and ACO
techniques have the lowest performance. Meanwhile, the HHPODL-FCP and QABO-LSTM-RNN
models have accomplished closer results. However, the EOOABNN-PFC technique exhibits better
performance with maximum sens, of 95.00%, spec, of 95.00%, accu, of 95.00%, and Fcore
0f 95.10%.

Table 4. Comparative outcomes of the EOOABNN-PFC model with other recent
algorithms for the German Credit database.

German Credit database

Classifiers Sens, Spec, Accu,, Focore
EOOABNN-PFC 95.00 95.00 95.00 95.10
HHPODL-FCP 93.54 93.99 94.89 93.70
QABO-LSTM-RNN 87.21 93.56 91.94 90.08
LSTM-RNN 82.16 88.53 84.56 88.71
ACO 78.29 69.28 75.74 85.38
MLP 73.84 66.86 70.93 75.10

German Credit Dataset

. EEN EOOABNN-PFC 1 LSTM-RNN
100 J- ST mmm HHPODL-FCP 1 ACO Model
=1 QABO-LSTM-RNN [ MLP Algorithm

Values (%)

Sensitivity Specificity Accuracy F-score

Figure 8. Comparative outcomes of the EOOABNN-PFC technique for the German Credit
database.

Figure 9 displays the classifier outcomes of the EOOABNN-PFC method for the Australian Credit
database. Figure 9(a),(b) examines the confusion matrices obtained by the EOOABNN-PFC model at
70% TRAS and 30% TESS and shows that the EOOABNN-PFC method can correctly identify and
categorize the financial crisis and non-financial crisis labels. Moreover, Figure 9(c) displays the PR
effectiveness of the EOOABNN-PFC system, showing that the EOOABNN-PFC algorithm gains
higher PR results with every class. Also, Figure 9(d) indicates the ROC result of the EOOABNN-PFC
method, showing that the EOOABNN-PFC method provides effective outcomes with maximum ROC
values with two classes.
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Training Phase (70%) - Australian Credit Dataset
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Figure 9. (a) Australian Credit database, (b) confusion matrices, (c) PR curve, and (d) ROC curves.

In Table 5 and Figure 10, the FCP outcomes of the EOOABNN-PFC system are reported for the
Australian Credit database. These outcomes show that the EOOABNN-PFC method predicted the
financial and non-financial crisis. According to 70% TRAS, the EOOABNN-PFC system obtained an
average accu, of94.09%, prec, of95.24%, sens, of 94.09%, spec, 0f94.09%, and Fcore Of
94.49%. Meanwhile, based on 30% TESS, the EOOABNN-PFC algorithm got an average accu, of
95.87%, prec, of 96.34, sens, of 95.87%, spec, of 95.87%, and Fop. 0f 96.07%.

Table 5. FCP outcomes of the EOOABNN-PFC technique for the Australian Credit database.

Classes Accu,, Prec, Sens, Spec, Focore
TRAS (70%)

Financial crisis 98.88 92.01 08.88 89.30 95.32
Non-financial crisis 89.30 98.46 89.30 98.88 93.66
Average 94.09 95.24 94.09 94.09 94.49
TESS (30%)

Financial crisis 98.26 94.96 98.26 93.48 96.58
Non-financial crisis  93.48 97.73 93.48 98.26 95.56
Average 95.87 96.34 95.87 95.87 96.07
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Australian Credit Dataset
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Figure 10. Average of the EOOABNN-PFC model at the Australian Credit database.
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The efficiency of the EOOABNN-PFC system at the Australian Credit database is graphically
examined in Figure 11 with respect to TRAA and VALA curves. The figure shows a beneficial analysis
of the behavior of the EOOABNN-PFC method over multiple epoch counts, signifying its learning
process and generalization abilities. Primarily, the figure shows a continual improvement in the TRAA
and VALA with progress in epochs. It confirms the adaptable aspects of the EOOABNN-PFC algorithm in
the pattern recognition method with TRA and TES data. The greater trends in VALA outline the proficiency
of the EOOABNN-PFC technique in modifying the TRA data and surpassing to give exact classification
on unnoticed data, displaying the capabilities of robust generalization.

Training and Validation Accuracy - Australian Credit Dataset

8.96+4 = Training
—— Validation

0.94 4

0.92+

Accuracy

8.90 4

0.88 1

0 5 10

Figure 11. Accu,, curve of the EOOABNN-PFC method for the Australian Credit database.

T
15
Epochs
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Figure 12 illustrates a comprehensive representation of the TRLA and VALL results of the
EOOABNN-PFC method for the Australian Credit database over distinct epochs. The gradual
minimization in TRLA points out the EOOABNN-PFC model boosting the weights and lessening the
classification error at the TRA and TES data. The figure shows a greater understanding of the
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EOOABNN-PFC algorithm relevant to the TRA data, emphasizing its proficiency in capturing patterns.
Significantly, the EOOABNN-PFC technique constantly increases its parameters in minimizing the
variances among the prediction and real TRA class labels.

Training and Validation Loss - Australian Credit Dataset

= Training
—— Validation

0.26

8.24+

0.22 4

Loss

0.18 4

8.14+

8.12 4

6.1+

Epochs

Figure 12. Loss curve of the EOOABNN-PFC model for the Australian Credit database.

In Table 6 and Figure 13, a comprehensive comparative analysis of the EOOABNN-PFC method
is reported for the Australian Credit database. These outcomes show that the LSTM-RNN, MLP, and
ACO algorithms provide the lowest performance. On the other hand, the HHPODL-FCP and QABO-
LSTM-RNN methods achieved remarkable outcomes. Nevertheless, the EOOABNN-PFC system
indicates excellent performance with a boosted sens, of 95.87%, spec, of 95.87%, accu, of
95.87%, and Fy .y 0of 96.07%.

Table 6. Comparative outcomes of the EOOABNN-PFC system with other algorithms for
the Australian Credit database.

Australian Credit database

Classifiers Sensy Specy Accuy Fscore
EOOABNN-PFC 95.87 95.87 95.87 96.07
HHPODL-FCP 94.34 94.58 95.06 94.65
QABO-LSTM-RNN  90.92 93.18 93.33 94.67
LSTM-RNN 85.99 93.04 93.05 91.63
ACO 79.75 89.34 89.68 81.94
MLP 76.50 84.43 84.42 78.70
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Australian Credit Dataset
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Figure 13. Comparative outcomes of the EOOABNN-PFC technique under the Australian
Credit database.

In Table 7 and Figure 14, a comparative assessment of extensive computational time (CT) for all
methods is shown for the German Credit and Australian Credit databases. These experimentation
outcomes indicate that the LSTM-RNN, MLP, and ACO techniques offer poorer performances.
Moreover, the HHPODL-FCP and QABO-LSTM-RNN algorithms show considerable results.

Table 7. Computational time (CT) outcomes for the EOOABNN-PFC model and other
algorithms under two databases.

Computational time (s)

Classifiers German Credit database  Australian Credit database
EOOABNN-PFC 0.13 0.26
HHPODL-FCP 0.25 0.43
QABO-LSTM-RNN 1.26 1.43
LSTM-RNN 2.29 3.38
ACO 1.32 1.39
MLP 3.25 2.40
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Figure 14. CT outcomes for the EOOABNN-PFC technique compared with other systems
for the two databases.

However, the EOOABNN-PFC method shows higher performance with minimized CT of 0.13 s
and 0.26 s. Hence, the EOOABNN-PFC technique is found to be effective for predicting financial crises.

5. Conclusions

In this study, we established an EOOABNN-PFC method that aims to predict the presence of a
financial crisis using metaheuristics and the Bayesian model. In the preprocessing stage, the
EOOABNN-PFC technique uses min-max scalar for scaling the input data into a useful format. Besides,
the EOOABNN-PFC technique applies the EOOA-based feature subset selection approach to elect
optimal feature subsets. The prediction of financial crisis is performed by using the BNN classifier,
and the optimal parameter selection of the BNN model is carried out using MVO. The performance
validation of the EOOABNN-PFC algorithm was tested for a benchmark financial dataset. The
simulation outcomes identified that the EOOABNN-PFC technique reaches better predictive outcomes
compared with other existing techniques.
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