
AIMS Mathematics, 9(7): 17504–17530.

DOI: 10.3934/math.2024851

Received: 07 March 2024

Revised: 23 April 2024

Accepted: 24 April 2024

Published: 21 May 2024

https://www.aimspress.com/journal/Math

Research article

MSFSS: A whale optimization-based multiple sampling feature selection

stacking ensemble algorithm for classifying imbalanced data

Shuxiang Wang1, Changbin Shao1,2, Sen Xu3, Xibei Yang1 and Hualong Yu1,*

1 School of Computer, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu, China

2 Jiangsu Key Laboratory of Media Design and Software Technology, Jiangnan University, Wuxi,
Jiangsu, China

3 School of Information Engineering, Yancheng Institute of Technology, Yancheng, Jiangsu, China

* Correspondence: Email: yuhualong@just.edu.cn; Tel: +86-15952894360.

Abstract: Learning from imbalanced data is a challenging task in the machine learning field, as with
this type of data, many traditional supervised learning algorithms tend to focus more on the majority
class while damaging the interests of the minority class. Stacking ensemble, which formulates an
ensemble by using a meta-learner to combine the predictions of multiple base classifiers, has been used
for solving class imbalance learning issues. Specifically, in the context of class imbalance learning, a
stacking ensemble learning algorithm is generally considered to combine with a specific sampling
algorithm. Such an operation, however, might suffer from suboptimization problems as only using a
sampling strategy may make it difficult to acquire diverse enough features. In addition, we also note that
using all of these features may damage the meta-learner as there may exist noisy and redundant features.
To address these problems, we have proposed a novel stacking ensemble learning algorithm named
MSFSS, which divides the learning procedure into two phases. The first stage combined multiple
sampling algorithms and multiple supervised learning approaches to construct meta feature space by
means of cross combination. The adoption of this strategy satisfied the diversity of the stacking ensemble.
The second phase adopted the whale optimization algorithm (WOA) to select the optimal sub-feature
combination from the meta feature space, which further improved the quality of the features. Finally, a
linear regression classifier was trained as the meta learner to conduct the final prediction. Experimental
results on 40 benchmarked imbalanced datasets showed that the proposed MSFSS algorithm
significantly outperformed several popular and state-of-the-art class imbalance ensemble learning
algorithms. Specifically, the MSFSS acquired the best results in terms of the F-measure metric on 27
datasets and the best results in terms of the G-mean metric on 26 datasets, out of 40 datasets. Although

17505

AIMS Mathematics Volume 9, Issue 7, 17504–17530.

it required consuming more time than several other competitors, the increment of the running time was
acceptable. The experimental results indicated the effectiveness and superiority of the proposed MSFSS
algorithm.

Keywords: whale optimization algorithm; stacking ensemble; imbalanced data classification;
sampling; feature selection; meta learning
Mathematics Subject Classification: 68T20

1. Introduction

In recent years, class imbalance learning has gradually developed to be one of the hotspots in the
machine learning field and attracts a wide range of attention from researchers [1,2]. The class
imbalance learning issue is widely concerning due to two main reasons as follows: (1) with unevenly
distributed data, many traditional supervised learning algorithms produce prejudiced results as they
always tend to focus more on the majority class and damage the interests of the minority class; (2)
there are many real-world applications associated with imbalanced data, including object detection [2],
disease diagnosis [3,4], intrusion detection [5], image segmentation [6], text classification [7,8], fault
diagnosis [9,10], soil classification [11], air quality prediction [12], and bioinformatics [13–15], etc.

Many methods have been proposed to address class imbalance learning issues, and in general,
they are categorized into three groups: data level [16–21], algorithm level [22–25], and ensemble
learning [26–31].

Data level, which is also called sampling, reconstructs the data distribution to make the dataset
be balanced by either adding the minority instances or removing the majority instances. Specifically,
the data-level technique can be seen as a pre-processing solution. Such a technique generally owns two
significant advantages as follows: 1) it is easy to implement, and 2) it does not require modifying the
complex algorithm structure. However, such a technique alters the original data distribution, which
brings a potential risk for the subsequent data modeling.

Algorithm level modifies learning algorithms to fit imbalanced data distributions. This technique
could be divided into two groups: cost-sensitive learning methods [22,23] and threshold-moving
strategies [24,25]. The former modifies the loss function of the learning algorithms by assigning a
higher penalty for the training loss of minority instances, while the latter is a post-processing solution
which first directly trains a traditional classifier on skewed data, and then provides positive
compensation for the outputs of each minority instance. The merits of such a technique reflect that it
can not only maintain the original data distribution, but also tends to acquire more stable classification
performance than the data-level strategies. However, it generally requires conducting a complex
optimization procedure for acquiring an appropriate penalty weight or compensation threshold.

As for ensemble learning, this method combines multiple classifiers to promote the robustness of
class imbalance learning. In particular, the ensemble learning integrates classifiers in various ways,
such as bagging [26,27], boosting [28] and stacking [29–31]. It is also noted that ensemble learning
itself cannot directly solve a class imbalance learning issue, but when each base classifier adopts a
data-level or algorithm-level solution, the issue can be effectively addressed. In comparison to data-
level and algorithm-level techniques, ensemble learning always tends to produce more robust
classification results. As a meta-learning approach, stacking owns a specific merit in comparison to two

17506

AIMS Mathematics Volume 9, Issue 7, 17504–17530.

other ensemble learning paradigms, bagging and boosting. That is, it tries to learn how to learn, thus often
produces better and/or more robust classification performance than the two others on the same learning
tasks [32]. Therefore, we have focused on how to use stacking technique for improving classification
performance on imbalanced data in this study.

Specifically, the stacking technique maintains a two-layer structure in which the first layer lays
out different classification algorithms, and the second layer first captures the output of each classifier
in the first layer to constitute a new feature space, and then trains a new classifier to generate the final
predictions. Here, the classifier in the second layer is generally called a meta-learner that is capable of
simultaneously capturing the characteristics of various different classifiers, thus the classification
performance can be materially improved.

To address the class imbalance problem by the stacking ensemble, a data level or algorithm level
technique is generally used on its first layer. The state-of-the-art imbalanced stacking algorithms [29–31]
always adopt a specific sampling algorithm to combine with several different supervised learning
algorithms to train base learners. Such an operation, however, tends to suffer from suboptimization
problems as although those base learners use different supervised learning algorithms, they run on the
same training instances. In other words, an excellent ensemble learning model requires diverse enough
base learners, while only adopting different learning algorithms does not guarantee that it will
maximize the diversity among the base learners. In addition, we all know ensemble learning requires
high-quality base learners, and stacking is no exception. We note that in a meta feature space
constituted by outputs of all base learners, there might exist poor and redundant features which would
damage the meta-learner constructed on the second layer of stacking.

Motivated by the two issues described above, we wish to propose an improved stacking ensemble
learning algorithm for classifying imbalanced data. First, we consider to further promote the diversity
among base learners when we construct the first layer of stacking. As indicated in [29–31], all emerging
class imbalance stacking ensemble learning algorithms inherit the idea of original stacking, that is,
producing diverse base learners only by calling different learning algorithms. However, the diversity
yielded by such a strategy is limited due to the fact that all learning algorithms are modeled on the
same or quite similar training data. To further increase the diversity, we propose to combine multiple
different sampling strategies and various learning algorithms to produce base learners.

As for the second issue, we consider to introduce a feature selection procedure on the meta feature
space when we construct the second layer of stacking. Obviously, the feature selection will be helpful
for improving the quality of the meta feature space. Here, we wish to adopt a metaheuristic algorithm
to implement a wrapper-based feature selection procedure. Specifically, the metaheuristic algorithms
are a type of optimization technique inspired by natural or social phenomena used to solve various
complex optimization problems. This kind of algorithm combines randomness and strategic search to
find approximately optimal solutions within an acceptable time. Several metaheuristic algorithms have
been widely used to solve real-world complex optimization problems, including particle swarm
optimization (PSO) [33], which simulates the foraging behavior of bird flocks, differential evolution
(DE) [34], which simulates biological evolution, and social spider optimization (SSO) [35], which
simulates the collaboration and information sharing mechanisms of spiders during predation and web
weaving processes. As a recently proposed metaheuristic algorithm, the whale optimization algorithm
(WOA) [36] has attracted wide attention due to its three specific merits, i.e., strong global searching
ability, a few parameter settings, and fast convergence speed. The WOA has also been applied to solve
different real-world optimization problems, including estimating the reopening policies relating to

17507

AIMS Mathematics Volume 9, Issue 7, 17504–17530.

COVID-19 [37], solving complex power flow optimization problems [38], and selecting the optimal gene
group for classifying microarray data [39], etc. Considering the merits owned by the WOA, we have
decided to use it to implement a wrapper feature selection procedure on the meta feature space of stacking.

Specifically, we integrated the two modules discussed above to propose a novel stacking
algorithm called the whale optimization-based multiple sampling feature selection stacking ensemble
(MSFSS) for solving the classification problem of imbalanced data. We compared the proposed
algorithm with a baseline and several state-of-the-art algorithms on 40 benchmarked class imbalance
datasets, and the experimental results show that the MSFSS significantly outperforms several other
competitors. In particular, the MSFSS acquires the best results in term of the F-measure metric on 27
datasets and the best results in term of the G-mean metric on 26 datasets, out of 40 datasets. Although
the proposed algorithm requires consuming more time than the compared algorithms, the increment of
running time seems to be acceptable. The experimental results indicate the effectiveness and
superiority of the proposed MSFSS algorithm.

The novelties and contributions of this study can be easily concluded as follows:
1) To guarantee to produce a sufficient diversity among base learners of stacking, further to generate

diverse enough meta features to improve the quality of stacking ensemble, a novel strategy using
multiple sampling approaches in combination with multiple learning algorithms is proposed;

2) To improve the quality of the meta learner, a WOA-based feature selection procedure is introduced,
which guarantees to sufficiently remove those irrelevant and redundant features from the original
meta feature space.
The remainder of this paper is organized as follows. Section 2 firstly explains what class

imbalance problem is and analyzes its reasons, and then briefly describes the related work about class
imbalance ensemble learning techniques. Section 3 describes the procedure of the proposed MSFSS
algorithm in detail. The experimental settings, results, and discussions are presented in Section 4.
Finally, Section 5 concludes the contributions of this study.

2. Preliminary and related work

2.1. Class imbalance issue

As indicated in Section 1, the class imbalance issue, which is also called the imbalanced data
distribution issue, widely emerges in various real-world applications. For a given dataset, if the
instances belonging to a class are much more than the number of instances in the other class, it can be
called a class imbalance dataset. As we know, most traditional supervised learning algorithms abide
by the empirical risk minimization rule, i.e., the training optimization aims at:

𝑓∗ = argmin
௙∈ி

∑ 𝐿(𝑓(𝑥௜), 𝑦௜)
ே
௜ୀଵ (1)

where 𝑥௜ and 𝑦௜ respectively denote the ith training instance and the corresponding training label, N
indicates the number of training instances, L represents a specific loss function, and F denotes the
candidate function family, then the optimization problem is indeed searching the optimal 𝑓∗ from F
to make the sum of losses be minimal. Based on Eq (1), it is not difficult to observe that when the
number of instances belonging to a class overwhelms that of the other class, the majority class
obviously contributes more to the total loss. Therefore, the traditional supervised learning algorithms are
apt to focus more on the majority class, but damage the interests of the minority class. However, that does

17508

AIMS Mathematics Volume 9, Issue 7, 17504–17530.

not mean that an imbalanced data distribution certainly makes traditional supervised learning algorithms
lose efficacy. When there exists a clear boundary between two classes, the harmfulness of imbalanced data
distribution can be almost ignored (see Figure 1(a)). Several previous works [40,41] illustrate that when
there exists a severe class overlap (see Figure 1(b)) or a lot of noisy instances (see Figure 1(c)), class
imbalance issues would be highlighted. In other words, the skewed data distribution itself is not a
problem, but when some other complex distribution factors emerge, it would play a role in destroying
the performance of the minority class.

Figure 1. Imbalanced data distribution with (a) a clear boundary, (b) class overlap, and (c)
noisy instances.

2.2. Related work

In Section 1, it has been indicated that class imbalance learning generally adopts one of three of
the following strategies: data-level approaches, algorithm-level methods, and ensemble learning
algorithms. In this study, we pay close attention to the ensemble learning technique as it is always more
robust than the other two.

In the context of classifying imbalanced data, ensemble learning algorithms integrate either a data-
level technique or algorithm-level strategy into an ensemble paradigm, such as bagging [42], boosting [43]
and stacking [32]. Specifically, bagging oversamples or undersamples instances to construct multiple
different balanced training subsets, then trains a classifier on each subset, and finally adopts majority
voting to predict class labels of test instances. BalancedBagging [26], which is a popular class
imbalance ensemble learning algorithm, uses a random undersampling (RUS) technique on majority
instances for multiple iterations in which each undersamples the majority instances to combine with
all minority instances for constituting a balanced training subset that is sequentially used to train the
base learner. SMOTEBagging [27] adopts a similar process as BalancedBagging, but only replaces the
RUS with the SMOTE [16] oversampling algorithm.

The boosting paradigm takes advantage of the feedback of the classification results to dynamically
increase the weights of misclassified instances, further trains a new base classifier, and finally predicts the
class labels of test instances by a weighted voting rule. Unlike the parallel generation method adopted by
bagging, boosting generates base learners in a serial fashion. RUSBoost [28] is a popular boosting
algorithm which is specifically designed to address the class imbalance learning problem. It first
randomly undersamples majority instances to acquire a balanced training set, and then calls on the
boosting algorithm [43] to improve the classification performance.

17509

AIMS Mathematics Volume 9, Issue 7, 17504–17530.

As for stacking [32], it adopts a totally different method from bagging and boosting to integrate
the outputs of base learners. It first arranges all outputs generated by base learners in order to constitute
a new feature space that is called the meta feature space. In this space, each feature simultaneously
reflects the characteristics of the corresponding instance and the corresponding base learner. Then, a
new meta classifier is further trained on the meta feature space to make the final decision. Specifically,
stacking adopts a two-layer structure, and meanwhile, it requires using diverse learning algorithms to
guarantee the diversity in the meta feature space.

In the context of class imbalance learning, several stacking ensemble learning algorithms have been
developed, including the stable and interpretable rule set (SIRUS) [29], supervised adaptive discriminant
analysis (SADA) [30], and neighborhood undersampling stacked ensemble (NUS-SE) [31]. In particular,
the SIRUS algorithm first adopts the inverse random undersampling (IRUS) approach [20] to
transform the original imbalanced training set to be a balanced one, and then trains different base
learners on those transformed training sets to constitute the meta feature space. Similar to SIRUS [29],
both SADA [30] and NUS-SE [31] only replace IRUS adopted by SIRUS with the adaptive synthetic
(ADASYN) undersampling strategy [17] and a neighborhood density-based undersampling strategy,
respectively. We note that these emerging stacking ensemble learning algorithms present a common
characteristic, i.e., the diversity of the ensemble completely relies on the adoption of multiple different
supervised learning algorithms, but neglects the diversity at the data level, thus they may suffer from
a suboptimization problem. In addition, we also note that all of these algorithms directly use all of the
meta features to train the meta learner whose quality might be decreased by some poor and redundant
meta features. Therefore, it is necessary to develop new imbalance stacking ensemble algorithms to
effectively address these two problems. This also motivates our research in this study.

3. Methods

3.1. First-layer improving ensemble diversity by combining multiple sampling approaches and diverse
supervised learning algorithms

As we know, to guarantee an ensemble learning algorithm will outperform its individual members, it
requires satisfying a sufficient and necessary condition, i.e., each base learner should be accurate and
meanwhile, all base learners should be diverse enough [44]. The principle can be described as follows:

𝐸 = 𝐸ത − 𝑃ത (2)

where 𝐸 denotes the generalization error of the ensemble learner, 𝐸ത and 𝑃ത represent the average
generalization error and the average diversity of all base learners, respectively. To produce successful
ensemble learning models, these two aspects should be considered simultaneously.

Stacking [32] and its several variants [29–31], which are specifically designed for classifying
imbalanced data, acquire diversity only by adopting different supervised learning algorithms, by
training them on the same or similar data. Therefore, they may suffer from a suboptimization problem
due to the lack of diversity. To further improve the diversity among the base learners/meta features,
we propose to combine both different sampling strategies and supervised learning algorithms. Suppose
that R and C respectively represent resampling and classification algorithms, and H and K denote the
number of them, respectively. Then, there exist 𝐻 × 𝐾 different combinations. That means that the
new generated meta feature space is 𝐻 × 𝐾 dimensional (see Table 1).

17510

AIMS Mathematics Volume 9, Issue 7, 17504–17530.

Table 1. Constitution of the meta feature space.

𝐶

𝑅

𝐶ଵ 𝐶ଶ … 𝐶௝ିଵ 𝐶௝ … 𝐶௄

𝑅ଵ (𝑅ଵ, 𝐶ଵ) (𝑅ଵ, 𝐶ଶ) … (𝑅ଵ, 𝐶௝ିଵ) (𝑅ଵ, 𝐶௝) … (𝑅ଵ, 𝐶௄)

𝑅ଶ (𝑅ଶ, 𝐶ଵ) (𝑅ଶ, 𝐶ଶ) … (𝑅ଶ, 𝐶௝ିଵ) (𝑅ଶ, 𝐶௝) … (𝑅ଶ, 𝐶௄)

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

𝑅௜ିଵ (𝑅௜ିଵ, 𝐶ଵ) (𝑅௜ିଵ, 𝐶ଶ) … (𝑅௜ିଵ, 𝐶௝ିଵ) (𝑅௜ିଵ, 𝐶௝) … (𝑅௜ିଵ, 𝐶௄)

𝑅௜ (𝑅௜ , 𝐶ଵ) (𝑅௜ , 𝐶ଶ) … (𝑅௜ , 𝐶௝ିଵ) (𝑅௜ , 𝐶௝) … (𝑅௜ , 𝐶௄)

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

𝑅ு (𝑅ு, 𝐶ଵ) (𝑅ு, 𝐶ଶ) … (𝑅ு, 𝐶௝ିଵ) (𝑅ு, 𝐶௝) … (𝑅ு, 𝐶௄)

To avoid the generated meta features being overfitted on training instances, an internal 5-fold cross
validation procedure is conducted to sequentially produce meta features for instances belonging to each
fold. That means that, every time, the instances belonging to four different folds are first integrated to
conduct sampling and classifier modeling procedures, and then the instances belonging to the remainder
fold are fed into the trained classifier to further obtain their corresponding meta features. This strategy is
also widely adopted by the original stacking algorithm and its various variants [29–32]. When a new test
instance arrives, it would be respectively put into five trained classifiers to obtain five different
predictions, and then their mean value could be calculated as the corresponding meta feature. Figure 2
takes the combination of 𝑅ଵ and 𝐶ଵ as an example to describe the generation procedure of the
corresponding meta feature.

Figure 2. The procedure of generating a meta feature for both training and test data.

17511

AIMS Mathematics Volume 9, Issue 7, 17504–17530.

In this study, we selected four popular sampling algorithms namely SMOTE [16], ADASYN [17],
SMOTE-ENN [18], and SMOTE-Tomek [19], and five different supervised learning algorithms namely
K-nearest neighbors (KNN) [45], C4.5 decision tree (C4.5 DT) [46], support vector machine (SVM) [47],
Gaussian naïve Bayes (GNB) [48], and linear discriminant analysis (LDA) [49]. Therefore, the number
of generated meta features is 4 × 5 = 20, and the training procedure requires producing 100 base
learners as the adoption of internal 5-fold cross validation. In practical applications, the readers are
encouraged to freely replace or extend sampling and supervised learning algorithms.

3.2. Second layer-improving quality of meta features by whale optimization feature selection strategy

As indicated in Eq (2), the quality of an ensemble learning algorithm simultaneously depends on
the diversity among base learners and the quality of each base learner. However, we cannot guarantee
that the meta feature space is excellent enough, as in this space, some features might be poor or
redundant. Therefore, it does not suggest to directly train a meta learner on all meta features. A feature
selection procedure may be required to remove those poor and redundant meta features.

In this study, we consider to adopt the whale optimization algorithm (WOA) [36–39] to
implement a procedure of wrapper feature selection. Specifically, the WOA, which simulates the
hunting behavior of humpback whales, is a recently proposed nature-inspired swarm optimization
algorithm. According to some recent studies, in comparison with some traditional swarm optimization
algorithms, the WOA has presented several specific merits as follows: (1) stronger global searching
ability, (2) less parameter settings, and (3) faster convergence speed [36–39]. Also, we note that the
WOA algorithm could be used to solve both continuous and discrete optimization problems, thus in this
study, we select to use the WOA algorithm to conduct the feature selection task in the meta feature space.

Specifically, the WOA contains two phases, namely exploitation and exploration, respectively.
The former phase takes charge of the convergence of the algorithm, while the latter phase is used to
avoid the algorithm being overfitted. Suppose 𝑋 is the current solution of a whale, then the
mathematical model corresponding to the movement of the whale around a prey can be represented as:

𝐷ሬሬ⃑ = |𝐹⃑ ∙ 𝑋∗ሬሬሬሬ⃑ (𝑡) − 𝑋⃑(𝑡)| (3)

𝑋⃑(𝑡 + 1) = 𝑋∗ሬሬሬሬ⃑ (𝑡) − 𝐴 ∙ 𝐷ሬሬ⃑ (4)

where 𝑡 denotes the current iteration, 𝑋∗ represents the best solution obtained so far, | | indicates the
absolute value, and ∙ represents element-by-element multiplication. 𝐴 and 𝐹 are coefficient vectors
which are respectively calculated by the following equations:

𝐴 = 2𝑎⃑ ∙ 𝑟 − 𝑎⃑ (5)

𝐹⃑ = 2 ∙ 𝑟 (6)

where 𝑎⃑ specifies a vector constructed by multiple same elements 𝑎 which gradually conduct a linear
decrease from 2 to 0, and 𝑟 denotes a random vector in [0,1]. In particular, the variations of both 𝐴 and
𝐶 vectors control the areas where a solution can be located in the neighborhood of the best solution.

17512

AIMS Mathematics Volume 9, Issue 7, 17504–17530.

The humpback whales move in a shrinking encircling mechanism and along a spiral-shaped path
toward the prey. In the WOA, the shrinking encircling behavior is simulated by decreasing the value
of 𝑎 in Eq (5) according to Eq (6),

𝑎 = 1 −
ଶ௧

ெ௔௫ூ
 (7)

where 𝑀𝑎𝑥𝐼 denotes the designated number of iterations in the WOA. The spiral-shaped path is
achieved by calculating the distance between the current solution 𝑋 and the current swarm best
solution 𝑋∗. Then a spiral equation could be created as

𝑋⃑(𝑡 + 1) = 𝐷ᇱ ∙ 𝑒௕௟ ∙ cos(2𝜋𝑙) + 𝑋∗ሬሬሬሬ⃑ (𝑡) (8)

where 𝐷ᇱ = |𝑋∗ሬሬሬሬ⃑ (𝑡) − 𝑋⃑(𝑡)|, 𝑏 defines the spiral’s shape of the spiral, and 𝑙 represents a random
number in [-1, 1]. During optimization, the shrinking encircling and upwarding spiral-shaped path are
respectively given a 50% chance to be conducted as

𝑋⃑(𝑡 + 1) = ቊ
𝑋∗ሬሬሬሬ⃑ (𝑡) − 𝐴 ∙ 𝐷ሬሬ⃑ , 𝑖𝑓 𝑝 < 0.5

𝐷ᇱ ∙ 𝑒௕௟ ∙ cos(2𝜋𝑙) + 𝑋∗ሬሬሬሬ⃑ (𝑡), 𝑖𝑓 𝑝 ≥ 0.5
 (9)

where 𝑝 represents a random number in [0, 1].
In addition, to avoid the population dropping into the local optimization area, a few whales are

randomly selected at each iteration to conduct random movements as follows:

𝐷ሬሬ⃑ = |𝐹⃑ ∙ 𝑋௥
ሬሬሬሬ⃑ − 𝑋⃑| (10)

𝑋⃑(𝑡 + 1) = 𝑋௥
ሬሬሬሬ⃑ − 𝐴 ∙ 𝐷ሬሬ⃑ (11)

where 𝑋௥
ሬሬሬሬ⃑ denotes a randomly chosen whale from the current whale population.

The procedure of the WOA algorithm can be simply described as below.

WOA Algorithm
Input: size of population 𝑀, the number of iterations 𝑀𝑎𝑥𝐼
Output: the optimized solution 𝑋∗ found by the WOA
Procedure:
Generate the initial population 𝑋௜, 𝑖 = 1,2, … , 𝑀;
Calculate the fitness value for each whale 𝑋௜;
𝑋∗=the current best solution;
for j=1 to 𝑀𝑎𝑥𝐼

for i = 1 to 𝑀
 Update 𝑎, 𝐴, 𝐹, 𝑙, and 𝑝;
 if 𝑝 < 0.5
 if |𝐴|<1
 Use Eq (4) to update the position of 𝑋௜(𝑗);

17513

AIMS Mathematics Volume 9, Issue 7, 17504–17530.

 else

 Select randomly a whale 𝑋௥
ሬሬሬሬ⃑ and update the position of 𝑋௜(𝑗) by Eq (11);

 end if
 else
 Use Eq (8) to update the position of 𝑋௜(𝑗);
 end if
 Calculate the fitness value for 𝑋௜(𝑗);
 end for
 Update 𝑋∗;
end for
Return 𝑋∗

In this study, 𝑀, which denotes the size of the population in the WOA, is designated as 50, and
the number of iterations, 𝑀𝑎𝑥𝐼, is empirically set to be 200. As for the fitness function of the WOA,
it is defined as follows:

𝑓𝑖𝑡൫𝑋⃑൯ =
ଵ

ଶ
𝐹 − 𝑚𝑒𝑎𝑠𝑢𝑟𝑒 +

ଵ

ଶ
𝐺 − 𝑚𝑒𝑎𝑛 (12)

where F-measure and G-mean are both popular performance metrics for evaluating supervised learning
algorithms conducted on imbalanced data, which will be further described in detail in Section 4.

In the original 𝐻 × 𝐾 dimensional meta feature space, the WOA is adopted to extract n features
(𝑛 < 𝐻 × 𝐾), and then a linear regression classifier [50] is trained on it to make the final decision. The
procedure of WOA-based feature selection is illustrated in Figure 3. Specifically, to avoid overfitting,
the WOA also conducts an internal 5-fold cross validation to implement the wrapper feature selection
procedure.

Figure 3. Procedure for selecting features from meta feature space and creating the final
meta learner.

17514

AIMS Mathematics Volume 9, Issue 7, 17504–17530.

3.3. MSFSS algorithm

By integrating multiple sampling meta feature generation and WOA-based meta feature selection
procedures, we propose a novel imbalance stacking ensemble learning algorithm called MSFSS, which
is described below.
MSFSS Algorithm
Input：a binary-class imbalanced data set Ψ, the number of whales 𝑀, the number of iterations
𝑀𝑎𝑥𝐼, sampling group {𝑅ଵ, 𝑅ଶ, … , 𝑅ு}, algorithm group {𝐶ଵ, 𝐶ଶ, … , 𝐶௄}
Output：prediction label sequence
Training Procedure：
Divide the data set Ψ into the training set Ψ௧௥௔௜௡ and the testing set Ψ௧௘௦௧;

Divide Ψ௧௥௔௜௡ into 5 disjoint subsets Ψ௧௥௔௜௡భ
. Ψ௧௥௔௜௡మ

, Ψ௧௥௔௜௡య
, Ψ௧௥௔௜௡ర

, Ψ௧௥௔௜௡ఱ
;

for 𝑠= 1 to 5

Ψ௧௥௔௜௡
ᇱ = Ψ௧௥௔௜௡ − Ψ௧௥௔௜௡ೞ

;

Ψ௧௘௦௧
ᇱ = Ψ௧௥௔௜௡ೞ

;

for 𝑤 = 1 to 𝐻

Run 𝑅௪ on Ψ௧௥௔௜௡
ᇱ to acquire the corresponding sampling set Ψ௧௥௔௜௡ି௦௔௠௣௟௜௡

ᇱ ;

 for v = 1 to 𝐾

 Use 𝐶௩ on Ψ௧௥௔௜௡ି௦௔௠௣
ᇱ to train the corresponding classifier 𝐶௦,௪,௩;

 Run 𝐶௦,௪,௩ on Ψ௧௘௦௧
ᇱ to acquire the corresponding meta features;

end for
end for

end for
Use all meta features to integrate a meta training set Ψ௠௘௧௔ି௧௥௔௜ to replace the original training
set Ψ௧௥௔௜௡;

Obtain a shrinking meta training set Ψ௠௘௧௔ି௧௥௔௜௡
ᇱ = WOA(Ψ௠௘௧௔ି௧௥௔௜௡, 𝑀, 𝑀𝑎𝑥𝐼);

Train a linear regression classifier LR on Ψ௠௘௧௔ି௧௥௔௜௡;
Testing Procedure：
for 𝑤 = 1 to 𝐻
 for 𝑣 = 1 to 𝐾
 for 𝑠 = 1 to 5
 Run 𝐶௦,௪,௩ on Ψ௧௘௦௧ to acquire Ψ௪,௩

௦ ;
 end for
 Generate the ((𝑤 − 1) × 𝐾 + 𝑣)th meta feature by averaging Ψ௪,௩

ଵ , Ψ௪,௩
ଶ , Ψ௪,௩

ଷ , Ψ௪,௩
ସ ,

Ψ௪,௩
ହ ;

 end for
end for
Use all meta features to integrate a meta test set Ψ௠௘௧௔ି௧௘௦௧ to replace the original training set
 Ψ௧௘௦௧;

17515

AIMS Mathematics Volume 9, Issue 7, 17504–17530.

Extract the shrinking meta test set Ψ௠௘௧௔ି௧௘௦௧
ᇱ by inquiring the numerical order of features recorded

by the WOA;
Call LR to predict the class labels of all instances on Ψ௠௘௧௔ି௧௘௦௧

ᇱ and output the corresponding
prediction label sequence.

Without loss of generality, we suppose the average time complexity of all sampling algorithms is
𝜑, the average time complexity of all supervised learning algorithms is 𝜏, and the time complexity of
training a linear regression meta learner is 𝜔. Then, it is clear that the time complexity of the MSFSS
algorithm is 𝑂((𝜑 + 𝜏)𝐻 × 𝐾 + 𝑀 × 𝑀𝑎𝑥𝐼 × 𝜔) . Here, 𝜑 , 𝜏 , and 𝜔 all rely on the number of
training instances N.

4. Experiments

4.1. Datasets descriptions

In this study, we used 40 benchmarked class imbalance datasets to validate the performance of
the proposed MSFSS algorithm. Specifically, these benchmark datasets are extracted from either UCI
machine learning repository [51] or Keel data repository [52]. Table 2 describes the detailed
information about these data sets, including the number of instances, number of features, class
imbalance ratio, and data source of each dataset.

Table 2. Descriptions of the datasets used in this study.

ID Dataset Number of instances Number of features Class imbalance ratio Data source

1 EEG_Eye_State 14,980 14 1.22 UCI

2 banana 5,299 2 1.23 UCI

3 Australian 690 14 1.24 UCI

4 brainweb_20000 20,000 3 1.32 UCI

5 MovementAAL_RSS 13,197 4 1.34 UCI

6 liver 345 6 1.37 UCI

7 Elec_Partial 10,000 5 1.37 UCI

8 Ionosphere 351 34 1.78 UCI

9 glass1 214 9 1.81 KEEL

10 ecoli-0_vs_1 220 7 1.85 KEEL

11 wisconsin 683 9 1.86 KEEL

12 diabetes 768 8 1.86 UCI

13 iris0 150 4 2.00 KEEL

14 bupa 300 7 2.00 UCI

15 wine 178 13 2.01 UCI

16 titanic 2,201 3 2.09 UCI

17 German 1,000 24 2.33 UCI

18 phoneme 5,404 5 2.40 UCI

19 sober 72 19 2.42 KEEL

20 ILPD 583 11 2.49 UCI

Continued on next page

17516

AIMS Mathematics Volume 9, Issue 7, 17504–17530.

ID Dataset Number of instances Number of features Class imbalance ratio Data source

21 glass-0-1-2-3_vs_4-5-6 214 9 3.19 KEEL

22 blood 748 4 3.20 UCI

23 ecoli1 336 7 3.36 KEEL

24 skin 245,057 3 3.81 UCI

25 usps 1,500 241 4.00 UCI

26 appendicitis 106 8 4.04 UCI

27 new-thyroid1 215 5 5.14 KEEL

28 ecoli2 336 7 5.46 KEEL

29 musk 6,598 166 5.48 UCI

30 segment0 2,308 19 6.01 KEEL

31 glass-3-5_vs_1-2-6-7 214 10 6.13 KEEL

32 glass 214 9 6.37 KEEL

33 page-blocks0 5,472 10 8.78 KEEL

34 ecoli-0-4-6_vs_5 203 7 9.15 KEEL

35 HTRU2 17,898 8 9.92 UCI

36 vowel0 988 13 9.97 UCI

37 ecoli-0-1-4-7_vs_2-3-5-6 336 8 10.58 KEEL

38 ecoli4 336 8 15.80 KEEL

39 dermatology-6 358 34 16.90 KEEL

40 wilt 4,839 5 17.54 UCI

4.2. Experimental settings

4.2.1 Compared algorithms and parameter settings

In this study, we compared the proposed MSFSS algorithm with a baseline algorithm: stacking [32],
two representative class imbalance ensemble learning algorithms respectively adopting bagging and
boosting paradigms: BalancedBagging [26] and RUSBoost [28], and three popular stacking variants for
classifying imbalanced data: SIRUS [29], SADA [30], and NUS-SE [31]. Specifically, all sampling
techniques used in these algorithms sampled totally balanced datasets. Both BalancedBagging [26] and
RUSBoost [28] used a C4.5 decision tree [46] as the base learner, and the number of base learners was
designated as 50. Considering that our proposed MSFSS algorithm requires producing 20 different base
learners, thus to guarantee the impartiality of the compared experiments, the stacking [32], SIRUS [29],
SADA [30] and NUS-SE [31] algorithms all generate 20 base classifiers, which means that the stacking
requires disturbing the feature space four times, while three other algorithms require independently
conducting the sampling procedure four times. As for all of the supervised learning algorithms, they
adopt the default parameters in scikit-learn 1.3.11. Table 3 presents the details about these compared
algorithms, and explains the reasons for choosing them.

1 https://scikit-learn.org/

17517

AIMS Mathematics Volume 9, Issue 7, 17504–17530.

Table 3. The details of the compared algorithms.

No Algorithm Settings Reasons for choice

1 BalancedBagging The base learner uses a C4.5 decision tree, the number

of base learners in the ensemble is designated as 50,

and the sampling strategy adopts random

undersampling (RUS).

It serves as a popular ensemble

class imbalance learning

algorithm based on bagging

paradigm.

2 RUSBoost The base learner uses a C4.5 decision tree, the number

of base learners in the ensemble is designated as 50,

and the sampling strategy adopts random

undersampling (RUS).

It serves as a popular ensemble

class imbalance learning

algorithm based on boosting

paradigm.

3 Stacking The base learners use KNN, a C4.5 decision tree, a

support vector machine (SVM), Gaussian naïve

Bayes, and linear discriminant analysis (LDA), the

number of base learners in the ensemble is designated

as 20, and no sampling strategy is used.

It serves as a baseline

algorithm using stacking

paradigm.

4 SIRUS The base learners use KNN, a C4.5 decision tree, a

support vector machine (SVM), Gaussian naïve

Bayes, and linear discriminant analysis (LDA), the

number of base learners in the ensemble is designated

as 20, and the sampling strategy adopts inversed RUS

(IRUS).

It serves as a state-of-the-art

stacking variant aiming at

imbalanced data classification.

5 SADA The base learners use KNN, a C4.5 decision tree, a

support vector machine (SVM), Gaussian naïve

Bayes, and linear discriminant analysis (LDA), the

number of base learners in the ensemble is designated

as 20, and the sampling strategy adopts ADASYN.

It serves as a state-of-the-art

stacking variant aiming at

imbalanced data classification.

6 NUS-SE The base learners use KNN, a C4.5 decision tree, a

support vector machine (SVM), Gaussian naïve

Bayes, and linear discriminant analysis (LDA), the

number of base learners in the ensemble is designated

as 20, and the sampling strategy adopts neighborhood

undersampling.

It serves as a state-of-the-art

stacking variant aiming at

imbalanced data classification.

4.2.2 Performance evaluation metrics

It is well known that on imbalanced classification tasks, the traditional classification accuracy or
classification error rate is not an applicative performance evaluation metric. Therefore, in this study,
we adopted two popular metrics, F-measure and G-mean for evaluating the performance of various
class imbalance learning algorithms. F-measure tests the tradeoff between two metrics, precision and
recall, while G-mean tests the tradeoff between two other metrics, true positive rate (TPR) and true
negative rate (TNR). Specifically, these two metrics are calculated as follows.

𝐹 − 𝑚𝑒𝑎𝑠𝑢𝑟𝑒 =
ଶ×୮୰ୣୡ୧ୱ୧୭୬×୰ୣୡୟ୪୪

୮୰ୣୡ୧ୱ୧୭୬×୰ୣୡୟ୪୪
 (13)

17518

AIMS Mathematics Volume 9, Issue 7, 17504–17530.

𝐺 − 𝑚𝑒𝑎𝑛 = √TPR × TNR (14)

where precision, recall, TPR and TNR can be further calculated by,

precision =
୘୔

୘୔ା୊୔
 (15)

recall = TPR =
୘୔

୘୔ା୊୒
 (16)

TNR =
୘୒

୘୒ା୊୔
 (17)

where TP, TN, FP, and FN further rely on the statistics described in Table 4.
In addition, we used external 5-fold cross validation to detect the performance of each algorithm.

Considering the randomness of the experiments, each experiment was randomly repeated 50 times,
and then the average results were presented.

Table 4. Confusion matrix.

 Predict positive Predict negative

Actual positive TP FN

Actual negative FN TN

4.3. Results and discussions

Experimental results are illustrated in Tables 5 and 6. It can be clearly observed that the Stacking-
based algorithms obviously outperform to two algorithms based on other ensemble learning paradigms.
Specifically, the BalancedBagging and RUSBoost only respectively produce 4 best results on the F-
measure metric, and 5 and 3 best results on the G-mean metric, which are significantly less than that
produced by stacking series algorithms. We believe that it associates to different mechanisms adopted by
these ensemble learning paradigms as both bagging and boosting only integrate the classification results
by simple voting methods, but as a meta learning strategy, the stacking tries to learn how to learn.

Table 5. Performance comparison of various algorithms in terms of the F-measure metric.

Dataset BalancedBagging RUSBoost Stacking SIRUS SADA NUS-SE MSFSS

EEG_Eye_State 0.8843 0.7191 0.9640 0.9623 0.9668 0.9031 0.9691

banana 0.8718 0.6922 0.8860 0.8889 0.8835 0.8897 0.8787

Australian 0.8777 0.8382 0.8686 0.8623 0.8613 0.8639 0.8542

brainweb_20000 0.9421 0.9469 0.9469 0.9491 0.9427 0.9493 0.9448

MovementAAL_RSS 0.7440 0.6766 0.7805 0.7648 0.7641 0.7811 0.7399

liver 0.6431 0.6223 0.5912 0.6028 0.6143 0.5955 0.6552

Elec_Partial 0.6862 0.6658 0.6665 0.6661 0.6646 0.6686 0.6902

Ionosphere 0.9565 0.8979 0.9787 0.9787 0.9787 0.9565 0.9787

glass1 0.7045 0.6408 0.6991 0.6629 0.6933 0.6485 0.7380

Continued on next page

17519

AIMS Mathematics Volume 9, Issue 7, 17504–17530.

Dataset BalancedBagging RUSBoost Stacking SIRUS SADA NUS-SE MSFSS

ecoli-0_vs_1 0.9801 0.9736 0.9862 0.9797 0.9733 0.9797 0.9862

wisconsin 0.9470 0.9143 0.9624 0.9553 0.9625 0.9574 0.9641

diabetes 0.6666 0.4285 0.5454 0.6399 0.6274 0.5454 0.6885

iris0 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

bupa 0.5852 0.6095 0.6250 0.5046 0.5986 0.2907 0.6831

wine 0.9833 0.9833 0.9956 0.9873 0.9916 0.9916 0.9956

titanic 0.5911 0.6077 0.5415 0.6006 0.6006 0.5985 0.6006

German 0.6400 0.6506 0.6101 0.6206 0.5666 0.6451 0.6842

phoneme 0.8111 0.7079 0.8112 0.7997 0.8246 0.7971 0.8312

sober 0.7453 0.7396 0.7287 0.7488 0.7430 0.6730 0.8242

ILPD 0.5157 0.5119 0.0849 0.0372 0.0988 0.0300 0.4905

glass-0-1-2-3_vs_4-5-6 0.9038 0.8800 0.8368 0.8431 0.8681 0.8331 0.9083

blood 0.4636 0.4394 0.1452 0.0392 0.2759 0.1435 0.4832

ecoli1 0.7865 0.7007 0.7930 0.8034 0.7596 0.7644 0.8070

skin 0.9981 0.9186 0.9989 0.9982 0.9989 0.9989 0.9989

usps 0.7543 0.6404 0.9128 0.9272 0.9198 0.9143 0.9328

appendicitis 0.9600 0.9600 1.0000 0.9266 0.9800 0.8300 1.0000

new-thyroid1 0.9269 0.9099 0.9777 0.9882 0.9777 0.9882 0.9461

ecoli2 0.7857 0.7857 0.7857 0.7857 0.7857 0.7857 0.7857

musk 0.9582 0.9682 0.9884 0.9748 0.9873 0.9875 0.9899

segment0 0.9745 0.9834 0.9815 0.9907 0.9894 0.9907 0.9932

glass-3-5_vs_1-2-6-7 0.8413 0.8014 0.8978 0.7969 0.8169 0.0000 0.9314

glass 0.8359 0.8247 0.8575 0.8107 0.8125 0.8103 0.8155

page-blocks0 0.8310 0.6615 0.8716 0.7986 0.8489 0.6871 0.8028

ecoli-0-4-6_vs_5 0.9555 0.9777 0.9714 0.9377 1.0000 0.9714 0.9777

HTRU2 0.8539 0.7787 0.8695 0.8744 0.8757 0.8700 0.8700

vowel0 0.8484 0.8823 0.9706 0.8956 0.9945 0.4460 0.9945

ecoli-0-1-4-7_vs_2-3-5-

6

0.9384 0.9664 0.9777 0.9356 1.0000 1.0000 0.9818

ecoli4 0.7433 0.7974 0.9666 0.9066 0.9666 0.8400 0.9666

dermatology-6 0.8800 1.0000 1.0000 0.9666 0.9666 0.9333 1.0000

wilt 0.9828 0.9657 0.9894 0.9917 0.9921 0.9850 0.9825

Table 6. Performance comparison of various algorithms in terms of the G-mean metric.

Dataset BalancedBagging RUSBoost Stacking SIRUS SADA NUS-SE MSFSS

EEG_Eye_State 0.8946 0.7419 0.9677 0.9653 0.9683 0.9065 0.9727

banana 0.8837 0.7200 0.9029 0.9025 0.8917 0.9032 0.8899

Australian 0.8656 0.8238 0.8588 0.8556 0.8539 0.8547 0.8467

brainweb_20000 0.9487 0.9537 0.9529 0.9550 0.9461 0.9550 0.9518

MovementAAL_RSS 0.7256 0.6571 0.7322 0.7221 0.7244 0.7327 0.7083

liver 0.6812 0.6667 0.7038 0.6835 0.6888 0.7066 0.7080

Continued on next page

17520

AIMS Mathematics Volume 9, Issue 7, 17504–17530.

Dataset BalancedBagging RUSBoost Stacking SIRUS SADA NUS-SE MSFSS

Elec_Partial 0.7334 0.7052 0.7563 0.7500 0.7484 0.7511 0.7679

Ionosphere 0.9363 0.7985 0.9789 0.9789 0.9789 0.9363 0.9789

glass1 0.7587 0.7126 0.7918 0.7845 0.7932 0.7698 0.8175

ecoli-0_vs_1 0.9864 0.9932 0.9864 0.9801 0.9864 0.9864 0.9864

wisconsin 0.9606 0.9350 0.9670 0.9645 0.9651 0.9649 0.9774

diabetes 0.7508 0.5416 0.7276 0.7442 0.7268 0.7276 0.7587

iris0 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

bupa 0.6777 0.6996 0.7972 0.7616 0.7554 0.5923 0.7557

wine 0.9744 0.9740 0.9912 0.9799 0.9873 0.9873 0.9912

titanic 0.6830 0.6997 0.8279 0.7684 0.7684 0.7640 0.8289

German 0.7483 0.7521 0.7181 0.7319 0.6792 0.7301 0.7868

phoneme 0.8733 0.8064 0.8794 0.8440 0.8635 0.8420 0.8797

sober 0.8053 0.7952 0.8175 0.8235 0.8387 0.7721 0.8806

ILPD 0.6487 0.6463 0.3460 0.1078 0.3549 0.1114 0.6104

glass-0-1-2-3_vs_4-5-

6

0.9439 0.9343 0.9043 0.8905 0.9118 0.8766 0.9473

blood 0.6408 0.6124 0.5147 0.2377 0.5795 0.5321 0.6511

ecoli1 0.8782 0.8161 0.8601 0.8525 0.8205 0.7953 0.8856

skin 0.9993 0.9683 0.9990 0.9982 0.9989 0.9990 0.9997

usps 0.8547 0.7854 0.9632 0.9531 0.9689 0.9689 0.9689

appendicitis 0.9878 0.9878 1.0000 0.9581 0.9816 0.8483 1.0000

new-thyroid1 0.9701 0.9758 0.9855 0.9885 0.9855 0.9885 0.9770

ecoli2 0.8924 0.8247 0.9429 0.9429 0.9429 0.9429 0.9429

musk 0.9473 0.9240 0.9839 0.9114 0.9460 0.9830 0.9877

segment0 0.9893 0.9921 0.9952 0.9972 0.9946 0.9972 0.9983

glass-3-5_vs_1-2-6-7 0.9264 0.9159 0.9504 0.9258 0.9310 0.0000 0.9862

glass 0.9458 0.9400 0.9277 0.9103 0.8984 0.9019 0.9251

page-blocks0 0.9512 0.8246 0.9254 0.9043 0.9203 0.8459 0.8923

ecoli-0-4-6_vs_5 0.9944 0.9972 0.9972 0.9421 1.0000 0.9972 0.9972

HTRU2 0.9416 0.8580 0.9601 0.9311 0.9338 0.9274 0.9444

vowel0 0.9620 0.9609 0.9924 0.9364 0.9946 0.5700 0.9994

ecoli-0-1-4-7_vs_2-3-

5-6

0.9934 0.9967 0.9984 0.9565 1.0000 1.0000 0.9983

ecoli4 0.8315 0.9458 0.9984 0.9433 0.9984 0.8847 0.9984

dermatology-6 0.8900 1.0000 1.0000 0.9985 0.9985 0.9970 1.0000

wilt 0.9516 0.9150 0.9548 0.9324 0.9170 0.9006 0.9478

Additionally, we observed an interesting phenomenon, that is, stacking seemed to perform better
than its three popular variants which rely on sampling techniques to address class imbalance problems.
We analyzed the reasons for this from the following two aspects: (1) most datasets used in our
experiments own relatively low class imbalance ratios, which are not enough to destroy the
performance of stacking, while in such a scenario, three undersampling-based variants tend to abandon
some important classification information, thereby decreasing the classification performance, and (2)

17521

AIMS Mathematics Volume 9, Issue 7, 17504–17530.

as indicated in Section 2, all three stacking variants adopt a single sampling technique to generate
similar training subsets, which is apt to destroy the diversity of the ensemble learner.

Furthermore, it is observed that the proposed MSFSS algorithm performs significantly better than
all other compared algorithms. Specifically, the MSFSS has produced the best F-measure results on 27
datasets, and the best G-mean results on 26 datasets, respectively. In contrast to other ensemble
learning algorithms, it profits from the following two aspects: enhancing ensemble diversity by
introducing the multiple sampling strategies, and improving the quality of the meta feature space by
introducing WOA-based feature selection procedure. The results meet our expectations, and
meanwhile, indicate the effectiveness and superiority of the proposed MSFSS algorithm.

4.4. Significance analysis

Next, we also analyzed the experimental results with statistics to further observe whether there
exist significant differences among these compared algorithms. In particular, we conducted the
Freidman test and Nemenyi post-hoc test [53,54], and presented the statistical results in the form of a
critical difference (CD) graph (see Figure 4).

(a) (b)

Figure 4. CD statistics graphs of seven compared algorithms on 40 datasets in terms of
the (a) F-measure and (b) G-mean.

In Figure 4, we observed that on both metrics, the MSFSS had acquired the lowest average
rankings, 2.4 in terms of the F-measure metric, and 2.375 in terms of the G-mean metric, which indicated
that it was the best algorithm among all of the compared algorithms on these two metrics. We also noted
that in the context of the F-measure, the MSFSS significantly outperformed all of the other algorithms
except stacking and SADA, while on the G-mean metric, the MSFSS performed significantly better than
all of the other algorithms except the stacking.

4.5. Parameter discussions

In addition to sampling and supervised learning algorithms, there also exist two key parameters
which may influence the performance of the proposed MSFSS algorithm. They are, the population size
M and the iteration times MaxI of the WOA. Specifically, the MaxI can be seen as a tradeoff between
the performance and the efficiency. Figures 5 and 6 present the variances of F-measure and G-mean

17522

AIMS Mathematics Volume 9, Issue 7, 17504–17530.

performances with increased iteration times on the first ten datasets emerging in Table 2, respectively.
It is not difficult to observe that in the initial phase of the WOA, the performance of the MSFSS

improves rapidly, then after 100 iterations, the performance tends to promote slowly until 200 iterations,
then the performance will become stable. That means that if a too-small MaxI is designated, the
optimization procedure of the WOA might not be mature, and may produce a sub-optimized result for
MSFSS, while if we give MaxI an oversized value, some unnecessary time would be consumed, further
decreasing the efficiency of the MSFSS algorithm. It is a safe setting to make the MaxI be 200.

Figure 5. The variance of F-measure performance with increased iterations.

Figure 6. The variance of G-mean performance with increased iterations.

17523

AIMS Mathematics Volume 9, Issue 7, 17504–17530.

4.6. Ablation experiments

To make it clear whether the two designs both play significant roles in improving the quality of
stacking, two groups of ablation experiments were also designed. First, we investigated the role of
adopting multiple sampling techniques to promote ensemble diversity. Specifically, we compared the
performance of adopting multiple sampling methods in stacking to that of only using a single one. The
experimental results are illustrated in Table 7 in which a pairwise t-test at 5% significance level was
used to record the number of wins/ties/losses throughout 40 datasets.

Table 7. Statistical comparison between adopting multiple sampling techniques and only
a single sampling approach in MSFSS based on a pairwise t-test at 5% significance level.

Comparison F-measure G-mean

win tie lose win tie lose

ALL vs. SMOTE 28 5 7 30 5 5
ALL vs. ADASYN 30 4 6 29 4 7

ALL vs. SMOTE-ENN 26 8 6 27 8 5

ALL vs. SMOTE-Tomek 25 9 6 26 10 4

The results in Table 7 show that in each group of experiment comparisons, the strategy of adopting
multiple sampling techniques wins on significantly more datasets than that of using only one sampling
approach. These results verify our assumption that disturbing the data-level method with multiple
different kinds of sampling algorithms would be helpful for improving the diversity of base learners
in stacking, further helping to improve the quality of stacking ensemble.

Next, we investigated the role of feature selection conducting on the meta feature space of
stacking. Specifically, we specified using all original meta features to train the meta learner as the
baseline, and investigated how much performance promotion happened on each dataset by adopting
the WOA-based feature selection procedure. The performance improvement percentages of the F-
measure and G-mean throughout all 40 datasets are presented in Figures 7 and 8, respectively.

Figure 7. Performance improvement percentages of conducting the WOA-based feature
selection procedure compared to directly training the meta learner on the original meta
feature space in terms of the F-measure metric.

17524

AIMS Mathematics Volume 9, Issue 7, 17504–17530.

The results in these two figures show that on most datasets, selecting a sub-group of meta features
by the WOA-based feature selection approach helps improving the classification performance in
comparison to directly training the meta learner on the original meta feature space, further verifying
the rationality of our design at the second layer of stacking. Specifically, feature selection improves F-
measure performance on 23 datasets, and only declines on 7 datasets, while in terms of the G-mean
metric, the feature selection produces better results on 25 datasets, and worse results on 8 datasets in
comparison to training the meta learner on all meta features.

Figure 8. Performance improvement percentages of conducting the WOA-based feature
selection procedure compared to directly training the meta learner on the original meta
feature space in terms of the G-mean metric.

Obviously, the results of two groups of ablation experiments reflect that our proposed two-
structure design for stacking is both helpful for improving the classification performance of stacking
ensemble learning model on imbalanced data.

4.7. Comparison of running time

Finally, we compared the running time of the compared algorithms, and presented them in Table 8.
It is not difficult to observe that in contrast to several other ensemble learning algorithms, the proposed
MSFSS algorithm is generally more time-consuming. Actually, the increased time consumption mainly
lies in the introduction of the WOA-based feature selection procedure. However, the size of the meta
feature space only associates with two parameters, H and K, but is irrelevant to the original data.
Therefore, the increased time consumption is acceptable.

17525

AIMS Mathematics Volume 9, Issue 7, 17504–17530.

Table 8. Running time comparison of various algorithms (seconds).

Dataset BalancedBagging RUSBoost Stacking SIRUS SADA NUS-SE MSFSS

EEG_Eye_State 0.7891 0.6383 243.6555 230.2293 370.1172 233.6021 356.2872

banana 0.0793 0.2058 8.0224 7.3567 10.3903 7.3250 11.1298

Australian 0.0481 0.1408 0.9951 0.9127 1.2501 0.8552 3.7041

brainweb_20000 0.3011 0.8021 40.4165 36.0129 81.4095 33.9393 55.4272

MovementAAL_RSS 0.2346 0.3938 99.4214 80.6455 131.9176 101.9191 103.2567

liver 0.0381 0.1324 0.9226 1.0635 0.8770 0.5912 4.4089

Elec_Partial 0.3249 0.4588 60.5196 48.8534 83.7458 52.1630 68.8820

Ionosphere 0.0461 0.1552 15.6837 14.6712 26.4039 20.0584 32.6041

glass1 0.0302 0.1145 0.9230 0.5733 0.5674 0.3908 2.9899

ecoli-0_vs_1 0.0287 0.1076 0.4007 0.4741 0.5277 0.3551 2.8188

wisconsin 0.0332 0.1249 0.6046 0.7440 0.9424 0.6745 3.7607

diabetes 0.0530 0.1269 1.1904 0.8789 1.2320 0.8630 3.6307

iris0 0.0282 0.0059 0.5952 0.4395 0.6160 0.4315 1.8153

bupa 0.0307 0.1190 1.4230 0.5237 0.6051 0.4285 3.1481

wine 0.0292 0.1135 0.4607 0.5257 0.5833 0.3888 2.9973

titanic 0.0362 0.1453 2.5668 2.1130 5.1227 2.0455 6.6073

German 0.0396 0.1299 1.6343 1.1685 2.2895 1.2955 4.5573

phoneme 0.1046 0.2395 11.3943 6.7378 21.6974 7.1643 19.9138

sober 0.0292 0.1120 0.5004 0.4723 0.4999 0.3174 3.1059

ILPD 0.0367 0.1284 0.7489 0.6924 1.0654 0.6249 3.8425

glass-0-1-2-3_vs_4-5-6 0.0282 0.1180 0.4270 0.4841 0.6487 0.4741 3.3287

blood 0.0317 0.1120 0.7826 0.7321 1.2558 0.7281 3.7056

ecoli1 0.0287 0.1116 0.4647 0.5872 0.6586 0.4106 2.9710

skin 1.3888 4.1476 936.7546 251.7978 4097.1584 1281.0152 3206.3131

usps 0.4761 0.9354 11.1066 8.0909 21.5724 9.5094 22.5322

appendicitis 0.0282 0.0124 1.1195 0.4265 3.0255 2.1963 5.2636

new-thyroid1 0.0287 0.1135 0.5356 0.5059 0.6051 0.4027 3.0385

ecoli2 0.0292 0.1125 0.4696 0.5019 0.6309 0.4146 3.1154

musk 1.3928 1.5580 46.5965 15.2224 101.1228 31.9450 73.3401

segment0 0.0481 0.1825 7.3661 5.9441 13.9834 8.3408 16.7243

glass-3-5_vs_1-2-6-7 0.0287 0.1145 0.5917 0.4761 0.5833 0.3769 3.2647

glass 0.0367 0.1319 0.5594 0.7876 0.8094 0.5039 3.8430

page-blocks0 0.0639 0.2123 7.4296 4.7497 44.3867 4.6446 49.8388

ecoli-0-4-6_vs_5 0.0312 0.0114 0.4836 0.4662 3.0772 0.3591 5.2641

HTRU2 0.1701 0.5039 26.3178 11.2594 271.1350 11.8090 148.6880

vowel0 0.0332 0.1314 0.8670 0.7559 1.3868 0.6487 3.8877

ecoli-0-1-4-7_vs_2-3-5-

6

0.0287 0.0198 0.5991 0.4880 0.5713 0.3948 3.0519

ecoli4 0.0277 0.1145 0.9161 0.5436 3.2776 2.1586 5.3697

dermatology-6 0.0317 0.1155 0.5748 0.6031 0.7638 0.4146 3.1997

wilt 0.0897 0.2877 6.7493 5.0379 28.6223 2.7104 31.0440

17526

AIMS Mathematics Volume 9, Issue 7, 17504–17530.

5. Conclusions

In this study, an improved stacking ensemble learning algorithm called MSFSS was proposed to
address an imbalanced data classification problem. The algorithm first considered to enhance ensemble
diversity by integrating multiple sampling strategies with multiple supervised learning algorithms.
Then, it introduced a WOA-based feature selection procedure to improve the quality of the meta feature
space, further producing a better meta classifier. In experiments, we first compared the proposed
MSFSS algorithm with several baselines and state-of-the-art stacking variants which are specifically
designed for solving class imbalance problems. Specifically, on 40 benchmarked datasets, the MSFSS
acquired best results in terms of the F-measure metric on 27 datasets, and best results in terms of the
G-mean metric on 26 datasets, indicating its superiority. By statistical analysis, we observed that the
proposed MSFSS significantly outperformed its several competitors, except stacking and SADA, in
the context of the F-measure, and the stacking in terms of the G-mean metric. Also, the results of
ablation experiments illustrated the effectiveness and necessity of a two-module design in MSFSS.
Additionally, we compared the running time of various algorithms, and observed that the proposed
MSFSS algorithm seemed to be more time-consuming than several others. However, profiting from
the faster convergence speed of the WOA, the increment of running time of the MSFSS was totally
acceptable. Therefore, we do not think that this factor would limit the use of the MSFSS algorithm in
various real-world applications.

In future work, we plan to integrate more novel and high-quality sampling strategies and
classification algorithms into the MSFSS algorithm framework to investigate whether its performance
could be further improved. Also, we wish to explore whether there exist some more efficient optimization
algorithms that could further enhance the quality and efficiency of meta feature selection.

Author contributions

Shuxiang Wang: Conceptualization, Data curation, Investigation, Methodology, Writing-original
draft; Changbin Shao: Formal analysis, Methodology, Writing-original draft; Sen Xu: Validation,
Visualization, Funding acquisition; Xibei Yang: Funding acquisition, Supervision, Writing-review &
editing; Hualong Yu: Conceptualization, Methodology, Supervision, Funding acquisition, Writing-
review & editing. All authors have read and approved the final version of the manuscript for
publication.

Use of AI tools declaration

The authors declare that they have not used artificial intelligence (AI) tools in the creation of this
article.

Acknowledgments

This work was supported in part by the National Natural Science Foundation of China under
Grant Nos. 62176107, 62076111, and 62076215, the Open Project of Jiangsu Key Laboratory of Media
Design and Software Technology (Jiangnan University), and the Qinglan Project of Jiangsu Province.

17527

AIMS Mathematics Volume 9, Issue 7, 17504–17530.

Conflict of interests

The authors declare that there are no conflicts of interest.

References

1. P. Branco, L. Torgo, R. P. Ribeiro, A survey of predictive modeling on imbalanced domains, ACM
Comput. Surv. (CSUR), 49 (2016), 1–50. https://doi.org/10.1145/2907070

2. K. Oksuz, B. C. Cam, S. Kalkan, E. Akbas, Imbalance problems in object detection: A review,
IEEE T. Pattern Anal., 43 (2021), 3388–3415. https://doi.org/10.1109/TPAMI.2020.2981890

3. M. Ghorbani, A. Kazi, M. S. Baghshah, H. R. Rabiee, N. Navab, RA-GCN: Graph convolutional
network for disease prediction problems with imbalanced data, Med. Image Anal., 75 (2022),
102272. https://doi.org/10.1016/j.media.2021.102272

4. Y. C. Wang, C. H Cheng, A multiple combined method for rebalancing medical data with class
imbalances, Comput. Biol. Med., 134 (2021), 104527.
https://doi.org/10.1016/j.compbiomed.2021.104527

5. A. Abdelkhalek, M. Mashaly, Addressing the class imbalance problem in network intrusion
detection systems using data resampling and deep learning, J. Supercomput., 79 (2023), 10611–
10644. https://doi.org/10.1007/s11227-023-05073-x

6. Z. Li, K. Kamnitsas, B. Glocker, Analyzing overfitting under class imbalance in neural networks
for image segmentation, IEEE T. Med. Imaging, 40 (2021), 1065–1077.
https://doi.org/10.1109/TMI.2020.3046692

7. V. Rupapara, F. Rustam, H. F. Shahzad, A. Mehmood, I. Ashraf, G. S. Choi, Impact of SMOTE
on imbalanced text features for toxic comments classification using RVVC model, IEEE Access,
9 (2021), 78621–78634. https://doi.org/10.1109/ACCESS.2021.3083638

8. W. Zheng, Y. Xun, X. Wu, Z. Deng, X. Chen, Y. Sui, A comparative study of class rebalancing
methods for security bug report classification, IEEE T. Reliab., 70 (2021), 1658–1670.
https://doi.org/10.1109/TR.2021.3118026

9. J. Kuang, G. Xu, T. Tao, Q. Wu, Class-imbalance adversarial transfer learning network for cross-
domain fault diagnosis with imbalanced data, IEEE T. Instrum. Meas., 71 (2021), 1–11.
https://doi.org/10.1109/TIM.2021.3136175

10. M. Qian, Y. F. Li, A weakly supervised learning-based oversampling framework for class-imbalanced
fault diagnosis, IEEE T. Reliab., 71 (2022), 429–442. https://doi.org/10.1109/TR.2021.3138448

11. Y. Aydın, Ü. Işıkdağ, G. Bekdaş, S. M. Nigdeli, Z. W. Geem, Use of machine learning techniques
in soil classification, Sustainability, 15 (2023), 2374. https://doi.org/10.3390/su15032374

12. M. Asgari, W. Yang, M. Farnaghi, Spatiotemporal data partitioning for distributed random forest
algorithm: Air quality prediction using imbalanced big spatiotemporal data on spark distributed
framework, Environ. Technol. Inno., 27 (2022), 102776. https://doi.org/10.1016/j.eti.2022.102776

13. L. Dou, F. Yang, L. Xu, Q. Zou, A comprehensive review of the imbalance classification of protein
post-translational modifications, Brief. Bioinform., 22 (2021), bbab089.
https://doi.org/10.1093/bib/bbab089

14. S. Y. Bae, J. Lee, J. Jeong, C. Lim, J. Choi, Effective data-balancing methods for class-imbalanced
genotoxicity datasets using machine learning algorithms and molecular fingerprints, Comput.
Toxicol., 20 (2021), 100178. https://doi.org/10.1016/j.comtox.2021.100178

17528

AIMS Mathematics Volume 9, Issue 7, 17504–17530.

15. G. H. Fu, Y. J. Wu, M. J. Zong, J. Pan, Hellinger distance-based stable sparse feature selection for
high-dimensional class-imbalanced data, BMC Bioinformatics, 21 (2020), 121.
https://doi.org/10.1186/s12859-020-3411-3

16. N. V. Chawla, K. W. Bowyer, L. O. Hall, W. P. Kegelmeyer, SMOTE: Synthetic minority over-
sampling technique, J. Artif. Intell. Res., 16 (2002), 321–357. https://doi.org/10.1613/jair.953

17. G. E. A. P. A. Batista, R. C. Prati, M. C. Monard, A study of the behavior of several methods for
balancing machine learning training data, ACM SIGKDD Explor. Newslett., 6 (2004), 20–29.
https://doi.org/10.1145/1007730.1007735

18. H. He, Y. Bai, E. A. Garcia, S. Li, ADASYN: Adaptive synthetic sampling approach for imbalanced
learning, In: 2008 IEEE international joint conference on neural networks (IEEE world congress
on computational intelligence), IEEE Press, 2008. https://doi.org/10.1109/IJCNN.2008.4633969

19. M. Kubat, S. Matwin, Addressing the curse of imbalanced training sets: one-sided selection, In:
International Conference of Machine Learning, Morgan Kaufmann, 1997.

20. M. A. Tahir, J. Kittler, F. Yan, Inverse random under sampling for class imbalance problem and
its application to multi-label classification, Pattern Recogn., 45 (2012), 3738–3750.
https://doi.org/10.1016/j.patcog.2012.03.014

21. A. Zhang, H. Yu, Z. Huan, X. Yang, S. Zheng, S. Gao, SMOTE-RkNN: A hybrid re-sampling
method based on SMOTE and reverse k-nearest neighbors, Inform. Sci., 595 (2022), 70–88.
https://doi.org/10.1016/j.ins.2022.02.038

22. R. Batuwita, V. Palade, FSVM-CIL: Fuzzy support vector machines for class imbalance learning,
IEEE T. Fuzzy Syst., 18 (2010), 558–571. https://doi.org/10.1109/TFUZZ.2010.2042721

23. H. Yu, C. Sun, X. Yang, S. Zheng, H Zou, Fuzzy support vector machine with relative density
information for classifying imbalanced data, IEEE T. Fuzzy Syst., 27 (2019), 2353–2367.
https://doi.org/10.1109/TFUZZ.2019.2898371

24. H. Yu, C. Mu, C. Sun, W. Yang, X. Yang, X. Zuo, Support vector machine-based optimized
decision threshold adjustment strategy for classifying imbalanced data, Knowl.-Based Syst., 76
(2015), 67–78. https://doi.org/10.1016/j.knosys.2014.12.007

25. H. Yu, C. Sun, X. Yang, W. Yang, J. Shen, Y. Qi, ODOC-ELM: Optimal decision outputs
compensation-based extreme learning machine for classifying imbalanced data, Knowl.-Based
Syst., 92 (2016), 55–70. https://doi.org/10.1016/j.knosys.2015.10.012

26. J. Laurikkala, Improving identification of difficult small classes by balancing class distribution,
In: Artificial Intelligence in Medicine: 8th Conference on Artificial Intelligence in Medicine in
Europe, AIME 2001 Cascais, Portugal, Springer Berlin Heidelberg, 2001.
https://doi.org/10.1007/3-540-48229-6_9

27. F. S. Hanifah, H. Wijayanto, A. Kurnia, Smotebagging algorithm for imbalanced dataset in logistic
regression analysis (case: Credit of bank X), Appl. Math. Sci., 9 (2015), 6857–6865.
http://dx.doi.org/10.12988/ams.2015.58562

28. C. Seiffert, T. M. Khoshgoftaar, J. Van Hulse, A. Napolitano, RUSBoost: Improving classification
performance when training data is skewed, In: 19th international conference on pattern
recognition, IEEE, 2008. https://doi.org/10.1002/abio.370040210

29. Y. Zhang, G. Liu, W. Luan, C. Yan, C. Jiang, An approach to class imbalance problem based on
Stacking and inverse random under sampling methods, In: 2018 IEEE 15th international
conference on networking, sensing and control (ICNSC), IEEE, 2018.
https://doi.org/10.1002/abio.370040210

17529

AIMS Mathematics Volume 9, Issue 7, 17504–17530.

30. Y. Pristyanto, A. F. Nugraha, I. Pratama, A. Dahlan, L. A. Wirasakti, Dual approach to handling
imbalanced class in datasets using oversampling and ensemble learning techniques, In: 2021 15th
International Conference on Ubiquitous Information Management and Communication (IMCOM),
IEEE, 2021. https://doi.org/10.1002/abio.370040210

31. Z. Seng, S. A. Kareem, K. D. Varathan, A neighborhood undersampling stacked ensemble (NUS-
SE) in imbalanced classification, Exp. Syst. Appl., 168 (2021), 114246.
https://doi.org/10.1016/j.eswa.2020.114246

32. D. H. Wolpert, Stacked generalization, Neural Networks, 5 (1992), 241–259.
https://doi.org/10.1016/S0893-6080(05)80023-1

33. Y. Shi, R. Eberhart, A modified particle swarm optimizer, In: Proceedings of 1998 IEEE
international conference on evolutionary computation proceedings. IEEE world congress on
computational intelligence (Cat. No. 98TH8360), IEEE, 1998, 69–73.
https://doi.org/10.1109/icec.1998.699146

34. K. V. Price, Differential evolution: A fast and simple numerical optimizer, In: Proceedings of
North American fuzzy information processing, IEEE, 1996, 524–527.
https://doi.org/10.1109/nafips.1996.534790

35. E. Cuevas, M. Cienfuegos, D. Zaldívar, M. Pérez-Cisneros, A swarm optimization algorithm
inspired in the behavior of the social-spider, Exp. Syst. Appl., 40 (2013), 6374–6384.
https://doi.org/10.1016/j.eswa.2013.05.041

36. S. Mirjalili, A. Lewis, The whale optimization algorithm, Adv. Eng. Soft., 95 (2016), 51–67.
https://doi.org/10.1016/j.advengsoft.2016.01.008

37. E. Cuevas, A. Rodríguez, M. Perez, J. Murillo-Olmos, B. Morales-Castañeda, A. Alejo-Reyes, et
al., Optimal evaluation of re-opening policies for COVID-19 through the use of metaheuristic
schemes, Appl. Math. Model., 121 (2023), 506–523. https://doi.org/10.1016/j.apm.2023.05.012

38. M. H. Nadimi-Shahraki, S. Taghian, S. Mirjalili, L. Abualigah, M. Abd Elaziz, D. Oliva, EWOA-
OPF: Effective whale optimization algorithm to solve optimal power flow problem, Electronics,
10 (2021), 2975. https://doi.org/10.1007/978-981-16-9447-9_20

39. R. Kundu, S. Chattopadhyay, E. Cuevas, R. Sarkar, AltWOA: Altruistic Whale Optimization
Algorithm for feature selection on microarray datasets, Comput. Biol. Med., 144 (2022), 105349.
https://doi.org/10.1016/j.compbiomed.2022.105349

40. M. S. Santos, P. H. Abreu, N. Japkowicz, A. Fernández, C. Soares, S. Wilk, et al., On the joint-
effect of class imbalance and overlap: a critical review, Artif. Intell. Rev., 55 (2022), 6207–6275.
https://doi.org/10.1007/s10462-022-10150-3

41. S. K. Pandey, A. K. Tripathi, An empirical study toward dealing with noise and class imbalance
issues in software defect prediction, Soft Comput., 25 (2021), 13465–13492.
https://doi.org/10.1007/s00500-021-06096-3

42. L. Breiman, Bagging predictors, Mach. Learn., 24 (1996), 123–140.
https://doi.org/10.1007/BF00058655

43. R E. Schapire, The strength of weak learnability, Mach. Learn., 5 (1990), 197–227.
https://doi.org/10.1007/BF00116037

44. A. Krogh, J. Vedelsby, Neural network ensembles, cross validation, and active learning, Adv.
Neural Inform. Proces. Syst., 7 (1995), 231–238. Available from:
http://papers.nips.cc/paper/1001-neural-network-ensembles-cross-validation-and-active-learning.

17530

AIMS Mathematics Volume 9, Issue 7, 17504–17530.

45. S. Zhang, X. Li, M. Zong, X. Zhu, R. Wang, Efficient kNN classification with different numbers
of nearest neighbors, IEEE T. Neur. Net. Learn., 29 (2018), 1774–1785.
https://doi.org/10.1109/TNNLS.2017.2673241

46. J R. Quinlan, Induction of decision trees, Mach. Learn., 1 (1986), 81–106.
https://doi.org/10.1023/A:1022643204877

47. C. Cortes, V. Vapnik, Support-vector networks, Mach. Learn., 20 (1995), 273–297.
https://doi.org/10.1007/BF00994018

48. T. Bayes, An essay towards solving a problem in the doctrine of chances, MD Comput. Comput.
Med. Pract., 8 (1991), 376–418. https://doi.org/10.1002/abio.370040210

49. A. Tharwat, T. Gaber, A. Ibrahim, A. E. Hassanien, Linear discriminant analysis: A detailed
tutorial, AI Commun., 30 (2017), 169–190. https://doi.org/10.3233/AIC-170729

50. X. Su, X. Yan, C. L. Tsai, Linear regression, WIRES Comput. Stat., 4 (2012), 275–294.
https://doi.org/10.1002/wics.1198

51. C. Blake, E. Keogh, C. J. Merz, UCI repository of machine learning databases, Department of
Information and Computer Science, University of California, Irvine, CA, USA, 1998. Available
from: http://www.ics.uci.edu/mlearn /MLRepository.html.

52. I. Triguero, S. González, J. M. Moyano, S. García, J. Alcalá-Fdez, J. Luengo, et al., KEEL 3.0:
An open source software for multi-stage analysis in data mining international, J. Comput. Intell.
Syst., 10 (2017), 1238–1249. https://doi.org/10.2991/ijcis.10.1.82

53. J. Demsar, Statistical comparisons of classifiers over multiple data sets, J. Mach. Learn. Res., 7
(2006), 1–30. Available from: http://jmlr.org/papers/v7/demsar06a.html.

54. S. García, A. Fernández, J. Luengo, F. Herrera, Advanced nonparametric tests for multiple
comparisons in the design of experiments in computational intelligence and data mining:
Experimental analysis of power, Inform. Sci., 180 (2010), 2044–2064.
https://doi.org/10.1016/j.ins.2009.12.010

© 2024 the Author(s), licensee AIMS Press. This is an open access
article distributed under the terms of the Creative Commons
Attribution License (https://creativecommons.org/licenses/by/4.0)

