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Abstract: Learning from imbalanced data is a challenging task in the machine learning field, as with 
this type of data, many traditional supervised learning algorithms tend to focus more on the majority 
class while damaging the interests of the minority class. Stacking ensemble, which formulates an 
ensemble by using a meta-learner to combine the predictions of multiple base classifiers, has been used 
for solving class imbalance learning issues. Specifically, in the context of class imbalance learning, a 
stacking ensemble learning algorithm is generally considered to combine with a specific sampling 
algorithm. Such an operation, however, might suffer from suboptimization problems as only using a 
sampling strategy may make it difficult to acquire diverse enough features. In addition, we also note that 
using all of these features may damage the meta-learner as there may exist noisy and redundant features. 
To address these problems, we have proposed a novel stacking ensemble learning algorithm named 
MSFSS, which divides the learning procedure into two phases. The first stage combined multiple 
sampling algorithms and multiple supervised learning approaches to construct meta feature space by 
means of cross combination. The adoption of this strategy satisfied the diversity of the stacking ensemble. 
The second phase adopted the whale optimization algorithm (WOA) to select the optimal sub-feature 
combination from the meta feature space, which further improved the quality of the features. Finally, a 
linear regression classifier was trained as the meta learner to conduct the final prediction. Experimental 
results on 40 benchmarked imbalanced datasets showed that the proposed MSFSS algorithm 
significantly outperformed several popular and state-of-the-art class imbalance ensemble learning 
algorithms. Specifically, the MSFSS acquired the best results in terms of the F-measure metric on 27 
datasets and the best results in terms of the G-mean metric on 26 datasets, out of 40 datasets. Although 
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it required consuming more time than several other competitors, the increment of the running time was 
acceptable. The experimental results indicated the effectiveness and superiority of the proposed MSFSS 
algorithm. 

Keywords: whale optimization algorithm; stacking ensemble; imbalanced data classification; 
sampling; feature selection; meta learning 
Mathematics Subject Classification: 68T20 
 

1. Introduction  

In recent years, class imbalance learning has gradually developed to be one of the hotspots in the 
machine learning field and attracts a wide range of attention from researchers [1,2]. The class 
imbalance learning issue is widely concerning due to two main reasons as follows: (1) with unevenly 
distributed data, many traditional supervised learning algorithms produce prejudiced results as they 
always tend to focus more on the majority class and damage the interests of the minority class; (2) 
there are many real-world applications associated with imbalanced data, including object detection [2], 
disease diagnosis [3,4], intrusion detection [5], image segmentation [6], text classification [7,8], fault 
diagnosis [9,10], soil classification [11], air quality prediction [12], and bioinformatics [13–15], etc. 

Many methods have been proposed to address class imbalance learning issues, and in general, 
they are categorized into three groups: data level [16–21], algorithm level [22–25], and ensemble 
learning [26–31].  

Data level, which is also called sampling, reconstructs the data distribution to make the dataset 
be balanced by either adding the minority instances or removing the majority instances. Specifically, 
the data-level technique can be seen as a pre-processing solution. Such a technique generally owns two 
significant advantages as follows: 1) it is easy to implement, and 2) it does not require modifying the 
complex algorithm structure. However, such a technique alters the original data distribution, which 
brings a potential risk for the subsequent data modeling.  

Algorithm level modifies learning algorithms to fit imbalanced data distributions. This technique 
could be divided into two groups: cost-sensitive learning methods [22,23] and threshold-moving 
strategies [24,25]. The former modifies the loss function of the learning algorithms by assigning a 
higher penalty for the training loss of minority instances, while the latter is a post-processing solution 
which first directly trains a traditional classifier on skewed data, and then provides positive 
compensation for the outputs of each minority instance. The merits of such a technique reflect that it 
can not only maintain the original data distribution, but also tends to acquire more stable classification 
performance than the data-level strategies. However, it generally requires conducting a complex 
optimization procedure for acquiring an appropriate penalty weight or compensation threshold. 

As for ensemble learning, this method combines multiple classifiers to promote the robustness of 
class imbalance learning. In particular, the ensemble learning integrates classifiers in various ways, 
such as bagging [26,27], boosting [28] and stacking [29–31]. It is also noted that ensemble learning 
itself cannot directly solve a class imbalance learning issue, but when each base classifier adopts a 
data-level or algorithm-level solution, the issue can be effectively addressed. In comparison to data-
level and algorithm-level techniques, ensemble learning always tends to produce more robust 
classification results. As a meta-learning approach, stacking owns a specific merit in comparison to two 
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other ensemble learning paradigms, bagging and boosting. That is, it tries to learn how to learn, thus often 
produces better and/or more robust classification performance than the two others on the same learning 
tasks [32]. Therefore, we have focused on how to use stacking technique for improving classification 
performance on imbalanced data in this study. 

Specifically, the stacking technique maintains a two-layer structure in which the first layer lays 
out different classification algorithms, and the second layer first captures the output of each classifier 
in the first layer to constitute a new feature space, and then trains a new classifier to generate the final 
predictions. Here, the classifier in the second layer is generally called a meta-learner that is capable of 
simultaneously capturing the characteristics of various different classifiers, thus the classification 
performance can be materially improved. 

To address the class imbalance problem by the stacking ensemble, a data level or algorithm level 
technique is generally used on its first layer. The state-of-the-art imbalanced stacking algorithms [29–31] 
always adopt a specific sampling algorithm to combine with several different supervised learning 
algorithms to train base learners. Such an operation, however, tends to suffer from suboptimization 
problems as although those base learners use different supervised learning algorithms, they run on the 
same training instances. In other words, an excellent ensemble learning model requires diverse enough 
base learners, while only adopting different learning algorithms does not guarantee that it will 
maximize the diversity among the base learners. In addition, we all know ensemble learning requires 
high-quality base learners, and stacking is no exception. We note that in a meta feature space 
constituted by outputs of all base learners, there might exist poor and redundant features which would 
damage the meta-learner constructed on the second layer of stacking.  

Motivated by the two issues described above, we wish to propose an improved stacking ensemble 
learning algorithm for classifying imbalanced data. First, we consider to further promote the diversity 
among base learners when we construct the first layer of stacking. As indicated in [29–31], all emerging 
class imbalance stacking ensemble learning algorithms inherit the idea of original stacking, that is, 
producing diverse base learners only by calling different learning algorithms. However, the diversity 
yielded by such a strategy is limited due to the fact that all learning algorithms are modeled on the 
same or quite similar training data. To further increase the diversity, we propose to combine multiple 
different sampling strategies and various learning algorithms to produce base learners. 

As for the second issue, we consider to introduce a feature selection procedure on the meta feature 
space when we construct the second layer of stacking. Obviously, the feature selection will be helpful 
for improving the quality of the meta feature space. Here, we wish to adopt a metaheuristic algorithm 
to implement a wrapper-based feature selection procedure. Specifically, the metaheuristic algorithms 
are a type of optimization technique inspired by natural or social phenomena used to solve various 
complex optimization problems. This kind of algorithm combines randomness and strategic search to 
find approximately optimal solutions within an acceptable time. Several metaheuristic algorithms have 
been widely used to solve real-world complex optimization problems, including particle swarm 
optimization (PSO) [33], which simulates the foraging behavior of bird flocks, differential evolution 
(DE) [34], which simulates biological evolution, and social spider optimization (SSO) [35], which 
simulates the collaboration and information sharing mechanisms of spiders during predation and web 
weaving processes. As a recently proposed metaheuristic algorithm, the whale optimization algorithm 
(WOA) [36] has attracted wide attention due to its three specific merits, i.e., strong global searching 
ability, a few parameter settings, and fast convergence speed. The WOA has also been applied to solve 
different real-world optimization problems, including estimating the reopening policies relating to 
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COVID-19 [37], solving complex power flow optimization problems [38], and selecting the optimal gene 
group for classifying microarray data [39], etc. Considering the merits owned by the WOA, we have 
decided to use it to implement a wrapper feature selection procedure on the meta feature space of stacking. 

Specifically, we integrated the two modules discussed above to propose a novel stacking 
algorithm called the whale optimization-based multiple sampling feature selection stacking ensemble 
(MSFSS) for solving the classification problem of imbalanced data. We compared the proposed 
algorithm with a baseline and several state-of-the-art algorithms on 40 benchmarked class imbalance 
datasets, and the experimental results show that the MSFSS significantly outperforms several other 
competitors. In particular, the MSFSS acquires the best results in term of the F-measure metric on 27 
datasets and the best results in term of the G-mean metric on 26 datasets, out of 40 datasets. Although 
the proposed algorithm requires consuming more time than the compared algorithms, the increment of 
running time seems to be acceptable. The experimental results indicate the effectiveness and 
superiority of the proposed MSFSS algorithm. 

The novelties and contributions of this study can be easily concluded as follows: 
1) To guarantee to produce a sufficient diversity among base learners of stacking, further to generate 

diverse enough meta features to improve the quality of stacking ensemble, a novel strategy using 
multiple sampling approaches in combination with multiple learning algorithms is proposed; 

2) To improve the quality of the meta learner, a WOA-based feature selection procedure is introduced, 
which guarantees to sufficiently remove those irrelevant and redundant features from the original 
meta feature space. 
The remainder of this paper is organized as follows. Section 2 firstly explains what class 

imbalance problem is and analyzes its reasons, and then briefly describes the related work about class 
imbalance ensemble learning techniques. Section 3 describes the procedure of the proposed MSFSS 
algorithm in detail. The experimental settings, results, and discussions are presented in Section 4. 
Finally, Section 5 concludes the contributions of this study. 

2. Preliminary and related work 

2.1. Class imbalance issue 

As indicated in Section 1, the class imbalance issue, which is also called the imbalanced data 
distribution issue, widely emerges in various real-world applications. For a given dataset, if the 
instances belonging to a class are much more than the number of instances in the other class, it can be 
called a class imbalance dataset. As we know, most traditional supervised learning algorithms abide 
by the empirical risk minimization rule, i.e., the training optimization aims at: 

𝑓∗ = argmin
∈

∑ 𝐿(𝑓(𝑥 ), 𝑦 )        (1) 

where 𝑥  and 𝑦  respectively denote the ith training instance and the corresponding training label, N 
indicates the number of training instances, L represents a specific loss function, and F denotes the 
candidate function family, then the optimization problem is indeed searching the optimal 𝑓∗ from F 
to make the sum of losses be minimal. Based on Eq (1), it is not difficult to observe that when the 
number of instances belonging to a class overwhelms that of the other class, the majority class 
obviously contributes more to the total loss. Therefore, the traditional supervised learning algorithms are 
apt to focus more on the majority class, but damage the interests of the minority class. However, that does 
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not mean that an imbalanced data distribution certainly makes traditional supervised learning algorithms 
lose efficacy. When there exists a clear boundary between two classes, the harmfulness of imbalanced data 
distribution can be almost ignored (see Figure 1(a)). Several previous works [40,41] illustrate that when 
there exists a severe class overlap (see Figure 1(b)) or a lot of noisy instances (see Figure 1(c)), class 
imbalance issues would be highlighted. In other words, the skewed data distribution itself is not a 
problem, but when some other complex distribution factors emerge, it would play a role in destroying 
the performance of the minority class. 

 

Figure 1. Imbalanced data distribution with (a) a clear boundary, (b) class overlap, and (c) 
noisy instances. 

2.2. Related work 

In Section 1, it has been indicated that class imbalance learning generally adopts one of three of 
the following strategies: data-level approaches, algorithm-level methods, and ensemble learning 
algorithms. In this study, we pay close attention to the ensemble learning technique as it is always more 
robust than the other two. 

In the context of classifying imbalanced data, ensemble learning algorithms integrate either a data-
level technique or algorithm-level strategy into an ensemble paradigm, such as bagging [42], boosting [43] 
and stacking [32]. Specifically, bagging oversamples or undersamples instances to construct multiple 
different balanced training subsets, then trains a classifier on each subset, and finally adopts majority 
voting to predict class labels of test instances. BalancedBagging [26], which is a popular class 
imbalance ensemble learning algorithm, uses a random undersampling (RUS) technique on majority 
instances for multiple iterations in which each undersamples the majority instances to combine with 
all minority instances for constituting a balanced training subset that is sequentially used to train the 
base learner. SMOTEBagging [27] adopts a similar process as BalancedBagging, but only replaces the 
RUS with the SMOTE [16] oversampling algorithm.  

The boosting paradigm takes advantage of the feedback of the classification results to dynamically 
increase the weights of misclassified instances, further trains a new base classifier, and finally predicts the 
class labels of test instances by a weighted voting rule. Unlike the parallel generation method adopted by 
bagging, boosting generates base learners in a serial fashion. RUSBoost [28] is a popular boosting 
algorithm which is specifically designed to address the class imbalance learning problem. It first 
randomly undersamples majority instances to acquire a balanced training set, and then calls on the 
boosting algorithm [43] to improve the classification performance.  
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As for stacking [32], it adopts a totally different method from bagging and boosting to integrate 
the outputs of base learners. It first arranges all outputs generated by base learners in order to constitute 
a new feature space that is called the meta feature space. In this space, each feature simultaneously 
reflects the characteristics of the corresponding instance and the corresponding base learner. Then, a 
new meta classifier is further trained on the meta feature space to make the final decision. Specifically, 
stacking adopts a two-layer structure, and meanwhile, it requires using diverse learning algorithms to 
guarantee the diversity in the meta feature space. 

In the context of class imbalance learning, several stacking ensemble learning algorithms have been 
developed, including the stable and interpretable rule set (SIRUS) [29], supervised adaptive discriminant 
analysis (SADA) [30], and neighborhood undersampling stacked ensemble (NUS-SE) [31]. In particular, 
the SIRUS algorithm first adopts the inverse random undersampling (IRUS) approach [20] to 
transform the original imbalanced training set to be a balanced one, and then trains different base 
learners on those transformed training sets to constitute the meta feature space. Similar to SIRUS [29], 
both SADA [30] and NUS-SE [31] only replace IRUS adopted by SIRUS with the adaptive synthetic 
(ADASYN) undersampling strategy [17] and a neighborhood density-based undersampling strategy, 
respectively. We note that these emerging stacking ensemble learning algorithms present a common 
characteristic, i.e., the diversity of the ensemble completely relies on the adoption of multiple different 
supervised learning algorithms, but neglects the diversity at the data level, thus they may suffer from 
a suboptimization problem. In addition, we also note that all of these algorithms directly use all of the 
meta features to train the meta learner whose quality might be decreased by some poor and redundant 
meta features. Therefore, it is necessary to develop new imbalance stacking ensemble algorithms to 
effectively address these two problems. This also motivates our research in this study. 

3. Methods 

3.1. First-layer improving ensemble diversity by combining multiple sampling approaches and diverse 
supervised learning algorithms 

As we know, to guarantee an ensemble learning algorithm will outperform its individual members, it 
requires satisfying a sufficient and necessary condition, i.e., each base learner should be accurate and 
meanwhile, all base learners should be diverse enough [44]. The principle can be described as follows: 

𝐸 = 𝐸 − 𝑃           (2) 

where 𝐸 denotes the generalization error of the ensemble learner, 𝐸 and 𝑃 represent the average 
generalization error and the average diversity of all base learners, respectively. To produce successful 
ensemble learning models, these two aspects should be considered simultaneously. 

Stacking [32] and its several variants [29–31], which are specifically designed for classifying 
imbalanced data, acquire diversity only by adopting different supervised learning algorithms, by 
training them on the same or similar data. Therefore, they may suffer from a suboptimization problem 
due to the lack of diversity. To further improve the diversity among the base learners/meta features, 
we propose to combine both different sampling strategies and supervised learning algorithms. Suppose 
that R and C respectively represent resampling and classification algorithms, and H and K denote the 
number of them, respectively. Then, there exist 𝐻 × 𝐾 different combinations. That means that the 
new generated meta feature space is 𝐻 × 𝐾 dimensional (see Table 1). 
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Table 1. Constitution of the meta feature space. 

𝐶 

𝑅 

𝐶  𝐶  … 𝐶  𝐶  … 𝐶  

𝑅  (𝑅 , 𝐶 ) (𝑅 , 𝐶 ) … (𝑅 , 𝐶 ) (𝑅 , 𝐶 ) … (𝑅 , 𝐶 ) 

𝑅  (𝑅 , 𝐶 ) (𝑅 , 𝐶 ) … (𝑅 , 𝐶 ) (𝑅 , 𝐶 ) … (𝑅 , 𝐶 ) 
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𝑅  (𝑅 , 𝐶 ) (𝑅 , 𝐶 ) … (𝑅 , 𝐶 ) (𝑅 , 𝐶 ) … (𝑅 , 𝐶 ) 

𝑅  (𝑅 , 𝐶 ) (𝑅 , 𝐶 ) … (𝑅 , 𝐶 ) (𝑅 , 𝐶 ) … (𝑅 , 𝐶 ) 

. 
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. 

. 
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. 
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. 

. 
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. 

. 
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. 

𝑅  (𝑅 , 𝐶 ) (𝑅 , 𝐶 ) … (𝑅 , 𝐶 ) (𝑅 , 𝐶 ) … (𝑅 , 𝐶 ) 

To avoid the generated meta features being overfitted on training instances, an internal 5-fold cross 
validation procedure is conducted to sequentially produce meta features for instances belonging to each 
fold. That means that, every time, the instances belonging to four different folds are first integrated to 
conduct sampling and classifier modeling procedures, and then the instances belonging to the remainder 
fold are fed into the trained classifier to further obtain their corresponding meta features. This strategy is 
also widely adopted by the original stacking algorithm and its various variants [29–32]. When a new test 
instance arrives, it would be respectively put into five trained classifiers to obtain five different 
predictions, and then their mean value could be calculated as the corresponding meta feature. Figure 2 
takes the combination of 𝑅   and 𝐶   as an example to describe the generation procedure of the 
corresponding meta feature. 

 

Figure 2. The procedure of generating a meta feature for both training and test data. 
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In this study, we selected four popular sampling algorithms namely SMOTE [16], ADASYN [17], 
SMOTE-ENN [18], and SMOTE-Tomek [19], and five different supervised learning algorithms namely 
K-nearest neighbors (KNN) [45], C4.5 decision tree (C4.5 DT) [46], support vector machine (SVM) [47], 
Gaussian naïve Bayes (GNB) [48], and linear discriminant analysis (LDA) [49]. Therefore, the number 
of generated meta features is 4 × 5 = 20, and the training procedure requires producing 100 base 
learners as the adoption of internal 5-fold cross validation. In practical applications, the readers are 
encouraged to freely replace or extend sampling and supervised learning algorithms. 

3.2. Second layer-improving quality of meta features by whale optimization feature selection strategy 

As indicated in Eq (2), the quality of an ensemble learning algorithm simultaneously depends on 
the diversity among base learners and the quality of each base learner. However, we cannot guarantee 
that the meta feature space is excellent enough, as in this space, some features might be poor or 
redundant. Therefore, it does not suggest to directly train a meta learner on all meta features. A feature 
selection procedure may be required to remove those poor and redundant meta features. 

In this study, we consider to adopt the whale optimization algorithm (WOA) [36–39] to 
implement a procedure of wrapper feature selection. Specifically, the WOA, which simulates the 
hunting behavior of humpback whales, is a recently proposed nature-inspired swarm optimization 
algorithm. According to some recent studies, in comparison with some traditional swarm optimization 
algorithms, the WOA has presented several specific merits as follows: (1) stronger global searching 
ability, (2) less parameter settings, and (3) faster convergence speed [36–39]. Also, we note that the 
WOA algorithm could be used to solve both continuous and discrete optimization problems, thus in this 
study, we select to use the WOA algorithm to conduct the feature selection task in the meta feature space. 

Specifically, the WOA contains two phases, namely exploitation and exploration, respectively. 
The former phase takes charge of the convergence of the algorithm, while the latter phase is used to 
avoid the algorithm being overfitted. Suppose 𝑋  is the current solution of a whale, then the 
mathematical model corresponding to the movement of the whale around a prey can be represented as: 

𝐷 = |�⃑� ∙ 𝑋 ∗⃑(𝑡) − �⃑�(𝑡)|        (3) 

�⃑�(𝑡 + 1) = 𝑋∗⃑(𝑡) − 𝐴 ∙ 𝐷       (4) 

where 𝑡 denotes the current iteration, 𝑋∗ represents the best solution obtained so far, | | indicates the 
absolute value, and ∙ represents element-by-element multiplication. 𝐴 and 𝐹 are coefficient vectors 
which are respectively calculated by the following equations: 

𝐴 = 2�⃑� ∙ 𝑟 − �⃑�          (5) 

�⃑� = 2 ∙ 𝑟          (6) 

where �⃑� specifies a vector constructed by multiple same elements 𝑎 which gradually conduct a linear 
decrease from 2 to 0, and 𝑟 denotes a random vector in [0,1]. In particular, the variations of both 𝐴 and 
𝐶 vectors control the areas where a solution can be located in the neighborhood of the best solution. 
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The humpback whales move in a shrinking encircling mechanism and along a spiral-shaped path 
toward the prey. In the WOA, the shrinking encircling behavior is simulated by decreasing the value 
of 𝑎 in Eq (5) according to Eq (6),  

𝑎 = 1 −           (7) 

where 𝑀𝑎𝑥𝐼  denotes the designated number of iterations in the WOA. The spiral-shaped path is 
achieved by calculating the distance between the current solution 𝑋  and the current swarm best 
solution 𝑋∗. Then a spiral equation could be created as 

�⃑�(𝑡 + 1) = 𝐷 ∙ 𝑒 ∙ cos(2𝜋𝑙) + 𝑋∗⃑(𝑡)       (8) 

where 𝐷 = |𝑋∗⃑(𝑡) − �⃑�(𝑡)|, 𝑏 defines the spiral’s shape of the spiral, and 𝑙 represents a random 
number in [-1, 1]. During optimization, the shrinking encircling and upwarding spiral-shaped path are 
respectively given a 50% chance to be conducted as 

�⃑�(𝑡 + 1) =
𝑋∗⃑(𝑡) − 𝐴 ∙ 𝐷,                 𝑖𝑓 𝑝 < 0.5

𝐷 ∙ 𝑒 ∙ cos(2𝜋𝑙) + 𝑋∗⃑(𝑡),      𝑖𝑓 𝑝 ≥ 0.5
     (9) 

where 𝑝 represents a random number in [0, 1]. 
In addition, to avoid the population dropping into the local optimization area, a few whales are 

randomly selected at each iteration to conduct random movements as follows: 

𝐷 = |�⃑� ∙ 𝑋⃑ − �⃑�|          (10) 

�⃑�(𝑡 + 1) = 𝑋⃑ − 𝐴 ∙ 𝐷         (11) 

where 𝑋⃑ denotes a randomly chosen whale from the current whale population. 

The procedure of the WOA algorithm can be simply described as below. 

WOA Algorithm 
Input: size of population 𝑀, the number of iterations 𝑀𝑎𝑥𝐼 
Output: the optimized solution 𝑋∗ found by the WOA 
Procedure: 
Generate the initial population 𝑋 , 𝑖 = 1,2, … , 𝑀;   
Calculate the fitness value for each whale 𝑋 ; 
𝑋∗=the current best solution; 
for j=1 to 𝑀𝑎𝑥𝐼 

for i = 1 to 𝑀 
        Update 𝑎, 𝐴, 𝐹, 𝑙, and 𝑝; 
        if 𝑝 < 0.5 
            if |𝐴|<1 
               Use Eq (4) to update the position of 𝑋 (𝑗); 
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            else 

               Select randomly a whale 𝑋⃑ and update the position of 𝑋 (𝑗) by Eq (11); 

            end if 
        else 
            Use Eq (8) to update the position of 𝑋 (𝑗); 
        end if 
        Calculate the fitness value for 𝑋 (𝑗); 
   end for  
   Update 𝑋∗; 
end for 
Return 𝑋∗ 

In this study, 𝑀, which denotes the size of the population in the WOA, is designated as 50, and 
the number of iterations, 𝑀𝑎𝑥𝐼, is empirically set to be 200. As for the fitness function of the WOA, 
it is defined as follows: 

𝑓𝑖𝑡 �⃑� = 𝐹 − 𝑚𝑒𝑎𝑠𝑢𝑟𝑒 + 𝐺 − 𝑚𝑒𝑎𝑛      (12) 

where F-measure and G-mean are both popular performance metrics for evaluating supervised learning 
algorithms conducted on imbalanced data, which will be further described in detail in Section 4. 

In the original 𝐻 × 𝐾 dimensional meta feature space, the WOA is adopted to extract n features 
(𝑛 < 𝐻 × 𝐾), and then a linear regression classifier [50] is trained on it to make the final decision. The 
procedure of WOA-based feature selection is illustrated in Figure 3. Specifically, to avoid overfitting, 
the WOA also conducts an internal 5-fold cross validation to implement the wrapper feature selection 
procedure. 

 

Figure 3. Procedure for selecting features from meta feature space and creating the final 
meta learner. 
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3.3. MSFSS algorithm 

By integrating multiple sampling meta feature generation and WOA-based meta feature selection 
procedures, we propose a novel imbalance stacking ensemble learning algorithm called MSFSS, which 
is described below. 
MSFSS Algorithm 
Input：a binary-class imbalanced data set Ψ, the number of whales 𝑀, the number of iterations 
𝑀𝑎𝑥𝐼, sampling group {𝑅 , 𝑅 , … , 𝑅 }, algorithm group {𝐶 , 𝐶 , … , 𝐶 } 
Output：prediction label sequence 
Training Procedure： 
Divide the data set Ψ into the training set Ψ  and the testing set  Ψ ; 

Divide Ψ  into 5 disjoint subsets Ψ . Ψ , Ψ , Ψ , Ψ ; 

for  𝑠= 1 to 5 

Ψ =  Ψ − Ψ ; 

Ψ = Ψ ; 

for 𝑤 = 1 to 𝐻 

Run 𝑅  on Ψ  to acquire the corresponding sampling set Ψ ; 

    for v = 1 to 𝐾 

         Use 𝐶  on Ψ to train the corresponding classifier 𝐶 , , ; 

         Run 𝐶 , ,  on Ψ  to acquire the corresponding meta features; 
end for 

end for 
end for 
Use all meta features to integrate a meta training set Ψ  to replace the original training 
set  Ψ ; 

Obtain a shrinking meta training set Ψ = WOA(Ψ , 𝑀, 𝑀𝑎𝑥𝐼); 
Train a linear regression classifier LR on Ψ ; 
Testing Procedure： 
for  𝑤 = 1 to 𝐻 
   for 𝑣 = 1 to 𝐾 
       for 𝑠 = 1 to 5 
            Run 𝐶 , ,  on  Ψ  to acquire Ψ , ; 
       end for 
       Generate the ((𝑤 − 1) × 𝐾 + 𝑣)th meta feature by averaging Ψ , , Ψ , , Ψ , , Ψ , , 
Ψ , ; 

   end for 
end for 
Use all meta features to integrate a meta test set Ψ  to replace the original training set 
 Ψ ; 
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Extract the shrinking meta test set Ψ  by inquiring the numerical order of features recorded 
by the WOA; 

Call LR to predict the class labels of all instances on Ψ  and output the corresponding 
prediction label sequence. 

Without loss of generality, we suppose the average time complexity of all sampling algorithms is 
𝜑, the average time complexity of all supervised learning algorithms is 𝜏, and the time complexity of 
training a linear regression meta learner is 𝜔. Then, it is clear that the time complexity of the MSFSS 
algorithm is 𝑂((𝜑 + 𝜏)𝐻 × 𝐾 + 𝑀 × 𝑀𝑎𝑥𝐼 × 𝜔) . Here, 𝜑 , 𝜏 , and 𝜔  all rely on the number of 
training instances N. 

4. Experiments 

4.1. Datasets descriptions 

In this study, we used 40 benchmarked class imbalance datasets to validate the performance of 
the proposed MSFSS algorithm. Specifically, these benchmark datasets are extracted from either UCI 
machine learning repository [51] or Keel data repository [52]. Table 2 describes the detailed 
information about these data sets, including the number of instances, number of features, class 
imbalance ratio, and data source of each dataset. 

Table 2. Descriptions of the datasets used in this study. 

ID Dataset Number of instances Number of features Class imbalance ratio Data source 

1 EEG_Eye_State 14,980 14 1.22 UCI 

2 banana 5,299 2 1.23 UCI 

3 Australian 690 14 1.24 UCI 

4 brainweb_20000 20,000 3 1.32 UCI 

5 MovementAAL_RSS 13,197 4 1.34 UCI 

6 liver 345 6 1.37 UCI 

7 Elec_Partial 10,000 5 1.37 UCI 

8 Ionosphere 351 34 1.78 UCI 

9 glass1 214 9 1.81 KEEL 

10 ecoli-0_vs_1 220 7 1.85 KEEL 

11 wisconsin 683 9 1.86 KEEL 

12 diabetes 768 8 1.86 UCI 

13 iris0 150 4 2.00 KEEL 

14 bupa 300 7 2.00 UCI 

15 wine 178 13 2.01 UCI 

16 titanic 2,201 3 2.09 UCI 

17 German 1,000 24 2.33 UCI 

18 phoneme 5,404 5 2.40 UCI 

19 sober 72 19 2.42 KEEL 

20 ILPD 583 11 2.49 UCI 

Continued on next page 
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ID Dataset Number of instances Number of features Class imbalance ratio Data source 

21 glass-0-1-2-3_vs_4-5-6 214 9 3.19 KEEL 

22 blood 748 4 3.20 UCI 

23 ecoli1 336 7 3.36 KEEL 

24 skin 245,057 3 3.81 UCI 

25 usps 1,500 241 4.00 UCI 

26 appendicitis 106 8 4.04 UCI 

27 new-thyroid1 215 5 5.14 KEEL 

28 ecoli2 336 7 5.46 KEEL 

29 musk 6,598 166 5.48 UCI 

30 segment0 2,308 19 6.01 KEEL 

31 glass-3-5_vs_1-2-6-7 214 10 6.13 KEEL 

32 glass 214 9 6.37 KEEL 

33 page-blocks0 5,472 10 8.78 KEEL 

34 ecoli-0-4-6_vs_5 203 7 9.15 KEEL 

35 HTRU2 17,898 8 9.92 UCI 

36 vowel0 988 13 9.97 UCI 

37 ecoli-0-1-4-7_vs_2-3-5-6 336 8 10.58 KEEL 

38 ecoli4 336 8 15.80 KEEL 

39 dermatology-6 358 34 16.90 KEEL 

40 wilt 4,839 5 17.54 UCI 

4.2. Experimental settings 

4.2.1 Compared algorithms and parameter settings 

In this study, we compared the proposed MSFSS algorithm with a baseline algorithm: stacking [32], 
two representative class imbalance ensemble learning algorithms respectively adopting bagging and 
boosting paradigms: BalancedBagging [26] and RUSBoost [28], and three popular stacking variants for 
classifying imbalanced data: SIRUS [29], SADA [30], and NUS-SE [31]. Specifically, all sampling 
techniques used in these algorithms sampled totally balanced datasets. Both BalancedBagging [26] and 
RUSBoost [28] used a C4.5 decision tree [46] as the base learner, and the number of base learners was 
designated as 50. Considering that our proposed MSFSS algorithm requires producing 20 different base 
learners, thus to guarantee the impartiality of the compared experiments, the stacking [32], SIRUS [29], 
SADA [30] and NUS-SE [31] algorithms all generate 20 base classifiers, which means that the stacking 
requires disturbing the feature space four times, while three other algorithms require independently 
conducting the sampling procedure four times. As for all of the supervised learning algorithms, they 
adopt the default parameters in scikit-learn 1.3.11. Table 3 presents the details about these compared 
algorithms, and explains the reasons for choosing them. 

 

 
1 https://scikit-learn.org/ 
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Table 3. The details of the compared algorithms. 

No Algorithm Settings Reasons for choice 

1 BalancedBagging The base learner uses a C4.5 decision tree, the number 

of base learners in the ensemble is designated as 50, 

and the sampling strategy adopts random 

undersampling (RUS). 

It serves as a popular ensemble 

class imbalance learning 

algorithm based on bagging 

paradigm. 

2 RUSBoost The base learner uses a C4.5 decision tree, the number 

of base learners in the ensemble is designated as 50, 

and the sampling strategy adopts random 

undersampling (RUS). 

It serves as a popular ensemble 

class imbalance learning 

algorithm based on boosting 

paradigm. 

3 Stacking The base learners use KNN, a C4.5 decision tree, a 

support vector machine (SVM), Gaussian naïve 

Bayes, and linear discriminant analysis (LDA), the 

number of base learners in the ensemble is designated 

as 20, and no sampling strategy is used. 

It serves as a baseline 

algorithm using stacking 

paradigm. 

4 SIRUS The base learners use KNN, a C4.5 decision tree, a 

support vector machine (SVM), Gaussian naïve 

Bayes, and linear discriminant analysis (LDA), the 

number of base learners in the ensemble is designated 

as 20, and the sampling strategy adopts inversed RUS 

(IRUS). 

It serves as a state-of-the-art 

stacking variant aiming at 

imbalanced data classification. 

5 SADA The base learners use KNN, a C4.5 decision tree, a 

support vector machine (SVM), Gaussian naïve 

Bayes, and linear discriminant analysis (LDA), the 

number of base learners in the ensemble is designated 

as 20, and the sampling strategy adopts ADASYN. 

It serves as a state-of-the-art 

stacking variant aiming at 

imbalanced data classification. 

6 NUS-SE The base learners use KNN, a C4.5 decision tree, a 

support vector machine (SVM), Gaussian naïve 

Bayes, and linear discriminant analysis (LDA), the 

number of base learners in the ensemble is designated 

as 20, and the sampling strategy adopts neighborhood 

undersampling. 

It serves as a state-of-the-art 

stacking variant aiming at 

imbalanced data classification. 

4.2.2 Performance evaluation metrics 

It is well known that on imbalanced classification tasks, the traditional classification accuracy or 
classification error rate is not an applicative performance evaluation metric. Therefore, in this study, 
we adopted two popular metrics, F-measure and G-mean for evaluating the performance of various 
class imbalance learning algorithms. F-measure tests the tradeoff between two metrics, precision and 
recall, while G-mean tests the tradeoff between two other metrics, true positive rate (TPR) and true 
negative rate (TNR). Specifically, these two metrics are calculated as follows. 

𝐹 − 𝑚𝑒𝑎𝑠𝑢𝑟𝑒 =
× ×

×
        (13) 
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𝐺 − 𝑚𝑒𝑎𝑛 = √TPR × TNR          (14) 

where precision, recall, TPR and TNR can be further calculated by, 

precision =           (15) 

recall = TPR =           (16) 

TNR =            (17) 

where TP, TN, FP, and FN further rely on the statistics described in Table 4. 
In addition, we used external 5-fold cross validation to detect the performance of each algorithm. 

Considering the randomness of the experiments, each experiment was randomly repeated 50 times, 
and then the average results were presented. 

Table 4. Confusion matrix. 

 Predict positive Predict negative 

Actual positive TP FN 

Actual negative FN TN 

4.3. Results and discussions 

Experimental results are illustrated in Tables 5 and 6. It can be clearly observed that the Stacking-
based algorithms obviously outperform to two algorithms based on other ensemble learning paradigms. 
Specifically, the BalancedBagging and RUSBoost only respectively produce 4 best results on the F-
measure metric, and 5 and 3 best results on the G-mean metric, which are significantly less than that 
produced by stacking series algorithms. We believe that it associates to different mechanisms adopted by 
these ensemble learning paradigms as both bagging and boosting only integrate the classification results 
by simple voting methods, but as a meta learning strategy, the stacking tries to learn how to learn. 

Table 5. Performance comparison of various algorithms in terms of the F-measure metric. 

Dataset BalancedBagging RUSBoost Stacking SIRUS SADA NUS-SE MSFSS 

EEG_Eye_State 0.8843 0.7191 0.9640 0.9623 0.9668 0.9031 0.9691 

banana 0.8718 0.6922 0.8860 0.8889 0.8835 0.8897 0.8787 

Australian 0.8777 0.8382 0.8686 0.8623 0.8613 0.8639 0.8542 

brainweb_20000 0.9421 0.9469 0.9469 0.9491 0.9427 0.9493 0.9448 

MovementAAL_RSS 0.7440 0.6766 0.7805 0.7648 0.7641 0.7811 0.7399 

liver 0.6431 0.6223 0.5912 0.6028 0.6143 0.5955 0.6552 

Elec_Partial 0.6862 0.6658 0.6665 0.6661 0.6646 0.6686 0.6902 

Ionosphere 0.9565 0.8979 0.9787 0.9787 0.9787 0.9565 0.9787 

glass1 0.7045 0.6408 0.6991 0.6629 0.6933 0.6485 0.7380 

Continued on next page 
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Dataset BalancedBagging RUSBoost Stacking SIRUS SADA NUS-SE MSFSS 

ecoli-0_vs_1 0.9801 0.9736 0.9862 0.9797 0.9733 0.9797 0.9862 

wisconsin 0.9470 0.9143 0.9624 0.9553 0.9625 0.9574 0.9641 

diabetes 0.6666 0.4285 0.5454 0.6399 0.6274 0.5454 0.6885 

iris0 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 

bupa 0.5852 0.6095 0.6250 0.5046 0.5986 0.2907 0.6831 

wine 0.9833 0.9833 0.9956 0.9873 0.9916 0.9916 0.9956 

titanic 0.5911 0.6077 0.5415 0.6006 0.6006 0.5985 0.6006 

German 0.6400 0.6506 0.6101 0.6206 0.5666 0.6451 0.6842 

phoneme 0.8111 0.7079 0.8112 0.7997 0.8246 0.7971 0.8312 

sober 0.7453 0.7396 0.7287 0.7488 0.7430 0.6730 0.8242 

ILPD 0.5157 0.5119 0.0849 0.0372 0.0988 0.0300 0.4905 

glass-0-1-2-3_vs_4-5-6 0.9038 0.8800 0.8368 0.8431 0.8681 0.8331 0.9083 

blood 0.4636 0.4394 0.1452 0.0392 0.2759 0.1435 0.4832 

ecoli1 0.7865 0.7007 0.7930 0.8034 0.7596 0.7644 0.8070 

skin 0.9981 0.9186 0.9989 0.9982 0.9989 0.9989 0.9989 

usps 0.7543 0.6404 0.9128 0.9272 0.9198 0.9143 0.9328 

appendicitis 0.9600 0.9600 1.0000 0.9266 0.9800 0.8300 1.0000 

new-thyroid1 0.9269 0.9099 0.9777 0.9882 0.9777 0.9882 0.9461 

ecoli2 0.7857 0.7857 0.7857 0.7857 0.7857 0.7857 0.7857 

musk 0.9582 0.9682 0.9884 0.9748 0.9873 0.9875 0.9899 

segment0 0.9745 0.9834 0.9815 0.9907 0.9894 0.9907 0.9932 

glass-3-5_vs_1-2-6-7 0.8413 0.8014 0.8978 0.7969 0.8169 0.0000 0.9314 

glass 0.8359 0.8247 0.8575 0.8107 0.8125 0.8103 0.8155 

page-blocks0 0.8310 0.6615 0.8716 0.7986 0.8489 0.6871 0.8028 

ecoli-0-4-6_vs_5 0.9555 0.9777 0.9714 0.9377 1.0000 0.9714 0.9777 

HTRU2 0.8539 0.7787 0.8695 0.8744 0.8757 0.8700 0.8700 

vowel0 0.8484 0.8823 0.9706 0.8956 0.9945 0.4460 0.9945 

ecoli-0-1-4-7_vs_2-3-5-

6 

0.9384 0.9664 0.9777 0.9356 1.0000 1.0000 0.9818 

ecoli4 0.7433 0.7974 0.9666 0.9066 0.9666 0.8400 0.9666 

dermatology-6 0.8800 1.0000 1.0000 0.9666 0.9666 0.9333 1.0000 

wilt 0.9828 0.9657 0.9894 0.9917 0.9921 0.9850 0.9825 

Table 6. Performance comparison of various algorithms in terms of the G-mean metric. 

Dataset BalancedBagging RUSBoost Stacking SIRUS SADA NUS-SE MSFSS 

EEG_Eye_State 0.8946 0.7419 0.9677 0.9653 0.9683 0.9065 0.9727 

banana 0.8837 0.7200 0.9029 0.9025 0.8917 0.9032 0.8899 

Australian 0.8656 0.8238 0.8588 0.8556 0.8539 0.8547 0.8467 

brainweb_20000 0.9487 0.9537 0.9529 0.9550 0.9461 0.9550 0.9518 

MovementAAL_RSS 0.7256 0.6571 0.7322 0.7221 0.7244 0.7327 0.7083 

liver 0.6812 0.6667 0.7038 0.6835 0.6888 0.7066 0.7080 

Continued on next page 
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Dataset BalancedBagging RUSBoost Stacking SIRUS SADA NUS-SE MSFSS 

Elec_Partial 0.7334 0.7052 0.7563 0.7500 0.7484 0.7511 0.7679 

Ionosphere 0.9363 0.7985 0.9789 0.9789 0.9789 0.9363 0.9789 

glass1 0.7587 0.7126 0.7918 0.7845 0.7932 0.7698 0.8175 

ecoli-0_vs_1 0.9864 0.9932 0.9864 0.9801 0.9864 0.9864 0.9864 

wisconsin 0.9606 0.9350 0.9670 0.9645 0.9651 0.9649 0.9774 

diabetes 0.7508 0.5416 0.7276 0.7442 0.7268 0.7276 0.7587 

iris0 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 

bupa 0.6777 0.6996 0.7972 0.7616 0.7554 0.5923 0.7557 

wine 0.9744 0.9740 0.9912 0.9799 0.9873 0.9873 0.9912 

titanic 0.6830 0.6997 0.8279 0.7684 0.7684 0.7640 0.8289 

German 0.7483 0.7521 0.7181 0.7319 0.6792 0.7301 0.7868 

phoneme 0.8733 0.8064 0.8794 0.8440 0.8635 0.8420 0.8797 

sober 0.8053 0.7952 0.8175 0.8235 0.8387 0.7721 0.8806 

ILPD 0.6487 0.6463 0.3460 0.1078 0.3549 0.1114 0.6104 

glass-0-1-2-3_vs_4-5-

6 

0.9439 0.9343 0.9043 0.8905 0.9118 0.8766 0.9473 

blood 0.6408 0.6124 0.5147 0.2377 0.5795 0.5321 0.6511 

ecoli1 0.8782 0.8161 0.8601 0.8525 0.8205 0.7953 0.8856 

skin 0.9993 0.9683 0.9990 0.9982 0.9989 0.9990 0.9997 

usps 0.8547 0.7854 0.9632 0.9531 0.9689 0.9689 0.9689 

appendicitis 0.9878 0.9878 1.0000 0.9581 0.9816 0.8483 1.0000 

new-thyroid1 0.9701 0.9758 0.9855 0.9885 0.9855 0.9885 0.9770 

ecoli2 0.8924 0.8247 0.9429 0.9429 0.9429 0.9429 0.9429 

musk 0.9473 0.9240 0.9839 0.9114 0.9460 0.9830 0.9877 

segment0 0.9893 0.9921 0.9952 0.9972 0.9946 0.9972 0.9983 

glass-3-5_vs_1-2-6-7 0.9264 0.9159 0.9504 0.9258 0.9310 0.0000 0.9862 

glass 0.9458 0.9400 0.9277 0.9103 0.8984 0.9019 0.9251 

page-blocks0 0.9512 0.8246 0.9254 0.9043 0.9203 0.8459 0.8923 

ecoli-0-4-6_vs_5 0.9944 0.9972 0.9972 0.9421 1.0000 0.9972 0.9972 

HTRU2 0.9416 0.8580 0.9601 0.9311 0.9338 0.9274 0.9444 

vowel0 0.9620 0.9609 0.9924 0.9364 0.9946 0.5700 0.9994 

ecoli-0-1-4-7_vs_2-3-

5-6 

0.9934 0.9967 0.9984 0.9565 1.0000 1.0000 0.9983 

ecoli4 0.8315 0.9458 0.9984 0.9433 0.9984 0.8847 0.9984 

dermatology-6 0.8900 1.0000 1.0000 0.9985 0.9985 0.9970 1.0000 

wilt 0.9516 0.9150 0.9548 0.9324 0.9170 0.9006 0.9478 

Additionally, we observed an interesting phenomenon, that is, stacking seemed to perform better 
than its three popular variants which rely on sampling techniques to address class imbalance problems. 
We analyzed the reasons for this from the following two aspects: (1) most datasets used in our 
experiments own relatively low class imbalance ratios, which are not enough to destroy the 
performance of stacking, while in such a scenario, three undersampling-based variants tend to abandon 
some important classification information, thereby decreasing the classification performance, and (2) 
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as indicated in Section 2, all three stacking variants adopt a single sampling technique to generate 
similar training subsets, which is apt to destroy the diversity of the ensemble learner. 

Furthermore, it is observed that the proposed MSFSS algorithm performs significantly better than 
all other compared algorithms. Specifically, the MSFSS has produced the best F-measure results on 27 
datasets, and the best G-mean results on 26 datasets, respectively. In contrast to other ensemble 
learning algorithms, it profits from the following two aspects: enhancing ensemble diversity by 
introducing the multiple sampling strategies, and improving the quality of the meta feature space by 
introducing WOA-based feature selection procedure. The results meet our expectations, and 
meanwhile, indicate the effectiveness and superiority of the proposed MSFSS algorithm. 

4.4. Significance analysis 

Next, we also analyzed the experimental results with statistics to further observe whether there 
exist significant differences among these compared algorithms. In particular, we conducted the 
Freidman test and Nemenyi post-hoc test [53,54], and presented the statistical results in the form of a 
critical difference (CD) graph (see Figure 4). 

 

(a)                                (b) 

Figure 4. CD statistics graphs of seven compared algorithms on 40 datasets in terms of 
the (a) F-measure and (b) G-mean. 

In Figure 4, we observed that on both metrics, the MSFSS had acquired the lowest average 
rankings, 2.4 in terms of the F-measure metric, and 2.375 in terms of the G-mean metric, which indicated 
that it was the best algorithm among all of the compared algorithms on these two metrics. We also noted 
that in the context of the F-measure, the MSFSS significantly outperformed all of the other algorithms 
except stacking and SADA, while on the G-mean metric, the MSFSS performed significantly better than 
all of the other algorithms except the stacking. 

4.5. Parameter discussions 

In addition to sampling and supervised learning algorithms, there also exist two key parameters 
which may influence the performance of the proposed MSFSS algorithm. They are, the population size 
M and the iteration times MaxI of the WOA. Specifically, the MaxI can be seen as a tradeoff between 
the performance and the efficiency. Figures 5 and 6 present the variances of F-measure and G-mean 
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performances with increased iteration times on the first ten datasets emerging in Table 2, respectively. 
It is not difficult to observe that in the initial phase of the WOA, the performance of the MSFSS 

improves rapidly, then after 100 iterations, the performance tends to promote slowly until 200 iterations, 
then the performance will become stable. That means that if a too-small MaxI is designated, the 
optimization procedure of the WOA might not be mature, and may produce a sub-optimized result for 
MSFSS, while if we give MaxI an oversized value, some unnecessary time would be consumed, further 
decreasing the efficiency of the MSFSS algorithm. It is a safe setting to make the MaxI be 200. 

 

Figure 5. The variance of F-measure performance with increased iterations. 

 

Figure 6. The variance of G-mean performance with increased iterations. 
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4.6. Ablation experiments 

To make it clear whether the two designs both play significant roles in improving the quality of 
stacking, two groups of ablation experiments were also designed. First, we investigated the role of 
adopting multiple sampling techniques to promote ensemble diversity. Specifically, we compared the 
performance of adopting multiple sampling methods in stacking to that of only using a single one. The 
experimental results are illustrated in Table 7 in which a pairwise t-test at 5% significance level was 
used to record the number of wins/ties/losses throughout 40 datasets. 

Table 7. Statistical comparison between adopting multiple sampling techniques and only 
a single sampling approach in MSFSS based on a pairwise t-test at 5% significance level. 

Comparison F-measure G-mean 

win tie lose win tie lose 

ALL vs. SMOTE 28 5 7 30 5 5 
ALL vs. ADASYN 30 4 6 29 4 7 

ALL vs. SMOTE-ENN 26 8 6 27 8 5 

ALL vs. SMOTE-Tomek 25 9 6 26 10 4 

The results in Table 7 show that in each group of experiment comparisons, the strategy of adopting 
multiple sampling techniques wins on significantly more datasets than that of using only one sampling 
approach. These results verify our assumption that disturbing the data-level method with multiple 
different kinds of sampling algorithms would be helpful for improving the diversity of base learners 
in stacking, further helping to improve the quality of stacking ensemble. 

Next, we investigated the role of feature selection conducting on the meta feature space of 
stacking. Specifically, we specified using all original meta features to train the meta learner as the 
baseline, and investigated how much performance promotion happened on each dataset by adopting 
the WOA-based feature selection procedure. The performance improvement percentages of the F-
measure and G-mean throughout all 40 datasets are presented in Figures 7 and 8, respectively. 

 

Figure 7. Performance improvement percentages of conducting the WOA-based feature 
selection procedure compared to directly training the meta learner on the original meta 
feature space in terms of the F-measure metric. 
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The results in these two figures show that on most datasets, selecting a sub-group of meta features 
by the WOA-based feature selection approach helps improving the classification performance in 
comparison to directly training the meta learner on the original meta feature space, further verifying 
the rationality of our design at the second layer of stacking. Specifically, feature selection improves F-
measure performance on 23 datasets, and only declines on 7 datasets, while in terms of the G-mean 
metric, the feature selection produces better results on 25 datasets, and worse results on 8 datasets in 
comparison to training the meta learner on all meta features. 

 

Figure 8. Performance improvement percentages of conducting the WOA-based feature 
selection procedure compared to directly training the meta learner on the original meta 
feature space in terms of the G-mean metric. 

Obviously, the results of two groups of ablation experiments reflect that our proposed two-
structure design for stacking is both helpful for improving the classification performance of stacking 
ensemble learning model on imbalanced data. 

4.7. Comparison of running time 

Finally, we compared the running time of the compared algorithms, and presented them in Table 8. 
It is not difficult to observe that in contrast to several other ensemble learning algorithms, the proposed 
MSFSS algorithm is generally more time-consuming. Actually, the increased time consumption mainly 
lies in the introduction of the WOA-based feature selection procedure. However, the size of the meta 
feature space only associates with two parameters, H and K, but is irrelevant to the original data. 
Therefore, the increased time consumption is acceptable. 
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Table 8. Running time comparison of various algorithms (seconds). 

Dataset BalancedBagging RUSBoost Stacking SIRUS SADA NUS-SE MSFSS 

EEG_Eye_State 0.7891 0.6383 243.6555 230.2293 370.1172 233.6021 356.2872 

banana 0.0793 0.2058 8.0224 7.3567 10.3903 7.3250 11.1298 

Australian 0.0481 0.1408 0.9951 0.9127 1.2501 0.8552 3.7041 

brainweb_20000 0.3011 0.8021 40.4165 36.0129 81.4095 33.9393 55.4272 

MovementAAL_RSS 0.2346 0.3938 99.4214 80.6455 131.9176 101.9191 103.2567 

liver 0.0381 0.1324 0.9226 1.0635 0.8770 0.5912 4.4089 

Elec_Partial 0.3249 0.4588 60.5196 48.8534 83.7458 52.1630 68.8820 

Ionosphere 0.0461 0.1552 15.6837 14.6712 26.4039 20.0584 32.6041 

glass1 0.0302 0.1145 0.9230 0.5733 0.5674 0.3908 2.9899 

ecoli-0_vs_1 0.0287 0.1076 0.4007 0.4741 0.5277 0.3551 2.8188 

wisconsin 0.0332 0.1249 0.6046 0.7440 0.9424 0.6745 3.7607 

diabetes 0.0530 0.1269 1.1904 0.8789 1.2320 0.8630 3.6307 

iris0 0.0282 0.0059 0.5952 0.4395 0.6160 0.4315 1.8153 

bupa 0.0307 0.1190 1.4230 0.5237 0.6051 0.4285 3.1481 

wine 0.0292 0.1135 0.4607 0.5257 0.5833 0.3888 2.9973 

titanic 0.0362 0.1453 2.5668 2.1130 5.1227 2.0455 6.6073 

German 0.0396 0.1299 1.6343 1.1685 2.2895 1.2955 4.5573 

phoneme 0.1046 0.2395 11.3943 6.7378 21.6974 7.1643 19.9138 

sober 0.0292 0.1120 0.5004 0.4723 0.4999 0.3174 3.1059 

ILPD 0.0367 0.1284 0.7489 0.6924 1.0654 0.6249 3.8425 

glass-0-1-2-3_vs_4-5-6 0.0282 0.1180 0.4270 0.4841 0.6487 0.4741 3.3287 

blood 0.0317 0.1120 0.7826 0.7321 1.2558 0.7281 3.7056 

ecoli1 0.0287 0.1116 0.4647 0.5872 0.6586 0.4106 2.9710 

skin 1.3888 4.1476 936.7546 251.7978 4097.1584 1281.0152 3206.3131 

usps 0.4761 0.9354 11.1066 8.0909 21.5724 9.5094 22.5322 

appendicitis 0.0282 0.0124 1.1195 0.4265 3.0255 2.1963 5.2636 

new-thyroid1 0.0287 0.1135 0.5356 0.5059 0.6051 0.4027 3.0385 

ecoli2 0.0292 0.1125 0.4696 0.5019 0.6309 0.4146 3.1154 

musk 1.3928 1.5580 46.5965 15.2224 101.1228 31.9450 73.3401 

segment0 0.0481 0.1825 7.3661 5.9441 13.9834 8.3408 16.7243 

glass-3-5_vs_1-2-6-7 0.0287 0.1145 0.5917 0.4761 0.5833 0.3769 3.2647 

glass 0.0367 0.1319 0.5594 0.7876 0.8094 0.5039 3.8430 

page-blocks0 0.0639 0.2123 7.4296 4.7497 44.3867 4.6446 49.8388 

ecoli-0-4-6_vs_5 0.0312 0.0114 0.4836 0.4662 3.0772 0.3591 5.2641 

HTRU2 0.1701 0.5039 26.3178 11.2594 271.1350 11.8090 148.6880 

vowel0 0.0332 0.1314 0.8670 0.7559 1.3868 0.6487 3.8877 

ecoli-0-1-4-7_vs_2-3-5-

6 

0.0287 0.0198 0.5991 0.4880 0.5713 0.3948 3.0519 

ecoli4 0.0277 0.1145 0.9161 0.5436 3.2776 2.1586 5.3697 

dermatology-6 0.0317 0.1155 0.5748 0.6031 0.7638 0.4146 3.1997 

wilt 0.0897 0.2877 6.7493 5.0379 28.6223 2.7104 31.0440 
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5. Conclusions 

In this study, an improved stacking ensemble learning algorithm called MSFSS was proposed to 
address an imbalanced data classification problem. The algorithm first considered to enhance ensemble 
diversity by integrating multiple sampling strategies with multiple supervised learning algorithms. 
Then, it introduced a WOA-based feature selection procedure to improve the quality of the meta feature 
space, further producing a better meta classifier. In experiments, we first compared the proposed 
MSFSS algorithm with several baselines and state-of-the-art stacking variants which are specifically 
designed for solving class imbalance problems. Specifically, on 40 benchmarked datasets, the MSFSS 
acquired best results in terms of the F-measure metric on 27 datasets, and best results in terms of the 
G-mean metric on 26 datasets, indicating its superiority. By statistical analysis, we observed that the 
proposed MSFSS significantly outperformed its several competitors, except stacking and SADA, in 
the context of the F-measure, and the stacking in terms of the G-mean metric. Also, the results of 
ablation experiments illustrated the effectiveness and necessity of a two-module design in MSFSS. 
Additionally, we compared the running time of various algorithms, and observed that the proposed 
MSFSS algorithm seemed to be more time-consuming than several others. However, profiting from 
the faster convergence speed of the WOA, the increment of running time of the MSFSS was totally 
acceptable. Therefore, we do not think that this factor would limit the use of the MSFSS algorithm in 
various real-world applications. 

In future work, we plan to integrate more novel and high-quality sampling strategies and 
classification algorithms into the MSFSS algorithm framework to investigate whether its performance 
could be further improved. Also, we wish to explore whether there exist some more efficient optimization 
algorithms that could further enhance the quality and efficiency of meta feature selection. 
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