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Abstract: Accurately predicting and anticipating financial crises becomes of paramount importance 

in the rapidly evolving landscape of financial technology (Fintech). There is an increasing reliance on 

predictive modeling and advanced analytics techniques to predict possible crises and alleviate the 

effects of Fintech innovations reshaping traditional financial paradigms. Financial experts and 

academics are focusing more on financial risk prevention and control tools based on state-of-the-art 

technology such as machine learning (ML), big data, and neural networks (NN). Researchers aim to 

prioritize and identify the most informative variables for accurate prediction models by leveraging the 

abilities of deep learning and feature selection (FS) techniques. This combination of techniques allows 

the extraction of relationships and nuanced patterns from complex financial datasets, empowering 
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predictive models to discern subtle signals indicative of potential crises. This study developed an 

extended osprey optimization algorithm with a Bayesian NN to predict financial crisis (EOOABNN-

PFC) technique. The EOOABNN-PFC technique uses metaheuristics and the Bayesian model to 

predict the presence of a financial crisis. In preprocessing, the EOOABNN-PFC technique uses a min-

max scalar to scale the input data into a valid format. Besides, the EOOABNN-PFC technique applies 

the EOOA-based feature subset selection approach to elect the optimal feature subset, and the 

prediction of the financial crisis is performed using the BNN classifier. Lastly, the optimal parameter 

selection of the BNN model is carried out using a multi-verse optimizer (MVO). The simulation 

process identified that the EOOABNN-PFC technique reaches superior accuracy outcomes of 95.00% and 

95.87% compared with other existing approaches under the German Credit and Australian Credit datasets. 

Keywords: financial crisis prediction; financial technology; multi-verse optimizer; Bayesian neural 

network; metaheuristics 

Mathematics Subject Classification: 68T07 

 

1. Introduction  

Recently, avoiding and managing financial risks has become increasingly essential because of 

increased macroeconomic pressure, improved regulatory necessities, intensified business 

competitiveness, and enhanced criminal activities, among others [1]. Retail banks serve as both risk 

managers and participants in their activity as financial mediators. The business landscape for 

commercial banks has become increasingly challenging and risky as the financial system becomes 

more complex and global financial incorporation develops rapidly [2]. The capability of commercial 

banks to get comparative benefits in this new landscape relies on their proficiency to avoid and control 

risk [3]. Wide-ranging risk control and preventive actions, dependent upon big data, biometrics, and 

artificial intelligence (AI), have become essential tools for financial researchers and professionals. 

Internet of things (IoT) experts support banks and other financial organizations by getting real-time 

data based on individual and user resources, enhancing the financial risk assessment efficiency [4]. 

Currently, with the undergoing financial crisis worldwide, businesses have focused on financial crisis 

prediction (FCP). Businesses or financial organizations require dependable predictive models for 

predicting the possible risks of financial failure [5]. FCP typically produces a dual classification 

method; the outcomes are considered as enterprises’ non-failure or failure grades. Numerous 

classification techniques have been presented for FCP. Generally, the developed predictive techniques 

are divided into statistical or AI methods [6].  

Regarding the concept of unpredictability in the e-commerce industry, constructing a FCP system 

to systematically analyze and predict a particular financial indicator from extensive corporate data 

becomes a requirement to maintain the presence and development of the enterprises [7]. Nevertheless, 

the vast and heterogeneous quantity of corporate financial data and its continuous modifications make 

it challenging to analyze. Currently, with the expansion of big data and machine learning (ML), 

artificial neural networks (ANN) have been extensively implemented due to their higher capability to 

resolve nonlinear mapping issues [8]. In the ANN model, a financial risk system dependent upon ML 

will be achieved through the training and testing of higher-dimensional economic data to gain more 

efficient analysis outcomes [9]. Remarkably, ML techniques can not only resolve the timeliness 

prediction problem but retain the inherent correlation among previous time series (financial data) and 

existing financial indicators, attaining more precise FCP outcomes. Several researchers have 

https://www.sciencedirect.com/topics/engineering/big-data
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performed advanced studies on financial risk, employing ML to get more relevant FCP systems. 

However, a generalizable model that efficiently predicts financial crises of enterprises still needs to be 

developed [10]. This section accentuates the growing significance of averting and administering 

economic risks in the context of enhanced macroeconomic pressure and convolutional economic 

systems. It also highlights the dependencies on big data, biometrics, and AI, specifically in the FCP 

context. ML exhibits promise for FCP but lacks a universally applicable model, which requires further 

study for robust and generalizable predictive models.  

This study develops an extended osprey optimization algorithm with a Bayesian neural network (NN) 

to predict financial crisis (EOOABNN-PFC) technique. The EOOABNN-PFC method uses 

metaheuristics and the Bayesian model to predict a financial crisis. In preprocessing, the EOOABNN-

PFC technique uses a min-max scalar to scale the input data into a valid format and applies the EOOA-

based feature subset selection approach to elect optimal feature subsets. Moreover, the prediction of a 

financial crisis is performed using the BNN classifier. Lastly, the optimal parameter selection of the 

BNN model is carried out using a multi-verse optimizer (MVO). The performance validation of the 

EOOABNN-PFC approach is tested under a benchmark financial dataset.  

The remaining sections of the article are arranged as follows: Section 2 offers the literature review, 

and Section 3 represents the proposed method. Then, Section 4 elaborates on results evaluation, and 

Section 5 completes the work.  

2. Literature review  

Muthukumaran and Hariharanath [11] considered the development of an optimal  deep 

learning (DL)-based FCP (ODL-FCP) technique for small and medium-sized enterprises (SMEs) that 

integrated two stages: Archimedes optimization algorithm-based feature selection (FS) (AOA-FS) 

technique and deep-CNN (DCNN) with long short-term memory (LSTM)-based data classification. 

Muthukumaran et al. [12] introduced an innovative multi-verse optimization (MVO)-based FS with 

optimum variational autoencoder (OVAE) technique for the FCP. The developed technique mainly 

targeted FCP, developing a subsets FS process employing the MVOFS method. Then, the VAE method 

was implemented to classify financial data, and the differential evolution (DE) technique was used to tune 

the VAE method. Kalaivani and Saravanan [13] enhanced FCP by employing a chimp optimization 

algorithm with machine learning (ML) (EFCP-COAML) technique. The primary target was to forecast 

an automatic and precise FCP using a kernel extreme learning machine (KELM)-based prediction 

process. In [14], the authors designed a unique DL-based method, introducing an innovative credit 

decision support system with CNN and gated recurrent unit (GRU) that employed extensive series of 

financial data requiring some resources. Metawa and Elhoseny [15] proposed a new harmony search 

algorithm with the optimum LSTM (HSA-OLSTM) method in FCP for better predicting enterprises’ 

financial conditions. Vaiyapuri et al. [16] presented an intelligent FS with a DL-based financial risk 

assessment (IFSDL-FRA) method. The method included the development of a new water strider optimizer 

technique-based FS (WSOA-FS) technique for optimal FS subsets. Likewise, the deep random vector 

functional link network (DRVFLN) classification algorithm was implemented. Additionally, an improved 

fruit fly optimization algorithm (IFFOA) model was used for the hyperparameter tuning process.  

Park and Chai [17] developed a technique for the application of ML methods for forecasting 

information asymmetry. The authors also overcame the requirement of modifying XGBoost to predict 

data asymmetry by obtaining the significant aspects impacting it. That study also scientifically evaluated 

earlier researchers under data asymmetry in the financial market. Katib et al. [18] presented a hybrid 
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hunter-prey optimization with DL-based FCP (HHPODL-FCP) method that used the HHPO method 

for the FS method. Furthermore, the algorithm utilized the gated attention recurrent network (GARN) 

system for detection and classification. The model used a sparrow search algorithm (SSA)-based 

hyperparameter tuning method to increase system effectiveness. Liu et al. [19] presented a model 

utilizing multi-objectivization, particularly reformulating the issue of crafting autoencoders (AEs) as 

a multi-objective optimizing issue. An evolutionary model called HydraText has also been efficiently 

employed. In [20], an effectual local search (LS) technique was proposed. The study established the 

initial provable approximation for resolving the general cases issue. Huang et al. [21] proposed a 

survey of automated hyperparameter tuning models for metaheuristics, giving a new classification 

depending on their structure into three categories: simple generate-evaluate, iterative generate-evaluate, 

and high-level generate-evaluate methods. The authors in [22] portrayed the universal best 

accomplishment estimator in a theoretical context and subsequently set theoretical borders on the 

analysis errors, considering both finite and infinite configuration spaces for parameter settings. Liu et 

al. [23] introduced a technique incorporating instance generation and portfolio construction in an 

adversarial procedure.  

3. The proposed method  

This study develops an EOOABNN-PFC technique, which uses metaheuristics and a Bayesian 

model to predict a financial crisis. To accomplish that, it contains the following major preprocessing 

processes: EOOA-based feature subset selection, BNN-based classifier, and MVO-based 

hyperparameter tuning. Figure 1 represents the working procedure of the EOOABNN-PFC technique.  

3.1. Preprocessing  

Initially, the EOOABNN-PFC technique uses a min-max scalar to scale the input data into a 

valid format. To remove the magnitude effect of the distinct dimensional datasets on the predictive 

method [24], the study implements min-max deviation normalization that linearly changes new data 

toward the solution that can be mapped among [0.0,1.0] to enhance the convergence rate and predictive 

outcomes, as expressed in Eq (1).  
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Figure 1. Overall flow of the EOOABNN-PFC technique. 

𝑋𝑛𝑜𝑟𝑚 =
𝑋𝑖−𝑋min 

𝑋max −𝑋min 
.         (1) 

In Eq (1), 𝑋𝑖 signifies the 𝑖𝑡ℎ measurement, 𝑥max represents the maximal measurement values, 

and 𝑋𝑛𝑜𝑟𝑚 denotes the normalized measurement.  

3.2. EOOA-based feature subset selection  

The EOOABNN-PFC technique applies the EOOA-based feature subset selection approach to 

elect optimal feature subsets. This study intends to use an osprey optimization algorithm (OOA), a 

meta-heuristic approach [25], to execute the searching method in both local and global problem‐

resolving spaces to give a pleasing solution. Generally, there are dual phases, such as exploitation and 

exploration. The ability of the method to find the main appropriate area and evade local goals is 

amended by uniting the global searching stage and incorporating the notion of exploration. The 

technique can attain more possible choices in promising areas and upsurges as an outcome of the search 

procedure utilizing the prospect of exploitation. The OOA defines the optimum way, which is dependent 

upon parameters.  

𝐶𝑖𝑗 = 𝜆1𝐿𝑄𝑖𝑗 + 𝜆2𝑋𝑖𝑗 + 𝜆3𝑆𝑖𝑗 .        (2) 

Whereas 𝐶𝑖𝑗 signifies link stability from 𝑖 and 𝑗, 𝑋𝑖𝑗 specifies safety degree, 𝜆1, 𝜆2, 𝑎𝑛𝑑 𝜆3 denote 

weighting vector, 𝐿𝑄𝑖𝑗 embodies link quality, and 𝑆𝑖𝑗 means factor for forecasting mobility  

𝑉(𝑌) = (∑
𝑌ℎ
2

𝑛
 
ℎ ) − (∑

𝑌ℎ

𝑛
 
ℎ )

2
.         (3) 

Here, (𝑌) signifies the variance, 𝑌ℎ denotes the level of message attained from each adjacent node, 

𝑎𝑛𝑑 ℎ represents the entire number of nodes. The value of fitness is attained by utilizing Eq (4),  
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𝑓𝑖𝑡𝑛𝑒𝑠𝑠 𝑣𝑎𝑙𝑢𝑒 = 𝑚𝑎𝑥(𝑁𝑜𝑑𝑒 𝑠𝑡𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑑𝑒𝑔𝑟𝑒𝑒 +  𝐿𝑖𝑛𝑘 𝑠𝑡𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑑𝑒𝑔𝑟𝑒𝑒).   (4) 

3.2.1. Initialization 

The OOA defines a population‐based tactic that uses the advantage of the searching capability in 

the region of problem‐resolving to classify a potential solution through the replication‐based model. 

Each searching agent defines the range of variables connected to the exact position within the 

exploration area. Thus, each searching agent is probably responsible for the issue by the vector. Every 

searching agent includes an OOA population assumed in Eq (5). Equation (6) is employed to set 

searching agents’ positions in the search area randomly.  

𝑝 =

[
 
 
 
 
𝑝1
⋯
𝑝2
⋯
𝑝𝑛]
 
 
 
 

𝑁×𝑀

=

[
 
 
 
 
𝑝1,1 ⋯ 𝑝1,𝑗 ⋯ 𝑝1,𝑚
⋮ ⋱ ⋮ ⋰ ⋮
𝑝𝑖,1 ⋯ 𝑝𝑖,𝑗 ⋯ 𝑝𝑖,𝑚
⋮ ⋰ ⋮ ⋱ ⋮
𝑝𝑁,1 ⋯ 𝑝𝑁𝑗 ⋯ 𝑝𝑁,𝑀]

 
 
 
 

𝑁×𝑀

,      (5) 

𝑝𝑖,𝑗 = 𝑙𝑏𝑗 + 𝑟𝑖𝑗. (𝑢𝑏𝑗 − 𝑙𝑏𝑗), 𝑖 = 1,2, … ,𝑁. 𝑗 = 1,2, … ,𝑚.    (6) 

Here, 𝑝 designates the locations of searching agents; 𝑝𝑖 embodies the 𝑖𝑡ℎ searching agents, 𝑝𝑖,𝑗 directs 

the 𝑗𝑡ℎ dimension, 𝑀 represents the variable of the problem, 𝑙𝑏𝑗 denotes the lower bound, 𝑁 signifies 

the number of searching agents, 𝑢𝑏𝑗 specifies the upper bound, and 𝑟𝑖𝑗 refers to a randomly produced 

variable in the interval among [0 𝑎𝑛𝑑 1]. Equation (7) signifies the function as a set of vectors.  

𝐺 =

[
 
 
 
 
𝐺1
⋮
𝐺𝑖
⋮
𝐺𝑁]
 
 
 
 

𝑁×𝑀

=

[
 
 
 
 
𝐺(𝑃1)
⋮

𝐺(𝑃𝑖)
⋮

𝐺(𝑃𝑁)]
 
 
 
 

𝑁×𝑀

.        (7) 

Here, 𝐺𝑖 signifies the objective function of 𝑖𝑡ℎ searching agent, and 𝐺 indicates the array.  

3.2.2. Exploration phase  

This initial state of the OOA population‐upgrading method has been created by pretending to 

search agents’ performance. The OOA discovers the ability to permit the classification of the perfect 

location while evading the local optimal. The locations of dissimilar searching agents delivering an 

advanced objective function score were less dignified. Equation (8) is employed to recognize every 

search agent’s range of features exclusively.  

𝐺𝐿𝑖 = {𝑃ℎ|ℎ ∈ {1,2,… , 𝑁} ∧ 𝐺ℎ < 𝐺𝑖} ∪ {𝑃𝑏𝑒𝑠𝑖}.       (8) 

𝐺𝐿𝑗 signifies the feature positions of the 𝑖𝑡ℎ searching agent, 𝑎𝑛𝑑 𝑃𝑏𝑒𝑠𝑖 specifies the finest search 

agents’ locations. The related search agent’s novel location is originated by a replication that includes 

the search agent’s future features. The function’s value is delivered in Eq (9), amplified by the 

searching agent’s novel position.  

𝑝𝑖,𝑗
𝐿𝑖 = 𝑝𝑖,𝑗 + 𝑟𝑖,𝑗 . (𝑆𝐺𝑖,𝑗 − 𝑅𝑖,𝑗 . 𝑝𝑖,𝑗).        (9) 
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𝑝𝑖,𝑗
𝐿1 =

{
 

 𝑝𝑖,𝑗
𝐿1 , 𝑙𝑏𝑗 ≤ 𝑝𝑖,𝑗

𝐿1 ≤ 𝑢𝑏𝑗 ,

𝑙𝑏𝑗 , 𝑝𝑖,𝑗
𝐿1 < 𝑢𝑏𝑗 ,

𝑢𝑏𝑗 , 𝑝𝑖,𝑗
𝐿1 > 𝑢𝑏𝑗 .

         (10) 

𝑃𝑖 = {
𝑃
𝑖′
𝐿1𝐺𝑖

𝐿1 < 𝐺𝑖;

 𝑃𝑖, 𝑒𝑙𝑠𝑒,
         (11) 

where 𝑝𝑖
𝐿1 specifies the novel position of the 𝑖𝑡ℎ search agents in the early phase, 𝑝𝑖,𝑗

𝐿1 denotes the 

𝑗𝑡ℎ vector, 𝐺𝑖
𝐿1 indicates the rate of objective function, 𝑆𝐺𝑖 specifies an optimum feature of the 𝑖𝑡ℎ 

searching agent, 𝑆𝐺𝑖,𝑗 denotes the 𝑗𝑡ℎ vector, and 𝑅𝑖,𝑗 is the randomly generated variable interval 

of [0 𝑎𝑛𝑑 1].  

3.2.3. Exploitation phase  

The second phase in the OOA depends upon an arithmetical replication of the usual actions of 

searching agents. Then, the model affects the feature to the precise place and changes the location of 

the searching agent. The search region improves the OOA exploitation latent to better potentials that 

beat the known methods through integration. As per the OOA model, a correct position for recognizing 

features is randomly nominated for all individuals utilizing Eq (12).  

𝑝𝑖,𝑗
𝐿2 = 𝑝𝑖,𝑗 +

𝑙𝑏𝑗+𝑟.(𝑢𝑏𝑗−𝑙𝑏𝑗)

𝑡
, 𝑖 = 1,2,… ,𝑚, 𝑘 = 1,2,… , 𝐾,     (12) 

𝑃𝑖,𝑗
𝐿2 =

{
 

 𝑝𝑖,𝑗
𝐿2 , 𝑙𝑏𝑗 ≤ 𝑝𝑖,𝑗

𝐿2 ≤ 𝑢𝑏𝑗 ,

𝑖𝑏𝑗 , 𝑝𝑖,𝑗
𝐿2 < 𝑙𝑏𝑗 ,

𝑢𝑏𝑗 , 𝑝𝑖,𝑗
𝐿2 < 𝑢𝑏𝑗 .

        (13) 

This is employed to upsurge the score of objective functions in the existing location, which alters 

the correlated places of the searching agents, allowing Eq (14),  

𝑃𝑖 = {
𝑃𝑖
𝐿2 , 𝐺𝑖

𝐿2 < 𝐺𝑖;
𝑃𝑖 , 𝑒𝑙𝑠𝑒.

        (14) 

Whereas 𝑝𝑖
𝐿2 signifies the position of the 𝑖𝑡ℎ searching agents, and 𝑝𝑖

𝐿2 embodies the 𝑗𝑡ℎ vector,  

𝐺𝑖
𝐿2 shows the value of the objective function, 𝐾 represents the iteration count, 𝑟𝑖,𝑗 denotes a 

randomly produced variable in the interval [0 𝑎𝑛𝑑 1], and 𝑘 means iteration area. The projected method 

regularly yields training faults. This is because the hyperparameters were very complex to acquire. 

Therefore, to solve the above problem, the opposition‐based learning (OBL) model employs the 

extended OOA (Ex‐OOA) technique to improve the hyperparameter of the planned technique. The 

OBL approach employs the fitness function (FF) 𝑓 value to define whether the existing selection is 

superior. For the true value 𝑝 , a dissimilar value 𝑝 has been accepted in the vital description of 

OBL. The value can originate utilizing the below-mentioned formulation:  

𝑝 = 𝑣 + 𝑙 − 𝑝.          (15) 

The explanation is protracted to 𝑛 sizes utilizing the below-given formulation:  

𝑝
𝑖
= 𝑣𝑖 + 𝑙𝑖 − 𝑝𝑖 , 𝑖 = 1,2,… , 𝑁.        (16) 

Here, 𝑝 ∈ 𝑅𝑛 signifies the opposite vector, 𝑝 ∈ 𝑅𝑛 represents the vector of real. The binary 

responses 𝑝 and 𝑝 are also contrasted during the optimizer stage. The enhanced dual selections are 
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kept, and the other is removed from the assessment of fitness function.  

The FF considers the classifier outcome and the amount of attributes chosen. It increases the 

classifier outcomes and reduces the set size of the attributes selected. As a result, the following FF is 

used for assessing the individual solution, as follows:  

𝐹𝑖𝑡𝑛𝑒𝑠𝑠 = 𝛼 ∗  𝐸𝑟𝑟𝑜𝑟𝑅𝑎𝑡𝑒 + (1 − 𝛼) ∗
#𝑆𝐹

#𝐴𝑙𝑙_𝐹
.      (17) 

In Eq (17), 𝐸𝑟𝑟𝑜𝑟𝑅𝑎𝑡𝑒 implies the classifier error rate and is evaluated as the number of incorrect 

classifieds to the number of classifiers made within [0,1]. 𝐸𝑟𝑟𝑜𝑟𝑅𝑎𝑡𝑒 refers to the complement of the 

classifier accuracy, indicating the number of selected features and the total number of attributes in the 

original data are #𝑆𝐹 and #𝐴𝑙𝑙_𝐹. 𝛼 controls the importance of classifier quality and subset length and 

is fixed to 0.9.  

3.3. FCP using the BNN model  

The financial crisis prediction is performed using a BNN classifier at this stage. Bayes theorem 

is a vital concept in statistics, depending on the fact that data were employed to evaluate the probability 

of occurrence outcomes [26]. Integrating the Bayesian model and ML implies that uncertainty can be 

restricted in typical ML approaches. Kendall and Gal separated uncertainty into epistemic and aleatoric. 

The former mentions that the uncertainty classified in the database can come from several logical 

explanations. However, epistemic uncertainty, also called classic uncertainty, can be reduced with the 

development of input data in the method. Once this method removes data from any database, it will create 

undependable decisions depending on the databases trained earlier. Then, epistemic uncertainty directly 

represents the consistency of the forecast and is employed to observe the method’s strength to boost.  

By changing the biased and weighted parameters of typical NNs as ANNs, BNNs measure 

epistemic uncertainty. The subsequent derivations express a probabilistic method, and this model, 

variational inference, is employed to execute a practical and effective BNN. Figure 2 exhibits the 

architecture of the BNN model.  

 

Figure 2. Framework of BNN. 
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3.3.1. Probabilistic model 

An NN is assumed as a probabilistic model 𝑃(𝑦|𝑥, 𝑧) whereas 𝑥 signifies the input data and 𝑧 

refers to the parameters within the network. To classifier tasks, 𝑦 implies a group of class labels, and, 

correspondingly, 𝑃(𝑦|𝑥, 𝑎𝑛𝑑 𝑧) supports a categorical distribution. To provide a database with 𝑛 

trained points as 𝐷 = {𝑥𝑖, 𝑦𝑖}: Whereas |𝐷| = 𝑛, they simply make the probability function: 

𝑃(𝐷|𝑧) = ∏ 𝑃𝑛
𝑖=1 (𝑦𝑖|𝑥𝑖,𝑧).        (18) 

The maximum likelihood estimate of parameter 𝑤 is attained and, generally, the negative log 

probability can be elected to improve purposes that suggest the cross entropy of 𝑠𝑜𝑓𝑡𝑚𝑎𝑥 loss to 

probability distribution is expressed as: 

𝑧𝑀𝐿𝐸 = argmax
𝑧
 ∑ log𝑛

𝑖 𝑃(𝑦𝑖|𝑥𝑖 , 𝑧).       (19) 

However, the MLE can be utilized in CNN and can be inclined to over‐fitting under the training. 

To resolve the over-optimization, regularization is established by multiplying the probability with the 

previous distribution 𝑃(𝑧): 

𝑃(𝑧|𝐷) ∝ 𝑃(𝐷|𝑧)𝑃(𝑧).         (20) 

Maximized 𝑃(𝐷|𝑧)𝑃(𝑧) offers the maximum a posteriori (MAP) evaluation of 𝑧. The learning 

process for probability distribution encompasses the 𝑠𝑜𝑓𝑡𝑚𝑎𝑥  loss along with a regularized term 

derived from the logarithm of the prior: 

𝑧𝑀𝐴𝑃 = argmax
𝑧
∑ log𝑛
𝑖 𝑃(𝑦𝑖|𝑥𝑖, 𝑧) + log𝑃(𝑧).      (21) 

Either MLE or MAP offer point evaluations of 𝑤 that could not be continuously depended on. 

Bayesian inference aims to estimate the posterior distribution of the weighted parameter dependent on 

trained data 𝑃(𝑧|𝐷), for the uncertainty parameters measured. 

3.3.2. Variational inference 

It can be difficult to acquire analytical performances to 𝑃(𝑧|𝐷). Thus, an estimate method can 

be assumed. A variational distribution can be determined as 𝑞(𝑧|𝜃)  to estimate the posterior 

distribution. The similarity among 𝑞(𝑧|𝜃)  and 𝑃(𝑧𝐷)  is evaluated by the Kullback-Leibler (KL) 

divergence, expressed as:  

𝐾𝐿[𝑞(𝑧|𝜃)𝑃(𝑧|𝐷)] = 𝐸𝑞(𝑧|𝜃)log
𝑞(𝑧|𝜃)
𝑃(𝑧|𝐷).      (22) 

Next, executing the Bayes hypothesis to the posterior distribution 𝑃(𝑧𝐷)  and creating any 

operations, the cost function is provided as follows: 

𝐾𝐿[𝑞(𝑧|𝜃)𝑃(𝑧|𝐷)] = 𝐾𝐿[𝑞(𝑧|𝜃)𝑃(𝑧)] − 𝐸𝑞(𝑧|𝜃)log𝑃(𝐷|𝑧) + log𝑃(𝐷).   (23) 

To reduce the KL divergence among 𝑞(𝑧|𝜃) and 𝑃(𝑧|𝐷), the divergence-free energy needs to 

be diminished: 

𝐹(𝐷, 𝜃) = 𝐾𝐿[𝑞(𝑧|𝜃)𝑃(𝑧)] − 𝐸𝑞(𝑧|𝜃) log 𝑃(𝐷|𝑧).    (24) 

By reordering the KL term, the overhead formula is demonstrated as: 
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𝐹(𝐷, 𝜃) = 𝐸𝑞(𝑧|𝜃)log𝑞(𝑧|𝜃) − 𝐸𝑞(𝑧|𝜃)log𝑃(𝑧) − 𝐸𝑞(𝑧|𝜃)log𝑃(𝐷|𝑧).   (25) 

Note that all three terms in Eq (25) comprise the probability of 𝑞(𝑧|𝜃). Then, by sampling 𝑧(𝑖) 
from variational distribution 𝑞(𝑧|𝜃) , this appearance is estimated, and the last cost function is 

provided as: 

𝐹(𝐷, 𝜃) ≈
1

𝑀
∑ [log𝑞(𝑧(𝑖)|𝜃) − log𝑃(𝑧(𝑖)) − log𝑃(𝐷|𝑧(𝑖))],𝑀
𝑖=1     (26) 

whereas 𝑀 denotes the size of batches. Usually, not all data is inputted into the network in the training 

model (epoch) because of inadequacy. As an alternative, the entire database can be separated into 

smaller batches, which are then fed into the network; this allows the processing of huge-scale data. 

3.4. Hyperparameter tuning process 

Finally, the optimal parameter selection for the BNN is carried out using MVO. The new metaheuristic 

MVO algorithm is based on the cosmological concepts of black holes, white holes, and wormholes [27]. 

Exploration, exploitation, and local search are performed using an analytic model based on these 

concepts. The objects of the universe serve as solution variables for the problem, as the algorithm and 

the universe are parallel. A roulette wheel mechanism is used to exchange objects between universes 

and determine the optimal result for the analytical models of black and white holes. A randomized 

representation of the universe found in the solution space is as follows: 

𝑈 =

[
 
 
 
𝑥1
1 𝑥1

2 … 𝑥1
𝑛

𝑥2
1 𝑥2

2 … 𝑥2
𝑛

⋮ ⋮ ⋮ ⋮
𝑥𝑛
1 𝑥𝑛

2 … 𝑥𝑛
𝑛]
 
 
 
.         (27) 

In Eq (27), 𝑛  indicates the frequency of the search component, 𝑈  represents the world, 𝑋𝑖
𝑗
 

denotes the 𝑗𝑡ℎ variable of 𝑖𝑡ℎworld, and 𝑑 shows the measurement of control parameters. 

𝑥𝑖
𝑗
= {

𝑥𝑘
𝑗

𝑟1 < 𝑁𝐼(𝑈𝑖),

𝑥𝑖
𝐽 𝑟1 > 𝑁𝐼(𝑈𝑖).

         (28) 

In Eq (28), 𝑋𝑘
𝑗
  refers to the 𝑗𝑡ℎ  variables of 𝑘𝑡ℎ  worlds, selected by applying the roulette 

wheeling mechanism. 𝑈𝑖 indicates the 𝑖𝑡ℎ world, 𝑁𝐼 indicates the normalized inflation rate, and 𝑟1 

shows the random integer within [0,1],  

𝑥𝑖
𝑗
= {

{
𝑥𝑗 + 𝑇𝐷𝑅 ⋅ [(𝑢𝑏𝑗 − 𝑙𝑏𝑗) ⋅ 𝑟4 + 𝑙𝑏𝑗]    𝑟3 < 0.5,

𝑥𝑗 − 𝑇𝐷𝑅 ⋅ [(𝑢𝑏𝑗 − 𝑙𝑏𝑗) ⋅ 𝑟4 + 𝑙𝑏𝑗]    𝑟3 ≥ 0.5,

𝑥𝑖
𝑗
,                      𝑟2 ≥ 𝑊𝐸𝑃.      

    𝑟2 < 𝑊𝐸𝑃,  (29) 

In Eq (29), 𝑋𝑗 indicates the 𝑗𝑡ℎ variable of the optimum world, 𝑇𝐷𝑅 (traveling distance rate) 

and 𝑊𝐸𝑃 (wormhole existence probability) are coefficients, the upper and lower limitations of 𝑗𝑡ℎ 

variables are 𝑢𝑏𝑗  and 𝑙𝑏𝑗 , 𝑥𝑖
𝑗
  shows the 𝑗𝑡ℎ  parameter of the 𝑖𝑡ℎ  world, and 𝑟4, 𝑟3 , and 𝑟2  are 

random integers within [0,1]. 

𝑊𝐸𝑃 = min + 𝑡 × (
max−min

𝑇max
).       (30) 

In Eq (30), the maximal and minimal numbers of controlled variables are indicated by max  and 
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min, and 𝑡 and 𝑇max are the existing and maximum iteration counters.  

𝑇𝐷𝑅 = 1 −
𝑡
(
1
𝑝
)

𝑇max

(
1
𝑝
)
.         (31) 

In Eq (31), 𝑝 denotes the exploitation accuracy through the iteration; as 𝑝 improves, quicker 

local search and more precise exploitation take place. The MVO algorithm derives an FF to achieve 

better classifier results. It determines a positive integer to embody the superior performance of the 

solution candidate. Now, the reduction of the classifier error is defined as the FF.  

𝑓𝑖𝑡𝑛𝑒𝑠𝑠(𝑥𝑖) = 𝐶𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑟𝐸𝑟𝑟𝑜𝑟𝑅𝑎𝑡𝑒(𝑥𝑖) 

=
𝑁𝑜.𝑜𝑓 𝑚𝑖𝑠𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑑 𝑠𝑎𝑚𝑝𝑙𝑒𝑠

𝑇𝑜𝑡𝑎𝑙 𝑁𝑜.𝑜𝑓 𝑠𝑎𝑚𝑝𝑙𝑒𝑠
∗ 100.     (32) 

4. Result analysis and discussion 

This section inspects the performance of the EOOABNN-PFC technique on two datasets: The 

German Credit [28] and the Australian Credit [29] database, containing 1000 and 690 samples, 

respectively, as described in Table 1. 

Table 1. Details on German Credit and Australian Credit databases. 

Dataset 
# of 

instances 

# of 

attributes 

# of 

class 

Financial crisis/ non-

financial crisis 

German 

Credit 
1000 24 2 300/700 

Australian 

Credit 
690 14 2 383/307 

Table 2 and Figure 3 show the average best cost (ABC) results of the EOOABNN-PFC method 

for the two datasets. These experimental outcome values highlight that the GWO-FS, QABO-FS, and 

ACO-FS models have poorer performance with increased ABC values. Meanwhile, the HHPODL-FCP 

model has slightly improved results with moderate ABC values. However, the EOOABNN-PFC 

technique demonstrates superior performance with the least ABC of 0.099 and 0.042 in the German 

and Australian Credit databases, respectively. 

Table 2. Average best cost (ABC) outcome of EOOABNN-PFC model for the two datasets. 

Average best cost 

Method German Credit database Australian Credit database 

EOOABNN-PFC 0.099 0.042 

HHPODL-FCP 0.139 0.071 

QABO-FS 0.160 0.093 

ACO-FS 0.185 0.097 

GWO-FS 0.200 0.108 
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Figure 3. Average best cost (ABC) outcome of EOOABNN-PFC method for the two datasets. 

Figure 4 examines the classifier outcomes of the EOOABNN-PFC method in German Credit data. 

Figure 4(a),(b) showcases the confusion matrices acquired by the EOOABNN-PFC method with 70% 

TRAS and 30% TESS. This figure shows that the EOOABNN-PFC technique can correctly identify 

and classify the financial crisis and non-financial crisis class labels. Meanwhile, Figure 4(c) illustrates 

the PR effectiveness of the EOOABNN-PFC method, showing that the EOOABNN-PFC algorithm 

offers maximal PR results with each class. In conclusion, Figure 4(d) showcases the ROC result of the 

EOOABNN-PFC technique, showing that the EOOABNN-PFC system gives effective outcomes with 

improved ROC values with two classes. 

 

Figure 4. (a) German Credit database, (b) confusion matrices, (c) PR curve, and (d) ROC curve. 
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In Table 3 and Figure 5, the FCP results of the EOOABNN-PFC model are provided for the 

German Credit database. These outcome results emphasize that the EOOABNN-PFC technique was 

able to predict financial and non-financial crisis. Based on 70% TRAS, the EOOABNN-PFC technique 

gained an average 𝑎𝑐𝑐𝑢𝑦 of 92.83%, 𝑝𝑟𝑒𝑐𝑛 of 93.95%, 𝑠𝑒𝑛𝑠𝑦 of 92.83%, 𝑠𝑝𝑒𝑐𝑦 of 92.83%, and 

𝐹𝑠𝑐𝑜𝑟𝑒 of 93.22%. Also, based on 30% TESS, the EOOABNN-PFC method acquired average 𝑎𝑐𝑐𝑢𝑦 

of 95%, 𝑝𝑟𝑒𝑐𝑛 of 95.21%, 𝑠𝑒𝑛𝑠𝑦 of 95%, 𝑠𝑝𝑒𝑐𝑦 of 95%, and 𝐹𝑠𝑐𝑜𝑟𝑒 of 95.10% 

Table 3. FCP outcomes of the EOOABNN-PFC method for the German Credit database. 

Class 𝑨𝒄𝒄𝒖𝒚 𝑷𝒓𝒆𝒄𝒏 𝑺𝒆𝒏𝒔𝒚 𝑺𝒑𝒆𝒄𝒚 𝑭𝒔𝒄𝒐𝒓𝒆 

TRAS (70%) 

Financial crisis 97.76 90.97 97.76 87.91 94.24 

Non-financial 

crisis 
87.91 96.92 87.91 97.76 92.20 

Average 92.83 93.95 92.83 92.83 93.22 

TESS (30%) 

Financial crisis 96.52 94.87 96.52 93.48 95.69 

Non-financial 

crisis 
93.48 95.56 93.48 96.52 94.51 

Average 95.00 95.21 95.00 95.00 95.10 

 

Figure 5. Average of the EOOABNN-PFC system on the German Credit database. 

The effectiveness of the EOOABNN-PFC system for the German Credit database is demonstrated 

in Figure 6 in the form of training accuracy (TRAA) and validation accuracy (VALA) curves. The 

figure displays the useful analysis of the behavior of the EOOABNN-PFC method over varying epoch 

counts, representing its generalization and learning development proficiencies. Mostly, the figure 

denotes a constant development in the TRAA and VALA with an improvement in epochs. It ensures 

the adaptive aspect of the EOOABNN-PFC system in the pattern recognition process under TRA and 

TES data. The increased trends in VALA outline the ability of the EOOABNN-PFC technique to adjust 
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to the TRA data and also to provide correct classification on undetected data, showing capabilities for 

robust generalization. 

 

Figure 6. 𝐴𝑐𝑐𝑢𝑦 curve of the EOOABNN-PFC method for the German Credit database. 

Figure 7 illustrates a wide-ranging representation of the training loss (TRLA) and validation 

loss (VALL) outcomes of the EOOABNN-PFC method for the German Credit database at distinct 

epochs. The progressive minimization in TRLA points out that the EOOABNN-PFC method improved 

the weights and diminished the classification error at TRA and TES data. The figure specifies a better 

understanding of the EOOABNN-PFC techniques related to the TRA data, underlining its capability 

to capture patterns. Mainly, the EOOABNN-PFC algorithm incessantly boosts its parameters in 

decreasing the variances between the prediction and real TRA class labels. 

 

Figure 7. Loss curve of the EOOABNN-PFC technique for the German Credit database. 
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In Table 4 and Figure 8, the comparison analysis of the EOOABNN-PFC technique is given for 

the German Credit database [18]. The results highlight that the LSTM-RNN, MLP, and ACO 

techniques have the lowest performance. Meanwhile, the HHPODL-FCP and QABO-LSTM-RNN 

models have accomplished closer results. However, the EOOABNN-PFC technique exhibits better 

performance with maximum 𝑠𝑒𝑛𝑠𝑦  of 95.00%, 𝑠𝑝𝑒𝑐𝑦  of 95.00%, 𝑎𝑐𝑐𝑢𝑦  of 95.00%, and 𝐹𝑠𝑐𝑜𝑟𝑒 

of 95.10%. 

Table 4. Comparative outcomes of the EOOABNN-PFC model with other recent 

algorithms for the German Credit database. 

German Credit database 

Classifiers 𝑺𝒆𝒏𝒔𝒚 𝑺𝒑𝒆𝒄𝒚 𝑨𝒄𝒄𝒖𝒚 𝑭𝒔𝒄𝒐𝒓𝒆 

EOOABNN-PFC 95.00 95.00 95.00 95.10 

HHPODL-FCP 93.54 93.99 94.89 93.70 

QABO-LSTM-RNN 87.21 93.56 91.94 90.08 

LSTM-RNN 82.16 88.53 84.56 88.71 

ACO  78.29 69.28 75.74 85.38 

MLP  73.84 66.86 70.93 75.10 

 

Figure 8. Comparative outcomes of the EOOABNN-PFC technique for the German Credit 

database. 

Figure 9 displays the classifier outcomes of the EOOABNN-PFC method for the Australian Credit 

database. Figure 9(a),(b) examines the confusion matrices obtained by the EOOABNN-PFC model at 

70% TRAS and 30% TESS and shows that the EOOABNN-PFC method can correctly identify and 

categorize the financial crisis and non-financial crisis labels. Moreover, Figure 9(c) displays the PR 

effectiveness of the EOOABNN-PFC system, showing that the EOOABNN-PFC algorithm gains 

higher PR results with every class. Also, Figure 9(d) indicates the ROC result of the EOOABNN-PFC 

method, showing that the EOOABNN-PFC method provides effective outcomes with maximum ROC 

values with two classes. 
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Figure 9. (a) Australian Credit database, (b) confusion matrices, (c) PR curve, and (d) ROC curves. 

In Table 5 and Figure 10, the FCP outcomes of the EOOABNN-PFC system are reported for the 

Australian Credit database. These outcomes show that the EOOABNN-PFC method predicted the 

financial and non-financial crisis. According to 70% TRAS, the EOOABNN-PFC system obtained an 

average 𝑎𝑐𝑐𝑢𝑦 of 94.09%, 𝑝𝑟𝑒𝑐𝑛 of 95.24%, 𝑠𝑒𝑛𝑠𝑦 of 94.09%, 𝑠𝑝𝑒𝑐𝑦 of 94.09%, and 𝐹𝑠𝑐𝑜𝑟𝑒 of 

94.49%. Meanwhile, based on 30% TESS, the EOOABNN-PFC algorithm got an average 𝑎𝑐𝑐𝑢𝑦 of 

95.87%, 𝑝𝑟𝑒𝑐𝑛 of 96.34, 𝑠𝑒𝑛𝑠𝑦 of 95.87%, 𝑠𝑝𝑒𝑐𝑦 of 95.87%, and 𝐹𝑠𝑐𝑜𝑟𝑒 of 96.07%. 

Table 5. FCP outcomes of the EOOABNN-PFC technique for the Australian Credit database. 

Classes 𝑨𝒄𝒄𝒖𝒚 𝑷𝒓𝒆𝒄𝒏 𝑺𝒆𝒏𝒔𝒚 𝑺𝒑𝒆𝒄𝒚 𝑭𝒔𝒄𝒐𝒓𝒆 

TRAS (70%) 

Financial crisis 98.88 92.01 98.88 89.30 95.32 

Non-financial crisis 89.30 98.46 89.30 98.88 93.66 

Average 94.09 95.24 94.09 94.09 94.49 

TESS (30%) 

Financial crisis 98.26 94.96 98.26 93.48 96.58 

Non-financial crisis 93.48 97.73 93.48 98.26 95.56 

Average 95.87 96.34 95.87 95.87 96.07 
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Figure 10. Average of the EOOABNN-PFC model at the Australian Credit database. 

The efficiency of the EOOABNN-PFC system at the Australian Credit database is graphically 

examined in Figure 11 with respect to TRAA and VALA curves. The figure shows a beneficial analysis 

of the behavior of the EOOABNN-PFC method over multiple epoch counts, signifying its learning 

process and generalization abilities. Primarily, the figure shows a continual improvement in the TRAA 

and VALA with progress in epochs. It confirms the adaptable aspects of the EOOABNN-PFC algorithm in 

the pattern recognition method with TRA and TES data. The greater trends in VALA outline the proficiency 

of the EOOABNN-PFC technique in modifying the TRA data and surpassing to give exact classification 

on unnoticed data, displaying the capabilities of robust generalization. 

 

Figure 11. 𝐴𝑐𝑐𝑢𝑦 curve of the EOOABNN-PFC method for the Australian Credit database. 

Figure 12 illustrates a comprehensive representation of the TRLA and VALL results of the 

EOOABNN-PFC method for the Australian Credit database over distinct epochs. The gradual 

minimization in TRLA points out the EOOABNN-PFC model boosting the weights and lessening the 

classification error at the TRA and TES data. The figure shows a greater understanding of the 
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EOOABNN-PFC algorithm relevant to the TRA data, emphasizing its proficiency in capturing patterns. 

Significantly, the EOOABNN-PFC technique constantly increases its parameters in minimizing the 

variances among the prediction and real TRA class labels. 

 

Figure 12. Loss curve of the EOOABNN-PFC model for the Australian Credit database. 

In Table 6 and Figure 13, a comprehensive comparative analysis of the EOOABNN-PFC method 

is reported for the Australian Credit database. These outcomes show that the LSTM-RNN, MLP, and 

ACO algorithms provide the lowest performance. On the other hand, the HHPODL-FCP and QABO-

LSTM-RNN methods achieved remarkable outcomes. Nevertheless, the EOOABNN-PFC system 

indicates excellent performance with a boosted 𝑠𝑒𝑛𝑠𝑦  of 95.87%, 𝑠𝑝𝑒𝑐𝑦  of 95.87%, 𝑎𝑐𝑐𝑢𝑦  of 

95.87%, and 𝐹𝑠𝑐𝑜𝑟𝑒 of 96.07%. 

Table 6. Comparative outcomes of the EOOABNN-PFC system with other algorithms for 

the Australian Credit database. 

Australian Credit database 

Classifiers 𝑺𝒆𝒏𝒔𝒚 𝑺𝒑𝒆𝒄𝒚 𝑨𝒄𝒄𝒖𝒚 𝑭𝒔𝒄𝒐𝒓𝒆 

EOOABNN-PFC 95.87 95.87 95.87 96.07 

HHPODL-FCP 94.34 94.58 95.06 94.65 

QABO-LSTM-RNN 90.92 93.18 93.33 94.67 

LSTM-RNN 85.99 93.04 93.05 91.63 

ACO  79.75 89.34 89.68 81.94 

MLP  76.50 84.43 84.42 78.70 
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Figure 13. Comparative outcomes of the EOOABNN-PFC technique under the Australian 

Credit database. 

In Table 7 and Figure 14, a comparative assessment of extensive computational time (CT) for all 

methods is shown for the German Credit and Australian Credit databases. These experimentation 

outcomes indicate that the LSTM-RNN, MLP, and ACO techniques offer poorer performances. 

Moreover, the HHPODL-FCP and QABO-LSTM-RNN algorithms show considerable results.  

Table 7. Computational time (CT) outcomes for the EOOABNN-PFC model and other 

algorithms under two databases. 

Computational time (s) 

Classifiers German Credit database Australian Credit database 

EOOABNN-PFC 0.13 0.26 

HHPODL-FCP 0.25 0.43 

QABO-LSTM-RNN 1.26 1.43 

LSTM-RNN 2.29 3.38 

ACO  1.32 1.39 

MLP  3.25 2.40 
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Figure 14. CT outcomes for the EOOABNN-PFC technique compared with other systems 

for the two databases. 

However, the EOOABNN-PFC method shows higher performance with minimized CT of 0.13 s 

and 0.26 s. Hence, the EOOABNN-PFC technique is found to be effective for predicting financial crises. 

5. Conclusions 

In this study, we established an EOOABNN-PFC method that aims to predict the presence of a 

financial crisis using metaheuristics and the Bayesian model. In the preprocessing stage, the 

EOOABNN-PFC technique uses min-max scalar for scaling the input data into a useful format. Besides, 

the EOOABNN-PFC technique applies the EOOA-based feature subset selection approach to elect 

optimal feature subsets. The prediction of financial crisis is performed by using the BNN classifier, 

and the optimal parameter selection of the BNN model is carried out using MVO. The performance 

validation of the EOOABNN-PFC algorithm was tested for a benchmark financial dataset. The 

simulation outcomes identified that the EOOABNN-PFC technique reaches better predictive outcomes 

compared with other existing techniques. 
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